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1 Introduction

The notion of input-to-state stability(ISS) has played an important role in recent development of
nonlinear control theory[11], which was originally introduced in [13]. The ISS has already found wide
applicability such as nonlinear stabilization and backstepping design[11], inverse optimal control[3, 10],
small-gain theorem[9].

The concept of ISS is a natural answer to the situation where boundedness of operator norms(
‘finite linear gains’ in other words) is far too strong a requirement for general nonlinear systems. The
ISS replaces the finite linear gains with nonlinear gains instead of focusing only on local properties[5].
ISS is a global property which takes into account not only initial states in a manner fully compatible
with Lyapunov stability, but also the effect of input perturbations. The idea of nonlinear gain was
extended by the integral input-to-state stability (iISS) in which the size of inputs is measured by integral
norms[14]. For linear systems, both ISS and iISS are equivalent to asymptotic stability. For general
nonlinear systems, the iISS is strictly weaker than ISS although ISS implies iISS. One of necessary
and sufficient conditions for iISS is that a nonlinear system is iISS if and only if there is some output
function which makes the system smoothly dissipative and weakly zero-detectable[1]. This equivalence
describes an important connection between the iISS concept and another popular concept ‘dissipation’
which has guided developments of nonlinear H., control and related robust control techniques.

This paper address the problem of designing input-to-state and integral input-to-state stabilizing
control laws. The concept of state-dependent(SD) scaling design is employed and it leads to an
explicit construction of state feedback and output feedback control laws. The SD scaling design is
a new technique which thoroughly utilize the state-dependent scaling and diffeomorphism to design
nonlinear control systems[4, 6, 8]. This paper does not repeat the concept and details of the SD scaling
design framework which has been already presented in [4, 6, 8] and references therein. In [6, 7], the
SD scaling design method has succeeded in directly solving robust nonlinear global stabilization and
inverse optimal control problems without resort to ISS, by contrast with other previous methods based
on ISS. Since abovementioned papers bypassed the ISS, it was not clear how to solve an important
class of nonlinear control problems by using the SD scaling design approach when the problems are
characterized directly in terms of ISS and iISS. This paper presents new characterizations of ISS and
iISS problems through the SD scaling design and explains some necessary nontrivial modifications
to the scaling, Lyapunov functions and recursive design of feedback gains and observers presented in
[6, 7]. Thereby, this paper enables us to solve ISS and iISS problems through the use of the SD scaling
design. The stabilizing control laws are systematically generated by selecting state-dependent scaling
and parameters of the coordinate change recursively.

The paper presents both state-feedback and output-feedback global stabilization of nonlinear sys-
tems in the strict-feedback form. Input-to-state and integral input-to-state stabilization is also con-
sidered for uncertain systems, which is called robust input-to-state and robust integral input-to-state
stabilization. The uncertainties are allowed to be either static or dynamic. The existence of solutions
to problems are proved and the controller designs of all problems are done within a single unified

framework.



2 State Feedback Stabilization

Consider the nonlinear system X described by
Y:2=Ax)z+ B(x)w+ G(z)u . (1)

where dimensions of signals are z(t) € R", w(t) € R? and u(t) € R'. Functions A(z), B(z) and G(x)
are C° functions.
We use a global diffeomorphism

X =5z (2)
between z € R" and xy € R". The time-derivative of y is given by
as 08 oS

Y = 8—95196’3—332%“.’3—%4 z+ S(z) =T(x)z ,

where T'(z) is a matrix-valued C° function. Let the state-feedback be represented by
u=K(x)x (3)
where K is a C° function. The closed-loop system consisting of (1) and (3) becomes
Sy:ix=T (AS‘X + Bw) (4)
$— {;511}, A=lAql.
The following provides new characterization of the ISS property in the state-feedback case.
Theorem 1 If there exist a positive definite matriz P and positive real numbers v and & such that

oT AT T AQ
NSf(x):[S ATTTP + PTAS +vP PTB| _ )

BTTTP —£I

is satisfied for all x € R™, the state-feedback law (3) renders the nonlinear system % input-to-state
stable.
Proof : Define a positive definite function V(z) : R™ — [0,00) by

V(z)=x"Px . (6)

which is a radially unbounded function of z since S defines a global diffeomorphism. The time-
derivative of V" along the trajectory of the closed-loop system (4) satisfies

d aT ~ A
%V(m) =2x' PT (ASX + Bw)

We have

Ly (2) + iy Py — T = [ X ]T

dt w BTTTpP 0 w w 0 —&I

S‘TATTTP+PTAS‘PTB]{X} [X}T{VP 0 HX]

2l
w w
From N*/(x) < 0 it follows that

%V(w) < —vx'Px +¢w'w, VYrecR" (8)
Since S(x) defines a global diffeomorphism, using the characterization of the ISS Lyapunov function

in [15], the closed-loop system is proved to be input-to-state stable 1



For linear systems, it is verified that the condition in Theorem 1 is satisfied if and only if there exist
v>0,£>0,e>0and P >0 such that

T
<A+GK+%I> P+P<A+GK+%I> 4 'PBBTP 4+ ¢l =0

By virtue of the theory of Riccati equations, the existence of the parameters (v,&, ¢, P) and K is
guaranteed if and only if the pair (A, G) is stabilizable. This property is precisely the same as the fact
that a linear closed-loop system is ISS if and only if (A + GK) is a Hurwitz matrix[14].
Consider an uncertain nonlinear system Xy described by
s { & = A(x)r + B(x)w + Bs(z)ws + G(z)u ()
Y\ 25 = Cs(x)2 + Ds(x)ws + Hs(x)u '

where z(t) is the state, w(t) € RP is the disturbance input, and ws(t), z5(¢) € R? are channels through
which the uncertain components affects the system. Functions Bgs(z), Cs(z), Hs(x) and Ds(z) are C°.
The two signals zs and wy

281 Wgy

wg, (t) € R
285 Wg, a
25 = : , Wws = : , zs; (t) e R%
>0, q¢=3"14q
Z(jm w(jm

are connected by an uncertain system YA which is represented by a causal nonlinear mapping A :

Z§ > wy.
YA A = block-diag[A1, Ay, -+, Ay, (10)
Some of the mappings A; : z; — w;, ¢ = 1,2,...,m can be zero in vector size ¢;. Each uncertain
mapping 4A; is defined as
A; : ws; = hg,(z5,,1), (11)

where h;,; is a vector-valued function satisfying ha, (0,¢) =0 for all £>0. For notational simplicity,
we assume that A; are square in size of input and output vectors, which does not cause any loss of
generality. The uncertainty XA defined by (11) is said to be admissible if A; satisfies

125, @) | > llws, (D), V& €[0,00) . (12)

Note that uncertainty components having super-linear growth in = can be included by a judicious
choice of Bs(z), Cs(z), Ds(z) and Hs(z). Indeed, the matrices { Bs, Cs, Ds, Hs} specify the “nonlinear
size” (including magnitude, nonlinearity, location and structure) of uncertainties. The closed-loop
system consisting of (9) and the state-feedback law (3) is obtained as

5 _{X:T(Agx-i-Bw-i—ng(g)
clU - AN A
z5 = C(;SX + D5’UJ5

Cs = [Cs Hg].

