
Type Inference for Domain-Free �2

Ken-etsu Fujita

Department of Arti�cial Intelligence

Kyushu Institute of Technology
Iizuka 820-8502, Japan

fujiken@dumbo.ai.kyutech.ac.jp

July 1, 1999

Abstract

We will prove that type checking, typability, and type inference for
domain-free �2 are undecidable. The type checking problem for domain-
free �2 was posed by Barthe and S�rensen (1997). A certain second or-
der uni�cation problem is reduced to the problem of type inference for
domain-free �2. The restricted second order uni�cation has been proven
undecidable by Schubert. The reduction method can be obtained from a
simpli�cation of Pfenning's reduction from the general problem of second
order uni�cation to the partial type inference problem. An analysis of the
undecidability proof reveals that the typability problem is still undecid-
able even for a predicative fragment of domain-free �2, called the rank 2
fragment.

Technical Report in Computer Science and Systems Engineering
CSSE-5, Kyushu Institute of Technology, July 1, 1999

ISSN 1344-8803

1

1 Introduction

There are known three styles of (typed) �-terms, called Curry-style, Church-
style (for instance, see [Bare92]), and domain-free style [BHS96]. For some
systems such as simply typed �-calculus and ML [Mil78, DM82], it is well-
known that the Curry-style and the corresponding Church-style are essentially
equivalent [Bare92, HM93]. Hence, the Curry system serves as a short-hand for
the Church system. On the other hand, recently, Barthe, S�rensen, and Hatcli�
[BHS96, BS97] introduced the notion of domain-free pure type system. Terms
in domain-free style have domain-free �-abstraction. There exist two styles of
domain-free pure type system, that is, a single syntactic category of expressions
(non-sorted variables) and explicit distinction between objects, constructors,
and kinds (sorted variables). Barthe and S�rensen posed a question to know
whether the problem of type checking is decidable for domain-free �2 and �!

(page 18 [BS97]). In this paper, we will show that type checking, typability,
and type inference are, in general, undecidable for domain-free �2. In order to
prove this, we reduce a certain second order uni�cation problem to the problem
of strong type inference for domain-free �2. The restricted second order uni�ca-
tion problem has been proven undecidable by Schubert [Schu97, Schu98]. The
reduction method can be obtained by a simpli�cation of Pfenning's reduction
[Pfen88, Pfen93] from the general problem of second order uni�cation to the
partial type inference problem.

Original motivation for domain-free systems comes from a study on classical
type system which is an extension of intuitionistic type theory together with
classical rules such as double negation elimination. The domain-free systems
are useful to give continuation-passing style translations [BHS96] which pro-
vide a certain semantics of classical type system. Further, when we construct a
polymorphic call-by-value calculus with control operators such as callcc or �-
operators [Pari92], the Curry style cannot work for a consistent system. For
instance, see the traditional counterexample (ML with callcc is unsound)
by Harper&Lillibridge [HL91], and see also a proof-theoretical observation in
[Fuji99]. Hence, we introduced domain-free ��-calculus [Fuji99], where the ex-
plicit type annotations for polymorphic terms play a role of choosing an appro-
priate computation under call-by-value. Our result in this paper also gives a
negative answer to the problem of type checking for second-order ��-calculus
in domain-free style, which is a variant of Parigot's ��-calculus in Curry style
[Pari92].

Domain-free systems are also useful for a study on partial polymorphic type
reconstruction [Boeh85, Pfen88]. Boehm [Boeh85] and Pfenning [Pfen88] have
proven that the partial type reconstruction problem is, in general, undecidable
for second-order �-calculus. The typability problem for domain-free �2 can be
regarded as a special case of the problem of type reconstruction for partially
typed terms. Our result in this paper means that the restricted problem of
type reconstruction for partially typed terms is still undecidable. Moreover, the

2

observation from the undecidability proof reveals that the typability problem is
undecidable even for a predicative fragment of domain-free �2, called the rank
2 fragment [Leiv91, KT92]. This analysis also implies that the partial type
reconstruction problem is still undecidable for the rank 2 fragment of second-
order �-calculus.

