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1 Introduction

The notion of input-to-state stability(ISS) has played an important role in recent development of

nonlinear control theory[11], which was originally introduced in [13]. The ISS has already found wide

applicability such as nonlinear stabilization and backstepping design[11], inverse optimal control[3, 10],

small-gain theorem[9].

The concept of ISS is a natural answer to the situation where boundedness of operator norms(

`�nite linear gains' in other words) is far too strong a requirement for general nonlinear systems. The

ISS replaces the �nite linear gains with nonlinear gains instead of focusing only on local properties[5].

ISS is a global property which takes into account not only initial states in a manner fully compatible

with Lyapunov stability, but also the e�ect of input perturbations. The idea of nonlinear gain was

extended by the integral input-to-state stability(iISS) in which the size of inputs is measured by integral

norms[14]. For linear systems, both ISS and iISS are equivalent to asymptotic stability. For general

nonlinear systems, the iISS is strictly weaker than ISS although ISS implies iISS. One of necessary

and su�cient conditions for iISS is that a nonlinear system is iISS if and only if there is some output

function which makes the system smoothly dissipative and weakly zero-detectable[1]. This equivalence

describes an important connection between the iISS concept and another popular concept `dissipation'

which has guided developments of nonlinear H1 control and related robust control techniques.

This paper address the problem of designing input-to-state and integral input-to-state stabilizing

control laws. The concept of state-dependent(SD) scaling design is employed and it leads to an

explicit construction of state feedback and output feedback control laws. The SD scaling design is

a new technique which thoroughly utilize the state-dependent scaling and di�eomorphism to design

nonlinear control systems[4, 6, 8]. This paper does not repeat the concept and details of the SD scaling

design framework which has been already presented in [4, 6, 8] and references therein. In [6, 7], the

SD scaling design method has succeeded in directly solving robust nonlinear global stabilization and

inverse optimal control problems without resort to ISS, by contrast with other previous methods based

on ISS. Since abovementioned papers bypassed the ISS, it was not clear how to solve an important

class of nonlinear control problems by using the SD scaling design approach when the problems are

characterized directly in terms of ISS and iISS. This paper presents new characterizations of ISS and

iISS problems through the SD scaling design and explains some necessary nontrivial modi�cations

to the scaling, Lyapunov functions and recursive design of feedback gains and observers presented in

[6, 7]. Thereby, this paper enables us to solve ISS and iISS problems through the use of the SD scaling

design. The stabilizing control laws are systematically generated by selecting state-dependent scaling

and parameters of the coordinate change recursively.

The paper presents both state-feedback and output-feedback global stabilization of nonlinear sys-

tems in the strict-feedback form. Input-to-state and integral input-to-state stabilization is also con-

sidered for uncertain systems, which is called robust input-to-state and robust integral input-to-state

stabilization. The uncertainties are allowed to be either static or dynamic. The existence of solutions

to problems are proved and the controller designs of all problems are done within a single uni�ed

framework.
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2 State Feedback Stabilization

Consider the nonlinear system � described by

� : _x = A(x)x+B(x)w +G(x)u : (1)

where dimensions of signals are x(t) 2 Rn, w(t) 2 Rp and u(t) 2 R1. Functions A(x), B(x) and G(x)

are C0 functions.

We use a global di�eomorphism

� = S(x)x (2)

between x 2 Rn and � 2 Rn. The time-derivative of � is given by

_� =

�
@S

@x1
x;
@S

@x2
x; � � � ;

@S

@xn
x

�
_x+ S(x) _x = T (x) _x ;

where T (x) is a matrix-valued C0 function. Let the state-feedback be represented by

u = K(x)x (3)

where K is a C0 function. The closed-loop system consisting of (1) and (3) becomes

�cl : _� = T
�
ÂŜ�+Bw

�
(4)

Ŝ =

�
S�1

KS�1

�
; Â = [A G] :

The following provides new characterization of the ISS property in the state-feedback case.

Theorem 1 If there exist a positive de�nite matrix P and positive real numbers � and � such that

N sf (x)=

"
ŜT ÂTT TP + PTÂŜ + �P PTB

BTT TP ��I

#
< 0 (5)

is satis�ed for all x 2 Rn, the state-feedback law (3) renders the nonlinear system � input-to-state

stable.

Proof : De�ne a positive de�nite function V (x) : Rn ! [0;1) by

V (x) = �TP� : (6)

which is a radially unbounded function of x since S de�nes a global di�eomorphism. The time-

derivative of V along the trajectory of the closed-loop system (4) satis�es

d

dt
V (x) = 2�TPT

�
ÂŜ�+Bw

�
We have

d

dt
V (x) + ��TP�� �wTw =

�
�
w

�T "
ŜT ÂTT TP + PTÂŜ PTB

BTT TP 0

# �
�
w

�
+

�
�
w

�T �
�P 0
0 ��I

� �
�
w

�

=

�
�
w

�T
N sf

�
�
w

�
: (7)

From N sf (x) < 0 it follows that

d

dt
V (x) � ���TP�+ �wTw; 8x 2 Rn (8)

Since S(x) de�nes a global di�eomorphism, using the characterization of the ISS Lyapunov function

in [15], the closed-loop system is proved to be input-to-state stable
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For linear systems, it is veri�ed that the condition in Theorem 1 is satis�ed if and only if there exist

� > 0, � > 0, � > 0 and P > 0 such that�
A+GK +

�

2
I

�T
P + P

�
A+GK +

�

2
I

�
+ ��1PBBTP + �I = 0

By virtue of the theory of Riccati equations, the existence of the parameters (�; �; �; P ) and K is

guaranteed if and only if the pair (A;G) is stabilizable. This property is precisely the same as the fact

that a linear closed-loop system is ISS if and only if (A+GK) is a Hurwitz matrix[14].

Consider an uncertain nonlinear system �U described by

�U :

�
_x = A(x)x+B(x)w +B�(x)w� +G(x)u
z� = C�(x)x+D�(x)w� +H�(x)u

: (9)

where x(t) is the state, w(t) 2 Rp is the disturbance input, and w�(t); z�(t) 2 Rq are channels through

which the uncertain components a�ects the system. Functions B�(x), C�(x), H�(x) and D�(x) are C
0.

The two signals z� and w�

z� =

2
6664
z�1
z�2
...
z�m

3
7775 ; w� =

2
6664
w�1
w�2
...

w�m

3
7775 ;

w�i(t) 2 Rqi

z�i(t) 2 Rqi

qi � 0; q =
Pm

i=1 qi

are connected by an uncertain system �� which is represented by a causal nonlinear mapping � :

z� 7! w�.

�� : � = block-diag[�1;�2; � � � ;�m]; (10)

Some of the mappings �i : zi 7! wi, i = 1; 2; : : : ;m can be zero in vector size qi. Each uncertain

mapping �i is de�ned as

�i : w�i = h�i(z�i ; t); (11)

where h�i is a vector-valued function satisfying h��i
(0; t) = 0 for all t� 0. For notational simplicity,

we assume that �i are square in size of input and output vectors, which does not cause any loss of

generality. The uncertainty �� de�ned by (11) is said to be admissible if �i satis�es

kz�i(t)k � kw�i(t)k; 8t 2 [0;1) : (12)

Note that uncertainty components having super-linear growth in x can be included by a judicious

choice of B�(x), C�(x), D�(x) and H�(x). Indeed, the matrices fB� ; C�; D�;H�g specify the \nonlinear

size"(including magnitude, nonlinearity, location and structure) of uncertainties. The closed-loop

system consisting of (9) and the state-feedback law (3) is obtained as

�clU :

(
_� = T

�
ÂŜ�+Bw +B�w�

�
z� = Ĉ�Ŝ�+D�w�

(13)

Ĉ� = [C� H�] :

This paper employs the idea of state-dependent scaling to achieve input-to-output stabilization of

the uncertain nonlinear system. De�ne the following set of scaling matrices

L=

�
�=

m
block-diag

i=1
�i : �i=�i(x)Ii; �i(x)>0 8x2Rn

�
(14)
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In the above de�nition, Ii denotes an identity matrix which is compatible in size with z�i . The scaling

matrices are functions of the state variable. The state-dependent scaling is useful for estimating the

worst case value of the time-derivative of Lyapunov functions[4]. As in [6], another type of SD scaling

matrices for repeated uncertainties can be incorporated in the set of scaling matrices straightforwardly.