(13)

This paper employs the idea of state-dependent scaling to achieve input-to-output stabilization of
the uncertain nonlinear system. Define the following set of scaling matrices

L= {Azbloclﬁdiag/\i i A :/\i(x)Ii, /\,(w) >0 VZ’ER”} (14)
=1



In the above definition, I; denotes an identity matrix which is compatible in size with z;5,. The scaling
matrices are functions of the state variable. The state-dependent scaling is useful for estimating the
worst case value of the time-derivative of Lyapunov functions[4]. As in [6], another type of SD scaling
matrices for repeated uncertainties can be incorporated in the set of scaling matrices straightforwardly.
For brevity, they are not included in the following theorem and all results of this paper.

Theorem 2 If there exist a positive definite matrix P, positive real numbers v, £ and a scaling function
matriz A € L such that

STATTTP + PTAS +vP PTB PTBs STC]A

BTTTP —£I 0 0

sf _

M ()= BITTP o A pra |<0 (15)
AC;sS 0 AsD —A

is satisfied for all x € R™, the state-feedback law (3) renders the nonlinear system Yy input-to-state
stable for all admissible uncertainty Xa.
Proof : Define a positive definite function V(z) : R™ — [0,00) by

V(z) = x"Px (16)
which is a radially unbounded function of x. The time-derivative of V along the trajectory of the
closed-loop system (13) satisfies

d N
%V(x) =n"pPT (ASX + Bw + B5w5)

Using this equation, we obtain
T

J { X ] STATTTP + PTAS PTB PTB; { Y ]
EV(I‘) +ux'Py —tw'w = | w BTTTp 0 0 w
[w(;J BITTP 0 0 [w(sJ
T
X vP 0 X
) 10 e 1] (17)
Since the admissible uncertainty A; satisfies
T
[Zéi] [ 0 Ai(ﬂﬂ)H%]Zo vrER (18)
Equation (17) becomes
d
£V(x) + Py — twlw
"y 15 [STATTTP + PTAS + vP PTB PTB;s | [ x T
<|lw B'T" P —&I 0 w+z 0 A . (19)
Lws || BITTP 0 0 |Llws ’ ’
"y 17 ([ STATTTP + PTAS + vP PTB PTB; |
=] w BTTTP —£I 0 +
L ws ] BfTTP 0 0 |
8§T005T {—AO] 0 0 I X
A A w
! D 0 Al|CsS 0 Ds




where the matrix Q(x) is

STATTTP + PTAS +vP PTB PTB;s STCTA o
Q= BTTTP ~I 0 |+ 0 |AT[AGS 0 AD;
BI'TTp 0 -A DFA

According to the Schur complement formula, the inequality (15) is equivalent to @ < 0. Thus, we
arrive at

d

£V(x) < —vxIPx +¢wl'w, VYzecR" (21)
Hence, the closed-loop system is input-to-state stable. 1

The characterizations of stabilization presented in the above theorems are addressed by strict inequal-
ities(negative definiteness of matrices). It can be verified that they can be replaced with non-strict
inequalities(negative semi-definiteness). A control law satisfying the non-strict inequality is also a
solution to the stabilization problem. The following corollaries state the fact precisely.

Corollary 1 Suppose that matrices S and P are given. The following two statements are equivalent.
(i) There exist v, &€ > 0 such that N°/(x) < 0 is satisfied for all z € R™.

(ii) There ezist 7,& > 0 such that N3/ (z) < 0 is satisfied for all x € R™, where v,& are replaced by
,& in the definition (5) of N*/(z).

Proof : The direction (i)=-(ii) is trivial. The converse direction is proved for any ¢ > ¢ by letting
€, > 0 be small enough to satisfy v =7 — ¢, > 0. I

Corollary 2 Suppose that matrices S and P are given. Consider the following two statements.

(i) There exist v,& > 0 and A € L such that M*/(x) < 0 is satisfied for all x € R™.

(ii) There exist 0, >0 and A € L such that M*f(z) <0 is satisfied for all x € R™, where v, &, A are
replaced by ,€, N in the definition (15) of M (z).

Then, the statement (i) always implies (ii). Furthermore, if the condition

_A T A
[AD% <0, vz € R" (22)

ADs —A

is satisfied, the statement (i) implies ().

Proof : The direction (i)=(ii) is trivial. In order to prove the converse, let £ > & and choose €, > 0
to be any small number satisfying v = 7 — ¢, > 0. Define A(z) = (1 + o(z))A(x) with a scalar-valued
function a(z) > 0 to be determined later. The matrix A obviously belongs to the set of the SD scaling

L. For these new parameters, we obtain

M (5,68, 2) = M (1,6, A, ) — Mc(x) <0

—¢, P 0 0 STCfaA
_ 0 (=9I 0 0
Me(z) = 0 0 —al D?aA

aACsS 0 alADs —aA
The matrix M¢(x) is negative definite if and only if

—aP 0 0 5T¢TR) [ -A DTA] '[ 0 o0
0 —E-HI| Yo o 755 0




holds for all z. Recall the assumption (22) and that the constant numbers €, and & — 5 are positive.
Since functions S, C' are continuous, there always exists a function a(z) such that (23) and a(z) > 0
are satisfied for all z € R™. Hence, M*/(v,&, A, z) < 0 is proved. 1

It should be noted that the condition (22) is satisfied for any A € L whenever D; = 0. The inequality
(22) is a reasonable assumption for input-to-state stabilizable systems. Actually, the assumption is
a condition which ensures the wellposedness of the uncertain system for all admissible uncertainties.
For instance, if Dy is block-diagonal, the inequality (22) is equivalent to

I— Da,i(x)ngi(x) >0, VzreR" (24)

which is necessary for the wellposedness of the uncertain system.
Now, we focus on the existence of the state-feedback law and the construction of the controller
solving the conditions in Theorem 1 and 2. We shall prove the existence for the nonlinear system

satisfying the following structural assumptions.

