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1 Introduction

This paper considers global stabilization of uncertain nonlinear systems in the so-called strict-feedback
form(Krsti�c et al., 1995; Freeman and Kokotovi�c, 1996). New design procedures for reduced-order dy-
namic and static partial-state feedback laws are developed by using the concept of the state-dependent(SD)
scaling and di�eomorphism. Recently it has been shown that the SD scaling provides a systematic and
uni�ed method of robust backstepping design for state-feedback control(Ito and Freeman, 1999b; Ito
and Freeman, 1999a). The methodology of SD scaling design is applicable not only to strict feedback
systems, but also to other unspeci�c classes of nonlinear systems(Ito, 1998b). The di�eomorphism be-
tween two state coordinates is a way to represent a non-quadratic Lyapunov function V (x) = xTP (x)x
with P (x) > 0. Indeed, Choleskey factorization of P�1 indicates that V is quadratic in another co-
ordinate(Ito, 1999). Compared with the parameter-dependent Lyapunov representation(Wu et al.,
1996; Apkarian and Adams, 1998) and the NLMI approach(Lu and Doyle, 1995), the di�eomorphism is
more useful for guaranteeing global stabilization of nonlinear systems(Freeman and Kokotovi�c, 1996; Ito
and Freeman, 1999b).

There are many papers dealing with semi-global stabilization of nonlinear systems whose state vari-
ables are not completely available for feedback. The technique of input saturation and high-gain observer
(Esfandiari and Khalil, 1992; Khalil and Esfandiari, 1993; Lin and Saberi, 1995). has been successful
for semi-global stabilization. The studies (Teel and Praly, 1995; Teel and Praly, 1994) provide a use-
ful semi-global backstepping lemma for high-gain partial-state feedback and high-gain observers with
saturating control for dynamic output feedback. However, given an uncertain system, semi-global sta-
bilization using high-gain and saturation would be meaningful only if the system cannot be globally
stabilized. From this viewpoint, this paper seeks global stabilization in stead of settling for semi-global
stabilization. As for global results of partial-state feedback stabilization of nonlinear systems in the
strict-feedback form, typical results are applicable only to nonlinear systems whose nonlinearities depend
only on the measured state, e.g. (Krsti�c et al., 1995). In (Freeman and Kokotovi�c, 1996) it is shown
that global stability can be achievable by partial-state feedback if nonlinearities in the unmeasured part
depend linearly on the unmeasured states and if the unmeasured part of the system is stable. Explicit
discussion about robust stabilization via these types of control is absent. No result of reduced-order
dynamic controllers is available for partial-state feedback robust control design of nonlinear systems
although reduced-order controllers are well investigated for robust linear systems control. The only
result relevant to reduced-order observers is found in (Kanellakopoulos, 1991) for output feedback in
adaptive control.

The standpoint of this paper is similar to a common one in the linear robust control literature.
This paper �rst proposes a method of solving or tackling design problems regardless of the existence of
solutions. Since the problem may inherently have no solutions, a condition for the existence is derived.
For robust stabilization, the condition is nothing but the allowable size of uncertainty. The paper also
shows the class of systems for which solutions are always exist. This latter position is rather common
in the nonlinear control literature.

This paper successfully extends the author's state-dependent scaling design for state-feedback back-
stepping to the partial-state feedback case. This paper proposes partial-state feedback controllers whose
dynamics is introduced only for unmeasured states. This contrasts with output feedback control with
full-order observers, e.g.(Krsti�c et al., 1995; Ito and Krsti�c, 1999). This paper presents the state coor-
dinates on which the di�eomorphism and SD scaling should be de�ned for the partial-state feedback
problem. Such an appropriate pair of di�eomorphism and SD scaling makes the recursive procedure
feasible and guarantees the existence of solutions. The paper derives a condition of \nonlinear size " of
uncertainty under which global robust stabilization can be achieved. The di�erence between abilities of
full-order observer and reduced-order observer feedback control is clearly described. The di�erence does
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Figure 1: Uncertain nonlinear plant �P

not appear in nominal stabilization. This paper also investigate a static partial-state feedback prob-
lem. It is shown that an uncertain systems can be globally robustly stabilized by static partial-state
feedback unless backstepping is required for unmeasured part of the system. The robustness considered
throughout this paper is practically desirable and useful in that the size, nonlinearity and location of
uncertainties are prescribed a priori, which is completely di�erent from the inverse optimal type of
robustness(Freeman and Kokotovi�c, 1996; Sepulchre et al., 1997; Krsti�c and Li, 1998).

2 Uncertain plants with partial-state measurement

Consider the uncertain nonlinear system �P shown in Fig.1. Here, �0 denotes a nominal plant and ��

represents the uncertain part of the control system. We assume that the nominal part �0 is described
by

�0 :

8<
:

_x = A(y)x+B(y)w +G(y)u
z = C(y)x
y = Cyx

;
x(t)2Rn; u(t)2R
w(t)2Rp; z(t)2Rp

y(t)2Rr
(1)

The matrix-valued functions A, B, C and G are assumed to be C0 functions. The vectors w and z are
de�ned as

w =

2
6664
w1

w2
...
wn

3
7775 ; z =

2
6664
z1
z2
...
zn

3
7775 ;

wi(t) 2 R
pi

zi(t) 2 R
pi

pi � 0; p =
Pn

i=1 pi
i = 1; 2; � � � ; n

(2)

It is assumed that A and G are written in the form

A=

2
6666664

a11 a12 0 � � � � � � 0
a21 a22 a23 0 0...

...
...

. . . . . .
......

...
...

. . . 0
an�1;1 an�1;2 � � � � � � an�1;n
an;1 an;2 � � � � � � an;n

3
7777775
; G=

2
6664

0
...
0

an;n+1

3
7775 : (3)

with C0 scalar functions aij satisfying

aij(x) = aij(x1; x2; � � � ; xi); 1 � i � n; 1 � j � i+ 1

ai;i+1(x1; x2; � � � ; xi) 6= 0; 1 � i � n; 8x 2 Rn (4)
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As for functions B and C, we assume

B =

2
66664
B11 0 � � � 0

0 B22
. . .

...
...

. . . . . . 0
0 � � � 0 Bn;n

3
77775 ; C =

2
66664
C11 0 � � � 0

C21 C22
. . .

...
...

. . . . . . 0
Cn;1 � � � Cn;n�1 Cn;n

3
77775 (5)

where Bii 2 R
1�pi and Cij 2 R

pi�1 satisfy

Bii(x)=Bij(x1; x2; � � � ; xi); Cij(x)=Cij(x1; x2; � � � ; xi) (6)

for 1 � i � n and 1 � j � i. In regard to the uncertain part of the system �P , we suppose that ��

has the following structure of nonlinear mappings � : z 7! w.

� = block-diag[�1;�2; � � � ;�n]; (7)

where some of the mappings �i : zi 7! wi, i = 1; 2; : : : ; n can be zero in vector size. Each uncertainty
�i is allowed to have three types of components:

�i : zi=

2
4zidzis
zir

3
5 7! wi=

2
4wid

wis

wir

3
5 ; wi=

2
4�id 0 0
0 �is 0
0 0 �ir

3
5 zi : (8)

Here, �id represents a dynamic system. �is and �ir denote full static and repeated static scalar systems,
respectively. It is unnecessary for �i to have all types of uncertainty. The dynamic uncertainty �id is
de�ned by

�id :
�
_x�i

= f�id
(x�i

; zid; t)
wid = h�id

(x�i
; zid; t)

; (9)

where f�id
(0;0; t) = 0 and h�id

(0; 0; t) = 0 are satis�ed for all t � 0 and f�id
and h�id

are vector-valued
C0 functions. The full static part �is is described by

�is : wis = h�is
(zis; t); (10)

where h�is
is a vector-valued C0 function and h�is

(0; t) = 0 for all t � 0. The repeated static part �ir

is de�ned with ri > 1 copies of a static scalar system �ir :

�ir =
ri

diag
j=1

�ir = �irIri; �ir : w�ir = h�ir(t)z�ir (11)

where h�ir is a scalar-valued C0 function. For notational simplicity, we assume that �id and �is are
square in size of input and output vectors. We consider the following class of uncertainty ��.