For brevity, they are not included in the following theorem and all results of this paper.

Theorem 2 If there exist a positive de�nite matrix P , positive real numbers �, � and a scaling function

matrix � 2 L such that

M sf (x)=

2
6664
ŜT ÂTT TP + PTÂŜ + �P PTB PTB� Ŝ

T ĈT
� �

BTT TP ��I 0 0
BT
� T

TP 0 �� DT
� �

�Ĉ�Ŝ 0 ��D ��

3
7775< 0 (15)

is satis�ed for all x 2 Rn, the state-feedback law (3) renders the nonlinear system �U input-to-state

stable for all admissible uncertainty ��.

Proof : De�ne a positive de�nite function V (x) : Rn ! [0;1) by

V (x) = �TP� (16)

which is a radially unbounded function of x. The time-derivative of V along the trajectory of the

closed-loop system (13) satis�es

d

dt
V (x) = 2�TPT

�
ÂŜ�+Bw +B�w�

�
Using this equation, we obtain

d

dt
V (x) + ��TP�� �wTw =

2
4 �
w
w�

3
5
T
2
64 Ŝ

T ÂTT TP + PTÂŜ PTB PTB�

BTT TP 0 0
BT
� T

TP 0 0

3
75
2
4 �
w
w�

3
5

+

�
�
w

�T �
�P 0
0 ��I

� �
�
w

�
(17)

Since the admissible uncertainty �i satis�es�
w�i
z�i

�T �
��i(x) 0

0 �i(x)

� �
w�i
z�i

�
� 0 8x 2 Rn (18)

Equation (17) becomes

d

dt
V (x) + ��TP�� �wTw

�

2
4 �
w
w�

3
5
T
2
64 Ŝ

T ÂTT TP + PTÂŜ + �P PTB PTB�

BTT TP ��I 0
BT
� T

TP 0 0

3
75
2
4 �
w
w�

3
5+ � w�

z�

�T �
�� 0
0 �

� �
w�

z�

�
(19)

=

2
4 �
w
w�

3
5
T
0
B@
2
64 Ŝ

T ÂTT TP + PTÂŜ + �P PTB PTB�

BTT TP ��I 0
BT
� T

TP 0 0

3
75+

2
64 0 Ŝ

T ĈT
�

0 0
I DT

�

3
75 ��� 0

0 �

� "
0 0 I

Ĉ�Ŝ 0 D�

#1CA
2
4 �
w
w�

3
5

=

2
4 �
w
w�

3
5
T

Q

2
4 �
w
w�

3
5 (20)
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where the matrix Q(x) is

Q =

2
64 Ŝ

T ÂTT TP + PTÂŜ + �P PTB PTB�

BTT TP ��I 0
BT
� T

TP 0 ��

3
75+

2
64 Ŝ

T ĈT
� �

0
DT

� �

3
75��1 h �Ĉ�Ŝ 0 �D�

i

According to the Schur complement formula, the inequality (15) is equivalent to Q < 0. Thus, we

arrive at

d

dt
V (x) � ���TP�+ �wTw; 8x 2 Rn (21)

Hence, the closed-loop system is input-to-state stable.

The characterizations of stabilization presented in the above theorems are addressed by strict inequal-

ities(negative de�niteness of matrices). It can be veri�ed that they can be replaced with non-strict

inequalities(negative semi-de�niteness). A control law satisfying the non-strict inequality is also a

solution to the stabilization problem. The following corollaries state the fact precisely.

Corollary 1 Suppose that matrices S and P are given. The following two statements are equivalent.

(i) There exist �; � > 0 such that N sf (x) < 0 is satis�ed for all x 2 Rn.

(ii) There exist ~�; ~� > 0 such that N sf (x) � 0 is satis�ed for all x 2 Rn, where �; � are replaced by

~�; ~� in the de�nition (5) of N sf (x).

Proof : The direction (i))(ii) is trivial. The converse direction is proved for any � > ~� by letting

�� > 0 be small enough to satisfy � = ~� � �� > 0.

Corollary 2 Suppose that matrices S and P are given. Consider the following two statements.

(i) There exist �; � > 0 and � 2 L such that M sf (x) < 0 is satis�ed for all x 2 Rn.

(ii) There exist ~�; ~� > 0 and ~� 2 L such that M sf (x) � 0 is satis�ed for all x 2 Rn, where �; �;� are

replaced by ~�; ~�; ~� in the de�nition (15) of M sf (x).

Then, the statement (i) always implies (ii). Furthermore, if the condition"
�~� DT

�
~�

~�D� �~�

#
< 0; 8x 2 Rn (22)

is satis�ed, the statement (ii) implies (i).

Proof : The direction (i))(ii) is trivial. In order to prove the converse, let � > ~� and choose �� > 0

to be any small number satisfying � = ~� � �� > 0. De�ne �(x) = (1 + �(x))~�(x) with a scalar-valued

function �(x) > 0 to be determined later. The matrix � obviously belongs to the set of the SD scaling

L. For these new parameters, we obtain

M sf (~�; ~�; ~�; x) = M sf (�; �;�; x) �M�(x) � 0

M�(x) =

2
6664
���P 0 0 ŜT ĈT

� ��

0 �(� � ~�)I 0 0
0 0 ��� DT

� ��

��Ĉ�Ŝ 0 ��D� ���

3
7775

The matrix M�(x) is negative de�nite if and only if"
���P 0

0 �(� � ~�)I

#
� �

"
0 ŜT ĈT

�
~�

0 0

# "
�~� DT

�
~�

~�D� �~�

#�1 "
0 0

~�Ĉ�Ŝ 0

#
< 0 (23)
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holds for all x. Recall the assumption (22) and that the constant numbers �� and � � ~� are positive.

Since functions Ŝ, Ĉ are continuous, there always exists a function �(x) such that (23) and �(x) > 0

are satis�ed for all x 2 Rn. Hence, M sf (�; �;�; x) < 0 is proved.

It should be noted that the condition (22) is satis�ed for any ~� 2 L whenever D� = 0. The inequality

(22) is a reasonable assumption for input-to-state stabilizable systems. Actually, the assumption is

a condition which ensures the wellposedness of the uncertain system for all admissible uncertainties.

For instance, if D� is block-diagonal, the inequality (22) is equivalent to

I �D�;i(x)D
T
�;i(x) > 0; 8x 2 Rn (24)

which is necessary for the wellposedness of the uncertain system.

Now, we focus on the existence of the state-feedback law and the construction of the controller

solving the conditions in Theorem 1 and 2. We shall prove the existence for the nonlinear system �

satisfying the following structural assumptions.