all a12 0 ...... 0
asy  az azz 0 0 0
Aw=| © Colew=] (25)
an—1,1 Qpn-1,2 *°° an—1,n Un,n+1
o ame o nn |
Bi1 0O 0
Bry= | P P (26)
Bnl Bn,n—l Bnn
aij(z) = ajj(x1, 22, 2), 1<i<n, 1<j<i+]l (27)
aiir1(r1, 29, w) #0, 1<i<n, VreR" (28)
Bij(x)=Bij(x1, 22, 2;), 1<i<n, 1<j<i (29)

This structure of ¥ is called the strict-feedback form in the literature[11, 3]
system X7 is supposed to satisfy m = 2n and

. In addition, the uncertain

Bsii Ui 0 0 0 0
Biw) = | § P (30
B5,n1 0 B(ﬁ,nZ 0 B(ﬁ,nn ULn
[ Cs11 0 0 0 0 T
0 Uri 0 0 0
Csp1 Csa2 0 ™. 0 0
0 0 Ugrs . 0 0
Cs(x)=| : Do : (31)
Csn—1,1 Csn—1,2 “ Csp—1p—1 0
0 0 0 UR,n—l
05,n1 05,n2 Cé,n,nfl Cé,nn
0 0 0 0 |




D5y 0 0 0 0 0
000 0 0 0 0
0 0Dsp 07 . 0 :
Ds(xz)=| 0 0 0 0" 0|, Hs(x)=| | (32)
0 0 0 0 Dsp 0 Urn
| 00 0 =0 0 0

where B(S,ij(x) € Rqu(?ifl)’ C(m'j(x') € Rq(%*l)Xl, D57i(1)) € Rq(zifl)xq(zifl), UL’Z'(IL‘) € RIX®i and
Ug,i(z) € R%2*! satisfies

Bsij(x) = Bsij (21,2, xi), Csij(x)=Cys45(x1, 22, ;) (33)
Uri(2) =Upi(z1, 22, 2;), Upi(x) =Urgi(21, 22, %) (34)
D(g’i(l‘):D(g’i(l‘l,l‘g,"', l’i), I — D(;,Z(l’)Dg:l(l’) > 0, Vr e R" (35)

for 1 <i<mnand1<j<i. Thestructure of ¥y is called the robust strict-feedback form[6]. Let Tk
denote the first £ components of the state:

T
x[k)] = [2717272, T ,fl'k] .
For the diffeomorphism between z and y, we take
1 0 0 0
—51 1 0 0
S(z) = 5182 —52 1 0 (36)
(=1)" " lsysp_1 -+ Sp—2Sp—1 —Sp—1 1
Let the state-feedback be in the following form.
u = 5n(2)Xn (37)
The smooth scalar functions s1(x[i)), s2(2[g), -+, Sn—1(2[n—1]) are to be designed from s; through s,
in a recursive manner. The matrix S is obtained as
1 0 0 0]
s; 1.0 --- 0
s=|0el
0 -+ 0 sp1 1
|0 -~ 0 0 sp]
Finally, the state-dependent scaling is chosen as
o - 2n . Ai:Ai(m[(i+l)/2])Ii for odd ¢ ) n
L= {A—blocili—ldlag A Ai=Xilzg)L;  for even i Ai(z)>0VzeR } (38)

The following theorems demonstrate that the solutions {si,---,sp}, {\1, -+, A2} and P of (5) and
(15) always exist for any v, £ > 0.

Theorem 3 The system X in the strict-feedback form can be input-to-state stabilized by the state-
feedback law (37).



Theorem 4 The system Xy in the robust strict-feedback form can be input-to-state stabilized by the
state-feedback law (37) for all admissible uncertainty .

In the rest of this section, the two theorems are proved. From ¢ > 0 it follows that N5/ < 0 and
M3! < 0 are identical with

_ N - 1
N/ (z) = STATTTP 4+ PTAS + vP + EPTBBTTTP <0
STATTTP 4+ PTAS +vP + tPTBB"T"P PTBs STCIA
M3 (z) = BIT'P ~A  DIA | <0
AC;S ADs;  —A

respectively. The matrices N*/(z) and M*/(x) are the same as those appearing in [6] except for an
extra term vP + %PTBBTTTP. Let P be any diagonal matrix

n
P = diag F;, F>0
i=1

We introduce a notation [k] which denotes the submatrix at the upper left corner of a matrix as

follows:
Qll QIZ Ql,n Qll QIQ Ql,k
Q= |9 9 | Q=T L] Qu=n Qu=0
le Qn,n Qk,l Qk,k
For example, we use
Pk}—l 0
Py = { 0 |P }
Ti—11([r—21) |0
Th ) = [Te=2) 0

B—y(zp—1)| 0 0 ]

By () = [ *k.0 | B, Uk

Here, the entry %; ; depends only on the states zj;, and the functions s; through s; and their partial
derivatives. The strict-feedback form of ¥ yields the following structure.

Pe—Ti—yBr—Bl T qFPr-1 ‘*k,k—l
K k—1 |*k,k71

T T
Py Tk Biigy Bty Ty Py =

Obviously, the matrix PTBB"T" P is independent of A. In addition, the matrix Py Tiy By Bl Ty Pey
do not include of si. Due to this property of the extra term, the recursive construction of { s, Aog_1, Aoy }
from k = 1 through k = n is always feasible by following the procedure which is almost similar to [6].

For detailed formulas, see [6].

3 Output Feedback Stabilization

Consider the nonlinear system Y. described by

2 =AWz + B(y)w + G(y)u
oF { o . (39)



where U, is a constant row vector, and y(t) € R' is the measurement output. Suppose that the state
variable x cannot be measured. We employ the following observer to estimate the state.

&= A(y)s+Y(y,2)(y — ) + Gy)u
{ j=Cyi (40)

This section seeks the output feedback control consisting of (40) and

uw=K(y,&)i . (41)

Functions Y and K are C° functions which have yet to be determined. The closed-loop system is
written as
d [gg
dt | T

A GK
~lvc, A-YC, +GK

;]Jrﬁﬂw (42)

Consider a global diffeomorphism between [#7, 27 — zT]T € R?" and [{T,n]T € R?" as follows:

[iHS(%’j’V%H&] (43)

The time-derivative of x is obtained as

05, 05, )
oyr  Oy2 T Oyn Y

oS . 08 &S'ﬂ-

The square matrix W is constant and non-singular. The closed-loop system on the new coordinate
(X;n) is

[{] = [ emas ovagmee ] (1) [ 22 ).
A=[cpar], W:{_YWTE/T], S*:[Ifsll], A=[4 G].

