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1 Introduction

This paper considers global stabilization of uncertain nonlinear systems in the so-called strict-feedback
form(Krstic et al., 1995; Freeman and Kokotovi¢, 1996). New design procedures for reduced-order dy-
namic and static partial-state feedback laws are developed by using the concept of the state-dependent(SD)
scaling and diffeomorphism. Recently it has been shown that the SD scaling provides a systematic and
unified method of robust backstepping design for state-feedback control(Ito and Freeman, 19990; Ito
and Freeman, 1999a). The methodology of SD scaling design is applicable not only to strict feedback
systems, but also to other unspecific classes of nonlinear systems(Ito, 1998b). The diffeomorphism be-
tween two state coordinates is a way to represent a non-quadratic Lyapunov function V(z) = 2T P(x)x
with P(z) > 0. Indeed, Choleskey factorization of P~! indicates that V is quadratic in another co-
ordinate(Ito, 1999). Compared with the parameter-dependent Lyapunov representation(Wu et al.,
1996; Apkarian and Adams, 1998) and the NLMI approach(Lu and Doyle, 1995), the diffeomorphism is
more useful for guaranteeing global stabilization of nonlinear systems(Freeman and Kokotovi¢, 1996; Ito
and Freeman, 19995).

There are many papers dealing with semi-global stabilization of nonlinear systems whose state vari-
ables are not completely available for feedback. The technique of input saturation and high-gain observer
(Esfandiari and Khalil, 1992; Khalil and Esfandiari, 1993; Lin and Saberi, 1995). has been successful
for semi-global stabilization. The studies (Teel and Praly, 1995; Teel and Praly, 1994) provide a use-
ful semi-global backstepping lemma for high-gain partial-state feedback and high-gain observers with
saturating control for dynamic output feedback. However, given an uncertain system, semi-global sta-
bilization using high-gain and saturation would be meaningful only if the system cannot be globally
stabilized. From this viewpoint, this paper seeks global stabilization in stead of settling for semi-global
stabilization. As for global results of partial-state feedback stabilization of nonlinear systems in the
strict-feedback form, typical results are applicable only to nonlinear systems whose nonlinearities depend
only on the measured state, e.g. (Krsti¢ et al., 1995). In (Freeman and Kokotovi¢, 1996) it is shown
that global stability can be achievable by partial-state feedback if nonlinearities in the unmeasured part
depend linearly on the unmeasured states and if the unmeasured part of the system is stable. Explicit
discussion about robust stabilization via these types of control is absent. No result of reduced-order
dynamic controllers is available for partial-state feedback robust control design of nonlinear systems
although reduced-order controllers are well investigated for robust linear systems control. The only
result relevant to reduced-order observers is found in (Kanellakopoulos, 1991) for output feedback in
adaptive control.

The standpoint of this paper is similar to a common one in the linear robust control literature.
This paper first proposes a method of solving or tackling design problems regardless of the existence of
solutions. Since the problem may inherently have no solutions, a condition for the existence is derived.
For robust stabilization, the condition is nothing but the allowable size of uncertainty. The paper also
shows the class of systems for which solutions are always exist. This latter position is rather common
in the nonlinear control literature.

This paper successfully extends the author’s state-dependent scaling design for state-feedback back-
stepping to the partial-state feedback case. This paper proposes partial-state feedback controllers whose
dynamics is introduced only for unmeasured states. This contrasts with output feedback control with
full-order observers, e.g.(Krsti¢ et al., 1995; Ito and Krsti¢, 1999). This paper presents the state coor-
dinates on which the diffeomorphism and SD scaling should be defined for the partial-state feedback
problem. Such an appropriate pair of diffeomorphism and SD scaling makes the recursive procedure
feasible and guarantees the existence of solutions. The paper derives a condition of “nonlinear size 7 of
uncertainty under which global robust stabilization can be achieved. The difference between abilities of
full-order observer and reduced-order observer feedback control is clearly described. The difference does
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Figure 1: Uncertain nonlinear plant ¥p

not appear in nominal stabilization. This paper also investigate a static partial-state feedback prob-
lem. It is shown that an uncertain systems can be globally robustly stabilized by static partial-state
feedback unless backstepping is required for unmeasured part of the system. The robustness considered
throughout this paper is practically desirable and useful in that the size, nonlinearity and location of
uncertainties are prescribed a priori, which is completely different from the inverse optimal type of
robustness(Freeman and Kokotovi¢, 1996; Sepulchre et al., 1997; Krsti¢ and Li, 1998).