A(x)=

2
66666664

a11 a12 0 0
a21 a22 a23 0 0

0
an�1;1 an�1;2 an�1;n
an1 an2 ann

3
77777775
; G(x)=

2
664

0

0
an;n+1

3
775 (25)

B(x) =

2
664
B11 0 0
B21 B22

0
Bn1 Bn;n�1 Bnn

3
775 (26)

aij(x) = aij(x1; x2; ; xi); 1 � i � n; 1 � j � i+ 1 (27)

ai;i+1(x1; x2; ; xi) 6= 0; 1 � i � n; 8x 2 Rn (28)

Bij(x)=Bij(x1; x2; ; xi); 1 � i � n; 1 � j � i (29)

This structure of � is called the strict-feedback form in the literature[11, 3]. In addition, the uncertain

system �U is supposed to satisfy m = 2n and

B�(x) =

2
664
B�;11 UL1 0 0 0 0
B�;21 0 B�;22 UL2

0 0
B�;n1 0 B�;n2 0 B�;nn ULn

3
775 (30)

C�(x)=

2
66666666666664

C�;11 0 0 0 0
0 UR1 0 0 0

C�;21 C�;22 0 0 0
0 0 UR2 0 0

C�;n�1;1 C�;n�1;2 C�;n�1;n�1 0
0 0 0 UR;n�1

C�;n1 C�;n2 C�;n;n�1 C�;nn

0 0 0 0

3
77777777777775

(31)
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D�(x)=

2
6666666664

D�;1 0 0 0 0 0
0 0 0 0 0 0
0 0 D�;2 0 0
0 0 0 0 0

0 0 0 0 D�;n 0
0 0 0 0 0 0

3
7777777775
;H�(x)=

2
664

0

0
URn

3
775 (32)

where B�;ij(x) 2 R1�q(2i�1) , C�;ij(x) 2 Rq(2i�1)�1, D�;i(x) 2 Rq(2i�1)�q(2i�1) , UL;i(x) 2 R1�q2i and

UR;i(x) 2 Rq2i�1 satis�es

B�;ij(x)=B�;ij(x1; x2; ; xi); C�;ij(x)=C�;ij(x1; x2; ; xi) (33)

ULi(x)=ULi(x1; x2; ; xi); URi(x)=URi(x1; x2; ; xi) (34)

D�;i(x)=D�;i(x1; x2; ; xi); I �D�;i(x)D
T
�;i(x) > 0; 8x 2 Rn (35)

for 1 � i � n and 1 � j � i. The structure of �U is called the robust strict-feedback form[6]. Let x[k]
denote the �rst k components of the state:

x[k] = [x1; x2; � � � ; xk]
T :

For the di�eomorphism between x and �, we take

S(x) =

2
666664

1 0 0 � � � 0
�s1 1 0 � � � 0
s1s2 �s2 1

. . . 0...
...

. . .
. . .

...
(�1)n�1s1���sn�1 � � � sn�2sn�1 �sn�1 1

3
777775 (36)

Let the state-feedback be in the following form.

u = sn(x)�n (37)

The smooth scalar functions s1(x[1]), s2(x[2]), � � �, sn�1(x[n�1]) are to be designed from s1 through sn

in a recursive manner. The matrix Ŝ is obtained as

Ŝ =

2
66666664

1 0 0 � � � 0
s1 1 0 � � � 0
0 s2 1

. . . 0...
...

. . .
. . .

...
0 � � � 0 sn�1 1
0 � � � 0 0 sn

3
77777775

Finally, the state-dependent scaling is chosen as

L=

�
�=

2n
block-diag

i=1
�i :

�i=�i(x[(i+1)=2])Ii for odd i
�i=�i(x[i=2])Ii for even i

; �i(x)>0 8x2Rn
�

(38)

The following theorems demonstrate that the solutions fs1; � � � ; sng, f�1; � � � ; �2ng and P of (5) and

(15) always exist for any �; � > 0.

Theorem 3 The system � in the strict-feedback form can be input-to-state stabilized by the state-

feedback law (37).
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Theorem 4 The system �U in the robust strict-feedback form can be input-to-state stabilized by the

state-feedback law (37) for all admissible uncertainty ��.

In the rest of this section, the two theorems are proved. From � > 0 it follows that N sf < 0 and

M sf < 0 are identical with

�N sf (x) = ŜT ÂTT TP + PTÂŜ + �P +
1

�
PTBBTT TP < 0

�M sf (x) =

2
64Ŝ

T ÂTT TP + PTÂŜ + �P + 1
�PTBB

TT TP PTB� Ŝ
T ĈT

� �

BT
� T

TP �� DT
� �

�Ĉ�Ŝ �D� ��

3
75<0

respectively. The matrices �N sf (x) and �M sf (x) are the same as those appearing in [6] except for an

extra term �P + 1
�PTBB

TT TP . Let P be any diagonal matrix

P =
n

diag
i=1

Pi; Pi > 0

We introduce a notation [k] which denotes the submatrix at the upper left corner of a matrix as

follows:

Q =

2
664
Q11 Q12 Q1;n

Q21 Q22

Qn;1 Qn;n

3
775 ; Q[k] =

2
664
Q11 Q12 Q1;k

Q21 Q22

Qk;1 Qk;k

3
775 ; Q[1] = Q11; Q[n] = Q

For example, we use

P[k] =

�
P[k�1] 0

0 Pk

�

T[k](x[k�1]) =

�
T[k�1](x[k�2]) 0

?k�1;k�1 1

�

B[k](x[k]) =

�
B[k�1](x[k�1]) 0 0

?k;0 Bkk ULk

�

Here, the entry ?i;j depends only on the states x[i], and the functions s1 through sj and their partial

derivatives. The strict-feedback form of � yields the following structure.

P[k]T[k]B[k]B
T
[k]T

T
[k]P[k] =

"
P[k�1]T[k�1]B[k�1]B

T
[k�1]T

T
[k�1]P[k�1] ?k;k�1

?k;k�1 ?k;k�1

#

Obviously, the matrix PTBBTT TP is independent of �. In addition, the matrix P[k]T[k]B[k]B
T
[k]T

T
[k]P[k]

do not include of sk. Due to this property of the extra term, the recursive construction of fsk; �2k�1; �2kg

from k = 1 through k = n is always feasible by following the procedure which is almost similar to [6].

For detailed formulas, see [6].

3 Output Feedback Stabilization

Consider the nonlinear system � described by

� :

�
_x = A(y)x+B(y)w +G(y)u
y = Cyx

: (39)
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where Cy is a constant row vector, and y(t) 2 R1 is the measurement output. Suppose that the state

variable x cannot be measured. We employ the following observer to estimate the state.(
_̂x = A(y)x̂+ Y (y; x̂)(y � ŷ) +G(y)u
ŷ = Cyx̂

(40)

This section seeks the output feedback control consisting of (40) and

u = K(y; x̂)x̂ : (41)

Functions Y and K are C0 functions which have yet to be determined. The closed-loop system is

written as

d

dt

�
x
x̂

�
=

�
A GK
Y Cy A� Y Cy +GK

� �
x
x̂

�
+

�
B
0

�
w (42)

Consider a global di�eomorphism between [x̂T ; x̂T � xT ]T 2 R2n and [�̂T ; �]T 2 R2n as follows:�
�̂
�

�
=

�
S(y; x̂) 0

0 W

� �
x̂

x̂� x

�
(43)

The time-derivative of �̂ is obtained as

_̂�=

�
@S

@y1
x̂;
@S

@y2
x̂; ���;

@S

@yn
x̂

�
Cy _x+

�
@S

@x̂1
x̂;

@S

@x̂2
x̂; ���;

@S

@x̂n
x̂

�
_̂x+ S(y; x̂) _̂x = X(y; x̂) _x+ T (y; x̂) _̂x :

The square matrix W is constant and non-singular. The closed-loop system on the new coordinate

(�̂; �) is "
_̂�

_�

#
=

"
(X + T )ÂŜ �(XA+ TY Cy)W

�1

0 Ŵ T �AW�1

# �
�̂
�

�
+

�
XB
�WB

�
w (44)

�A =
h
CT
y AT

i
; Ŵ =

�
�Y TW T

W T

�
; Ŝ =

�
S�1

KS�1

�
; Â =

�
A G

�
:

Theorem 5 If there exist positive de�nite matrices P and ~P , and positive real numbers �, � and ~�

such that

Nof (y; x̂)=2
64Ŝ

T ÂT (X + T )TP + P (X + T )ÂŜ + �P PXB �P (XA+ TY Cy)W
�1

BTXTP ��I �BTW T ~P

�W�T (XA+ TY Cy)
TP � ~PWB W�T �AŴ ~P + ~PŴ T �ATW�1 + ~� ~P

3
75< 0 (45)

is satis�ed for all (y; x̂) 2 Rn+1, the output-feedback law (40-41) renders the nonlinear system �

input-to-state stable.

