ALBANESE KERNEL OF THE PRODUCT OF CURVES OVER A p-ADIC FIELD

Toshiro Hiranouchi

Abstract

In this short note, we investigate the image of the Kummer map associated to an abelian variety over a *p*-adic field. As a byproduct, we give the structure of the Albanese kernel of the product of curves over a *p*-adic field under some assumptions. The result has already known by E. Gazaki [1], but the proof is completely different.

1. Introduction

In this note, we compute the Albanese kernel for the product of curves over k as a generalization of [10]. Precisely, we use the following notation: For i = 1, 2,

- X_i : a smooth projective curve over k with k-rational point $X_i(k) \neq \emptyset$, and
- $J_i := \operatorname{Jac}(X_i)$: the Jacobian variety associated to X_i of dimension g_i .

The kernel of the degree map $\deg: \mathrm{CH}_0(X_1 \times X_2) \to \mathbf{Z}$ is denoted by $A_0(X_1 \times X_2)$. The kernel $T(X_1 \times X_2)$ of the Albanese map

alb:
$$A_0(X_1 \times X_2) \to Alb_{X_1 \times X_2}(k) = J_1(k) \oplus J_2(k)$$

which is called the **Albanese kernel** is also written by the Somekawa K-group associated to J_1 and J_2 as

$$T(X_1 \times X_2) \simeq K(k; J_1, J_2)$$

([7]). From the same computation as in [10], Theorem 4.1, we recover the following theorem which is proved in [1], Corollary 8.9:

Theorem 1.1. Assume that the Jacobian varieties J_1 and J_2 satisfy

(**Ord**) J_i has good ordinary reduction, and

(**Rat**) $J_i[p^n] \subset J_i(k)$.

Then, we have

$$T(X_1 \times X_2)/p^n \simeq (\mathbf{Z}/p^n)^{\oplus g_1g_2}.$$

Note that the condition (**Rat**) implies that $\mu_p \subset k$ and hence the ramification index of k is $\geq p-1$. On the contrary, even in the case where X_1 and X_2 are elliptic curves, it is known that $T(X_1 \times X_2)/p^n = 0$ for all n when k is unramified over \mathbf{Q}_p ([3]).

Notation

Throughout this note, we use the following notation:

• k: a finite extension of \mathbf{Q}_p .

For a finite extension K/k, we define

- O_K : the valuation ring of K with maximal ideal \mathfrak{m}_K ,
- $\mathbf{F}_K = O_K/\mathfrak{m}_K$: the residue field of K, and
- $U_K = O_K^{\times}$: the unit group.

For an abelian group G and $m \in \mathbb{Z}_{\geq 1}$, we write G[m] and G/m for the kernel and cokernel of the multiplication by m on G respectively.

Acknowledgements. This work was supported by JSPS KAKENHI Grant Number 20K03536.

2. Mackey functors

DEFINITION 2.1 (cf. [7], Sect. 3). A **Mackey functor** \mathcal{M} (over k) (or a G_k -modulation in the sense of [6], Def. 1.5.10) is a contravariant functor from the category of étale schemes over k to the category of abelian groups equipped with a covariant structure for finite morphisms such that

$$\mathcal{M}(X_1 \sqcup X_2) = \mathcal{M}(X_1) \oplus \mathcal{M}(X_2)$$

and if

$$X' \xrightarrow{g'} X$$

$$f' \downarrow \qquad \qquad \downarrow f$$

$$Y' \xrightarrow{g} Y$$

is a Cartesian diagram, then the induced diagram

$$\begin{array}{ccc}
\mathcal{M}(X') & \xrightarrow{g'_*} & \mathcal{M}(X) \\
f'^* & & \uparrow f^* \\
\mathcal{M}(Y') & \xrightarrow{g_*} & \mathcal{M}(Y)
\end{array}$$

commutes.

For a Mackey functor \mathcal{M} , we denote by $\mathcal{M}(K)$ its value $\mathcal{M}(\operatorname{Spec}(K))$ for a field extension K of k. For any finite extensions $k \subset K \subset L$, the induced homomorphisms from the canonical map $j : \operatorname{Spec}(L) \to \operatorname{Spec}(K)$ are denoted by

$$N_{L/K}:=j_*:\mathcal{M}(L)\to\mathcal{M}(K), \qquad \text{and} \qquad \mathrm{Res}_{L/K}:=j^*:\mathcal{M}(K)\to\mathcal{M}(L).$$

The category of Mackey functors over k forms an abelian category with the following tensor product:

DEFINITION 2.2 (cf. [4]). For Mackey functors \mathcal{M} and \mathcal{N} , their Mackey product $\mathcal{M} \otimes \mathcal{N}$ is defined as follows: For any finite field extension k'/k,

(1)
$$(\mathscr{M} \otimes \mathscr{N})(k') := \left(\bigoplus_{K/k': \text{finite}} \mathscr{M}(K) \otimes_{\mathbf{Z}} \mathscr{N}(K) \right) / (\mathbf{PF}),$$

where (PF) stands for the subgroup generated by elements of the following form:

(**PF**) For finite field extensions $k' \subset K \subset L$,

$$N_{L/K}(x) \otimes y - x \otimes \operatorname{Res}_{L/K}(y)$$
 for $x \in \mathcal{M}(L), y \in \mathcal{N}(K)$, and $x \otimes N_{L/K}(y) - \operatorname{Res}_{L/K}(x) \otimes y$ for $x \in \mathcal{M}(K), y \in \mathcal{N}(L)$.

For the Mackey product $\mathscr{M} \otimes \mathscr{N}$, we denote by $\{x,y\}_{K/k'}$ the image of $x \otimes y \in \mathscr{M}(K) \otimes_{\mathbf{Z}} \mathscr{N}(K)$ in the product $(\mathscr{M} \otimes \mathscr{N})(k')$. For any finite field extension k'/k, the push-forward

$$(2) N_{k'/k} = j_* : (\mathcal{M} \otimes \mathcal{N})(k') \to (\mathcal{M} \otimes \mathcal{N})(k)$$

is given by $N_{k'/k}(\{x,y\}_{K/k'}) = \{x,y\}_{K/k}$. For each $m \in \mathbb{Z}_{\geq 1}$, we define a Mackey functor \mathscr{M}/m by

$$(\mathcal{M}/m)(K) := \mathcal{M}(K)/m$$

for any finite extension K/k. We have

$$(\mathcal{M}/m \otimes \mathcal{N}/m)(k) \simeq (\mathcal{M} \otimes \mathcal{N})(k)/m = ((\mathcal{M} \otimes \mathcal{N})/m)(k) \qquad (cf. (3)).$$

Every G_k -module M defines a Mackey functor defined by the fixed sub module $M(K) := M^{\operatorname{Gal}(\bar{k}/K)}$ which is also denoted by M. Conversely, assume a Mackey functor \mathscr{M} satisfies **Galois descent**, meaning that, for every finite Galois extension L/K, the restriction

$$\operatorname{Res}_{L/K}: \mathcal{M}(K) \xrightarrow{\simeq} \mathcal{M}(L)^{\operatorname{Gal}(L/K)}$$

is an isomorphism. For any $m \in \mathbb{Z}_{\geq 1}$, the connecting homomorphism associated to the short exact sequence $0 \to \mathcal{M}[m] \to \mathcal{M} \xrightarrow{m} \mathcal{M} \to 0$ as G_k -modules gives

(4)
$$\delta_{\mathscr{M}}: \mathscr{M}(K)/m \hookrightarrow H^{1}(K, \mathscr{M}[m])$$

which is often called the Kummer map.

DEFINITION 2.3 (cf. [9], Prop. 1.5). For Mackey functors \mathcal{M} and \mathcal{N} with Galois descent, the Galois symbol map

(5)
$$s_m^M: (\mathcal{M} \otimes \mathcal{N})(k)/m \to H^2(k, \mathcal{M}[m] \otimes \mathcal{N}[m])$$

is defined by the cup product and the corestriction as follows:

$$s_m^M(\{x,y\}_{K/k}) = \operatorname{Cor}_{K/k}(\delta_{\mathscr{M}}(x) \cup \delta_{\mathscr{N}}(y)).$$

3. Galois symbol map

Let A be an abelian variety of dimension g over k. We assume that

(Ord) A has good ordinary reduction, and

(**Rat**)
$$A[p^n] \subset A(k)$$
.

We denote by \hat{A} the formal group over O_k of A. Let k^{ur} be the completion of the maximal unramified extension of k. It is known that we have $\hat{A} \times_{O_k} \mathrm{Spf}(O_{k^{\mathrm{ur}}}) \simeq (\hat{\mathbf{G}}_m)^{\oplus g}$, where $\hat{\mathbf{G}}_m$ is the multiplicative group ([5], Lem. 4.26, Lem. 4.27). Since we have $A[p^n] \subset A(k)$, $\hat{A}[p^n] \subset \hat{A}(k) =: \hat{A}(\mathfrak{m}_k)$ and hence we obtain isomorphisms