Theorem 5 If there exist positive definite matrices P and 15, and positive real numbers v, & and U
such that

N (y, )=
STAT(X +T)"P+ P(X +T)AS +vP PXB —P(XA+TYC,))W~!
BTXTp —£I -BTwWTp <0 (45)
~WT(XA+TYC,)TP —~PWB W TAWP + PWTATW ! + P

is satisfied for all (y,2) € R™, the output-feedback law (40-41) renders the nonlinear system X
input-to-state stable.
Proof : Define a positive definite function V'(x,2) : R?" — [0, 00) by

V(z,2) =xTPx+n"Pn. (46)

which is a radially unbounded function of (x, %) since S and W define a global diffeomorphism. The
time-derivative of V' along the trajectory of the closed-loop system (44) satisfies
iV_Q{f(}T PO (X + T)AS —(XA+TYC,)W! [x]+[ XB ]w
dt " ln 0P 0 wTAw-! n -WB

10



We have

d w17 [vP 0 [y T
0 1713] ] e
017 [STAT(X +T)TP+ P(X +T)AS PXB  —P(XA+TYC,)W~! ¥
=|w BTXTp 0 -BTwTp [w]
n ~WT(XA+TYC,)"P —~PWB W-TAWP + PWTATW-'| Ln
Y1 rvP 0 077(%
+ | w 0 &I 0 w
n 0 0 oP] |n
~ T ~
X X
= [w] Not w] . (47)
n n
From N°/(y,#) < 0 it follows that
d 15 [vP 0 1% T
V<= -
ai’ < {n} [0 DP] {n%f“’ w (48)

Since (43) is a global diffeomorphism, the characterization of the ISS Lyapunov function in [15] proves
that the closed-loop system is input-to-state stable. I

Consider an uncertain nonlinear system Yy described by

& = A(y)z + B(y)w + Bs(y)ws + G(y)u
Yy 2= Cs(y)z : (49)
y = Cyx
The uncertain system YA is defined by (10) and (11). The uncertainty XA is said to be admissible if
(12) is satisfied for all i = 1,...,m. For the output-feedback case, state-dependent scaling matrices
are chosen as functions of output and state estimate.
m
L= {A:block—diag A Ni=Xi(y, )L, Nily,2)>0V(y,z)€ R”'H} (50)
i=1

The closed-loop system consisting of (49) and the output-feedback law (40-41) is represented by

[ﬂ _ (X+OT)A§ —(Xfé%gvc:%)w—l m . [_)Ich]w+ {_ﬁfgé]w (51)
25 = Cs [ S — W] [’7;] (52)

Theorem 6 If there exist positive definite matrices P and 15, positive real numbers v, £, U and a
scaling function matriz A € L such that

M (y, &)=

[ (STAT(X +T)T P+
P(X +T)AS +vP

) PXB PXBs; STTCIA —PXA+TYC)W™!

BTXTp —&I 0 0 -BTWTp
BIxTp 0 —A 0 -BIwTp <0 (53)
ACsS—1 0 0 —A —ACsW—1

) . e
~W-T(XA+TYC,)TP —PWB —PWB; —W-TCTA ( W= AW P+ )

PWTATW-! 4+ ppP

11



is satisfied for all (y,2) € R, the output-feedback law (40-41) renders the nonlinear system s

input-to-state stable for all admissible uncertainty 3.
Proof : Define a positive definite function V'(x,2) : R?" — [0, 00) by
V(z,2) =x"Px+n"Pn. (54)
which is a radially unbounded function of (z,%). The time-derivative of V' along the trajectory of the
closed-loop system (51) satisfies
X n XB n X Bs
n —wB|YT | -wB; |

d {X}T PO (X +T)AS —(XA+TYC,)W!
—V =2 ~
dt Ui 0P

0 wTAw-!
We arrange the time-derivative as follows:

d 15 [vP 0 ] [x T
ﬁv—i-{ lo 5P [n]—fww
[ (STAT(X +T)T P+ T
. PXB PXB; —-P(XA+TY -1
01" ( P(X +T) 48 o TPEATTYG)WTL
lw BTXTp 0 0 -B"W'P w
| ws BIXTp 0 0 —-BIwTp ws
U - - - w=T AW P+ 1
_—W "XA+T1YC)"P —PWB —PWB; (PWTATw—1> |
X vP 0 0 X
+ | w 0 —¢I 0 | |w (55)
n 0 0 oP]Lln
Since the admissible uncertainty A; satisfies
T ~
ws, _Ai (ya J}) 0 We; - n+1
[Zdi } { SRR B TR RS (56)
Equation (55) becomes
d 15 [vP 0 1% T
§V+[n_ lO ﬂPHn}_fww
[ (STAT(X +T)TP+
A~ o T -1
L PXB PXB —P(XA+TY
X (P(X+T)AS+VP J (XA+TYC,)W
< BTXTp —£I 0 -BTwWTp
wg -
0 BIXTp 0 0 —-BIwTp
W T(XA+TYC,)"P —PWB —PWB; W-TAWP + PWTATW~! 4+ pP
iy Tr-ao iy (57)
Zs 0 A 2
v 1" ([STAT(X +T)"P+ P(X +T)AS +vP PXB PXB;
| w BTXTp —£I 0
| ws BIxTp 0 0
U] -W I xA+T1TYC)TP —PWB —PW B;
—P(XA+TYC)W™ 0 srcy X
-B'W'P L]0 0 ~A 0 0 01 0 w
-BI'wTp I 0 0 AJ|CsS7too—-Cswt ws
n

W-TAWP + PWTATW=! + 0P 0 -w-Tct

12



X X
w w

“lws | 9| ws (58)
n n

The matrix Q(y, ) is obtained as

STAT(X +T)"P 4+ P(X +T)AS+vP PXB PXB; —P(XA+TYC,)W!
Q= BTXTPp —£I 0 -B'W'P
B BI'x™Tp 0 —A -BI'wTp
~WT(XA+TYC,)"P —PWB —PWB; W TAWP + PWTATW=' + P
S=TCTA
+ 8 AT[ACsS™H 00 —ACsW 1]
-w-TcTA
Using the Schur complement formula, we see that the inequality (53) is equivalent to Q < 0. Thus,
we obtain
d 17 [vP 0 1% T
V<= -
ai’ < {n} [0 ﬁPHan“’“’ (59)
and the closed-loop system is input-to-state stable. I

It can be verified that the strict inequality characterizations in Theorem 5 and 6 can be rewritten
by non-strict inequalities N°/ < 0 and M°f < 0. The equivalence demonstrated in Corollary 1 and
Corollary 2 is also true for the output-feedback case.