2 Curry-Style, Church-Style, and Domain-free

In Curry-style, terms are essentially type free [Curr34, CFC74, Hind97], and
types can be assigned by rules of a type theory if well-formed. Terms in Church-
style typed �-calculus, on the one hand, are originally de�ned only from vari-
ables uniquely type annotated [Chur40]. On the other hand, terms in domain-
free style have domain-free �-abstraction [BS97], and second-order �-calculus in
domain-free style can be regarded, in a sense, as an intermediate representation
between �a la Curry and �a la Church, as shown in the following table.

Styles of (typed) �-terms

Style n System �! �2

Church-style �x :�:M �t:M , M�

Domain-free �x:M �t:M , M�

Curry-style �x:M M

We give a de�nition of domain-free �2-calculus. In terms of domain-free pure
type system [BHS96, BS97], this domain-free system is constructed from sorted
variables; term variable x and type variable t. Then, on the basis of the sorted
variables, type abstraction can be represented by �t rather than the traditional
�t, and we also have explicit distinction between terms and types.

Domain-free �2:

Types � ::= t j � ! � j 8t:�

Contexts � ::= h i j �; x :�

Terms M ::= x j �x:M j MM j �t:M j M�

Type Assignment Rules
� ` x : �(x)

� `M1 : �1 ! �2 � `M2 : �1
� `M1M2 : �2

(! E)
�; x :�1 `M : �2

� ` �x:M : �1 ! �2
(! I)

3

� `M : 8t:�1
� `M�2 : �1[t := �2]

(8E) � `M : �
� ` �t:M : 8t:�

(8I)�

where (8I)� denotes the eigenvariable condition.
The introduction rules, (! I) and (8I) can be coded, respectively, as domain-

free �-abstractions based on the distinction between the sorted variables. The
elimination rules, (! E) and (8E) can also be represented, respectively, by the
pairs of two expressions, based on sorted variables. Hence, when well-typed
terms of domain-free �2 are given, the type assignment rules are uniquely de-
termined by the shape of the terms. From this syntactical property of terms,
we have the natural generation lemma for domain-free �2.

Lemma 1 (Generation lemma) (1) If � ` x : �, then �(x) = �.
(2) If � `M1M2 : �, then � `M1 : �1 ! � and � `M2 : �1 for some �1.
(3) If � ` �x:M : �, then �; x :�1 ` M : �2 and � � �1 ! �2 for some �1 and
�2.
(4) If � ` �t:M : �, then � ` M : �1 and � � 8t:�1 and t 62 FV (�) for some
�1.
(5) If � `M�1 : �, then � `M : 8t:�2 and � � �2[t := �1] for some �2.

3 Type Checking, Typability, and Type Infer-

ence for Domain-Free �2

The problems of type checking, typability, and type inference for Curry and
Church �2 are investigated by Jutting [Jutt93], Wells [Well94], and Schubert
[Schu97, Schu98], as shown in the following table.

Decidability for type checking, typability, and type inference of second-
order �-calculus (�2)

�2 n Problem � `M : �? � `M :? ? `M :?

Church-style yes [Jutt93] yes [Jutt93] no [Schu97]
Domain-free ??1 ??2 ??3

Curry-style no [Well94] no [Well94] no [Well94]

In this paper, we will prove that in the table above, all of ??1, ??2, and ??3

(case of strong type inference, see below) are \no", i.e., undecidable.
The problem of type inference is a problem that given a term M , are there

a context � and a type � such that � ` M : � is derivable? On the one hand,
the problem of strong type inference [Tiur90] is a problem that given a term M

and a context �0, are there a context � � �0 and a type � such that � `M : �
is derivable? The strong type inference problem is naturally considered in the
case where the system contains constants. The typability problem is a problem

4

that given a term M and a context �, is there a type � such that � ` M : � is
derivable? Finally, the type checking problem is a problem that given a term
M , a type �, and a context �, is the judgement � `M : � derivable?

By the use of a type forgetful map, the three styles of judgements are equiv-
alent in the following sense, where j j is a domain erasing map (j�x : �:M j =
�x:jM j), and jj jj is a type erasing map (jjM�jj = jjM jj, jj�t:M jj = jjM jj):
(1) If � `M : � in Church style, then � ` jM j : � in domain-free style.
(2) If � `M : � in domain-free style, then � ` jjM jj : � in Curry style.

