ALBANESE KERNEL OF THE PRODUCT OF CURVES OVER A p-ADIC FIELD

Toshiro Hiranouchi

Abstract

In this short note, we investigate the image of the Kummer map associated to an abelian variety over a p-adic field. As a byproduct, we give the structure of the Albanese kernel of the product of curves over a p-adic field under some assumptions. The result has already known by E. Gazaki [1], but the proof is completely different.

1. Introduction

In this note, we compute the Albanese kernel for the product of curves over k as a generalization of [10]. Precisely, we use the following notation: For $i=1,2$,

- X_{i} : a smooth projective curve over k with k-rational point $X_{i}(k) \neq \varnothing$, and
- $J_{i}:=\operatorname{Jac}\left(X_{i}\right):$ the Jacobian variety associated to X_{i} of dimension g_{i}. The kernel of the degree map deg: $\mathrm{CH}_{0}\left(X_{1} \times X_{2}\right) \rightarrow \mathbf{Z}$ is denoted by $A_{0}\left(X_{1} \times X_{2}\right)$. The kernel $T\left(X_{1} \times X_{2}\right)$ of the Albanese map

$$
\text { alb : } A_{0}\left(X_{1} \times X_{2}\right) \rightarrow \operatorname{Alb}_{X_{1} \times X_{2}}(k)=J_{1}(k) \oplus J_{2}(k)
$$

which is called the Albanese kernel is also written by the Somekawa K-group associated to J_{1} and J_{2} as

$$
T\left(X_{1} \times X_{2}\right) \simeq K\left(k ; J_{1}, J_{2}\right)
$$

([7]). From the same computation as in [10], Theorem 4.1, we recover the following theorem which is proved in [1], Corollary 8.9:

Theorem 1.1. Assume that the Jacobian varieties J_{1} and J_{2} satisfy
(Ord) J_{i} has good ordinary reduction, and
(Rat) $J_{i}\left[p^{n}\right] \subset J_{i}(k)$.
Then, we have

$$
T\left(X_{1} \times X_{2}\right) / p^{n} \simeq\left(\mathbf{Z} / p^{n}\right)^{\oplus g_{1} g_{2}}
$$

Note that the condition (Rat) implies that $\mu_{p} \subset k$ and hence the ramification index of k is $\geq p-1$. On the contrary, even in the case where X_{1} and X_{2} are elliptic curves, it is known that $T\left(X_{1} \times X_{2}\right) / p^{n}=0$ for all n when k is unramified over \mathbf{Q}_{p} ([3]).

Notation

Throughout this note, we use the following notation:

- k : a finite extension of \mathbf{Q}_{p}.

For a finite extension K / k, we define

- O_{K} : the valuation ring of K with maximal ideal \mathfrak{m}_{K},
- $\mathbf{F}_{K}=O_{K} / \mathfrak{m}_{K}$: the residue field of K, and
- $U_{K}=O_{K}^{\times}$: the unit group.

For an abelian group G and $m \in \mathbf{Z}_{\geq 1}$, we write $G[m]$ and G / m for the kernel and cokernel of the multiplication by m on G respectively.

Acknowledgements. This work was supported by JSPS KAKENHI Grant Number 20K03536.

2. Mackey functors

Definition 2.1 ($c f$. [7], Sect. 3). A Mackey functor \mathscr{M} (over k) (or a G_{k}-modulation in the sense of [6], Def. 1.5.10) is a contravariant functor from the category of étale schemes over k to the category of abelian groups equipped with a covariant structure for finite morphisms such that

$$
\mathscr{M}\left(X_{1} \sqcup X_{2}\right)=\mathscr{M}\left(X_{1}\right) \oplus \mathscr{M}\left(X_{2}\right)
$$

and if

is a Cartesian diagram, then the induced diagram

commutes.
For a Mackey functor \mathscr{M}, we denote by $\mathscr{M}(K)$ its value $\mathscr{M}(\operatorname{Spec}(K))$ for a field extension K of k. For any finite extensions $k \subset K \subset L$, the induced homomorphisms from the canonical map $j: \operatorname{Spec}(L) \rightarrow \operatorname{Spec}(K)$ are denoted by

$$
N_{L / K}:=j_{*}: \mathscr{M}(L) \rightarrow \mathscr{M}(K), \quad \text { and } \quad \operatorname{Res}_{L / K}:=j^{*}: \mathscr{M}(K) \rightarrow \mathscr{M}(L)
$$