2 Uncertain plants with partial-state measurement

Consider the uncertain nonlinear system ¥p shown in Fig.1. Here, ¥y denotes a nominal plant and ¥
represents the uncertain part of the control system. We assume that the nominal part ¥, is described

by

{ r=Aly)r + Bly)w+ G(y)u z(1)eR", u(l) R
Yo:8 z=C(y)x , w(t)eRP, z(1)eR?P (1)
y = Cyr y(t)eR’

The matrix-valued functions A, B, C and G are assumed to be C° functions. The vectors w and z are

defined as

wy Z1 w;(t) € R¥
Wo Z3 zi(t) € R¥

v T » P20, p=Ylp 2)
wy, Zn 12172,"',71

ay, dayy 0 e e 0
g1 agy g3 0 0 0
i . A 3)
Up—1,1 Qp-12 """ """ Un—1,n e
an71 an72 ...... an7n
with C° scalar functions a,; satisfying
ag(x) = aij(w, @2, @), 1<i<n, 1<j<i+1
aiip1(T1, 29, 2;) #0, 1<:<n, VreR" (4)



As for functions B and C', we assume

By 0 - 0 Cy1 O 0
b 0 By, . | o= 0‘21 Cya (5)
0O --- 0 Bn,n Cn 1 " Cn,n—l Cn,n

)

where B;; € RYP and C;; € RP*! satisfy
Bii(x)=By(x1, 29, -, 1), Cij(x) =Cj(x, 29, -, 1) (6)

for 1 <2z <nand 1l <j <: Inregard to the uncertain part of the system X p, we suppose that ¥
has the following structure of nonlinear mappings A : z +— w.

A = block-diag[Ay, Ay, -+ -, AL, (7)

where some of the mappings A; : z; — w;, 2 = 1,2,...,n can be zero in vector size. Fach uncertainty
A; is allowed to have three types of components:

Zid Wid
ANjtzi= |z | = wi= | wis |, wi=

Zir Wiy

Ay
0

0
Ais
0

0
0
Air
Here, A;4 represents a dynamic system. A;; and A;, denote full static and repeated static scalar systems,
respectively. It is unnecessary for A; to have all types of uncertainty. The dynamic uncertainty A, is

defined by
S Ea, = fa(Tags Ziat)
Azd : { Wiy = hAiZ(xA“Zida t) 9 (9)

where fa,,(0,0,7) =0 and ha,(0,0,1) = 0 are satisfied for all t > 0 and fa., and ha,, are vector-valued
C° functions. The full static part A, is described by

Ais Wi = hAiS(Zisat)a (10)

where ha, 1s a vector-valued C0 function and ha,. (0,t) =0 for all t > 0. The repeated static part A,
is defined with r; > 1 copies of a static scalar system 6;, :

Air = dlég 52'7« = 52'7«]”, 52'7« L Ws;, = h5ir (t)Zgir (11)
j=1
where hs. is a scalar-valued C° function. For notational simplicity, we assume that A;; and A;, are
square in size of input and output vectors. We consider the following class of uncertainty »a.

Definition 1 The uncertainty ¥ a is said to be admissible if (1)-(iil) are satisfied fore=1,2,... n: (i)
Aiq has Lo-gain less than or equal to 1 with a radially unbounded C' storage function Va;(za,) satisfying
Vai(0) = 0. (il) Ay, satisfies ||za, ||* = ||wa,,||* for all t € [0,00). (iii) &, satisfies ||zs, [|* > ||ws. ||?
for allt € [0,00).