De�nition 1 The uncertainty �� is said to be admissible if (i)-(iii) are satis�ed for i = 1; 2; : : : ; n: (i)
�id has L2-gain less than or equal to 1 with a radially unbounded C1 storage function V�i(x�i

) satisfying
V�i(0) = 0. (ii) �is satis�es kz�is

k2 � kw�is
k2 for all t 2 [0;1). (iii) �ir satis�es kz�irk

2 � kw�irk
2

for all t 2 [0;1).

The uncertain system �P has an equilibrium point at the origin when u � 0. The uncertainty a�ects
the system as

B(x)w =

2
664
B11�1C11 0 0 � � �

B22�2C21 B22�2C22 0
. . .

...
...

. . .

3
775
2
664
x1
x2
x3...

3
775 (12)
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The operator �i does not represent matrix multiplication but nonlinear mappings which can have dy-
namics with initial conditions. Note that Bii and Cij are a row vector and a column vector, respectively.
This implies that the two nonlinear uncertainties B22�2C21 and B22�2C22 can be completely indepen-
dent of each other. It is possible to extend the materials of this paper easily to the uncertain system
which has � blocks in a more general manner as in Ito and Freeman (1999b). The system �0 not
only describes a nominal plant, but also can include information about nonlinearities of uncertainty.
Indeed, �0 speci�es how the uncertainty a�ects the nominal plant such as geometrical locations, struc-
tures of uncertainties where uncertain parameters are present. The matrices B(x) and C(x) specify the
\nonlinear size"(including size, nonlinearity, location and structure) of uncertainties.

This paper considers feedback control with two types of partial-state measurement for the uncertain
systems �P shown in Fig.1.
Uncertain plant �P1 : The state x of the nominal part �0 is decomposed into

x =
�
xM
xN

�
(13)

It is assumed that only the upper part xM 2 Rm (1 � m < n) is measured. The matrices A, B, C and
G are independent of xN . The system �0 in (1) is described as

�01 :

8>>>>>><
>>>>>>:

�
_xM
_xN

�
=
�
AM(xM) AMN

ANM (xM) AN

� �
xM
xN

�
+
�
BM(xM) 0

0 BN (xM )

� �
wM

wN

�
+
�

0
GN(xM)

�
u�

zM
zN

�
=
�
CM(xM ) 0
CNM(xM) CN (xM )

� �
xM
xN

�

y = [ Im 0 ]
�
xM
xN

�
; wN ; zN 2 Rqm; qm =

Pm
i=1 pi

(14)

where AMN and AN are assumed to be constant.
Uncertain plant �P2 : The state x of the nominal part �0 is decomposed into (13). Only the lower
part xN 2 Rn�m is measured. The matrices A, B, G and C are independent of xM . The system �0 in
(1) is described as

�02 :

8>>>>>><
>>>>>>:

�
_xM
_xN

�
=
�
AM(xm+1) AMN (xm+1)
ANM(xN ) AN(xN )

� �
xM
xN

�
+
�
BM(xm+1) 0

0 BN (xN )

� �
wM

wN

�
+
�

0
GN(xN )

�
u�

zM
zN

�
=
�
CM(xm+1) 0
CNM (xN ) CN (xN)

� �
xM
xN

�

y = [ 0 In�m ]
�
xM
xN

�
; wN ; zN 2 Rqm ; qm =

Pm
i=1 pi

(15)

where AM , AMN , BM and CM are allowed to depend only on xm+1.
The case of xM = x1 in �P1 is sometime called the output feedback problem in the literature(Krsti�c

et al., 1995). Note that AM , AMN , BM and CM of �02 do not satisfy (4) and (6). But, other parts of
�02 are assumed to satisfy (4) and (6).

3 SD scaling and di�eomorphism for reduced-order dynamic

feedback

Sections from 3 through 5 deal with the uncertain system �P1. Consider the following dynamic feedback
for �P1.

_� = (ANM (xM) + ANY �HAMNY � Y AM(xM ))xM + (AN � Y AMN )� +GN (xM )u (16)

u = [KM (xM) +KN(xM ; x̂N )Y KN (xM ; x̂N ) ]
�
xM
�

�
(17)
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The matrix Y is constant and is in the form of2
64
0 � � � 0
...
. . .

... Ym
0 � � � 0

3
75 ; Y 2 R(n�m)�m; Ym 2 R

(n�m)�1 (18)

which is consistent with the zero entries of AMN . The order of the dynamic controller is n�m which is
less than n of dynamic controllers based on full-order state observers(Krsti�c et al., 1995; Ito and Krsti�c,
1999). The dynamics (16) reduces to the reduced-order observer for linear systems when matrices are
independent of xM . The closed-loop system with the reduced-order dynamic feedback is described by2

64 _xM
_xN
_�

3
75 = Acl

2
4 xMxN

�

3
5+

2
4BM 0

0 BN

0 0

3
5 �wM

wN

�
(19)

Now, we choose the di�eomorphism between (xM ; xN ; �) 2 R
n and the new coordinate (�M ; �̂N ; �̂) 2 R

n

as 2
64 �M

�̂N
�̂

3
75 =

2
4 S

0
0

0 0 W

3
5
2
4 I 0 0
Y 0 I
Y �I I

3
5
2
4 xMxN
�

3
5 (20)

whereW is a non-singular constant matrix. The matrix-valued function S(xM ; x̂N) de�nes a di�eomor-
phism between (xM ; x̂N) 2 Rn and (�M ; �̂N ) 2 Rn as follows:�

�M

�̂N

�
= S(xM ; x̂N )

�
xM
x̂N

�
; S(xM ; x̂N) =

�
SM(xM ) 0

SNM (xM ; x̂N ) SN(xM ; x̂N )

�
(21)

where x̂N = � + Y xM . The time-derivative of (�M ; �̂N) is

_̂� =

"
@S

@x1

�
xM
x̂N

�
; � � � ;

@S

@xm

�
xM
x̂N

�
;

@S

@x̂m+1

�
xM
x̂N

�
; � � � ;

@S

@x̂n

�
xM
x̂N

�# "
_xM
_̂xN

#
+ S(xM ; x̂N )

"
_xM
_̂xN

#

= T (xM ; x̂N)

"
_xM
_̂xN

#
(22)

T (xM ; x̂N) =
�

TM(xM ) 0
TNM (xM ; x̂N ) TN (xM ; x̂N)

�

Hence, we obtain2
64
_�M
_̂�N
_̂
�

3
75 =

2
4 T

0
0

0 0 W

3
5
2
4 I 0 0
Y 0 I
Y �I I

3
5
2
64 _xM
_xN
_�

3
75 ;

2
4 xMxN
�

3
5 =

2
4 I 0 0

0 I �I
�Y I 0

3
5
2
4 S�1 0

0
0 0 W�1

3
5
2
64 �M

�̂N
�̂

3
75 (23)

By using the new coordinate, the closed-loop system is expressed as2
64
_�M
_̂�N
_̂
�

3
75 =

2
4 T

0
0

0 0 W

3
5
0
B@
2
4 AM AMN �AMN

ANM +GNKM AN +GNKN �Y AMN

0 0 AN � Y AMN

3
5
2
4 S�1 0

0
0 0 W�1

3
5
2
64 �M�̂N

�̂

3
75

+

2
4 BM 0
Y BM 0
Y BM �BN

3
5 �wM

wN

�1A (24)

=

2
64T (A+GK)S�1

�TMAMNW
�1

�(TNM + TNY )AMNW
�1

0 W (AN � Y AMN )W
�1

3
75
2
64 �M�̂N

�̂

3
75+

2
4 TMBM 0
(TNM + TNY )BM 0

WYBM �WBN

3
5 �wM

wN

�

�
zM
zN

�
=
�
CM 0
CNM CN

� �
S�1

0
�W�1

� 264�M

�̂N
�̂

3
75 = �

CS�1
0

�CNW
�1

� 264 �M�̂N
�̂

3
75 (25)
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Let K denote the feedback gain for the transformed states (�M ; �̂N) as

K = [KM KN ] (26)

Next, sets of SD scaling matrices are de�ned for the uncertainty �� according to (Ito, 1998a; Ito
and Freeman, 1999b). For the dynamic uncertainty �id, we de�ne

Lid := fLid = �idIid : �id > 0g: (27)

Here, Iid denotes an identity matrix which is compatible in size with the vector zid. For the full static
uncertainty �is,

Lis := fLis = �is(xM ; x̂N)Iis : �is(xM ; x̂N ) > 0 8(xM ; x̂N ) 2 R
m �Rn�mg: (28)

is de�ned. In the case of the repeated static uncertainty �ir, we de�ne

Lir := fLir : L
T
ir(xM ; x̂N ) = Lir(xM ; x̂N); Lir(xM ; x̂N ) > 0 8(xM ; x̂N ) 2 R

m �Rn�mg: (29)

Rir := fRir : R
T
ir(xM ; x̂N ) = �Rir(xM ; x̂N ) 8(xM ; x̂N) 2 R

m �Rn�mg: (30)

Here, both Lir and Rir are square matrices whose size is the same as the dimension of zir. Scaling
matrices for the whole �� are given by

L :=
�
L=

n

block-diag
i=1

Li(xM ; x̂N); Li2Li

�
(31)

R :=
�
R=

n

block-diag
i=1

Ri(xM ; x̂N ); Ri2Ri

�
(32)

Li :=

8<
:Li(xM ; x̂N )=

2
4Lid 0 0

0 Lis(xM ; ; x̂N ) 0
0 0 Lir(xM ; ; x̂N )

3
5 : Lid 2 Lid

Lis 2 Lis

Lir 2 Lir

9=
; (33)

Ri :=

8<
:Ri(xM ; ; x̂N ) =

2
4 0 0 0
0 0 0
0 0 Rir(xM ; x̂N )

3
5 : Rir 2 Rir

9=
; ; (34)

Note that a constant � > 0 satis�es �I 2 Li and 0 2 Ri. Because Bii�jCji is scalar, a repeated
static uncertainty can always be represented by a scalar full static uncertainty. However, we include
the repeated representation here because it allows more degrees of freedom in the scaling design.

By using the di�eomorphism (20) and the SD scaling (31-32), we can prove the following.

Theorem 1 (i) Suppose that there exist constant matrices P = P T > 0 and ~P = ~P T > 0 such that

N(xM ; x̂N ) =2
64S�T (A+GK)TT TP+PT (A+GK)S�1 �P

�
TM

TNM + TNY

�
AMNW

�1

�W�TAT
MN

h
T T
M T T

NM + Y TT T
N

i
P W�T (AN � Y AMN)

TW T ~P + ~PW (AN � Y AMN)W
�1

3
75<0

(35)

is satis�ed for all (xM ; x̂N ) in Rn, then the nominal nonlinear system �01 is globally uniformly asymp-
totically stabilized by the reduced-order dynamic feedback (16-17). Furthermore, a Lyapunov function is
given by

V (x; �) =
�
�M
�̂N

�T
P

�
�M

�̂N

�
+ �̂T ~P �̂

7



(ii) Suppose that there exist constant matrices P = P T > 0, ~P = ~P T > 0 and scaling functions L 2 L

and R 2 R such that

M(xM ; x̂N ) =2
66666666666664

(
S�T (A+ GK)TT TP+

PT (A+GK)S�1

)
P

�
TMBM 0

(TNM + TNY )BM 0

�
+S�TCTRT S�TCTL �P

�
TM

TNM + TNY

�
AMNW

�1

� �L 0

"
BT
MY

T

�BT
N

#
W T ~P�R

�
0
CN

�
W�1

� � �L �L
�
0
CN

�
W�1

� � �

(
W�T (AN � Y AMN)TW T ~P+

~PW (AN � Y AMN)W
�1

)

3
77777777777775

< 0 (36)

is satis�ed for all (xM ; x̂N ) in Rn, then the uncertain nonlinear system �P1 is globally uniformly asymp-
totically stabilized by reduced-order dynamic feedback (16-17) for any admissible uncertainty ��. Fur-
thermore, a Lyapunov function is given by

V (x; �) =
�
�M

�̂N

�T
P

�
�M

�̂N

�
+ �̂T ~P �̂ +

nX
i=1

�idV�i(x�i
)

The robust (nominal) stabilization problem is reduced into the existence of scaling matrices and a
di�eomorphism which make the matrix M (N , respectively) negative. This is the fundamental of SD
scaling design. Section 4 and 5 investigate how to solve the negativity problems.

Since AN and AMN are constant and the pair is observable by the assumption (4), there exist constant
matrices P̂ > 0 and Y such that

(AN � Y AMN)
T P̂ + P̂ (AN � Y AMN ) < 0 (37)

is satis�ed. The observer gain Y can be constructed by using the standard linear control theory.
By Cholesky factorization of P̂�1, there exists a non-singular lower triangular matrix W such that
P̂ = W T ~PW with a diagonal matrix ~P > 0. Hence, the inequality (37) is equivalent to

H = W�T (AN � Y AMN )
TW T ~P +

~PW (AN � Y AMN)W
�1 < 0 (38)

Although ~P can be always an identity matrix in Cholesky factorization, the choice of ~P 6= I may be
exploited to obtain di�erent solutions in design. Note that if AN and AMN satisfy

(AN (xM)�YAMN(xM))
T P̂+P̂ (AN (xM)�YAMN(xM))<0 (39)

for all xM 2 Rm with constant matrices P̂ > 0 and Y , the matrices AN and AMN are allowed to depend
on xM in Section 3-5.

4 Recursive selection of SD scaling and di�eomorphism

This section demonstrates that the structures of di�eomorphism and SD scaling newly proposed in
(20-21) and (31-32) lead us to a recursive procedure of SD scaling design for reduced-order partial-state
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feedback. Let �x denote

�x =

2
6666666664

�x1
...
�xm
�xm+1
...
�xn

3
7777777775
=

2
6666666664

x1
...
xm
x̂m+1
...
x̂n

3
7777777775
=
�
xM
x̂N

�
(40)

We choose the di�eomorphism S(�x[n�1]) in the form of

S�1(xM ; x̂N ) =

2
66664
1 0 0 � � � 0
s1 1 0 � � � 0
0 s2 1

. . . 0...
...

. . . . . .
...

0 � � � 0 sn�1 1

3
77775 (41)

Let smooth scalar functions s1 , s2, � � �, sn be

si(�x[i]) for 1 � i � m (42)

si(�x[i�1]) for m+ 1 � i � n (43)

The smooth function matrix T (�x[n�1]) becomes

T (xM ; x̂N ) =

2
66666666666664

1 0 0 � � � 0 0 � � � 0
?1;1 1 0

. . .
... 0 � � � 0

?2;2 ?2;2 1
. . .