The inverse directions say that there exists a term whose erasure is the same as
the original term [HM93].
(-1) If � `M : � in domain-free style, then � `M1 : � in Church style for some
M1 such that jM1j �M .
(-2) If � `M : � in Curry style, then � `M2 : � in domain-free style for some
M2 such that jjM2jj �M .

For the problems above, however, the inverse directions are not straightfor-
ward, since the forgetful maps are not one-to-one. Here, we will directly study
the problems for domain-free �2.

On the basis of the generation lemma (Lemma 1), we �rst observe that the
strong type inference problem for domain-free �2 is reduced to the typability
problem, and the typability problem for domain-free �2 is reduced to the type
checking problem.

Lemma 2 9�:9�: �;�0 `M : � in domain-free �2
() 9�: �0 ` �~x:M : � in domain-free �2
() �0 ` (�xy:y)(�~x:M) : t! t in domain-free �2

4 Type Inference is Undecidable for Domain-

Free �2

In this section, we prove that the problem of strong type inference for domain-
free �2 is undecidable. To show this, we demonstrate a stronger result such
that the problem of strong type inference is undecidable for the fragment of
domain-free �2, called domain-free ML.

Domain-free ML:

Monotypes � ::= t j � ! �

Polytypes � ::= � j 8t:�

5

Terms M ::= x j �x:M j MM j �t:M j M� j let x=M in M

Contexts � ::= h i j �; x :�

Type Assignment Rules
� ` x : �(x)

�; x :�1 `M : �2
� ` �x:M : �1 ! �2

(! I)
� `M1 : �1 ! �2 � `M2 : �1

� `M1M2 : �2
(! E)

� `M : �
� ` �t:M : 8t:�

(8I)�
� `M : 8t:�

� `M� : �[t := �]
(8E)

� `M1 : � �; x :� `M2 : �

� ` let x=M1 in M2 : �

In the discussion of this section, we essentially need the following subsystem
of the above domain-free ML:

M ::= x j �x:M j MM j x�1 � � � �n

�(x) = 8t1 � � � tn:�

� ` x�1 � � � �n : � [t1 := �1; � � � tn := �n]
(n � 0)

�; x :�1 `M : �2
� ` �x:M : �1 ! �2

� `M1 : �1 ! �2 � `M2 : �1
� `M1M2 : �2

We �rst introduce a restricted second-order uni�cation problem for well-
formed second-order expressions, which are de�ned from monotypes � , binary
function constant!, and n-ary second-order function variable X (n � 0) whose
arguments contain no variables. Such terms for the second-order uni�cation are
denoted by T or U . A well-formed expression is de�ned as follows:
(1) A type variable t is a well-formed expression.
(2) If X is an n-ary variable (n � 0) and �i (1 � i � n) are monotypes, then
X�1 � � � �n is well-formed.
(3) If T1 and T2 are well-formed, then so is T1 ! T2.

Given a well-formed expression T , a set of (uni�cation) variables in T de-
noted by uV ar(T) and a set of constants in T denoted by Con(T) are de�ned,
respectively, as follows:
uV ar(t) = ;;
uV ar(X�1 � � � �n) = fXg (n � 0);

6

uV ar(T1 ! T2) = uV ar(T1) [uV ar(T2).

Con(t) = ftg;
Con(X�1 � � � �n) = ; (n � 0);
Con(T1 ! T2) = Con(T1) [Con(T2).

Given well-formed T1 and T2. Let uV ar(T1; T2) be fX1; � � � ; Xng. The uni�-
cation problem (T1

:
= T2) is a problem to �nd well-formed Ui for each Xi where

1 � i � n, such that
(1) Let Xi be k(i)-ary variable, and S be a substitution such that

[X1 := �t1 � � � tk(1):U1; � � � ;Xn := �t1 � � � tk(n):Un].
Then S(T1) =� S(T2) holds.
(2) We have uV ar(Ui) = ; where 1 � i � n.

If we have a substitution S such that the above (1) and (2) are satis�ed,
then we say that T1 and T2 are uni�able, and that the uni�cation problem has
an answer S. In this case, from the de�nition, there exists a monotype � such
that S(T1) =� � =� S(T2).