The uncertain system Yp has an equilibrium point at the origin when v = 0. The uncertainty affects
the system as

B11A1011 0 o --- T
B(:Ii)w: By AyCoq1 BygAyCsy 0 7. 2 (12)



The operator A; does not represent matrix multiplication but nonlinear mappings which can have dy-
namics with initial conditions. Note that B;; and C;; are a row vector and a column vector, respectively.
This implies that the two nonlinear uncertainties ByA;Cy1 and By Ay Chy can be completely indepen-
dent of each other. It is possible to extend the materials of this paper easily to the uncertain system
which has A blocks in a more general manner as in Ito and Freeman (1999b). The system ¥ not
only describes a nominal plant, but also can include information about nonlinearities of uncertainty.
Indeed, ¥y specifies how the uncertainty affects the nominal plant such as geometrical locations, struc-
tures of uncertainties where uncertain parameters are present. The matrices B(x) and C(x) specify the
“nonlinear size” (including size, nonlinearity, location and structure) of uncertainties.

This paper considers feedback control with two types of partial-state measurement for the uncertain
systems ¥ p shown in Fig.1.
Uncertain plant Yp; : The state x of the nominal part ¥g is decomposed into

x = [xM] (13)

TN

It is assumed that only the upper part 3 € R™ (1 < m < n) is measured. The matrices A, B, C' and
G are independent of 2. The system g in (1) is described as

K R Pl 1 )l G S R | Vg R PRI

st [ = (60 evten] (V] (4

Z m
:[]mo][l']\]\{]7 wyn, 2N € R™,  qn =302 pi

where Ay ny and Ax are assumed to be constant.
Uncertain plant Yp, : The state @ of the nominal part ¥y is decomposed into (13). Only the lower

part xny € R™"™™ is measured. The matrices A, B, G and C are independent of ;. The system Yg in
(1) is described as

e v e il Bl R S o) i R PN

0 x
ol ][ o T 2 :
o [ZN Cym(zn) Cn(an) | | 2N (15)
:[Ojn—m][i']\]\{]7 wszNEquv qm:z:ilpl
where Ay, Ayn, By and Cyy are allowed to depend only on x4 1.
The case of 23y = @1 in ¥py is sometime called the output feedback problem in the literature(Krsti¢

et al., 1995). Note that Ay, Ayn, Ba and Cyp of Yoz do not satisfy (4) and (6). But, other parts of
Yoo are assumed to satisfy (4) and (6).

3 SD scaling and diffeomorphism for reduced-order dynamic

feedback

Sections from 3 through 5 deal with the uncertain system ¥p;. Consider the following dynamic feedback
for X py.

£ = (Anm(zar) + ANY — HAuNY — Y Aylan))ear + (A — Y Ay )€ + Gu(zar)u (16)



The matrix Y is constant and is in the form of

0---0
DY,
0---0

which is consistent with the zero entries of Ap;n. The order of the dynamic controller is n — m which is

7 Y € /]?/(n—m)Xm7 Ym c R(n—m)xl (18)

less than n of dynamic controllers based on full-order state observers(Krsti¢ et al., 1995; Ito and Krsti¢,
1999). The dynamics (16) reduces to the reduced-order observer for linear systems when matrices are
independent of x;. The closed-loop system with the reduced-order dynamic feedback is described by

j‘;M Tpr BM 0 w
IN | =Ag|an |+ | 0 By [wM] (19)
£ 13 0 0 N
Now, we choose the diffeomorphism between (7, 2, €) € R"™ and the new coordinate (xas, Xn, é) eER”
as
W | = o1y o I||ay (20)
¢ 00(W ] LY —I1 13

where W is a non-singular constant matrix. The matrix-valued function S(x s, Zx) defines a diffeomor-
phism between (a7, &x) € R™ and (xar, Xv) € R™ as follows:

2] = o) [59]. St i) = [ St L ] (21)

N Snm(xar, n) Sn(zar, &)
where &y = £ 4+ Y. The time-derivative of (xas, Yn) is
e e _92 | v : S :
X [8:1;1 [SL’N T 7 9x,, LaAN ] 0%, LAV 07, LN TN + 5@ dw) TN
. Z
N
T = A .
(s, &) [TNM(xMaxN) Tn(zar, Tn)

Hence, we obtain

XM 0777 0 07 T I 00 ) X
{X_N] | Tlo||v o ]] {x%] [x]\]\{] ~ |0 ]—]] [5 0 ”Xﬂq (23)
¢ 00|W | LY —I11]] ¢ ¢ Y1 o |[00[WT]]| ¢