... 0 � � � 0...
... � � �

. . . 0 0 � � � 0
?m;m ?m;m � � � ?m;m 1 0 � � � 0

?m;m+1 ?m;m+1 � � � ?m;m+1 ?m;m+1 1 0
...

...
...

...
...

... � � �
. . .

...
?n�2;n�1 ?n�2;n�1 � � � ?n�2;n�1 ?n�2;n�1 � � � ?n�2;n�1 1

3
77777777777775
; (44)

where ?i;j denotes any function depending only on �x[i], and the functions s1 through sj and their partial
derivatives. Note that the only source of x̂-dependence in N andM is T and that T[m+1] does not contain
x̂m+1. That is why the function sm+1 is chosen to be independent of x̂m+1. Let W be represented by

W =

2
6664

W11 0 � � � 0

W21 W22
. . .

......
. . . . . . 0

Wn�m;1 � � � Wn�m;n�m�1 Wn�m;n�m

3
7775 (45)

Due to the structure of T , we have

�
TM

TNM + TNY

�
AMNW

�1 =

2
66666666664

0(m�1)�(n�m)

am;m+1W
�1
11 0 � � � 0

?m;m 0 � � � 0
?m;m+1 0 � � � 0

...
... � � � 0

?n�2;n�1 0 � � � 0

3
77777777775

(46)
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We consider a feedback gain (26) in the form of

K =
h
(�1)n�1s1���sn � � � �sn�1sn sn

i
: (47)

The following de�nitions are needed.

Â := [A G] ; Ŝ :=
�

S�1

0 � � � 0 sn

�
(48)

We choose P as a diagonal matrix:

P =
n

diag
i=1

Pi; Pi > 0; P[k] =
k

diag
i=1

Pi (49)

Recursive representation is introduced to matrices as follows:

S�1[k] =

"
S�1[k�1] 0

0 � � � 0 sk�1 1

#
; Ŝ[k] =

"
S�1[k]

0 � � � 0 sk

#
(50)

T[k] =
�
T[k�1] 0
?k�1;k�1 1

�
for 1 � k � m+ 1; T[k] =

�
T[k�1] 0
?k�2;k�1 1

�
for m+ 2 � k � n (51)

Â[k]=

2
666664

a11 a12 0 � � � � � � 0
a21 a22 a23 0 � � � 0
...

...
...

. . . . . .
...

ak�1;1 ak�1;2 � � � � � � ak�1;k 0
ak1 ak2 � � � � � � akk ak;k+1

3
777775 ; C[k] =

2
664
C11 0 � � � 0
C21 C22

. . .
......

. . . . . . 0
Ck1 � � � Ck;k�1 Ckk

3
775 (52)

The k � qk left upper part of �
TMBM 0

(TNM + TNY )BM 0

�
(53)

is denoted by �B[k], where qk =
Pk

i=1 pi. The recursive de�nitions of the scaling matrices are

L[k] :=

8<
:L[k]=

k

block-diag
i=1

Li :
Li(�x[i]) 2 Li for 1 � i � m
Li(�x[i�1]) 2 Li for i = m+ 1
Li(�x[i�2]) 2 Li for m+ 2 � i � n

9=
; (54)

R[k] :=

8<
:R[k]=

k

block-diag
i=1

Ri :
Ri(�x[i]) 2 Ri for 1 � i � m
Ri(�x[i�1]) 2 Ri for i = m+ 1
Ri(�x[i�2]) 2 Ri for m+ 1 � i � n

9=
; (55)

Let ~N[k] be de�ned by

~N[k] =

"
N[k]11 QT

kN12

NT
12Qk H

#
; ~N[n] = N (56)

N[k]11 := ŜT
[k]Â

T
[k]P[k]+P[k]T[k]Â[k]Ŝ[k] (57)

N12(�x[n�2]) := �P
�

TM
TNM + TNY

�
AMNW

�1; (N12(�x[n�1]) if m = n � 1) (58)

Qk =
�
Ik
0

�
; Qn = In (59)

where Ik denotes a k � k identity matrix. The dependence of ~N[k] and N[k]11 on �x is

~N[k](�x[k]); N[k]11(�x[k]) if 1 � k � m (60)

~N[k](�x[k�1]); N[k]11(�x[k�1]) if m+ 1 � k � n (61)
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In a similar manner, ~M[k] is de�ned as

~M[k] =

"
M[k]11

�QT
kM12

MT
12
�Qk H

#
; ~M[n] =M (62)

M[k]11 :=

2
64 Ŝ

T
[k]Â

T
[k]T

T
[k]P[k]+P[k]T[k]Â[k]Ŝ[k] P[k]

�B[k]+S
�T
[k] C

T
[k]R

T
[k] S

�T
[k] C

T
[k]L[k]

� �L[k] 0
� � �L[k]

3
75 (63)

M12(�x[n�2]) :=

2
66666664

�P
�

TM
TNM + TNY

�
AMNW

�1"
BT
MY

T

�BT
N

#
W T ~P�R

�
0
CN

�
W�1

�L
�
0
CN

�
W�1

3
77777775
; (M12(�x[n�1]) if m = n� 1) (64)

�Qk =

2
66664
Ik 0 0
0 0 0
0 Iqk 0
0 0 0
0 0 Iqk

3
77775 ; �Qn = In+2P (65)

The dependence of ~M[k] and M[k]11 on �x is the same as in (60-61). Note that N[k]11 = QT
kN11Qk and

M[k]11 = �QT
kM11

�Qk. We can verify the following easily.

Theorem 2 Suppose 1 � k � n.

(i-a) ~N[k] does not include fsk+1; sk+2; � � � ; sng.

(i-b) Every entry of ~N[k] is a�ne in sk.

(i-c) Every entry of ~N[k] is simultaneously a�ne in all the entries of P[k].

(i-d) ~N[k] < 0 implies ~N[k�1] < 0 unless k = 1.

(ii-a) ~M[k] does not include either fsk+1; sk+2; � � � ; sng, fLk+1; Lk+2; � � � ; Lng or fRk+1; Rk+2; � � � ; Rng.

(ii-b) Every entry of ~M[k] is simultaneously a�ne in Lk, Rk and sk.

(ii-c) Every entry of ~M[k] is simultaneously a�ne in all the entries of L[k], R[k] and P[k].

(ii-d) ~M[k] < 0 implies ~M[k�1] < 0 unless k = 1.

The problem of SD scaling is recursively linear in design parameters. On the basis of Theorem 2, this
paper proposes the following procedures for reduced-order dynamic partial-state feedback design.

Nominal backstepping : Solve ~N[k] < 0 for sk from k = 1 through k = n.

Robust backstepping : Solve ~M[k] < 0 for fsk; Lk; Rkg from k = 1 through k = n.

Both the procedures assume that P , ~P , W and Y are given. The recursive procedures can be carried
out since the process of �nding design parameters at Step k does not require any design parameters
to be found at Step k + 1; k + 2; : : : ; n. The recursive procedures are justi�ed by (i-d) and (ii-d). The
problem of �nding fLk; Rk; skg satisfying ~M[k] < 0 (or ~N[k] < 0) is a convex problem. Thus these
backstepping procedures via SD scaling are amenable to numerical computation and optimization as it
has been shown for state-feedback control(Ito and Freeman, 1999b).
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5 Existence of solutions

This section investigates whether the solutions exist or not in the recursive procedures proposed in the
previous section. This section also provides their analytical solutions.