(6)
$$\hat{A}[p^n] = \hat{A}(k^{\mathrm{ur}})[p^n] \simeq ((\hat{\mathbf{G}}_m)(k^{\mathrm{ur}})[p^n])^{\oplus g} \simeq (\mu_{p^n})^{\oplus g}.$$

Now, we choose an isomorphism

(7)
$$A[p^n] \xrightarrow{\simeq} (\mu_{n^n})^{\oplus 2g}$$

of (trivial) Galois modules which makes the following diagram commutative:

$$\hat{A}[p^n] \stackrel{\sim}{\longrightarrow} A[p^n] \\
\downarrow^{\sim} \qquad \qquad \downarrow^{\sim} \\
(\mu_{p^n})^{\oplus g} \stackrel{(\mathrm{id},1)}{\longleftarrow} (\mu_{p^n})^{\oplus g} \oplus (\mu_{p^n})^{\oplus g},$$

where the left vertical map is given in (6), and the bottom horizontal map is defined by

$$(\mu_{n^n})^{\oplus g} \to (\mu_{n^n})^{\oplus 2g}; \qquad (x_1, \dots, x_g) \mapsto (x_1, \dots, x_g, 1, \dots, 1).$$

By the same proof of [2], Prop. 3.1, one can determine the image of the Kummer map as follows:

PROPOSITION 3.1. For any finite extension K/k, the image of the Kummer map

$$\delta_A: A(K)/p^n \to H^1(K, A[p^n]) \simeq H^1(K, \mu_{p^n}^{\oplus 2g}) \simeq (K^{\times}/p^n)^{\oplus 2g}$$

coincides with

$$(\overline{U}_K)^{\oplus g} \oplus \operatorname{Ker}(j:K^{\times}/p^n \to (K^{\operatorname{ur}})^{\times}/p^n)^{\oplus g},$$

where \overline{U}_K is the image of $U_K = O_K^{\times}$ in K^{\times}/p , and j is the map induced from the inclusion $K^{\times} \hookrightarrow (K^{\mathrm{ur}})^{\times}$.

The above isomorphism is extended to the isomorphism

$$A/p^n \simeq \mathscr{U}^{\oplus g} \oplus \mathscr{V}^{\oplus g}$$

of Mackey functors, where \mathscr{U} and \mathscr{V} are the sub Mackey functors of G_m/p^n defined

$$\mathscr{U}(K) := \operatorname{Im}(U_K \to K^{\times}/p^n) = \overline{U}_K, \quad \text{and} \quad \mathscr{V}(K) := \operatorname{Ker}(j : K^{\times}/p^n \to (K^{\operatorname{ur}})^{\times}/p^n),$$
 for any finite extension K/k (cf. [2], Cor. 3.4).

4. Proof of Thm. 1.1

We show Thm. 1.1. From $K(k; J_1, J_2) \simeq T(X_1 \times X_2)$ (as noted in Introduction), it is enough to prove $K(k;J_1,J_2)/p^n \simeq (\mathbb{Z}/p^n)^{\oplus g_1g_2}$. Applying (8) in the last section to J_i , we have $J_i/p^n \simeq (\mathscr{U} \oplus \mathscr{V})^{\oplus g_i}$ after fixing $J_i[p^n] \simeq (\mu_{p^n})^{\oplus 2g_i}$ as in (7). We have

$$J_1/p^n \otimes J_2/p^n \simeq ((\mathscr{U} \otimes \mathscr{U}) \oplus (\mathscr{U} \otimes \mathscr{V}) \oplus (\mathscr{V} \otimes \mathscr{U}) \oplus (\mathscr{V} \otimes \mathscr{V}))^{\oplus g_1g_2}.$$

The Galois symbol maps give the following commutative diagram:

Here, $s_{p^n}: K(k; J_1, J_2)/p^n \to H^2(k, J_1[p^n] \otimes J_2[p^n])$ is injective ([7], Rem. 4.5.8 (b)), and the bottom map is the direct sum of the three kind of maps given by the composing the Galois symbol map after the natural maps $(\mathscr{U} \otimes \mathscr{U})(k) \to (\mathbf{G}_m/p^n \otimes \mathbf{G}_m/p^n)(k)$, $(\mathscr{U} \otimes \mathscr{V})(k) \to (\mathbf{G}_m/p^n \otimes \mathbf{G}_m/p^n)(k), \quad \text{or} \quad (\mathscr{V} \otimes \mathscr{V})(k) \to (\mathbf{G}_m/p^n \otimes \mathbf{G}_m/p^n)(k).$ Precisely,