The category of Mackey functors over k forms an abelian category with the following tensor product:

Definition 2.2 (cf. [4]). For Mackey functors \mathscr{M} and \mathcal{N}, their Mackey product $\mathscr{M} \otimes \mathscr{N}$ is defined as follows: For any finite field extension k^{\prime} / k,

$$
\begin{equation*}
(\mathscr{M} \otimes \mathscr{N})\left(k^{\prime}\right):=\left(\underset{K / k^{\prime}: \text { finite }}{\bigoplus_{M}} \mathscr{M}(K) \otimes_{\mathbf{Z}} \mathscr{N}(K)\right) /(\mathbf{P F}) \tag{1}
\end{equation*}
$$

where ($\mathbf{P F}$) stands for the subgroup generated by elements of the following form:
(PF) For finite field extensions $k^{\prime} \subset K \subset L$,

$$
\begin{array}{ll}
N_{L / K}(x) \otimes y-x \otimes \operatorname{Res}_{L / K}(y) & \text { for } x \in \mathscr{M}(L), y \in \mathscr{N}(K), \quad \text { and } \\
x \otimes N_{L / K}(y)-\operatorname{Res}_{L / K}(x) \otimes y & \text { for } x \in \mathscr{M}(K), y \in \mathscr{N}(L) .
\end{array}
$$

For the Mackey product $\mathscr{M} \otimes \mathscr{N}$, we denote by $\{x, y\}_{K / k^{\prime}}$ the image of $x \otimes y \in$ $\mathscr{M}(K) \otimes_{\mathbf{Z}} \mathscr{N}(K)$ in the product $(\mathscr{M} \otimes \mathscr{N})\left(k^{\prime}\right)$. For any finite field extension k^{\prime} / k, the push-forward

$$
\begin{equation*}
N_{k^{\prime} / k}=j_{*}:(\mathscr{M} \otimes \mathscr{N})\left(k^{\prime}\right) \rightarrow(\mathscr{M} \otimes \mathscr{N})(k) \tag{2}
\end{equation*}
$$

is given by $N_{k^{\prime} / k}\left(\{x, y\}_{K / k^{\prime}}\right)=\{x, y\}_{K / k}$. For each $m \in \mathbf{Z}_{\geq 1}$, we define a Mackey functor \mathscr{M} / m by

$$
\begin{equation*}
(\mathscr{M} / m)(K):=\mathscr{M}(K) / m \tag{3}
\end{equation*}
$$

for any finite extension K / k. We have

$$
(\mathscr{M} / m \otimes \mathscr{N} / m)(k) \simeq(\mathscr{M} \otimes \mathscr{N})(k) / m=((\mathscr{M} \otimes \mathscr{N}) / m)(k) \quad(c f .(3))
$$

Every G_{k}-module M defines a Mackey functor defined by the fixed sub module $M(K):=M^{\mathrm{Gal}(\bar{k} / K)}$ which is also denoted by M. Conversely, assume a Mackey functor \mathscr{M} satisfies Galois descent, meaning that, for every finite Galois extension L / K, the restriction

$$
\operatorname{Res}_{L / K}: \mathscr{M}(K) \stackrel{\simeq}{\leftrightharpoons} \mathscr{M}(L) \underline{\operatorname{Gal}(L / K)}
$$

is an isomorphism. For any $m \in \mathbf{Z}_{\geq 1}$, the connecting homomorphism associated to the short exact sequence $0 \rightarrow \mathscr{M}[m] \rightarrow \mathscr{M} \xrightarrow{m} \mathscr{M} \rightarrow 0$ as G_{k}-modules gives

$$
\begin{equation*}
\delta_{\mathscr{M}}: \mathscr{M}(K) / m \hookrightarrow H^{1}(K, \mathscr{M}[m]) \tag{4}
\end{equation*}
$$

which is often called the Kummer map.
Definition 2.3 (cf. [9], Prop. 1.5). For Mackey functors \mathscr{M} and \mathscr{N} with Galois descent, the Galois symbol map

$$
\begin{equation*}
s_{m}^{M}:(\mathscr{M} \otimes \mathscr{N})(k) / m \rightarrow H^{2}(k, \mathscr{M}[m] \otimes \mathscr{N}[m]) \tag{5}
\end{equation*}
$$

is defined by the cup product and the corestriction as follows:

$$
s_{m}^{M}\left(\{x, y\}_{K / k}\right)=\operatorname{Cor}_{K / k}\left(\delta_{\mathcal{M}}(x) \cup \delta_{\mathcal{N}}(y)\right)
$$