De�ne the following two functions.

�N[k] := N[k]11 �QT
kN12H

�1NT
12Qk (66)

�M[k] :=M[k]11 � �QT
kM12H

�1MT
12
�Qk (67)

From the Schur complements formula it follows that the equivalence

�N[k] < 0 , ~N[k] < 0 (68)

�M[k] < 0 , ~M[k] < 0 (69)

are true on the assumption that H < 0 holds. The matrices �N[k] and �M[k] are represented by

�N[k](�x[k]) := N[k]11 for 1 � k � m� 1
�N[k](�x[k]) := N[k]11 � ~� for k = m
�N[k](�x[k�1]) := N[k]11 �QT

kN12H
�1NT

12Qk for m+ 1 � k � n

(70)

�M[k](�x[k]) :=M[k]11 for 1 � k � m� 1
�M[k](�x[k]) :=M[k]11 �� for k = m
�M[k](�x[k�1]) :=M[k]11 � �QT

kM12H
�1MT

12
�Qk for m+ 1 � k � n

(71)

The matrices ~� and � are given by

~�(�x[m]) :=

2
66664
0 � � � 0 0
...
. . .

... 0
0 � � � 0 0
0 � � � 0 P 2

mW
�2
11 a

2
m;m+1[H

�1]11

3
77775 (72)

�(�x[m]) :=

2
6664

~� 0 am;m+1W
�1
11 [H

�1]1;�YmBmm 0
0 0 0 0

BT
mmY

T
m [H

�1]T1;�W
�1
11 am;m+10 0 BT

mmY
T
m [H�1]YmBmm 0

0 0 0 0

3
7775 (73)

Here, [H�1]1;� denotes the �rst row of H�1.

Lemma 1 Suppose 2 � k � n.
(i) The symmetric matrix

�N[1](x1) = ~	1(x1) (74)

depends only on s1. �N[k] < 0 is equivalent to

"
�N[k�1](�x[k�1]) ~�k(�x[k])
~�T
k (�x[k]) ~	k(�x[k])

#
< 0 for 2 � k � m"

�N[k�1](�x[k�1]) ~�k(�x[k�1])
~�T
k (�x[k�1]) ~	k(�x[k�1])

#
< 0 for k = m+ 1"

�N[k�1](�x[k�2]) ~�k(�x[k�1])
~�T
k (�x[k�1]) ~	k(�x[k�1])

#
< 0 for m+ 2 � k � n

(75)
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where ~�k depends only on (s1; � � � ; sk�1) and their partial derivatives. The symmetric matrix ~	k depends
on sk.
(ii) Assume that ~P is diagonal. Then, the symmetric matrix

�M[1](x1) = 	1(x1) (76)

depends only on (L1; R1) and s1. �M[k] < 0 is equivalent to"
�M[k�1](�x[k�1]) �k(�x[k])
�T
k (�x[k]) 	k(�x[k])

#
< 0 for 2 � k � m"

�M[k�1](�x[k�1]) �k(�x[k�1])
�T
k (�x[k�1]) 	k(�x[k�1])

#
< 0 for k = m+ 1"

�M[k�1](�x[k�2]) �k(�x[k�1])
�T
k (�x[k�1]) 	k(�x[k�1])

#
< 0 for m+ 2 � k � n

(77)

where �k depends only on (L1; R1; � � � ; Lk; Rk) and (s1; � � � ; sk�1) and their partial derivatives. The
symmetric matrix 	k depends on (Lk; Rk) and sk.

The proof is straightforward and is similar to (Ito and Krsti�c, 1999). The matrices ~� and ~	 for �N[k]

are obtained as

~�k = ?k;k�1; ~	k = 2Pk(akk + ak;k+1sk + ?k�1;k�1) for 1 � k � m� 1 (78)
~�k = ?k;k�1; ~	k = 2Pk(akk + ak;k+1sk + ?k;k�1) for k = m (79)

~�k = �m;k�1;k�1; ~	k = 2Pk(akk + ak;k+1sk + �m;k�1;k�1) for m+ 1 � k � n (80)

where �m;j;k denotes any function depending only on x[m], x̂[j�m], and (s1; � � � ; sk) and their partial
derivatives. As for �M[k], matrices �k and 	k are obtained as follows:
for 1 � k � m� 1

�k =

2
4 ?k;k�1 ?k;k�1RT

k ?k�1;k�1C
T
k;�Lk

?k;k�1 0 0
0 0 0

3
5 (81)

	k =

2
4 2Pk(akk + ak;k+1sk + ?k�1;k�1) PkBkk + CT

kkR
T
k CT

kkLk

� �Lk 0
� � �Lk

3
5 : (82)

for k = m

�k =

2
4 ?k;k�1 ?k;k�1RT

k ?k�1;k�1C
T
k;�Lk

?k;k�1 0 0
0 0 0

3
5 (83)

	k =

2
64 2Pk(akk + ak;k+1sk + ?k;k�1) PkBkk � am;m+1W

�1
11 [H

�1]1;�YmBmm + CT
kkR

T
k CT

kkLk

� �Lk � BT
mmY

T
m [H

�1]YmBmm 0
� � �Lk

3
75 : (84)

for m+ 1 � k � n

�k =

2
64 �m;k�1;k�1 �m;k�2;k�1R

T
k �m;k�2;k�1C

T
k;�Lk

}m;k�1;k�1 U�;k }m;k�3;k�1C
T
N;k;�Lk

}m;k�1;k�1 }1;k�3;k�1R
T
k }m;k�3;k�1C

T
N;k;�Lk

3
75 (85)

	k =2
64
2Pk(akk + ak;k+1sk + �m;k�1;k�1) �m;k�1;k�1 + (�m;k�1;k�1 + C

T
kk)R

T
k (�m;k�1;k�1 + C

T
kk)Lk

� �Lk + Ukk (Rk ?m;0 +?m;0)CT
N;k;�Lk

� � �Lk � LkCN;k;�W
�1
[k�m][H

�1][k�m]W
�T
[k�m]C

T
N;k;�Lk

3
75 :(86)
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where }m;j;k denotes any function depending only on (x[m]; x̂[j�m]) and (L[k]; R[k]), and (s1; � � � ; sk) and
their partial derivatives. For m+ 1 � k � n,

[H�1][k] =

"
[H�1][k�1] ?m;0

?m;0 [H�1]k;k

#
; [H�1][n�m] = H�1; [H�1][1] = [H�1]11 (87)

W�1
[k] =

"
W�1

[k�1] 0

?0;0 W�1
k;k

#
; W�1

[n�m] = W�1; W�1
[1] = W�1

11 (88)

C[k] =
�
C[k�1] 0
?m;0 Ckk

�
=
�
C[k�1] 0
Ck;�

�
; Ck;� = [Ck;1 � � � Ck;m CN;k;� ] (89)

are used. The de�nition of

Um+1;m+1(x[m]) 2 R
pm+1�pm+1 ; U�;m+1(x[m]) 2 R

qm�pm+1 for k = m+ 1 (90)

Ukk(x[m]; x̂[k�2]) 2 R
pk�pk ; U�;k(x[m]; x̂[k�2]) 2 R

qk�1�pk for m+ 2 � k � n (91)

are given by

Ukk = �[BT
NW

T ~P +RNCNW
�1]kH

�1[BT
NW

T ~P +RNCNW
�1]Tk (92)

U�;k = � ~U[k�1]H
�1[BT

NW
T ~P +RNCNW

�1]Tk (93)

where

RN =
n

block-diag
i=m

Ri (94)

BT
NW

T ~P +RNCNW
�1 =

2
6664

[BT
NW

T ~P +RNCNW
�1]m

[BT
NW

T ~P +RNCNW
�1]m+1

� � �
[BT

NW
T ~P +RNCNW

�1]n

3
7775 (95)

~U[k] = [ Iqk 0 ]

 "
�BT

MY
T

BT
N

#
W T ~P +

�
0

RNCN

�
W�1

!
(96)

According to (70) and (71), the matrices �N[k] and �M[k] from k = 1 to k = m� 1 are exactly the same
as those for the state-feedback(Ito and Freeman, 1999b). The backstepping procedure to �nd Lk, Rk

and sk satisfying �M[k] < 0 (or �N[k] < 0) can be carried out for all entries of xM but xm as it is done for
the state-feedback case.