$$s_{1}: (\mathscr{U} \otimes \mathscr{U})(k) \to (\mathbf{G}_{m}/p^{n} \otimes \mathbf{G}_{m}/p^{n})(k) \xrightarrow{s_{p^{n}}^{M}} H^{2}(k, \mu_{p^{n}}^{\otimes 2}),$$

$$s_{2}: (\mathscr{U} \otimes \mathscr{V})(k) \to (\mathbf{G}_{m}/p^{n} \otimes \mathbf{G}_{m}/p^{n})(k) \xrightarrow{s_{p^{n}}^{M}} H^{2}(k, \mu_{p^{n}}^{\otimes 2}), \quad \text{and}$$

$$s_{3}: (\mathscr{V} \otimes \mathscr{V})(k) \to (\mathbf{G}_{m}/p^{n} \otimes \mathbf{G}_{m}/p^{n})(k) \xrightarrow{s_{p^{n}}^{M}} H^{2}(k, \mu_{p^{n}}^{\otimes 2}).$$

The image of the maps s_i are computed as follows:

Lemma 4.1. (i) The map s_1 is surjective.

(ii) The image of s_2 and s_3 are trivial.

PROOF. (i) The Galois symbol map $s_{p^n}^M: (\mathbf{G}_m/p^n \otimes \mathbf{G}_m/p^n)(k) \to H^2(k, \mu_{p^n}^{\otimes 2})$ is written by the Hilbert symbol ([8], Chap. XIV, Sect. 2, Prop. 5) as the following commutative diagram indicates:

where $(-,-): K^{\times} \otimes_{\mathbb{Z}} K^{\times} \to \mu_{p^n}$ is the Hilbert symbol. For each finite extension K/k, the Hilbert symbol from $\mathscr{U}(K) \otimes_{\mathbb{Z}} \mathscr{U}(K)$ (the dotted arrow in the above diagram) is surjective ([10], Prop. 2.5) so is s_1 .

(ii) By the same reasons as in (i), the image of $\mathscr{U}(K) \otimes_{\mathbf{Z}} \mathscr{V}(K)$ and $\mathscr{V}(K) \otimes_{\mathbf{Z}} \mathscr{V}(K)$ by the Hilbert symbol is trivial and hence $\mathrm{Im}(s_1) = \mathrm{Im}(s_2) = 0$ in $H^2(k, \mu_{p^n}^{\otimes 2})$.

Recall that we have $H^2(k, \mu_{p^n}^{\otimes 2}) \simeq \mathbf{Z}/p^n$. From the above diagram (9), the above lemma implies

$$s_{p^n}^M((J_1/p^n \otimes J_2/p^n)(k)) \simeq K(k;J_1,J_2)/p^n \simeq (\mathbf{Z}/p^n)^{\oplus g_1g_2}.$$

References

- [1] E. Gazaki, A finer Tate duality theorem for local Galois symbols, J. Algebra 509 (2018), 337-385.
- [2] T. Hiranouchi, Galois symbol maps for abelian varieties over a p-adic field, Acta Arith. 197 (2021), no. 2, 137–157.
- [3] T. Hiranouchi and E. Gazaki, Divisibility results for zero-cycles, arXiv:2004.05255 [math.AG].
- [4] B. Kahn, The decomposable part of motivic cohomology and bijectivity of the norm residue homomorphism, Algebraic K-theory, commutative algebra, and algebraic geometry (Santa Margherita Ligure, 1989), Contemp. Math., vol. 126, Amer. Math. Soc., Providence, RI, 1992, pp. 79–87.
- [5] B. Mazur, Rational points of abelian varieties with values in towers of number fields, Invent. Math. 18 (1972), 183-266.
- [6] J. Neukirch, A. Schmidt, and K. Wingberg, Cohomology of number fields, second ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 323, Springer-Verlag, Berlin, 2008.
- [7] W. Raskind and M. Spiess, Milnor K-groups and zero-cycles on products of curves over p-adic fields, Compositio Math. 121 (2000), 1–33.

- [8] J.-P. Serre, Corps locaux, Hermann, Paris, 1968, Deuxième édition, Publications de l'Université de Nancago, No. VIII.
- [9] M. Somekawa, On Milnor K-groups attached to semi-abelian varieties, K-Theory 4 (1990), no. 2, 105–119.
- [10] T. Takemoto, Zero-cycles on products of elliptic curves over p-adic fields, Acta Arith. 149 (2011), no. 3, 201–214.

(T. Hiranouchi)
Graduate School of Engineering
Kyushu Institute of Technology
Tobata, Kitakyushu 804-8550, Japan
E-mail: hira@mns.kyutech.ac.jp