Now we suppose that the system 3 and Xy satisfy the following triangular structure.

aiy alo 0 - 0
azr  az azz 0 0 0
Ap=| P i e (60)
Gp—-1,1 Op—-12 " Gp—1,n Un,n+1
| am Qpy Unn |
ai;+1(y) #0, 1<i<n, VyeR (61)
By 0 0
By =P 02 (62)
By o Bn,nfl Bun
Bsii O 0 06,11 0 0
Biy)= | P B L ey = |G G2 (63)
B5,n1 B(S,n,nfl B(ﬁ,nn 05,n1 CJ,n,nfl C(ﬁ,nn

where Bj;;(y) € RYCi-0, C5,i(y) € RYi-v*t and m = n. The above matrices are dependent
only on the output y so that this paper call the structure of 3 and Xy the output-feedback form and
the robust output-feedback form, respectively. Note that the class is more general than a standard
output-feedback form[11] in which the nonlinearity is restricted to A(y)x = Apz + ¥ (y). We assume
that the output equation of ¥ and Xy is given by

y=o
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or equivalently C,, = [1 0---0]. This case is sometimes called output feedback in the nonlinear control
literature[11]. We define S(x;, ) and the feedback gain as follows:

s1 10 - 0
571(1‘1, i'[an]) = 0 59 1 -0 (64)
0 -0 sp-11
u = Sn(xla i‘[n—l])f(n (65)
The parameters s1(z1), s2(71,%1), -+, sn(T1,%[,—1]) are smooth scalar-valued functions which are to

be determined in a recursive manner from s; through s,. Let the matrix W be

1 000
wy 10 0

W=|0 w1l "0 (66)
0~ 0 w1

whose entries w; for 2 <7 < n are constant. Define the observer gain by

w1
V(e) = W {m%m)] _ —ww (67)
(=)™ twiwy - - - wy,
where w; is a C? function of ;. The parameters w,---,w, have yet to be determined recursively

from k = n through k£ = 1. The state-dependent scaling for the output-feedback problem is chosen as

L= {A:blocl?—diag Ai s Ai=Ni(y, B—op) i > 0 V(y, Z_g) ER X RiZ} (68)

i=1
We restrict our attention to the following class of systems.
Assumption 1 The function A(xq)x satisfies

A(l’l)l’ = Aol’ + 1[)(1’1) + (]5(1‘1)1’2 (69)

with a constant matriz Ay and C° functions ¢ and ¢. There exist constants o; > 0 such that

ah(wn) /()| i, i=23,....m (70)

hold for all x1 € R. The matriz B satisfies

BH(IL‘l) 0 0
B(wl) = 0 322(1’1) 0 , B”(wl) c RIXpi (71)
0 0 Bun(z1)

and there exist constants B; > 0 such that

By (z1)BE (1) < By Boo(x1) B3, (21)

a%2(931) \V 0%2(951)

Sﬁla Bzz(ml)BZ;(l‘l) Sﬁu 222737771 (72)
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It should be noted that the diagonal restriction (71) imposed on B does not cause any loss of generality.
Indeed, an ISS problem with a triangular B can be recasted as another ISS problem with a diagonal
B by using the following idea.

6110 0 ﬂ 611000 0 0]0 0 0 w1
b21 b22 0 ﬂ = 0 00 b21 b22 010 0 0 w9

b31|b32|b3z | w3 0 00/ 0 O 0]bsy bag b3z ] | w3
—_— ~ ~ .
B: By w1
w2
| s |

A system defined by a state-space equation with a disturbance input term Byw is ISS if it is ISS with
Bjw.
We are now in a position to state the following theorem.

Theorem 7 Under the Assumption 1, the system X in the output-feedback form can be input-to-state
stabilized by the output-feedback law (40-41) with (65) and (67).

For robust input-to-state stabilization, we need the following assumption.

Assumption 2 The matrices Bs and Cs satisfy

Bs1(x1)
Bs(rr) = | P20 | Gy(ay) = [Coaa(n) 0 -+ 0] (73)
Bsni(x1)
where Bj1(x1) € R'*a, Cs11(z1) € R gnd ¢ = q.

This assumption is the same as that in [8].

Theorem 8 Under the Assumption 1 and 2, the system Xy in the output-feedback form can be input-
to-state stabilized for all admissible uncertainty XA by the output-feedback law (40-41) with (65) and

(67).

The rest of this section describes the proof of the above theorems and how to design the output-
feedback control law. Using the Schur complement formula, N°/ < 0 and M°/ < 0 are equivalently

transformed into

Nl (y, 7) = N+ ¢ '"PXBB"XTP —P(XA+TYC,)W~'— f—lPXﬁBTWTP] <0
’ * H+ ¢ 'PWBBT™WTP
—1
N +&'PXBBTXTP PXB; STTCFA < Pg()fﬁ ; BT ;TCI%J/)}AI/S )
MOl (y, &) = x A0 —BTWTP <0
* * —A —ACsW—1
x X X H+ ¢ 'PwBBTWTP

respectively, where

N=8TAT(X +T)'P + P(X + T)AS +vP
H=WTAWP + PWTATW! 40P
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The matrices N°/ and M°f are symmetric. The parts filled with * are defined accordingly. The
matrices N°/ and M°/ are the same as those appeared in [8] except for the terms

¢ 'PXBBTXTP, e 'PWBB™WTP, ¢ 'PXBB"WTP, vP, i P

In order to solve M°/ < 0 and M°/ < 0, we divide the design procedure into two phases. The first
phase is to design the observer (40). The second phase is the design of the feedback gain (41). The
observer problem is to find W and Y which solve H + ¢ 'PWBBTWTP < 0. The feedback gain
design takes place after W and Y are determined. In the second phase, we compute S and K meeting
the condition M°/ < 0 or M°/ < 0. Both the designs will be done in a recursive manner. The feedback
gain design determines s from £ = 1 up to kK = n. The observer gain design determines wy from
k =mn down to k = 1. The idea of recursive construction of observers originates from [8]. It, however,
needs nontrivial modifications for dealing with problems of this section.