Proof : De�ne a positive de�nite function V (x; x̂) : R2n ! [0;1) by

V (x; x̂) = �̂TP �̂+ �T ~P� : (46)

which is a radially unbounded function of (x; x̂) since S and W de�ne a global di�eomorphism. The

time-derivative of V along the trajectory of the closed-loop system (44) satis�es

d

dt
V = 2

�
�̂
�

�T " P 0

0 ~P

# "
(X + T )ÂŜ �(XA+ TY Cy)W

�1

0 Ŵ T �AW�1

# �
�̂
�

�
+

�
XB
�WB

�
w

!

10



We have

d

dt
V +

�
�̂
�

�T " �P 0

0 ~� ~P

# �
�̂
�

�
� �wTw

=

2
4 �̂w
�

3
5
T
2
64Ŝ

T ÂT (X + T )TP + P (X + T )ÂŜ PXB �P (XA+ TY Cy)W
�1

BTXTP 0 �BTW T ~P

�W�T (XA + TY Cy)
TP � ~PWB W�T �AŴ ~P + ~PŴ T �ATW�1

3
75
2
4 �̂w
�

3
5

+

2
4 �̂w
�

3
5
T 2
4 �P 0 0

0 ��I 0

0 0 ~� ~P

3
5
2
4 �̂w
�

3
5

=

2
4 �̂w
�

3
5
T

Nof

2
4 �̂w
�

3
5 : (47)

From Nof (y; x̂) < 0 it follows that

d

dt
V � �

�
�̂
�

�T " �P 0

0 ~� ~P

# �
�̂
�

�
+ �wTw (48)

Since (43) is a global di�eomorphism, the characterization of the ISS Lyapunov function in [15] proves

that the closed-loop system is input-to-state stable.

Consider an uncertain nonlinear system �U described by

�U :

8<
:

_x = A(y)x+B(y)w +B�(y)w� +G(y)u
z� = C�(y)x
y = Cyx

: (49)

The uncertain system �� is de�ned by (10) and (11). The uncertainty �� is said to be admissible if

(12) is satis�ed for all i = 1; : : : ;m. For the output-feedback case, state-dependent scaling matrices

are chosen as functions of output and state estimate.

L=

�
�=

m
block-diag

i=1
�i : �i=�i(y; x̂)Ii; �i(y; x̂)>0 8(y; x̂)2Rn+1

�
(50)

The closed-loop system consisting of (49) and the output-feedback law (40-41) is represented by"
_̂�

_�

#
=

"
(X + T )ÂŜ �(XA+ TY Cy)W

�1

0 Ŵ T �AW�1

# �
�̂
�

�
+

�
XB
�WB

�
w +

�
XB�

�WB�

�
w� (51)

z� = C�

�
S�1 �W�1

� � �̂
�

�
(52)

Theorem 6 If there exist positive de�nite matrices P and ~P , positive real numbers �, �, ~� and a

scaling function matrix � 2 L such that

Mof (y; x̂)=2
66666666664

 
ŜT ÂT (X + T )TP+

P (X + T )ÂŜ + �P

!
PXB PXB� S�TCT

� � �P (XA+ TY Cy)W
�1

BTXTP ��I 0 0 �BTW T ~P

BT
� X

TP 0 �� 0 �BT
� W

T ~P
�C�S

�1 0 0 �� ��C�W
�1

�W�T (XA+ TY Cy)
TP � ~PWB � ~PWB� �W

�TCT
� �

 
W�T �AŴ ~P+

~PŴ T �ATW�1 + ~� ~P

!

3
77777777775
< 0 (53)
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is satis�ed for all (y; x̂) 2 Rn+1, the output-feedback law (40-41) renders the nonlinear system �U

input-to-state stable for all admissible uncertainty ��.

Proof : De�ne a positive de�nite function V (x; x̂) : R2n ! [0;1) by

V (x; x̂) = �̂TP �̂+ �T ~P� : (54)

which is a radially unbounded function of (x; x̂). The time-derivative of V along the trajectory of the

closed-loop system (51) satis�es

d

dt
V = 2

�
�̂
�

�T " P 0

0 ~P

# "
(X + T )ÂŜ �(XA+ TY Cy)W

�1

0 Ŵ T �AW�1

# �
�̂
�

�
+

�
XB
�WB

�
w +

�
XB�

�WB�

�
w�

!

We arrange the time-derivative as follows:

d

dt
V +

�
�̂
�

�T " �P 0

0 ~� ~P

# �
�̂
�

�
� �wTw

=

2
664
�̂
w
w�

�

3
775
T

2
666666664

 
ŜT ÂT (X + T )TP+

P (X + T )ÂŜ

!
PXB PXB� �P (XA+ TY Cy)W

�1

BTXTP 0 0 �BTW T ~P

BT
� X

TP 0 0 �BT
� W

T ~P

�W�T (XA+ TY Cy)
TP � ~PWB � ~PWB�

 
W�T �AŴ ~P+
~PŴ T �ATW�1

!

3
777777775

2
664
�̂
w
w�

�

3
775

+

2
4 �̂w
�

3
5
T 2
4 �P 0 0

0 ��I 0

0 0 ~� ~P

3
5
2
4 �̂w
�

3
5 (55)

Since the admissible uncertainty �i satis�es�
w�i
z�i

�T �
��i(y; x̂) 0

0 �i(y; x̂)

� �
w�i
z�i

�
� 0 8(y; x̂) 2 Rn+1 (56)

Equation (55) becomes

d

dt
V +

�
�̂
�

�T " �P 0

0 ~� ~P

# �
�̂
�

�
� �wTw

�

2
664
�̂
w
w�

�

3
775
T

2
6666664

 
ŜT ÂT (X + T )TP+

P (X + T )ÂŜ + �P

!
PXB PXB� �P (XA+ TY Cy)W

�1

BTXTP ��I 0 �BTW T ~P

BT
� X

TP 0 0 �BT
� W

T ~P

�W�T (XA+ TY Cy)
TP � ~PWB � ~PWB� W

�T �AŴ ~P + ~PŴ T �ATW�1 + ~� ~P

3
7777775

+

�
w�

z�

�T �
�� 0
0 �

� �
w�

z�

�
(57)

=

2
664
�̂
w
w�

�

3
775
T 0BBB@

2
6664
ŜT ÂT (X + T )TP + P (X + T )ÂŜ + �P PXB PXB�

BTXTP ��I 0
BT
� X

TP 0 0

�W�T (XA+ TY Cy)
TP � ~PWB � ~PWB�

�P (XA+ TY Cy)W
�1

�BTW T ~P

�BT
� W

T ~P

W�T �AŴ ~P + ~PŴ T �ATW�1 + ~� ~P

3
7775+

2
664
0 S�TCT

�
0 0
I 0
0 �W�TCT

�

3
775
�
�� 0
0 �

� �
0 0 I 0

C�S
�1 0 0 �C�W

�1

�1CCCA
2
664
�̂
w
w�

�

3
775

12



=

2
664
�̂
w
w�

�

3
775
T

Q

2
664
�̂
w
w�

�

3
775 (58)

The matrix Q(y; x̂) is obtained as

Q =

2
6664
ŜT ÂT (X + T )TP + P (X + T )ÂŜ + �P PXB PXB� �P (XA+ TY Cy)W

�1

BTXTP ��I 0 �BTW T ~P

BT
� X

TP 0 �� �BT
� W

T ~P

�W�T (XA+ TY Cy)
TP � ~PWB � ~PWB� W

�T �AŴ ~P + ~PŴ T �ATW�1 + ~� ~P

3
7775

+

2
664

S�TCT
� �

0
0

�W�TCT
� �

3
775��1 � �C�S

�1 0 0 ��C�W
�1
�

Using the Schur complement formula, we see that the inequality (53) is equivalent to Q < 0. Thus,

we obtain

d

dt
V � �

�
�̂
�

�T " �P 0

0 ~� ~P

# �
�̂
�

�
+ �wTw (59)

and the closed-loop system is input-to-state stable.