Theorem 1 (Schubert[Schu97]) The second-order uni�cation problem on the
well-formed expressions is undecidable.

Schubert [Schu97] has proved that the halting problem for two-counter au-
tomata is reduced to the uni�cation problem, where a two-counter automata can
simulate an arbitrary Turing machine. On the basis of his result, it is enough
to consider one pair of T1 and T2, which contain binary function constant !
and at least one constant.

In order to give a reduction from the uni�cation problem to the problem of
type inference for domain-free ML, we �rst de�ne a (pre)context �. The context
itself may not be an ML-context, but it becomes an ML-context under some
substitution if uni�able. This can be justi�ed, since the reduction is formalized
as follows:

the uni�cation problem T1
:
= T2 has an answer if and

only if there exist � and � such that �;�0 `M : � in domain-free ML.
Here, �0 and M are given by T1 and T2. Only if T1 and T2 are uni�able, say
the uni�er S, then the ML-context � can be obtained as a subcontext of S(�),
such that S(�) = �;�0. Moreover, the monotype � can also be obtained as a
substitution instance (of ty(�) de�ned below) by S.

Given a well-formed T , then we construct the context �[T], such that
(1) For each t2Con(T), t is inhabited in �[T], i.e., �[T](x) = t for some x.
(2) For each n-ary variable X 2 uV ar(T) where n � 0, the universal closure
8t1 � � � tn:(Xt1 � � � tn) is inhabited in �[T].

7

�[T1; T2] is also de�ned similarly, and we simply write � for �[T1; T2].
Let T1 and T2 be well-formed. Given a second-order uni�cation problem

T1
:
= T2, then, following Pfenning [Pfen93], we construct a term of domain-free

ML by the use of the following UT and T I:
UT (�[T1; T2];T1

:
= T2) =

�z1:�z2:�f:fz1(fz2(�g:g(T I(�; z1; T1))(T I(�; z2;T2)))),
where T I(�; z;T) is de�ned by induction on T :
(1) T I(�; z; t) = �f:fz(fx(�g:g))

where �(x) = t 2 Con(T1; T2)
(2) T I(�; z;X�1 � � � �n) = �f:fz(f(x�1 � � � �n)(�g:g))

where �(x) = 8t1 � � � tn:(Xt1 � � � tn)
(3) T I(�; z;T1 ! T2) =

�z1:�z2:�f:f(zz1)(fz2(�g:g(T I(�; z1;T1))(T I(�; z2;T2))))

Remark 1 The reduction via UT and T I gives a �-normal term.

The translation T I(�; z;T) says that type of z would be a substitution
instance of T , see Lemma 3 below.

We next construct ty(T) that is a type of T I(�; z;T). Although ty(T) itself
may not be a monotype, it becomes a monotype under some substitution if
uni�able. Here of course we assume that we have countably many type variables
to use a fresh type variable t for each application of the following de�nition:
(0) ty(�) = (� ! (t! t)! t! t)! t! t

for � 2 Con(T);
(1) ty(X�1 � � � �n) = ((X�1 � � � �n)! (t! t)! t! t)! t! t

where n � 0;
(2) ty(T1 ! T2) = T1 ! T2 ! (T2 ! A! A)! A

where A � (ty(T1)! ty(T2)! t)! t.

Lemma 3 S(�[T]); x :� ` T I(�[T];x;T) : S(ty(T)) in domain-free ML
if and only if S(T) =� � .

Proof. By induction on T :
(1) T � t0

From the de�nition, in domain-free ML we have
S(�); x :� ` �f:fx(fy(�g:g)) : (t0 ! (t! t)! t! t)! t! t

where �(y) = t0. Here, type of x and y must be equal, i.e., � � t0.

(2) T � X�1 � � � �n
Let S(�(y)) be 8t1 � � � tn:((SX)t1 � � � tn). We have

S(�); x :� ` �f:fx(f(y�1 � � � �n)(�g:g))
: (((SX)�1 � � � �n)! (t! t)! t! t)! t! t

in domain-free ML. Here, type of x and y�1 � � � �n must be equal. That is,
� =� ((SX)�1 � � � �n).