3. Galois symbol map

Let A be an abelian variety of dimension g over k. We assume that
(Ord) A has good ordinary reduction, and
(Rat) $A\left[p^{n}\right] \subset A(k)$.
We denote by \hat{A} the formal group over O_{k} of A. Let $k^{\text {ur }}$ be the completion of the maximal unramified extension of k. It is known that we have $\hat{A} \times_{O_{k}} \operatorname{Spf}\left(O_{k}\right.$ ur $) \simeq$ $\left(\hat{\mathbf{G}}_{m}\right)^{\oplus g}$, where $\hat{\mathbf{G}}_{m}$ is the multiplicative group ([5], Lem. 4.26, Lem. 4.27). Since we have $A\left[p^{n}\right] \subset A(k), \hat{A}\left[p^{n}\right] \subset \hat{A}(k)=: \hat{A}\left(\mathfrak{m}_{k}\right)$ and hence we obtain isomorphisms

$$
\begin{equation*}
\hat{A}\left[p^{n}\right]=\hat{A}\left(k^{\mathrm{ur}}\right)\left[p^{n}\right] \simeq\left(\left(\hat{\mathbf{G}}_{m}\right)\left(k^{\mathrm{ur}}\right)\left[p^{n}\right]\right)^{\oplus g} \simeq\left(\mu_{p^{n}}\right)^{\oplus g} . \tag{6}
\end{equation*}
$$

Now, we choose an isomorphism

$$
\begin{equation*}
A\left[p^{n}\right] \stackrel{\simeq}{\rightarrow}\left(\mu_{p^{n}}\right)^{\oplus 2 g} \tag{7}
\end{equation*}
$$

of (trivial) Galois modules which makes the following diagram commutative:

where the left vertical map is given in (6), and the bottom horizontal map is defined by

$$
\left(\mu_{p^{n}}\right)^{\oplus g} \rightarrow\left(\mu_{p^{n}}\right)^{\oplus 2 g} ; \quad\left(x_{1}, \ldots, x_{g}\right) \mapsto\left(x_{1}, \ldots, x_{g}, 1, \ldots, 1\right) .
$$

By the same proof of [2], Prop. 3.1, one can determine the image of the Kummer map as follows:

Proposition 3.1. For any finite extension K / k, the image of the Kummer map

$$
\delta_{A}: A(K) / p^{n} \rightarrow H^{1}\left(K, A\left[p^{n}\right]\right) \simeq H^{1}\left(K, \mu_{p^{n}}^{\oplus 2 g}\right) \simeq\left(K^{\times} / p^{n}\right)^{\oplus 2 g}
$$

coincides with

$$
\left(\bar{U}_{K}\right)^{\oplus g} \oplus \operatorname{Ker}\left(j: K^{\times} / p^{n} \rightarrow\left(K^{\mathrm{ur}}\right)^{\times} / p^{n}\right)^{\oplus g},
$$

where \bar{U}_{K} is the image of $U_{K}=O_{K}^{\times}$in K^{\times} / p, and j is the map induced from the inclusion $K^{\times} \hookrightarrow\left(K^{\mathrm{ur}}\right)^{\times}$.

The above isomorphism is extended to the isomorphism

$$
\begin{equation*}
A / p^{n} \simeq \mathscr{U}^{\oplus g} \oplus \mathscr{V}^{\oplus g} \tag{8}
\end{equation*}
$$

of Mackey functors, where \mathscr{U} and \mathscr{V} are the sub Mackey functors of \mathbf{G}_{m} / p^{n} defined by

$$
\mathscr{U}(K):=\operatorname{Im}\left(U_{K} \rightarrow K^{\times} / p^{n}\right)=\bar{U}_{K}, \quad \text { and } \quad \mathscr{V}(K):=\operatorname{Ker}\left(j: K^{\times} / p^{n} \rightarrow\left(K^{\mathrm{ur}}\right)^{\times} / p^{n}\right),
$$

for any finite extension K / k (cf. [2], Cor. 3.4).