Lemma 2 Let k is any integer belonging to [1; m� 1].
(i) Assume that �N[k�1](�x[k�1]) < 0 hold for all �x[k�1] 2 Rk�1 unless k = 1. There always exists a
scalar-valued smooth function sk(�x[k]) such that

�N[k](�x[k]) < 0 (97)

is satis�ed for all �x[k] 2 R
k.

(ii) Assume that �M[k�1](�x[k�1]) < 0 hold for all �x[k�1] 2 Rk�1 unless k = 1. There always exist a
scalar-valued smooth function sk(�x[k]) and a C0 function �k(�x[k]) such that

�M[k](�x[k]) < 0; �k(�x[k]) > 0 (98)

are satis�ed with Lk = �kIpk and Rk = 0 for all �x[k] 2 Rk.
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Let ~Jk(�x[k�1]) 2 R
1�1 be de�ned with

~	k � ~�T
k
�N�1
[k�1]

~�k for m+ 1 � k � n (99)

We also de�ne Jk(�x[k�1]) 2 R
1�1, Ek(�x[k�1]) 2 R

1�2pk and Fk(�x[k�1]) 2 R
2pk�2pk as

	k � �T
k
�M�1
[k�1]�k =

�
Jk Ek

ET
k Fk

�
for m+ 1 � k � n (100)

The matrices ~Jm(�x[m]), Jm(�x[m]), Em(�x[m]) and Fm(�x[m]) are de�ed in the same way. Using the Schur
complements of (99) and (100) , we have the following.

Lemma 3 Let k is any integer belonging to [m+ 1; n].
(i) Assume that �N[k�1](�x[k�2]) < 0 is satis�ed for all �x[k�2] 2 R

k�2. Then, �N[k](�x[k�1]) < 0 holds for all
�x[k�1] 2 R

k�1 if and only if

~Jk < 0 (101)

is satis�ed for all �x[k�1] 2 R
k�1.

(ii) Assume that �M[k�1](�x[k�2]) < 0 is satis�ed for all �x[k�2] 2 R
k�2. Then, �M[k](�x[k�1]) < 0 holds for

all �x[k�1] 2 Rk�1 if and only if

Fk < 0; Jk � EkF
�1
k ET

k < 0; when pk 6= 0 (102)

Jk < 0; when pk = 0 (103)

are satis�ed for all �x[k�1] 2 R
k�1.

(iii) The statements (i) and (ii) are true for k = m by replacing �x[m�1] with �x[m].

From (79) and (80), the function ~Jk is given by

~Jk = 2Pk(akk + ak;k+1sk + �m;k�1;k�1) (104)

This implies that there always exist a scalar-valued smooth function sk(�x[k�1]) such that ~Jk(�x[k�1]) < 0
is satis�ed for all �x[k�1] (�x[m] in the k = m case). Hence, we can obtain the following.

Theorem 3 The nominal nonlinear system �01 can be globally uniformly asymptotically stabilized by
the reduced-order dynamic feedback law (16-17) with a smooth function K.

Note that AN and AMN are allowed to depend on xM if (39) is satis�ed. The result of (Kanellakopoulos,
1991) without the adaptive mechanism can be considered as the special case xM = x1 of the above
theorem. Theorem 3, however, employs domination instead of exact cancelation.

As for robust stabilization, from (83-86), the matrices Jk is given by

Jk = 2Pk(akk + ak;k+1sk) +}m;k�1;k�1 (105)

for m � k � n.

Lemma 4 Let k is any integer belonging to [m+1; n]. Suppose that C0 function matrices Lk(x[m]; x̂[k�2])
and Rk(x[m]; x̂[k�2]) belong to Lk and Rk, respectively. Then, there always exist a scalar-valued smooth
function sk(�x[k�1]) such that Jk �EkF

�1
k ET

k < 0 is satis�ed for all �x[k�1] 2 R
k�1. This fact is also true

for k = m by replacing �x[m�1] with �x[m].
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Due to (83-86), for m � k � n, the matrices Ek and Fk de�ned with Rk = 0 are

Ek(x[m]; x̂[k�1]) =
h
}m;k�1;k�1 (CT

kk +}m;k�1;k�1)Lk

i
(106)

Fm(x[m]) = for k = m (107)"
�Lm �BT

mmY
T
m [H

�1]YmBmm ?m;0C
T
m;�Lm

� �Lm � LmCm;�
�Fm22C

T
m;�Lm

#
(108)

Fk(x[m]; x̂[k�2]) = for k � m+ 1 (109)"
�Lk �B

T
N;�;kW

T
hk�mi

~Phk�mi([H
�1]hk�mi + �Fk11) ~Phk�miWhk�miBN;�;k (?m;0 �B

T
NkW

T ~P �Fk12)C
T
k;�Lk

� �Lk � Lk(CN;k;�W
�1
[k�m][H

�1][k�m]W
�T
[k�m]C

T
N;k;� + Ck;�

�Fk22C
T
k;�)Lk

#

�Fk(x[m]; �x[k�2]) =

2
4 0 �m;k�2;k�1
�Uk }m;k�3;k�1

0 }m;k�3;k�1

3
5
T

�M�1
[k�1]

2
4 0 �m;k�2;k�1
�Uk }m;k�3;k�1

0 }m;k�3;k�1

3
5 =

"
�Fk11

�Fk12
�Fk12

�Fk22

#
(110)

�Uk(x[m]; x̂[k�3]) = � ~U[k�1]H
�1
�

0
In�k+1

�
(111)

�Fm22(x[m]) =

2
4 �m;0;0

0
0

3
5
T

�M�1
[m�1]

2
4 �m;0;0

0
0

3
5 (112)

Here, the following expressions are used.

BN = [BNm+1 BNm+2 � � � BNn ] =

2
6664

0 � � � 0

BN;�;m+1
. . .

...
BN;�;m+2 0

� � � BN;�;n

3
7775 ; BN;�;n = Bnn (113)

C=

2
66664
C1;� 0 � � � 0

C2;� 0
...

...
. . . 0

Cn;�

3
77775 ; CN=

2
66664
CN;1;� 0 � � � 0

CN;2;� 0
...

...
. . . 0

CN;n;�

3
77775 (114)

[H�1]hki =

"
[H�1]kk ?0;0
?0;0 [H�1]hk�1i

#
; [H�1]h1i = H�1; [H�1]hn�mi = [H�1]n�m;n�m (115)

~Phki =

"
~Pk 0

0 ~Phk+1i

#
; ~Ph1i = ~P ; ~Phn�mi = ~Pn�m (116)

Whki =
�
Wkk 0
?0;0 Whk+1i

�
; Wh1i = W; Whn�mi = Wn�m;n�m (117)

Lemma 5 (i) For k = m: Suppose that Rm = 0, pm 6= 0. Assume that �M[m�1](�x[m�1]) < 0 holds for all
�x[m�1] 2 R

m�1. There exists a scalar-valued C0 function �k(x[m]) such that

�k(x[m]) > 0; Fk(x[m]) < 0 (118)

are satis�ed for all x[m] 2 R
m with Lk(x[m]) = �k(x[m])Ipk if

�max

�
�BT

mmY
T
m [H�1]YmBmm

�
�max

�
�Ck;�

�Fk22C
T
k;�

�
�

1

4
(119)

holds for all x[m] 2 R
m.