It can be veri�ed that the strict inequality characterizations in Theorem 5 and 6 can be rewritten

by non-strict inequalities Nof � 0 and Mof � 0. The equivalence demonstrated in Corollary 1 and

Corollary 2 is also true for the output-feedback case.

Now we suppose that the system � and �U satisfy the following triangular structure.

A(y)=

2
66666664

a11 a12 0 0
a21 a22 a23 0 0

0
an�1;1 an�1;2 an�1;n
an1 an2 ann

3
77777775
; G(y)=

2
664

0

0
an;n+1

3
775 (60)

ai;i+1(y) 6= 0; 1 � i � n; 8y 2 R (61)

B(y) =

2
664
B11 0 0
B21 B22

0
Bn1 Bn;n�1 Bnn

3
775 (62)

B�(y) =

2
664
B�;11 0 0
B�;21 B�;22

0
B�;n1 B�;n;n�1 B�;nn

3
775 ; C�(y) =

2
664
C�;11 0 0
C�;21 C�;22

0
C�;n1 C�;n;n�1 C�;nn

3
775 (63)

where B�;ij(y) 2 R1�q(2i�1) , C�;ij(y) 2 Rq(2i�1)�1 and m = n. The above matrices are dependent

only on the output y so that this paper call the structure of � and �U the output-feedback form and

the robust output-feedback form, respectively. Note that the class is more general than a standard

output-feedback form[11] in which the nonlinearity is restricted to A(y)x = A0x +  (y). We assume

that the output equation of � and �U is given by

y = x1

13



or equivalently Cy = [1 0 � � � 0]. This case is sometimes called output feedback in the nonlinear control

literature[11]. We de�ne S(x1; x̂) and the feedback gain as follows:

S�1(x1; x̂[n�2]) =

2
66664
1 0 0 0
s1 1 0 0
0 s2 1 0

0 0 sn�1 1

3
77775 (64)

u = sn(x1; x̂[n�1])�̂n (65)

The parameters s1(x1), s2(x1; x̂1), � � �, sn(x1; x̂[n�1]) are smooth scalar-valued functions which are to

be determined in a recursive manner from s1 through sn. Let the matrix W be

W =

2
66664

1 0 0 0
w2 1 0 0
0 w3 1 0

0 0 wn 1

3
77775 (66)

whose entries wi for 2 � i � n are constant. De�ne the observer gain by

Y (x1) = �W�1
�
w1(x1)

0

�
= �

2
664

w1

�w1w2

(�1)n�1w1w2 � � �wn

3
775 (67)

where w1 is a C0 function of x1. The parameters w1; � � � ; wn have yet to be determined recursively

from k = n through k = 1. The state-dependent scaling for the output-feedback problem is chosen as

L=

�
�=

n
block-diag

i=1
�i : �i=�i(y; x̂[i�2])Ii > 0 8(y; x̂[i�2])2R�Ri�2

�
(68)

We restrict our attention to the following class of systems.

Assumption 1 The function A(x1)x satis�es

A(x1)x = A0x+  (x1) + �(x1)x2 (69)

with a constant matrix A0 and C0 functions  and �. There exist constants �i > 0 such that���a2i2(x1)=a12(x1)��� � �i; i = 2; 3; : : : ; n (70)

hold for all x1 2 R. The matrix B satis�es

B(x1) =

2
664
B11(x1) 0 0

0 B22(x1)
0

0 0 Bnn(x1)

3
775 ; Bii(x1) 2 R

1�pi (71)

and there exist constants �i > 0 such that

B11(x1)B
T
11(x1)q

a212(x1)
� �0;

B22(x1)B
T
22(x1)q

a212(x1)
� �1; Bii(x1)B

T
ii (x1) � �i; i = 2; 3; : : : ; n (72)

14



It should be noted that the diagonal restriction (71) imposed on B does not cause any loss of generality.

Indeed, an ISS problem with a triangular B can be recasted as another ISS problem with a diagonal

B by using the following idea.

2
4 b11 0 0
b21 b22 0
b31 b32 b33

3
5

| {z }
Bt

2
4 w1

w2

w3

3
5 =

2
4 b11 0 0 0 0 0 0 0 0

0 0 0 b21 b22 0 0 0 0
0 0 0 0 0 0 b31 b32 b33

3
5

| {z }
Bd

2
66666666666664

w1

w2

w3

w1

w2

w3

w1

w2

w3

3
77777777777775

A system de�ned by a state-space equation with a disturbance input term Btw is ISS if it is ISS with

Bdw.

We are now in a position to state the following theorem.

Theorem 7 Under the Assumption 1, the system � in the output-feedback form can be input-to-state

stabilized by the output-feedback law (40-41) with (65) and (67).

For robust input-to-state stabilization, we need the following assumption.

Assumption 2 The matrices B� and C� satisfy

B�(x1) =

2
664
B�;11(x1)
B�;21(x1)

B�;n1(x1)

3
775 ; C�(x1) =

�
C�;11(x1) 0 � � � 0

�
(73)

where B�;i1(x1) 2 R1�q1 , C�;11(x1) 2 Rq1�1 and q1 = q.

This assumption is the same as that in [8].

Theorem 8 Under the Assumption 1 and 2, the system �U in the output-feedback form can be input-

to-state stabilized for all admissible uncertainty �� by the output-feedback law (40-41) with (65) and

(67).

The rest of this section describes the proof of the above theorems and how to design the output-

feedback control law. Using the Schur complement formula, Nof < 0 and Mof < 0 are equivalently

transformed into

�Nof (y; x̂) =

"
N + ��1PXBBTXTP �P (XA+ TY Cy)W

�1� ��1PXBBTW T ~P

� H + ��1 ~PWBBTW T ~P

#
<0

�Mof (y; x̂) =

2
666664
N + ��1PXBBTXTP PXB� S

�TCT
� �

 
�P (XA+ TY Cy)W

�1�

��1PXBBTW T ~P

!
� �� 0 �BT

� W
T ~P

� � �� ��C�W
�1

� � � H + ��1 ~PWBBTW T ~P

3
777775<0

respectively, where

N = ŜT ÂT (X + T )TP + P (X + T )ÂŜ + �P

H =W�T �AŴ ~P + ~PŴ T �ATW�1 + ~� ~P
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The matrices �Nof and �Mof are symmetric. The parts �lled with � are de�ned accordingly. The

matrices �Nof and �Mof are the same as those appeared in [8] except for the terms

��1PXBBTXTP; ��1 ~PWBBTW T ~P ; ��1PXBBTW T ~P ; �P; ~� ~P

In order to solve �Mof < 0 and �Mof < 0, we divide the design procedure into two phases. The �rst

phase is to design the observer (40). The second phase is the design of the feedback gain (41). The

observer problem is to �nd W and Y which solve H + ��1 ~PWBBTW T ~P < 0. The feedback gain

design takes place after W and Y are determined. In the second phase, we compute S and K meeting

the condition �Mof < 0 or �Mof < 0. Both the designs will be done in a recursive manner. The feedback

gain design determines sk from k = 1 up to k = n. The observer gain design determines wk from

k = n down to k = 1. The idea of recursive construction of observers originates from [8]. It, however,

needs nontrivial modi�cations for dealing with problems of this section.