8

(3) T � T1 ! T2
From the de�nition, in domain-free ML we have

S(�); x :� ` �z1:�z2:�f:f(xz1)(fz2(�g:g(T I(�; z1;T1))(T I(�; z2;T2))))
: S(T1)! S(T2)! (S(T2)! A! A)! A

where A � (S(ty(T1))! S(ty(T2))! t)! t.
Then, we also have

S(�); x :�; z1 :S(T1); z2 :S(T2) `
�f:f(xz1)(fz2(�g:g(T I(�; z1;T1))(T I(�; z2;T2))))

: (S(T2)! A! A)! A .
Here, from the induction hypotheses, we have the following:

S(�); z1 :�3 ` T I(�; z1; T1) : S(ty(T1)) i� �3 =� S(T1)
S(�); z2 :�4 ` T I(�; z2; T2) : S(ty(T2)) i� �4 =� S(T2)

Now, type of (xz1) and z2 must be equal, i.e., � =� S(T1)! S(T2). 2

Lemma 4 (main lemma) S(T1) =� S(T2) if and
only if S(�) ` UT (�; T1

:
= T2) : S(ty(T1 ! T2)) in domain-free ML.

Proof. S(�) ` UT (�;T1
:
= T2) : S(ty(T1 ! T2))

i� (def)
S(�) ` �z1:�z2:�f:fz1(fz2(�g:g(T I(�; z1;T1))(T I(�; z2; T2))))

: S(T1)! S(T2)! (S(T2)! A! A)! A

where A � (S(ty(T1))! S(ty(T2))! t)! t

i�
S(�); z1 :S(T1); z2 :S(T2) `

�f:fz1(fz2(�g:g(T I(�; z1; T1))(T I(�; z2;T2))))
: (S(T2)! A! A)! A

i� (Lemma 3)
S(T1) =� S(T2). 2

Proposition 1 The uni�cation problem on the well-formed expressions is re-
duced to the problem of strong type inference for domain-free ML. In other

words, S(T1) =� S(T2) () 9�:9�: �;�
T1;2
0 `MT1;2 : � in domain-free ML.

Proof. ()):

From Lemma 4, �
T1;2
0 andMT1;2 are determined by T1 and T2, such that for each

t 2 Con(T1; T2), we have �0(x) = t for some x, and that M = UT (�; T1
:
= T2).

Then the uni�er S gives � and � , respectively, such that S(�[T1; T2]) = �;�0

and S(ty(T1 ! T2)) = � .
(():

Given �
T1;2
0 and MT1;2 , and assume that there exist � and � such that � = fx1 :

�1; � � � ; xm : 8t1 � � � tn:�mg. For each Xi 2 uV ar(T1; T2), assume that �(x1) =
X1; � � � ;�(xm) = 8t1 � � � tn:(Xmt1 � � � tn). Then an answer to the trivial second-
order matching problem such that X1

:
= �1; � � � ; (Xmt1 � � � tn)

:
= �m �nds a

matching S for ty(T1 ! T2)
:
= � , since if S(�[T]); x :�0 ` T I(�[T]; x;T) : � for

9

some � , then S(ty(T)) =� � . From Lemma 4, the uni�er S is an answer to the
uni�cation problem T1

:
= T2. 2

Proposition 2 The problem of strong type inference is undecidable for domain-
free ML, even when the given term is in �-normal.

Proof. From Theorem 1, Proposition 1, and Remark 1. 2

Theorem 2 Type checking, typability, and strong type inference are undecidable
for domain-free �2.

Proof. From Proposition 2 and Lemma 2. Moreover, even in the case where
the given term is in �-normal, typability and strong type inference for domain-
free �2 are still undecidable. 2

5 Related Work and Concluding Remarks

Relating to Proposition 2, the problem of strong type inference is also undecid-
able for domain-free ML with non-sorted variables [BS97], since the given proof
with a slight modi�cation still works for the de�nition of T , where type variable
t is replaced with variable x, and � ::= x j � ! � , by the use of a single syntactic
category of variables x.