(ii) For m + 1 � k � n: Suppose that Rk = 0, pk 6= 0. Assume that �M[k�1](�x[k�2]) < 0 holds for all
�x[k�2] 2 R

k�2. There exists a scalar-valued C0 function �k(x[m]; x̂[k�2]) such that

�k(x[m]; x̂[k�2]) > 0; Fk(x[m]; x̂[k�2]) < 0 (120)
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are satis�ed for all (x[m]; x̂[k�2]) 2 R
m �Rk�2 with Lk(x[m]; x̂[k�2]) = �k(x[m]; x̂[k�2])Ipk if

�max

�
�BT

N;�;kW
T
hk�mi

~Phk�mi([H
�1]hk�mi + �Fk11) ~Phk�miWhk�miBN;�;k

�
�

�max

�
�CN;k;�W

�1
[k�m][H

�1][k�m]W
�T
[k�m]C

T
N;k;� � Ck;�

�Fk22C
T
k;�

�
�

1

4
(121)

holds for all (x[m]; x̂[k�2]) 2 R
m �Rk�2.

Since the entries of B and C matrices represent the nonlinear bounds of uncertainties, the conditions
(119) and (121) are considered as the nonlinear size of tolerable uncertainties. We obtain the following

Theorem 4 Suppose that B and C satisfy (119) for k = m and (121) for all k = m+1; : : : ; n. Assume
that the uncertainty �� only has static uncertain components �is and �ir. Then, the system �P1 can be
globally uniformly asymptotically stabilized for any admissible uncertainty by the reduced-order dynamic
feedback law (16-17) with a smooth function K.

We can always achieve robust stabilization for the following class of uncertain systems.

Theorem 5 Suppose that Bmm = 0 and BN = 0.

(i) If the uncertainty �� only has static uncertain components �is and �ir, the system �P1 can be glob-
ally uniformly asymptotically stabilized for any admissible uncertainty by the reduced-order dynamic
feedback law (16-17) with a smooth function K.

(ii) If the uncertainty �� has dynamic uncertain components �id, the system �P1 can be semi-globally
uniformly asymptotically stabilized for any admissible uncertainty by the reduced-order dynamic feed-
back law (16-17) with a smooth function K.

Global robust stabilizability against dynamic uncertainties is not always achievable if the nonlinear
size of uncertainty is prescribed a priori. However, if we relax the robustness requirement, a stability
robustness in terms of Input-to-State Stability(ISS) can be obtained.

Theorem 6 Assume that Bmm is uniformly bounded and BN = 0. Then, the system �01 can be ISS
stabilized by the reduced-order dynamic feedback law (16-17) with a smooth function K.

Note that AN and AMN are allowed to depend on xM if (39) is satis�ed. The di�erence between full-
order observer and reduced-order observer is clearly seen in Theorem 5 and 6. For robust stabilization,
it has been demonstrated that observer design cannot be completely separated from feedback-gain
design(Ito and Krsti�c, 1999). The observer must be designed strong enough by taking into account the
size of uncertainty. The reduced-order observer does not have any dynamics for xM so that this part
of the system cannot be made robust by the observer. This is why the constraint on Bmm is required
in Theorem 5 and 6 in order to guarantee that robust stabilization is always achievable for arbitrarily
large admissible uncertainties. The constraint is not required in the full-order observer case(Ito and
Krsti�c, 1999). In contrast, there are no di�erence between the reduced-order observer and the full-order
observer in achieving nominal stabilization as shown in Theorem 3.

6 Static partial-state feedback

This section focuses on static partial-state feedback control for the class of uncertain systems de�ned
with �P2.
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Consider the static feedback law as

u = K(xN)xN (122)

We consider the di�eomorphism between x 2 Rn and � 2 Rn as follows:

� = S(xN )x : (123)

The time-derivative of � is obtained as

_� =

"
@S

@xm+1
x;

@S

@xm+2
x; � � � ;

@S

@xn
x

#
_xN + S(xN ) _x = T (xM ; xN ) _x : (124)

Note that the matrix T may contain unmeasured signal xM even if S only contains xN . We now choose
a di�eomorphism S(xN) in a particular form of

S�1(xN ) =

2
6666666666664

1 0 � � � 0 0 0 � � � 0

0 1
. . .

... 0 0 � � � 0...
. . . . . . 0

...
...

. . .
...

0 � � � 0 1 0 0 � � � 0
0 � � � 0 0 1 0 � � � 0
0 � � � 0 0 sm+1 1 0

. . ....
. . .

...
...

. . . . . . . . . . . .
0 � � � 0 0 0

. . . sn�1 1

3
7777777777775

(125)

where all si, i = m+ 1;m+ 2; : : : ; n are smooth functions of xN . These functions are chosen such that
their dependence on xN is consistent with

si(xm+[i]) if m+ 1 � i � n (126)

Here, xm+[i] denotes

xm+[i] =

2
6664
xm+1

xm+2
...

xm+i

3
7775 (127)

and xm+[n�m] = xN . Due to (126), we have

S�1(xN) =

"
I 0
0 S�1N (xN )

#
; S(xN ) =

�
I 0
0 SN (xN)

�
; T (xN ) =

�
I 0
0 TN (xN )

�
(128)

SN(xN ) =

2
66664

1 0 0 � � � 0
�sm+1 1 0 � � � 0

sm+1sm+2 �sm+2 1
. . . 0...

...
. . . . . .

...
(�1)n�m�1sm+1���sn�1 � � � sn�2sn�1 �sn�1 1

3
77775 (129)

TN (xN) =

2
66664

1 0 0 � � � 0
�m+1;m+1 1 0 � � � 0
�m+2;m+2 �m+2;m+2 1

. . . 0...
...

. . . . . .
...

�n�1;n�1 � � � � � � �n�1;n�1 1

3
77775 (130)
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where �m+i;m+j denotes any function depending only on xm+[i] and the functions sm+1 through sm+j

and their partial derivatives. Here, the function T only depends on the measured state xN . We now
consider a feedback gain (122) in the form of

K =
h
(�1)n�m�1sm+1���sn � � � �sn�1sn sn

i
(131)

By using the matrices

Â := [A G] ; Ŝ :=
�

S�1

0 � � � 0 sn

�

the following is straightforward from Ito and Freeman (1999b).

Theorem 7 (i) Suppose that there exist a constant matrix P = P T > 0 such that

N(xN ) := ŜT ÂTT TP+PTÂŜ < 0 (132)

is satis�ed for all xN in Rn�m. Then, the nominal nonlinear system �02 is globally uniformly asymp-
totically stabilized by the static feedback law (122). Furthermore, a Lyapunov function is given by
V = �TP�.
(ii) Suppose that there exist a constant matrix P = P T > 0 and scaling functions L 2 L and R 2 R

such that

M(xN ) =

2
64Ŝ

T ÂTT TP+PTÂŜ PTB+S�TCTRT S�TCTL

BTT TP+RCS�1 �L 0
LCS�1 0 �L

3
75<0 (133)

is satis�ed for all xN in Rn�m. Then, the nonlinear system �P2 is globally uniformly asymptotically
stabilized for any admissible uncertainty �� by the static feedback law (122). Furthermore, a Lyapunov
function is given by V = �TP�+

Pn
i=1 �idV�i(x�i

).