Begin by picking any diagonal matrices P > 0 and ~P > 0. The output-feedback form of � and �U

leads to the following recursive structure.

P[k]X[k]B[k]B
T
[k]X

T
[k]P[k] =

"
P[k�1]X[k�1]B[k�1]B

T
[k�1]X

T
[k�1]P[k�1] 2k�1;k�1

2k�1;k�1 2k�1;k�1

#
(74)

where 2i;j denotes any function depending only on (x1; x̂[i]), and the functions s1 through sj and their

partial derivatives. Due to the diagonal structure (71), we also obtain

P[k]X[k]B[k]B
T
[k]W

T
[k]

~P[k] =

"
P[k�1]X[k�1]B[k�1]B

T
[k�1]W

T
[k�1]

~P[k�1] 0

2k�1;k�1 0

#
(75)

Since � is positive, the inequality

H + ��1 ~PWBBTW T ~P < 0 (76)

is equivalent to

�BTW T ~PH�1 ~PWB < �I; H < 0 (77)

Let � be a diagonal matrix satisfying

� =

2
664
1 0 0
0 2

0
0 0 n

3
775 > 0 (78)

�H�1 < � (79)

Then, (77) is implied by

BTW T ~P� ~PWB < �I (80)

Now, consider

BT
hkiW

T
hki

~Phki�hki ~PhkiWhkiBhki < �kI (81)

Here the subscript hki denotes the submatrix at the lower right corner as follows:

Q =

2
664
Q11 Q12 Q1;n

Q21 Q22

Qn;1 Qn;n

3
775 ; Qhki =

2
664

Qk;k Qk;k+1 Qk;n

Qk+1;k Qk+1;k+1

Qn;k Qn;n

3
775 ; Qh1i = Q; Qhni = Qn;n

16



Due to the structure of �, we have

BT
hkiW

T
hki

~Phki�hki ~PhkiWhkiBhki

=

"
(k ~P

2
k + k+1

~P 2
k+1w

2
k+1)B

T
kkBkk k+1

~P 2
k+1wk+1B

T
kkBk+1;k+1 0

20;0 BT
hk+1iW

T
hk+1i

~Phk+1i�hk+1i
~Phk+1iWhk+1iBhk+1i

#
(82)

Thus, there exists a sequence � = �1 � �2 � � � � � �n > 0 achieving (81) whenever there exist � > 0

such that (80) holds. Using (82), we can pick constants k > 0, �k > 0 and �k > 0 satisfying

BT
hkiW

T
hki

~Phki�hki ~PhkiWhkiBhki � �kI � ��kI (83)

recursively from k = n up to k = 3 since Bh3i is uniformly bounded. For k = 2, take 2 = c=
q
a212

with a positive constant c > 0. Because of the uniform boundedness of Bh2i and B22B
T
22=
q
a212, we

can �nd c > 0, �2 > 0 and �2 > 0 such that (83) holds for k = 2. Again from (82) and the uniform

boundedness of B11B
T
11=
q
a212 and B22B

T
22=
q
a212, it follows that we can pick up 1(x1) > 0 and �1 > 0

with which (81) is achieved for k = 1. Note here that under the Assumption 1, at each step k, we can

�nd the parameter wk satisfying

�H�1
hki < �hki (84)

for the chosen k by following the design procedure of robust observer in [8]. In this way, the observer

parameters Y (x1) and W which meet (76) can be always constructed by solving (83) and (84) for k

and wk recursively from k = n down to k = 1. Finally, using the structure (74) and (75), it is proved

that the parameters fsk; �kg of feedback gain design solving �Nof < 0 and �Mof < 0 can be determined

recursively from k = 1 up to k = n by following the procedure established in [8]. Thus, Theorem 7

and 8 are proved on Assumption 1 and 2.

4 Characterization for Dynamic Uncertainty

The uncertainty components de�ned by (11) are static systems. In this section, we consider the

uncertainty �� which is allowed to be dynamic. Now, the causal mapping �i in (10) is de�ned by

�i : z�i =

�
�d;i
�s;i

�
7! w�i =

�
!d;i
!s;i

�
(85)�

_x�i = f�i(x�i ; �d;i; t)
!d;i = g�i(x�i ; �d;i; t)

(86)

!s;i = h�i(�s;i; t) (87)

where the vector-valued functions satisfy f�i(0; 0; t)=0 and g�i(0; 0; t)=0 for all t � 0. Let x� denote

the whole state variable of ��, i.e., x� = [xT�;1; : : : ; x
T
�;n]

T . In this section, the uncertainty �� is said

to be admissible if each static mapping �s;i 7! !s;i satis�es

k�s;i(t)k � k!s;i(t)k; 8t 2 [0;1) : (88)

and if for each dynamic mapping �d;i 7! !d;i, there exists a radially unbounded positive de�nite C1

function V�i(x�i) such that

V�i(x�i(0)) +

Z T

0
(�T�i��i � !T�i!�i)dt � V�i(x�i(T )) +

Z T

0
 (kx�(t)k)dt ;8T 2 [0;1);8��i 2 L2[0; T ]

holds globally for a class K1 function  (�). The following theorem describes robust input-to-state

stabilization for dynamic uncertainty by state feedback control.
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Theorem 9 If there exist a positive de�nite matrix P , positive real numbers � and �, and a constant

matrix � 2 L such that

M sfd(x)=

2
6664
ŜT ÂTT TP + PTÂŜ + �P PTB PTB� ŜT ĈT

� �
BTT TP ��I 0 0
BT
� T

TP 0 ��+ �I DT
� �

�Ĉ�Ŝ 0 �D� ��

3
7775< 0 (89)

is satis�ed for all x 2 Rn, the state-feedback law (3) renders the nonlinear system �U input-to-state

stable for all admissible dynamic uncertainty ��.

Proof : Suppose that there exist real numbers �i > 0, i = 1; 2; : : : ; n such that the inequality (89)

holds with �i = �iI. By de�nition of the admissible uncertainty, the time-derivative of V�i(x�i) is

obtained as

d

dt
V�i �

1

�i

�
!d;i
�d;i

�T �
��i 0
0 �i

� �
!d;i
�d;i

�
�  (kx�(t)k); 8t 2 [0;1)

for all i. De�ne a positive de�nite function

V (xcl) = �TP�+
nX
i=1

�iV�i (90)

which is a radially unbounded function of xcl = [xT ; xT� ]
T . The time-derivative of V along the trajec-

tory of the closed-loop system (13) satis�es

d

dt
V (xcl) + ��TP�� �wTw

�

2
4 �
w
w�

3
5
T
2
64 Ŝ

T ÂTT TP + PTÂŜ PTB PTB�

BTT TP 0 0
BT
� T

TP 0 0

3
75
2
4 �
w
w�

3
5+ � �

w

�T �
�P 0
0 ��I

� �
�
w

�
+

nX
i=1

�
!d;i
�d;i

�T �
��i 0
0 �i

� �
!d;i
�d;i

�
� �i (kx�k) (91)

�

2
4 �
w
w�

3
5
T
2
64 Ŝ

T ÂTT TP + PTÂŜ + �P PTB PTB�

BTT TP ��I 0
BT
� T

TP 0 0

3
75
2
4 �
w
w�

3
5

+

�
w�

z�

�T �
�� 0
0 �

� �
w�

z�

�
� �i (kx�k) (92)

=

2
4 �
w
w�

3
5
T
0
B@
2
64 Ŝ

T ÂTT TP + PTÂŜ + �P PTB PTB�

BTT TP ��I 0
BT
� T

TP 0 0

3
75

+

2
64 0 Ŝ

T ĈT
�

0 0
I DT

�

3
75 ��� 0

0 �

� "
0 0 I

Ĉ�Ŝ 0 D�

#1CA
2
4 �
w
w�

3
5� �i (kx�k) (93)

=

2
4 �
w
w�

3
5
T

Q

2
4 �
w
w�

3
5� �i (kx�k)

The matrix Q(x) is

Q =

2
64 Ŝ

T ÂTT TP + PTÂŜ + �P PTB PTB�

BTT TP ��I 0
BT
� T

TP 0 ��

3
75+

2
64 Ŝ

T ĈT
� �

0
DT

� �

3
75��1 h �Ĉ�Ŝ 0 �D�

i
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Applying the Schur complement formula to Q < 0, we can see that the inequality (89) is equivalent

to Q < 0. Thus, we obtain

d

dt
V (xcl) � ���TP��  (kx�k) + �wTw (94)

This inequality proves that the closed-loop system is input-to-state stable.