Pfenning [Pfen93] has proved that the second-order uni�cation problem can
be reduced to the problem of type reconstruction for partially typed terms, such
that

P ::= x j �x :�:P j PP j �t:P j P� j �x:P j P [],
where the mark [] must be left to show a type has been erased. The typability
problem for domain-free �2 can be regarded as a special case of the problem
of type reconstruction for partially typed terms with neither �x :�:P nor P [].
Hence, from Theorem 2, the restricted problem of type reconstruction for par-
tially typed terms is still undecidable. This would mean that the di�culty for
the partial type reconstruction problem comes from \domain-free" especially
with respect to polymorphic abstraction (see the discussion below on typability
for domain-free ML2) rather than from a type-hole [].

Finally, we summarize decidability of type checking, typability, and strong
type inference for domain-free �2 and ML with sorted variables.

Decidability for type checking, typability, and strong type inference
of domain-free �2 and ML

Domain-free �0 `M : �? �0 `M :? ?;�0 `M :?

�2 no no (nf) no (nf)
ML yes yes no (nf)

10

In the above table, no (nf) means that even when the given term M is in �-
normal, the problem is undecidable. The context �0 cannot be empty here,
since the undecidability result used in this paper requires at least one constant
[Schu97, Schu98]. The strong type inference with no prede�ned contexts is still
open.

The result obtained here �nds a negative answer to the question posed by
Barthe and S�rensen [BS97] to know whether the problem of type checking is
decidable for domain-free �2 and �!. Moreover, the type checking problem for
domain-free ��-calculus introduced in [Fuji99] also becomes undecidable.

On the one hand, the typability for domain-free ML can be obtained from
the well-known W [Mil78, DM82]. This algorithm can �nd the principal type
for the closed M in domain-free style. In the same way, the type reconstruction
for partially typed terms of ML can be solved. On the one hand, we cannot have
a principal type inference algorithm for Damas-Milner ML in Curry style, such
that PTI(M) gives principal type � and context � which satisfy � ` M : � in
Damas-Milner ML (here, M may not be closed, and � can contain polymorphic
types �). Otherwise, we could obtain a type inference algorithm for domain-free
ML, which is a contradiction to Proposition 2.

On the other hand, the problem of typability becomes undecidable for some
predicative extension of the domain-free ML. We introduce a predicative frag-
ment of domain-free �2, called domain-free ML2. This extension allows us to
abstract a term variable with a polymorphic type � (polymorphic abstraction),
but not to apply a polymorphic function to a polymorphic type (i.e., only to a
monomorphic type �). For this purpose, an extension of type schemes is intro-
duced as follows:

� ::= �1 ! � � � ! �n ! � (n � 0)
This type � belongs to the so-called S(2)-class in [KT92], which is a special form
of restrict types of rank 2 [Leiv91].

Domain-free ML2:
�(x) = �

� ` x : �

� `M1 : � ! � � `M2 : �

� `M1M2 : �
(! E)

�; x :� `M : �

� ` �x:M : � ! �
(! I)

� `M : 8tt1 � � � tn:�

� `M� : 8t1 � � � tn:�[t := �]
(8E)

� `M : 8t1 � � � tn:�

� ` �t:M : 8tt1 � � � tn:�
(8I)�

The problem of strong type inference in domain-free ML can be reduced to
the typability problem in domain-free ML2. That is, let fx1; � � � ; xng be a set
of free variables in M ;

11

9�1 � � ��n:9�: �0; x1 : �1; � � � ; xn : �n ` M : � in domain-free ML if and
only if 9�1 � � ��n:9�: �0 ` �x1 � � �xn:M� : �1 ! � � � ! �n ! �

in domain-free ML2,
since let-expression can be coded in ML2, such that (let x =M1 in M2)� =
(�x:M�

2)M
�

1 . (Strictly speaking, we need no let-expression for the undecid-
ability of domain-free ML.) From Proposition2, we can obtain the undecidable
typability with respect to a certain predicative fragment of domain-free �2;

\the typability problem is undecidable for the rank 2 fragment
[Leiv91, KT92] of domain-free �2".

This result also means that the partial type reconstruction problem is still un-
decidable even for the rank 2 fragment of �2.

Corollary 1 The problem of typability (with non-empty context) for domain-
free ML2 is undecidable.

Following Pfenning [Pfen93], the partial type reconstruction problem is un-
decidable for a predicative fragment of �2, and this fragment can be regared as
a subsystem of the rank 2 fragment of �2.