Let N[k] and M[k] be de�ned by adding subscript [k] to every matrix in (132) and (133), respectively.
The individual matrices are de�ned in the same way as in Section 4 except that

Ŝ[k] =

8>>>><
>>>>:

"
S�1[k]

0 � � � 0 0

#
for k = m"

S�1[k]

0 � � � 0 sk

#
for m+ 1 � k � n

(134)

P =

2
6666664

P[m] 0

0

Pm+1 0 � � � 0

0 Pm+2
. . .

...
...

. . . . . . 0
0 � � � 0 Pn

3
7777775
; P[k] =

8<
:
P[m] for k = m�
P[k�1] 0
0 Pk

�
for m+ 1 � k � n

(135)

where P[m] need not be diagonal. The dependence of SD scaling matrices are chosen as

Lk(xm+1); Rk(xm+1) for 1 � k � m (136)

Lk(xm+[k]); Rk(xm+[k]) for m+ 1 � k � n (137)

From

A[m] = AM ; B[m] = BM ; C[m] = CM (138)
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and the de�nition of Ŝ[m], N[m] and M[m] are given by

N[m](xm+1) = AT
MPM+PMAM ; M[m](xm+1) =

2
4 MS[m]

CT
ML[m]

0
L[m]CM 0 �L[m]

3
5 (139)

MS[m](xm+1) =

"
AT
MPM+PMAM PMBM+CT

MR
T
[m]

BT
MPM+R[m]CM �L[m]

#
(140)

This section uses the following assumptions.

Assumption 1 There exists a constant symmetric matrix P[m] > 0 such that N[m](xm+1) < 0 is satis�ed
for all xm+1 2 R.

Assumption 2 There exist a constant symmetric matrix P[m] > 0, C0 functions L[m](xm+1) 2 L[m] and
R[m](xm+1) 2 R[m] such that M[m](xm+1) < 0 is satis�ed for all xm+1 2 R.

According to Theorem 7, Assumption 1 says that the xM -subsystem is globally uniformly asymptotically
stable. Assumption 2 requires the xM -subsystem is globally uniformly asymptotically stable for all
admissible uncertainties appearing in the xM -subsystem. It is obvious that the properties in Theorem
2 are satis�ed for M[k] and N[k] of this section. Thereby, the following procedures are proposed.
Nominal backstepping : Solve N[k] < 0 for sk from k = m+ 1 through k = n.
Robust backstepping : Solve M[k] < 0 for fsk; Lk; Rkg from k = m + 1 through k = n.
Note that the backstepping is only required for the measured part of the state. We can prove the
following.

Lemma 6 Suppose 1 � k � n�m.
(i) N[m+k](xm+[k]) < 0 is equivalent to"

N[m](xm+1) ~�m+1(xm+1)
~�T
m+1(xm+1) ~	m+1(xm+1)

#
< 0 for k = 1 (141)

"
N[m+k�1](xm+[k�1]) ~�m+k(xm+[k])

~�T
m+k(xm+[k]) ~	m+k(xm+[k])

#
< 0 for 2 � k � n�m ; (142)

where ~�m+k depends only on (sm+1; � � � ; sk�1) and their partial derivatives. The symmetric matrix ~	m+k

depends on sm+k.
(ii) M[m+k](xm+[k]) < 0 is equivalent to

�
M[m](xm+1) �m+1(xm+1)
�T
m+1(xm+1) 	m+1(xm+1)

�
< 0 for k = 1 (143)

�
M[m+k�1](xm+[k�1]) �m+k(xm+[k])

�T
m+k(xm+[k]) 	m+k(xm+[k])

�
< 0 for 2 � k � n�m ; (144)

where �m+k depends only on (L[m+k]; R[m+k]) and (sm+1; � � � ; sm+k�1) and their partial derivatives. The
symmetric matrix 	m+k depends on (Lm+k; Rm+k) and sm+k.

The next theorem is proved by following the argument of state-feedback control(Ito and Freeman,
1999b).

Lemma 7 Let k be an integer in [1; n�m].
(i) Assume that (

N[m](xm+1) < 0; 8xm+1 2 R if k = 1
N[m+k�1](xm+[k�1]) < 0; 8xm+[k�1] 2 R

k�1 if 2 � k � n�m
(145)
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holds. Then there always exist a smooth function sm+k(xm+[k]) such that

( ~	k(xm+1) � ~�T
k (xm+1)N

�1
[m+1](xm+1)~�k(xm+1) < 0 if k = 1

~	k(xm+[k])� ~�T
k (xm+[k])N

�1
[m+k�1](xm+[k�1])~�k(xm+[k]) < 0 if 2 � k � n�m

(146)

is satis�ed for all xm+[k] 2 R
k.

(ii) Assume that

(
M[m](xm+1) < 0; 8xm+1 2 R if k = 1
M[m+k�1](xm+[k�1]) < 0; 8xm+[k�1] 2 R

k�1 if 2 � k � n�m
(147)

holds. Then there always exist a C0 function �m+k(xm+[k]) and a smooth function sm+k(xm+[k]) such
that (

	k(xm+1)� �T
k (xm+1)M

�1
[m+1](xm+1)�k(xm+1) < 0 if k = 1

	k(xm+[k]) � �T
k (xm+[k])M

�1
[m+k�1](xm+[k�1])�k(xm+[k]) < 0 if 2 � k � n�m

(148)

�m+k(xm+[k]) > 0 (149)

are satis�ed for all xm+[k] 2 R
k with Lk = �kIpk and Rk = 0.

The explicit formulas of analytical solutions fsk; �kg to the problems of the above theorem are the same
as those of the state-feedback case(Ito and Freeman, 1999b). By using Lemma 7 recursively from k = 1
through k = n �m, we directly obtain the main results of this section.

Theorem 8 If Assumption 1 is satis�ed, then, the nominal nonlinear system �02 can be globally uni-
formly asymptotically stabilized by the static feedback law (122) with a smooth function K.

Theorem 9 Suppose that Assumption 2 is satis�ed.

(i) Assume that the uncertainty �� only has static uncertain components �is and �ir. The system �P2

can be globally uniformly asymptotically stabilized for any admissible uncertainty by the static feedback
law (122) with a smooth function K.

(ii) Assume that the uncertainty �� has dynamic uncertain components �id. The system �P2 can be
semi-globally uniformly asymptotically stabilized for any admissible uncertainty by the static feedback
law (122) with a smooth function K.

Theorem 10 Assume that there exist a constant matrix PM > 0, a constant scaling L[m] 2 L[m] and
a constant number � > 0 such that MS[m] + �I < 0 holds for all xm+1 2 R with R[m] = 0. Then, the
system �02 can be made ISS by the static feedback law (122) with a smooth function K.
Proof : If MS[m] + �I < 0 holds for all xm+1 2 R, there exists a C0 function CM (xm+1) such that
M[m] + �I < 0 holds for all xm+1 2 R with the constant L[m] and R[m] = 0. The rest of the proof is
completed in the same way as (Ito and Freeman, 1999a).

The results of this section are similar to the result of Chapter 7 in Freeman and Kokotovi�c (1996)
which considers a tracking control problem without uncertainty. This section considers stabilization of
uncertain systems. Assumption 1 is identical with the assumption in Freeman and Kokotovi�c (1996)
for nominal stabilization. The paper extends their observation to the robust stabilization. In addition,
this section shows that controllers can be static for global stabilization against a general class of struc-
tured uncertainties, while tracking problems which cause change of the equilibrium requires dynamic
controllers.
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