Begin by picking any diagonal matrices P > 0 and P > 0. The output-feedback form of ¥ and Sy
leads to the following recursive structure.

l P[kfI}X[kfl]B[kfl]B[jl;_uX[]];_l}P[k—l] ‘ Ok—1,k—1 ]

(74)
Ok—1,6-1 |Dk—1,k—1

T T _
Py X1 B Big Xy Pl =

where O; ; denotes any function depending only on (71, Z|;), and the functions s; through s; and their
partial derivatives. Due to the diagonal structure (71), we also obtain

P X0 Bist Bllg Wik Py = [P[k_l]X[k_l]B[é;}i%HWﬁc_ﬂp{k—l] ‘g] (%)
Since ¢ is positive, the inequality
H+ ¢ 'PWBBTWTP <0 (76)
is equivalent to
—B"WTPH'PWB < €¢I, H<0 (77)
Let I' be a diagonal matrix satisfying
0 = 0
= ?7_2::'(5) >0 (78)
0 0
—-H'<T (79)
Then, (77) is implied by
BTWTPTPWB < €I (80)
Now, consider
By Wiy P sy Py Wy By < &1 (81)

Here the subscript (k) denotes the submatrix at the lower right corner as follows:

Qu Q2 Qun Qrk  Qrktr " Qkn
Q= Q521 ngz T Q- Qk-gi—l,k Qk+51,k+1 Sl Q=9 Quy=Qun
Qn,l Qn,n Qn,k Qn,n
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Due to the structure of X, we have

T T D
BiyW ey Py T iy Py W iky By

OB+ 1 P wi ) Bl Bk |k By wien Bl Bres ks 0] (82)
- Do,0 | By Wiy Pt T i1y Pty W1y B

Thus, there exists a sequence £ = & > & > -+ > &, > 0 achieving (81) whenever there exist £ > 0
such that (80) holds. Using (82), we can pick constants v > 0, & > 0 and p > 0 satisfying

By W iy Py Tty Py Wiy Bigy — €1 < —puid (83)

recursively from k = n up to k = 3 since B3, is uniformly bounded. For k = 2, take v2 = c/\/ady

with a positive constant ¢ > 0. Because of the uniform boundedness of B,y and By BL,/\/a?,, we
can find ¢ > 0, & > 0 and po > 0 such that (83) holds for ¥ = 2. Again from (82) and the uniform
boundedness of BHBITI/\/Q?Z and BZQBQTQ/\/Q?Z, it follows that we can pick up v1(z1) > 0 and & > 0
with which (81) is achieved for k = 1. Note here that under the Assumption 1, at each step k, we can
find the parameter wy satisfying

—H gy < Ty (84)

for the chosen ~y; by following the design procedure of robust observer in [8]. In this way, the observer
parameters Y (z1) and W which meet (76) can be always constructed by solving (83) and (84) for v
and wy, recursively from k = n down to k = 1. Finally, using the structure (74) and (75), it is proved
that the parameters {sg, Ay} of feedback gain design solving N °f < 0 and M°f < 0 can be determined
recursively from k£ = 1 up to k = n by following the procedure established in [8]. Thus, Theorem 7
and 8 are proved on Assumption 1 and 2.

4 Characterization for Dynamic Uncertainty

The uncertainty components defined by (11) are static systems. In this section, we consider the
uncertainty XA which is allowed to be dynamic. Now, the causal mapping A; in (10) is defined by

A; 25, = |:Cd,i:| — wg, = wd,ij| (85)
Cs,i §,yt
',1‘:(5' = f(i'(m@agdiat)

7 7 i1 ) 86
{ wa,i = 95, (%s;, Cd,in t) (86)
Ws,j = h5i (Cs,ia t) (87)
where the vector-valued functions satisfy f5,(0,0,¢)=0 and gs,(0,0,¢)=0 for all ¢ > 0. Let x5 denote
the whole state variable of Xa, i.e., 5 = [x:{l, . ,xg:n]T. In this section, the uncertainty XA is said

to be admissible if each static mapping (,; — w;; satisfies
1€ i@ = Nlws i@, VE€[0,00) . (88)

and if for each dynamic mapping (4; + wq;, there exists a radially unbounded positive definite c!
function Vj, (xs,) such that

T T
V(@ (0) + [ (¢Fs = wiion)dt = Va(os (D) + [ dlllas(®ldt VT €[0,00), G5, € £200.7]

holds globally for a class Ko function ¢(-). The following theorem describes robust input-to-state
stabilization for dynamic uncertainty by state feedback control.
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Theorem 9 If there exist a positive definite matriz P, positive real numbers v and &, and a constant
matriz A € L such that

STATTTP 4 PTAS +vP PTB PTB; STCFA

BTTTP —£I 0 0
sfd _
M (@)= BITTP 0 —A+cr pia | <0 (89)
ACsS 0  ADj —A

is satisfied for all x € R™, the state-feedback law (3) renders the nonlinear system Yy input-to-state
stable for all admissible dynamic uncertainty 3.

Proof : Suppose that there exist real numbers \; > 0, i = 1,2,...,n such that the inequality (89)
holds with A; = A\;I. By definition of the admissible uncertainty, the time-derivative of Vi, (z5,) is

obtained as

d

for all ¢. Define a positive definite function

iW-—;[ﬁﬂTﬁﬁi&}ﬁg]—wmmmm Vi € [0, 00)

n
Viza) =x"Px+ Y AV, (90)
i=1
which is a radially unbounded function of 2, = [2T, 2T 517 - The time-derivative of V along the trajec-

tory of the closed-loop system (13) satisfies

d
—V(za) +vxT Px — &wlw

dt
T [ &T ATpT A&
X STATT"P + PTAS PTB PTB; | [ X T ToP 0 10y
<|lw B*T'P 0 0 w | + w 0 —¢I| |w +
wg BITTP 0 0 ws
n T
Wi —A; 0] |:wdz':|
QY 91
Sl [0 8] L] - wwtie (o)
v 15 [STATTTP + PTAS + vP PTB PTB;s | [ Y
<|lw BTTTP —&I 0 w
ws BITTP 0 0 ws
T
we AO
[0SR (2] - ey (92)
v 15 ([ STATTTP + PTAS + vP PTB PTB; |
=|w BTTTp —£I 0
w BI'TTP 0 0
0 STCT X ]
“A0][ 0 0T
w0 0" 5 J[ogopl w | = Ap(llas ) (93)
1 Df g b ws |
X X
=|w w | = X([|zs )
wWs wWs
The matrix Q(z) is
STATTTP + PTAS +vP PTB PTB; STCTA o
Q= BTTTP &I 0 |+ 0 |A! [AQ;S 0 ADj;
BI'TTp 0 -—A DFA
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Applying the Schur complement formula to @) < 0, we can see that the inequality (89) is equivalent
to @ < 0. Thus, we obtain

d
5V (@a) < —vx"Px = (|las) + Eww (94)
This inequality proves that the closed-loop system is input-to-state stable. I

In the same manner, the following is proved for output feedback control.