Acknowledgements I am grateful to J.Roger Hindley and Horai-Takahashi
Masako for helpful discussions. I would like to thank Frank Pfenning and Aleksy
Schubert for valuable comments on this work.

References

[Bare92] H.P.Barendregt: Lambda Calculi with Types, Handbook of Logic in
Computer Science Vol.II, Oxford University Press, pp. 1{189, 1992.

[Boeh85] Hans-J.Boehm: Partial Polymorphic Type Inference is Undecidable,
Proc. 26th Annual Symposium of Fundations of Computer Science, pp. 339{
345, 1985.

[BHS96] G.Barthe, J.Hatcli�, and M.H.S�rensen: CSP Translations and Appli-
cations: The Cube and Beyond, Proc. the 2nd ACM SIGPLAN Workshop
on Continuations, pp. 1{31, 1996.

[BS97] G.Barthe and M.H.S�rensen: Domain-free Pure Type Systems, Lecture
Notes in Computer Science 1234, pp. 9{20, 1997.

[Chur40] A.Church: A Formulation of the Simple Theory of Types, The Journal
of Symbolic Logic, Vol. 5, pp. 56{68, 1940.

[Curr34] H.B.Curry: Functionality in combinatory logic, Proc. National
Academy of Sciences of the USA 20, pp. 584{590, 1934.

12

[CFC74] H.B.Curry, R.Feys, and W.Craig: Combinatory Logic, Volume 1
(Third printing), North-Holland, 1974.

[DM82] L.Damas and R.Milner: Principal type-schemes for functional pro-
grams, Proc. 9th Annual ACM Symposium on Principles of Programming
Languages, pp. 207{212, 1982.

[Fuji99] K.Fujita: Explicitly Typed ��-Calculus for Polymorphism and Call-
by-Value, Lecture Notes in Computer Science 1581, pp. 162{176, 1999.

[HL91] R.Harper and M.Lillibridge: ML with callcc is unsound, The Types
Form, 8 July 1991.

[Hind97] J.R.Hindley: Basic Simple Type Theory, Cambridge University Press,
1997.

[HM93] R.Harper and J.C.Mitchell: On The Type Structure of Standard ML,
ACM Transactions on Programming Languages and Systems, Vol. 15, No.2,
pp. 210{252, 1993.

[Tiur90] J.Tiuryn: Type Inference Problems: A Survey, Lecture Notes in Com-
puter Science 452, pp. 105{120, 1990.

[KT92] A.J.Kfoury and J.Tiuryn: Type Reconstruction in Finite Rank Frag-
ments of the Second-Order �-Calculus, Information and Computation 98,
pp. 228{257, 1992.

[Leiv91] D.Leivant: Finitely Strati�ed Polymorphism, Information and Com-
putation 93, pp. 93{113, 1991.

[Mil78] R.Milner: A Theory of Type Polymorphism in Programming, Journal
of Computer and System Sciences 17, pp. 348{375, 1978.

[Pari92] M.Parigot: ��-Calculus: An Algorithmic Interpretation of Classical
Natural Deduction, Lecture Notes in Computer Science 624, pp. 190{201,
1992.

[Pfen88] F.Pfenning: Partial polymorphic type inference and higher-order uni-
�cation, Proc. ACM Conference on Lisp and Functional Programming, pp.
153{163, 1998.

[Pfen93] F.Pfenning: On the undecidability of partial polymorphic type recon-
struction, Fundamenta Informaticae 19, pp. 185{199, 1993.

[Schu97] A.Schubert: Second-order uni�cation and type inference for Church-
style, Tech. Report TR 97-02 (239), Institute of Informatics, Warsaw Uni-
versity, January 1997.

13

[Schu98] A.Schubert: Second-order uni�cation and type inference for Church-
style, Proc. ACM Symposium on Principles of Programming Languages, pp.
279{288, 1998.

[Jutt93] L.S. Van B. Jutting: Typing in Pure Type Systems, Information and
Computation 105, pp. 30{41, 1993.

[Well94] J.B.Wells: Typability and Type Checking in the Second-Order �-
Calculus Are Equivalent and Undecidable, Proc. IEEE Symposium on Logic
in Computer Science, pp. 176{185, 1994.

14