4. Proof of Thm. 1.1

We show Thm. 1.1. From $K\left(k ; J_{1}, J_{2}\right) \simeq T\left(X_{1} \times X_{2}\right)$ (as noted in Introduction), it is enough to prove $K\left(k ; J_{1}, J_{2}\right) / p^{n} \simeq\left(\mathbf{Z} / p^{n}\right)^{\oplus g_{1} g_{2}}$. Applying (8) in the last section to J_{i}, we have $J_{i} / p^{n} \simeq(\mathscr{U} \oplus \mathscr{V})^{\oplus g_{i}}$ after fixing $J_{i}\left[p^{n}\right] \simeq\left(\mu_{p^{n}}\right)^{\oplus 2 g_{i}}$ as in (7). We have

$$
J_{1} / p^{n} \otimes J_{2} / p^{n} \simeq((\mathscr{U} \otimes \mathscr{U}) \oplus(\mathscr{U} \otimes \mathscr{V}) \oplus(\mathscr{V} \otimes \mathscr{U}) \oplus(\mathscr{V} \otimes \mathscr{V}))^{\oplus \mathcal{G}_{1} g_{2}} .
$$

The Galois symbol maps give the following commutative diagram:

Here, $s_{p^{n}}: K\left(k ; J_{1}, J_{2}\right) / p^{n} \rightarrow H^{2}\left(k, J_{1}\left[p^{n}\right] \otimes J_{2}\left[p^{n}\right]\right)$ is injective ([7], Rem. 4.5.8 (b)), and the bottom map is the direct sum of the three kind of maps given by the composing the Galois symbol map after the natural maps $(\mathscr{U} \otimes \mathscr{U})(k) \rightarrow\left(\mathbf{G}_{m} / p^{n} \otimes \mathbf{G}_{m} / p^{n}\right)(k)$, $(\mathscr{U} \otimes \mathscr{V})(k) \rightarrow\left(\mathbf{G}_{m} / p^{n} \otimes \mathbf{G}_{m} / p^{n}\right)(k), \quad$ or $\quad(\mathscr{V} \otimes \mathscr{V})(k) \rightarrow\left(\mathbf{G}_{m} / p^{n} \otimes \mathbf{G}_{m} / p^{n}\right)(k)$. Precisely,

$$
\begin{aligned}
& s_{1}:(\mathscr{U} \otimes \mathscr{U})(k) \rightarrow\left(\mathbf{G}_{m} / p^{n} \otimes \mathbf{G}_{m} / p^{n}\right)(k) \xrightarrow{s_{p^{n}}^{M}} H^{2}\left(k, \mu_{p^{n}}^{\otimes 2}\right), \\
& s_{2}:(\mathscr{U} \otimes \mathscr{V})(k) \rightarrow\left(\mathbf{G}_{m} / p^{n} \otimes \mathbf{G}_{m} / p^{n}\right)(k) \xrightarrow{s_{p^{n}}^{M}} H^{2}\left(k, \mu_{p^{n}}^{\otimes 2}\right), \quad \text { and } \\
& s_{3}:(\mathscr{V} \otimes \mathscr{V})(k) \rightarrow\left(\mathbf{G}_{m} / p^{n} \otimes \mathbf{G}_{m} / p^{n}\right)(k) \xrightarrow{s_{p^{n}}^{M}} H^{2}\left(k, \mu_{p^{n}}^{\otimes 2}\right) .
\end{aligned}
$$

The image of the maps s_{i} are computed as follows:

Lemma 4.1. (i) The map s_{1} is surjective.
(ii) The image of s_{2} and s_{3} are trivial.