Theorem 10 If there exist positive definite matrices P and 15, positive real numbers v, £, U and a
constant matriz A € L such that

My, &)=
i <§TAT(X +T)T P+

= PXB PXB STCTAN —P(XA+TYC,) W1
P(X+T)AS+VP> b d (XA+TVC)

BTXTp —&T 0 0 -BTwTp
BIxTp 0 —AT 0 -BIwTp <0  (95)
AC;S—1 0 0 —A —ACsW—1

) ) AT
~WT(XA+TYC,)'P ~PWB —PWB; —~W~"CIA ( W T AW P+ )

I PWTATW L4 pp

is satisfied for all (y,2) € R", the output-feedback law (40-41) renders the nonlinear system X
input-to-state stable for all admissible dynamic uncertainty Ya.

Moreover, in the conditions M*/¢ < 0 and M°/¢ < 0, the parameter ); is allowed to be a function of
x and (y, &), respectively if the dimension of the vector wq; is zero for that .

In the case of dynamic uncertainty, there might be no solution of the input-to-state stabilization
problem even if the system Yy is in the robust strict feedback form or the robust output-feedback
form as it was for the robust stabilization problem][6].

5 Integral Input-to-State Stabilization

Let v = 0 and # = 0 in the characterization N*f < 0, M*/ < 0, N°/ < 0 and M°/ < 0 of previous
sections. Then, the time-derivative of the quadratic Lyapunov functions satisfies

d
%V(%zz) < éwl'w (96)

where x4 denotes the state of the entire closed-loop system. The inequality (96) implies that the
closed-loop system is zero-output smoothly dissipative[l]. The closed-loop system is also proved to be
0-GAS since

d
EV(%H) < wlyM(Tan)zan (97)

holds for w = 0, and M(z,y) < 0 holds for all z,;. Owing to the result of [1, 12], Theorem 1,
2, 5 and 6 guarantee iISS of the closed-loop systems when v = 0 and 7 = 0. In the same way,
Theorem 9 and 10 with v = 0 and ¥ = 0 guarantee iISS. Note that every input-to-state stable system
is necessarily integral input-to-state stable but the converse is not true[12]. For linear systems, it is
obvious that there exists v > 0 such that N°/ < 0 is satisfied if and only if N°f < 0 is satisfied with
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Figure 1: Nonlinear plant with input unmodeled dynamics

v = 0. Similarly, the existence of v > 0 and 7 > 0 satisfying N°/ < 0 also implies and is implied
by N°/ < 0 of v = » = 0. The same property is true for M5/, M/ M54 and M°f? in the case of
linear systems. This fact explains exactly the equivalence between ISS and ilSS property for linear
systems[14]. Since we have succeeded in constructing a state-feedback controller which renders the
nonlinear strict-feedback system 3 input-to-state stable using the state-dependent scaling technique for
the v > 0 case, it is trivial that the strict-feedback system X is also integral input-to-state stabilizable
(for all admissible uncertainty ¥a) via state feedback by using the state-dependent scaling method.
The same fact is true for output feedback control under the condition of Assumption 1 and 2.

6 Robustness for Passive Uncertainty

This section addresses the problem of designing controllers which remain input-to-state stabilizing
in the presence of a certain class of dynamic uncertainties. The following is the definition of strict

passivity[2].
Definition 1 The system

[ g = folzs) + as(as)
Byp: { T JROl v aE e R (98)

is said to be strictly passive if there exist a C' positive definite radially unbounded function Vs(zs) and
a class Koo function (-) such that

[ wFzsdr > Vitas(a) ~ Vites) + [ wlles()ldn (99)
0 0

for all z5 € CY, 25(0) € R™ and t > 0.

Consider the uncertain system X shown in Figl in which Xy, : z5 — ws is a dynamic uncertainty

which is assumed to be strictly passive. The system is described by

5. { &= A(z)r + B(z)w + G(x)a(ws + u) (100)
Z5 = U
where « is a real number and a > 0. We consider the following state-feedback control
u=K(z)x (101)

and define the following functions.



We now introduce a new class of scaling matrices as follows:
Ly ={A(s) = A(s)[ : A €C%, 0<A(s) <A, Vs € [0,00)} (102)

where X is an arbitrary finite number. In particular, we are interested in A(s) whose independent
variable s is a quadratic function of y. This new class of scaling is different from state-dependent
scaling for static uncertainties in that it is uniformly bounded. This new class of scaling enables us to
establish the input-to-state stabilization in the presence of the dynamic input uncertainty.

Theorem 11 Given any oy > 0, the uncertain system consisting of (100) and (98) is input-to-state
stabilized by a state feedback law (101) for all o € [ay,00) if there exist a positive definite matriz P
and positive real numbers v, & and a scaling function A € Ly such that

STATTTP + PTAS +vP PTB
— A el <0 (103)

PTG+ S TKTA =0 (104)

M (z)

are satisfied with s = 27 ST PSx for all x € R™ and all a € [ay, 00).
Proof : By definition, the strictly passive uncertainty has a positive definite radially unbounded
function Vj satisfying

d
%V(;(ac(;) < wi zs — P(||s]|)

where 1(+) is a class Ko function. Thus, we have

2>\(5)%V5(m5) < [@;;]T [At()s) A

(] oxetel), el (109

for an arbitrary function A\(s) > 0. Next, define a function V(z.) by

Vo(z) 1
Vi) = [ 5ids t 20%5(), Vala) =X Px (106)

T 21T and P is a positive definite matrix. Since A(s) is C°, positive and uniformly

where z. = [z
bounded, the function V is a positive definite radially unbounded C' function of z,. The time-

derivative of V' along the trajectory of the closed-loop system satisfies

d ¢
" 0D S P
= ST |51 + 20AVh(as) 5 Vo(e) + TP = €uTu]
T [ &r ATT A
1 {X-| STA'T P4+ PTAS PTB PTGa {X] XTI/PO X
sswon (o] | mre oo e[ [
T
w2 o {Qjﬂ}—?aﬁb(H%H) (107)
. { X ]T STATTTP + PTAS + vP PTB PTGa +S~TK" Aa { Y ]
- - TT _ -9
SO || | agrrtpearkst o 0 P
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From (103) and (104), we obtain