In the same manner, the following is proved for output feedback control.

Theorem 10 If there exist positive de�nite matrices P and ~P , positive real numbers �, �, ~� and a

constant matrix � 2 L such that

Mofd(y; x̂)=2
66666666664

 
ŜT ÂT (X + T )TP+

P (X + T )ÂŜ + �P

!
PXB PXB� S�TCT

� � �P (XA+ TY Cy)W
�1

BTXTP ��I 0 0 �BTW T ~P

BT
� X

TP 0 ��I 0 �BT
� W

T ~P
�C�S

�1 0 0 �� ��C�W
�1

�W�T (XA+ TY Cy)
TP � ~PWB � ~PWB� �W

�TCT
� �

 
W�T �AŴ ~P+

~PŴ T �ATW�1 + ~� ~P

!

3
77777777775
< 0 (95)

is satis�ed for all (y; x̂) 2 Rn+1, the output-feedback law (40-41) renders the nonlinear system �

input-to-state stable for all admissible dynamic uncertainty ��.

Moreover, in the conditions M sfd < 0 and Mofd < 0, the parameter �i is allowed to be a function of

x and (y; x̂), respectively if the dimension of the vector !d;i is zero for that i.

In the case of dynamic uncertainty, there might be no solution of the input-to-state stabilization

problem even if the system �U is in the robust strict feedback form or the robust output-feedback

form as it was for the robust stabilization problem[6].

5 Integral Input-to-State Stabilization

Let � = 0 and ~� = 0 in the characterization N sf < 0, M sf < 0, Nof < 0 and Mof < 0 of previous

sections. Then, the time-derivative of the quadratic Lyapunov functions satis�es

d

dt
V (xall) � �wTw (96)

where xall denotes the state of the entire closed-loop system. The inequality (96) implies that the

closed-loop system is zero-output smoothly dissipative[1]. The closed-loop system is also proved to be

0-GAS since

d

dt
V (xall) � xTallM(xall)xall (97)

holds for w � 0, and M(xall) < 0 holds for all xall. Owing to the result of [1, 12], Theorem 1,

2, 5 and 6 guarantee iISS of the closed-loop systems when � = 0 and ~� = 0. In the same way,

Theorem 9 and 10 with � = 0 and ~� = 0 guarantee iISS. Note that every input-to-state stable system

is necessarily integral input-to-state stable but the converse is not true[12]. For linear systems, it is

obvious that there exists � > 0 such that N sf < 0 is satis�ed if and only if N sf < 0 is satis�ed with
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Figure 1: Nonlinear plant with input unmodeled dynamics

� = 0. Similarly, the existence of � > 0 and ~� > 0 satisfying Nof < 0 also implies and is implied

by Nof < 0 of � = ~� = 0. The same property is true for M sf , Mof , M sfd and Mofd in the case of

linear systems. This fact explains exactly the equivalence between ISS and iISS property for linear

systems[14]. Since we have succeeded in constructing a state-feedback controller which renders the

nonlinear strict-feedback system � input-to-state stable using the state-dependent scaling technique for

the � > 0 case, it is trivial that the strict-feedback system � is also integral input-to-state stabilizable

(for all admissible uncertainty ��) via state feedback by using the state-dependent scaling method.

The same fact is true for output feedback control under the condition of Assumption 1 and 2.

6 Robustness for Passive Uncertainty

This section addresses the problem of designing controllers which remain input-to-state stabilizing

in the presence of a certain class of dynamic uncertainties. The following is the de�nition of strict

passivity[2].

De�nition 1 The system

�sp :

�
_x� = f�(x�) + g�(x�)z�
w� = h�(x�); x�(t) 2 Rn� (98)

is said to be strictly passive if there exist a C1 positive de�nite radially unbounded function V�(x�) and

a class K1 function  (�) such thatZ t

0
wT
� z�d� � V�(x�(t))� V�(x�(0)) +

Z t

0
 (kx�(�)k)d� (99)

for all z� 2 C
0, x�(0) 2 Rn and t � 0.

Consider the uncertain system � shown in Fig1 in which �sp : z� 7! w� is a dynamic uncertainty

which is assumed to be strictly passive. The system is described by

� :

�
_x = A(x)x+B(x)w +G(x)�(w� + u)
z� = u

: (100)

where � is a real number and � > 0. We consider the following state-feedback control

u = K(x)x (101)

and de�ne the following functions.

Ŝ =

�
S�1

KS�1

�
; Â = [A �G]
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We now introduce a new class of scaling matrices as follows:

Ld =
n
�(s) = �(s)I : � 2 C0; 0 < �(s) � ��; 8s 2 [0;1)

o
(102)

where �� is an arbitrary �nite number. In particular, we are interested in �(s) whose independent

variable s is a quadratic function of �. This new class of scaling is di�erent from state-dependent

scaling for static uncertainties in that it is uniformly bounded. This new class of scaling enables us to

establish the input-to-state stabilization in the presence of the dynamic input uncertainty.

Theorem 11 Given any �l > 0, the uncertain system consisting of (100) and (98) is input-to-state

stabilized by a state feedback law (101) for all � 2 [�l;1) if there exist a positive de�nite matrix P

and positive real numbers �, � and a scaling function � 2 Ld such that

M sp(x)=

"
ŜT ÂTT TP + PTÂŜ + �P PTB

BTT TP ��I

#
� 0 (103)

PTG+ S�TKT� = 0 (104)

are satis�ed with s = xTSTPSx for all x 2 Rn and all � 2 [�l;1).

Proof : By de�nition, the strictly passive uncertainty has a positive de�nite radially unbounded

function V� satisfying

d

dt
V�(x�) � wT

� z� �  (kx�k)

where  (�) is a class K1 function. Thus, we have

2�(s)
d

dt
V�(x�) �

�
w�

z�

�T �
0 �(s)

�(s) 0

� �
w�

z�

�
� 2�(s) (kx�k); 8t 2 [0;1) (105)

for an arbitrary function �(s) > 0. Next, de�ne a function V (xcl) by

V (xcl) =

Z V0(x)

0

1

�(s)
ds+ 2�V�(x�); V0(x) = �TP� (106)

where xcl = [xT ; xT� ]
T and P is a positive de�nite matrix. Since �(s) is C0, positive and uniformly

bounded, the function V is a positive de�nite radially unbounded C1 function of xcl. The time-

derivative of V along the trajectory of the closed-loop system satis�es

d

dt
V (xcl) +

�

�(V0(x))
�TP��

�

�(V0(x))
wTw

=
1

�(V0(x))

�
d

dt
V0(x) + 2��(V�(x�))

d

dt
V0(x) + ��TP�� �wTw

�

�
1

�(V0(x))