Proof. (i) The Galois symbol map $s_{p^{n}}^{M}:\left(\mathbf{G}_{m} / p^{n} \otimes \mathbf{G}_{m} / p^{n}\right)(k) \rightarrow H^{2}\left(k, \mu_{p^{n}}^{\otimes 2}\right)$ is written by the Hilbert symbol ([8], Chap. XIV, Sect. 2, Prop. 5) as the following commutative diagram indicates:

$$
\begin{aligned}
& (\mathscr{U} \otimes \mathscr{U})(k) \longrightarrow\left(\mathbf{G}_{m} / p^{n} \otimes \mathbf{G}_{m} / p^{n}\right)(k) \xrightarrow{s_{p^{n}}^{M}} H^{2}\left(k, \mu_{p^{n}}^{\otimes 2}\right) \\
& \underset{K / k}{\oplus} \mathscr{U}(K) \otimes_{\mathbf{Z}} \mathscr{U}(K) \longrightarrow \bigoplus_{K / k} K^{\times} / p^{n} \otimes_{\mathbf{Z}} K^{\times} / p^{n} \xrightarrow{\delta \cup \delta} \bigoplus_{K / k}^{\operatorname{Cor}_{K / k}} H^{2}\left(K, \mu_{p^{n}}^{\otimes 2}\right) \\
& \xrightarrow{(-,-)} \underset{\substack{ \\
}{ }_{K / k} \mu_{p^{n}},}{ }
\end{aligned}
$$

where $(-,-): K^{\times} \otimes_{\mathbf{Z}} K^{\times} \rightarrow \mu_{p^{n}}$ is the Hilbert symbol. For each finite extension K / k, the Hilbert symbol from $\mathscr{U}(K) \otimes_{\mathbf{Z}} \mathscr{U}(K)$ (the dotted arrow in the above diagram) is surjective ([10], Prop. 2.5) so is s_{1}.
(ii) By the same reasons as in (i), the image of $\mathscr{U}(K) \otimes_{\mathbf{Z}} \mathscr{V}(K)$ and $\mathscr{V}(K) \otimes_{\mathbf{Z}}$ $\mathscr{V}(K)$ by the Hilbert symbol is trivial and hence $\operatorname{Im}\left(s_{1}\right)=\operatorname{Im}\left(s_{2}\right)=0$ in $H^{2}\left(k, \mu_{p^{n}}^{\otimes 2}\right)$.

Recall that we have $H^{2}\left(k, \mu_{p^{n}}^{\otimes 2}\right) \simeq \mathbf{Z} / p^{n}$. From the above diagram (9), the above lemma implies

$$
s_{p^{n}}^{M}\left(\left(J_{1} / p^{n} \otimes J_{2} / p^{n}\right)(k)\right) \simeq K\left(k ; J_{1}, J_{2}\right) / p^{n} \simeq\left(\mathbf{Z} / p^{n}\right)^{\oplus g_{1} g_{2}} .
$$

References

[1] E. Gazaki, A finer Tate duality theorem for local Galois symbols, J. Algebra 509 (2018), 337-385.
[2] T. Hiranouchi, Galois symbol maps for abelian varieties over a p-adic field, Acta Arith. 197 (2021), no. 2, 137-157.
[3] T. Hiranouchi and E. Gazaki, Divisibility results for zero-cycles, arXiv:2004.05255 [math.AG].
[4] B. Kahn, The decomposable part of motivic cohomology and bijectivity of the norm residue homomorphism, Algebraic K-theory, commutative algebra, and algebraic geometry (Santa Margherita Ligure, 1989), Contemp. Math., vol. 126, Amer. Math. Soc., Providence, RI, 1992, pp. 79-87.
[5] B. Mazur, Rational points of abelian varieties with values in towers of number fields, Invent. Math. 18 (1972), 183-266.
[6] J. Neukirch, A. Schmidt, and K. Wingberg, Cohomology of number fields, second ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 323, Springer-Verlag, Berlin, 2008.
[7] W. Raskind and M. Spiess, Milnor K-groups and zero-cycles on products of curves over p-adic fields, Compositio Math. 121 (2000), 1-33.
[8] J.-P. Serre, Corps locaux, Hermann, Paris, 1968, Deuxième édition, Publications de l'Université de Nancago, No. VIII.
[9] M. Somekawa, On Milnor K-groups attached to semi-abelian varieties, K-Theory 4 (1990), no. 2, 105-119.
[10] T. Takemoto, Zero-cycles on products of elliptic curves over p-adic fields, Acta Arith. 149 (2011), no. 3, 201-214.
(T. Hiranouchi)

Graduate School of Engineering
Kyushu Institute of Technology
Tobata, Kitakyushu 804-8550, Japan
E-mail: hira@mns.kyutech.ac.jp