4 T —— 2 TPy — 20|z ——ww
V() € gy P 20l + ey

dt
Since 0 < A(Vo(z)) < X holds for all z, there exist class Koo functions p;, p» and p3 such that
d

1
gV (@) < —W(m(llwll) — p2(l[wl])) — p3(llsl) (108)

for any r € R", x5 € R™ and any w € RP. Now, pick another class Ko function ps(||w|) =
o7 @pa(lw])). Then, whenever [[2]] > py(Jw]l), we have

s ) < g (el

from A > 0. Since 0 < A~! < A1 is satisfied for all z, we arrive at

2]l = pa(lwl]) = %V(mcl) < —%pl(llxll) = p3(llzsll) < —ps(llzll) — ps(llzsll) (109)

where ps5(||z]|) = p1(||7]|)/2A € Ko On the other hand, from (108), we obtain

GV + el + palesl) < (55 = 5777 ) en(ll) + sl
1

< WPZ(HWH) (110)

for all z € R™, 25 € R™ and all w € RP. Assume now that ||z|| < ps(]|w||) holds. The inequality
(110) becomes

d 1
V@) + osllal) + sl < ) max {5

Since A is a continuous function satisfying 0 < A < X, from ps € K it follows that there exists a class
K~ function pg such that

2]l < pallwl]) = %V(xcl) +ps(llzll) + psllzsll) < ps(llwl]) (111)

holds. Finally, by combining (109) and (111), we obtain

d
5V @a) < —ps(llzll) = ps(llzsl) + po(llwll) (112)
for all z € R™, x5 € R™ and all w € RP. This completes the proof. I

Next, we show that a controller which fulfills (103) and (104) can be always constructed if the system
¥ is in the strict-feedback form. Suppose that the matrices A(z), B(z) and G(x) are given as (25-29).
Let the state-feedback law be (37) and P is a diagonal matrix. Then, the equation (104) reduces to

0 0
o |T|o [TV
Pnan,n—l—l SpA
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Thus, for the feedback gain, we pick

_Pnan,n—i—l

_ 113
Sn >\ ( )

By virtue of the development in [6], the condition M*P < 0 is satisfied if
ZPkak7k+lsk—/6’k(x[k]) <0, for k = 1,2,...,n—1 (114)

2Pk k158 — Br(op) <0, fork=n

are achieved by finding sy (7)) recursively from k = 1 through ¥ = n. The function Bi(r) is an
appropriate C° function which is independent of {sj,---,s,}. Since agk+1(T) are positive and
Py, a > 0, there always exist {s1(z[1)), "+, sn1(7[,—1])} satisfying (114). As for k = n, substituting
(113) into (114), we obtain

2aP7al 1 > A3u(x), VzeR" (115)
It is easy to see that there exits a C° function A(x? Py) such that

20qPa;, o1 > ABp(z), Vo €R" (116)
0<Ax"Px) <X, VzeR® (117)

are satisfied with a finite number A. It should be noted that s,, and A do not include . To summarize
the above discussion, we state the following theorem.

Theorem 12 Suppose that the system (100) is in the strict-feedback form. Given any oy > 0, the

uncertain system consisting of (100) and (98) can be always input-to-state stabilized by a state feedback
law (113) for all « € [ay, 00).

An important point of the above theorem is that the robust ISS can be achieved by using the state-
dependent scaling and the Schur complements formula recursively. This feature is quite different from,
for example, the development[10] where the Legendre-Fenchel transform and Young’s Inequality are
employed to prove ISS in the presence of the passive uncertainty. It is also interesting that the state-
dependent scaling approach is able to construct an inverse optimal controller without referring to the
Sontag-type controller[7].

According to Theorem 12, by letting oy — 0, we can make the stability margin extremely large,
which means the gain margin tend to (0, 00) and the phase margin tends to 90°. However, we should
be careful that the gain of the control law can be harmfully very high. To see this point, consider
a; — 0 in (116). Then, the scaling factor A should be small enough, which implies that the feedback
gain in (113) becomes very large. The large stability margin characterized by Theorem 11 is achievable
when the state variable is available for feedback. For output-feedback control, it is generally known
that the state-feedback/observer design reduces stability margins. It is possible to characterize the
reduced margins in the case of the output-feedback by restricting the set of uncertain dynamics and
uncertain parameters accordingly.

The introduction of the new type of scaling (102) is crucial for establishing the input-to-state
stability in the presence of input unmodeled dynamics. If the scaling is replaced by the unbounded
one (14), the ISS is not guaranteed in the presence of dynamic uncertainties. If the scaling is replaced
by constant scaling, in general, the condition (115) cannot be met globally for nonlinear systems.
Thus, the new scaling (102) and the creation of a new type of Lyapunov functions (106) from the

scaling are important ingredients in this section.
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7 Concluding Remarks

In this paper, the input-to-state stabilization and the integral input-to-state stabilization have been
characterized by using the state-dependent scaling and diffeomorphism exclusively. The recursive
design procedure presented is based on recursive application of the Schur complements formula to
the characterization. This paper use neither Young’s formula nor completing the squares which are
usually conservative than the Schur complements formula[8]. All developments in this paper only use
the state-dependent scaling, the diffeomorphism and the Schur complements, and combination of them
has been found useful in dealing with ISS and iISS problems.

The paper has solved both state-feedback and output-feedback global stabilization. The systems
are allowed to have uncertain parameters and dynamics. In the case of input unmodeled uncertainty,
a new class of state-dependent scaling factors has been introduced to create Lyapunov functions of a
new type in the state-dependent scaling design.

Theorem 1, 3, 5 and 7 of this paper can be considered as an improved version of the input-to-
state stabilization results presented in [7, 8]. The key difference is that this paper does not introduce
unnecessary fictitious output functions which was used as free parameters in [7, 8]. That is why the
previous papers [7, 8] need to compute scaling matrices at the fictitious channels. For instance, the
characterizing matrix N*/ of Theorem 1 does not have any fictitious output and scaling matrices, while
the previous papers use larger matrices which include the fictitious output and scaling matrices in the
augmented part of the characterizing matrix. By virtue of the Schur complements formula, it can be
easily seen that the design in [7, 8] may require more effort of the controller than the method of this
paper to make the characterizing matrix negative definite. Thus, in general, the method of [7, 8] tends
to produce higher gain controllers. Finally, it may be worth mentioning that the characterization of
this paper has more flexibility to deal with advanced problems such as robust ISS problems discussed
in this paper.
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