8><
>:
2
4 �
w
w�

3
5
T
2
64 Ŝ

T ÂTT TP + PTÂŜ PTB PTG�
BTT TP 0 0
�GTT TP 0 0

3
75
2
4 �
w
w�

3
5+ � �

w

�T �
�P 0
0 ��I

� �
�
w

�

+

�
w�

z�

�T �
0 ��
�� 0

� �
w�

z�

�)
� 2� (kx�k) (107)

=
1

�(V0(x))

2
4 �
w
w�

3
5
T
2
64Ŝ

T ÂTT TP + PTÂŜ + �P PTB PTG�+ S�TKT��
BTT TP ��I 0

�GTT TP + ��KS�1 0 0

3
75
2
4 �
w
w�

3
5� 2� (kx�k)
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From (103) and (104), we obtain

d

dt
V (xcl) � �

�

�(V0(x))
�TP�� 2� (kx�k) +

�

�(V0(x))
wTw

Since 0 < �(V0(x)) � �� holds for all x, there exist class K1 functions �1, �2 and �3 such that

d

dt
V (xcl) � �

1

�(V0(x))
(�1(kxk) � �2(kwk)) � �3(kx�k) (108)

for any x 2 Rn, x� 2 Rn� and any w 2 Rp. Now, pick another class K1 function �4(kwk) =

��11 (2�2(kwk)). Then, whenever kxk � �4(kwk), we have

1

�(V0(x))
�2(kwk) �

1

2�(V0(x))
�1(kxk)

from � > 0. Since 0 < ���1 � ��1 is satis�ed for all x, we arrive at

kxk � �4(kwk) )
d

dt
V (xcl) � �

1

2��
�1(kxk) � �3(kx�k) � ��5(kxk) � �3(kx�k) (109)

where �5(kxk) = �1(kxk)=2�� 2 K1. On the other hand, from (108), we obtain

d

dt
V (xcl) + �5(kxk) + �3(kx�k) �

�
1

2��
�

1

�(V0(x))

�
�1(kxk) +

1

�(V0(x))
�2(kwk)

�
1

�(V0(x))
�2(kwk) (110)

for all x 2 Rn, x� 2 Rn� and all w 2 Rp. Assume now that kxk � �4(kwk) holds. The inequality

(110) becomes

d

dt
V (xcl) + �5(kxk) + �3(kx�k) � �2(kwk) max

kxk��4(kwk)

�
1

�(V0(x))

�

Since � is a continuous function satisfying 0 < � � ��, from �4 2 K1 it follows that there exists a class

K1 function �6 such that

kxk � �4(kwk) )
d

dt
V (xcl) + �5(kxk) + �3(kx�k) � �6(kwk) (111)

holds. Finally, by combining (109) and (111), we obtain

d

dt
V (xcl) � ��5(kxk) � �3(kx�k) + �6(kwk) (112)

for all x 2 Rn, x� 2 Rn� and all w 2 Rp. This completes the proof.

Next, we show that a controller which ful�lls (103) and (104) can be always constructed if the system

� is in the strict-feedback form. Suppose that the matrices A(x), B(x) and G(x) are given as (25-29).

Let the state-feedback law be (37) and P is a diagonal matrix. Then, the equation (104) reduces to

2
664

0

0
Pnan;n+1

3
775+

2
664

0

0
sn�

3
775 = 0
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Thus, for the feedback gain, we pick

sn = �
Pnan;n+1

�
(113)

By virtue of the development in [6], the condition M sp < 0 is satis�ed if

2Pkak;k+1sk � �k(x[k]) < 0; for k = 1; 2; : : : ; n� 1
2Pk�ak;k+1sk � �k(x[k]) < 0; for k = n

(114)

are achieved by �nding sk(x[k]) recursively from k = 1 through k = n. The function �k(x) is an

appropriate C0 function which is independent of fsk; � � � ; sng. Since ak;k+1(x[k]) are positive and

Pk; � > 0, there always exist fs1(x[1]); � � � ; sn�1(x[n�1])g satisfying (114). As for k = n, substituting

(113) into (114), we obtain

2�P 2
na

2
n;n+1 > ��n(x); 8x 2 Rn (115)

It is easy to see that there exits a C0 function �(�TP�) such that

2�lP
2
na

2
n;n+1 > ��n(x); 8x 2 Rn (116)

0 < �(�TP�) < ��; 8x 2 Rn (117)

are satis�ed with a �nite number ��. It should be noted that sn and � do not include �. To summarize

the above discussion, we state the following theorem.

Theorem 12 Suppose that the system (100) is in the strict-feedback form. Given any �l > 0, the

uncertain system consisting of (100) and (98) can be always input-to-state stabilized by a state feedback

law (113) for all � 2 [�l;1).

An important point of the above theorem is that the robust ISS can be achieved by using the state-

dependent scaling and the Schur complements formula recursively. This feature is quite di�erent from,

for example, the development[10] where the Legendre-Fenchel transform and Young's Inequality are

employed to prove ISS in the presence of the passive uncertainty. It is also interesting that the state-

dependent scaling approach is able to construct an inverse optimal controller without referring to the

Sontag-type controller[7].

According to Theorem 12, by letting �l ! 0, we can make the stability margin extremely large,

which means the gain margin tend to (0;1) and the phase margin tends to 90�. However, we should

be careful that the gain of the control law can be harmfully very high. To see this point, consider

�l ! 0 in (116). Then, the scaling factor � should be small enough, which implies that the feedback

gain in (113) becomes very large. The large stability margin characterized by Theorem 11 is achievable

when the state variable is available for feedback. For output-feedback control, it is generally known

that the state-feedback/observer design reduces stability margins. It is possible to characterize the

reduced margins in the case of the output-feedback by restricting the set of uncertain dynamics and

uncertain parameters accordingly.

The introduction of the new type of scaling (102) is crucial for establishing the input-to-state

stability in the presence of input unmodeled dynamics. If the scaling is replaced by the unbounded

one (14), the ISS is not guaranteed in the presence of dynamic uncertainties. If the scaling is replaced

by constant scaling, in general, the condition (115) cannot be met globally for nonlinear systems.

Thus, the new scaling (102) and the creation of a new type of Lyapunov functions (106) from the

scaling are important ingredients in this section.
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7 Concluding Remarks

In this paper, the input-to-state stabilization and the integral input-to-state stabilization have been

characterized by using the state-dependent scaling and di�eomorphism exclusively. The recursive

design procedure presented is based on recursive application of the Schur complements formula to

the characterization. This paper use neither Young's formula nor completing the squares which are

usually conservative than the Schur complements formula[8]. All developments in this paper only use

the state-dependent scaling, the di�eomorphism and the Schur complements, and combination of them

has been found useful in dealing with ISS and iISS problems.

The paper has solved both state-feedback and output-feedback global stabilization. The systems

are allowed to have uncertain parameters and dynamics. In the case of input unmodeled uncertainty,

a new class of state-dependent scaling factors has been introduced to create Lyapunov functions of a

new type in the state-dependent scaling design.

Theorem 1, 3, 5 and 7 of this paper can be considered as an improved version of the input-to-

state stabilization results presented in [7, 8]. The key di�erence is that this paper does not introduce

unnecessary �ctitious output functions which was used as free parameters in [7, 8]. That is why the

previous papers [7, 8] need to compute scaling matrices at the �ctitious channels. For instance, the

characterizing matrix N sf of Theorem 1 does not have any �ctitious output and scaling matrices, while

the previous papers use larger matrices which include the �ctitious output and scaling matrices in the

augmented part of the characterizing matrix. By virtue of the Schur complements formula, it can be

easily seen that the design in [7, 8] may require more e�ort of the controller than the method of this

paper to make the characterizing matrix negative de�nite. Thus, in general, the method of [7, 8] tends

to produce higher gain controllers. Finally, it may be worth mentioning that the characterization of

this paper has more exibility to deal with advanced problems such as robust ISS problems discussed

in this paper.
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