By using the new coordinate, the closed-loop system is expressed as

%M 7|V Ap Apn —Aun g1 0 XM
XN = 0 ANM—I_GN[(M AN—I_GN[(N _YAMN 0 X{\f
[ By 0 w
+|YBy 0 [wM] (24)
| Y By — By N
[ e — T Ay W1 [ XM TuB 0
1 MAMN MDM
= | TAF GRS E T ) AW | | S | | (T + T30V By 0 [EUUM]
i 0 W(AN — YAMN)W_l i f WY By —WByN N
- XM XM
M| CM 0 -1 0 A . -1 0 A




Let K denote the feedback gain for the transformed states (xas, Xn) as
K =[Ky Kn| (26)

Next, sets of SD scaling matrices are defined for the uncertainty ¥, according to (Ito, 19984; Ito
and Freeman, 19995). For the dynamic uncertainty A4, we define

L, := {de = Nglig : Nig > 0} (27)

Here, I;; denotes an identity matrix which is compatible in size with the vector z;4. For the full static
uncertainty A,

| {Lzs = )\is(l'M, JA}N)]Z'S : )\Z'S(J}M, i’N) >0 V(J}M, i’N) € R™ x Rn—m} (28)
is defined. In the case of the repeated static uncertainty A, we define

Lir = {LW . Lz;(l’M,ﬁ}N) = Lir(l'Mai'N)a Lir(l'Mai'N) >0 V(J}M,i']\f) € R™ x Rn_m} (29)
Rir = {RW : Rz;(l’M,i'N) = _Rir(xMat%N) V(Q?M,i']\f) € R™ x Rn—m} (30)

Here, both L;, and R, are square matrices whose size is the same as the dimension of z;.. Scaling
matrices for the whole ¥, are given by

L:= {L:blocﬁ—diagLi(xM, N), LiELi} (31)
=1
R:= {R:blocﬁ—diagRi(xM, TN, RieRi} (32)
=1
L 0 0 Lid € Lid
Li = LZ(J}M, i’N) = 0 Lis(va ) *%N) 0 : Lis € Lis (33)
0 0 Lir(va 9 i’N) Lir S LZT
00 0
R, = Ri(l’M,,i'N) =1{00 0 R, e R;, , (34)
00 Rir(va ‘%N)

Note that a constant A > 0 satisfies A\l € L; and 0 € R;. Because B;A;Cj; is scalar, a repeated
static uncertainty can always be represented by a scalar full static uncertainty. However, we include
the repeated representation here because it allows more degrees of freedom in the scaling design.

By using the diffeomorphism (20) and the SD scaling (31-32), we can prove the following.

Theorem 1 (i) Suppose that there exist constant matrices P = PT > 0 and P = PT > 0 such that

N(J}M, JA}N) =
T
-T ATT a1 _ M -1
ST(A+ GK)'TTP+ PT(A + GK)S P[TNM_I_TNNY]NAMNW 0
—WTAL [T TE +YTTE] P Wl (Ay = YV Ayn)TWTP + PW(Ay — Y Ay ) W1
(35)

is satisfied for all (xpr, N ) in R™, then the nominal nonlinear system Yoy is globally uniformly asymp-
totically stabilized by the reduced-order dynamic feedback (16-17). Furthermore, a Lyapunov function is
given by

v =[] e ] e



(ii) Suppose that there exist constant matrices P = PT > 0, P = PT > 0 and scaling functions L € L
and R € R such that

M(va‘%N) =
[ 5T(A+ GK)TTT P+ Tr B Tt T oot T T =
{ PT(A+ GK)S™! [(TNM+TNY)B o T T STCRL =B Ty Y]AMNW
L o |BMYTlwrp_p Wt
0 1
x . L L CN] W
" " * W_T(NAN — YAMN)TWTP—I-
L PW(AN — YAMN)W_l ]
<0 (36)

is satisfied for all (xpr, &n) in R™, then the uncertain nonlinear system Ypy is globally uniformly asymp-
totically stabilized by reduced-order dynamic feedback (16-17) for any admissible uncertainty Y. Fur-
thermore, a Lyapunov function is given by

=[] [ et S

The robust (nominal) stabilization problem is reduced into the existence of scaling matrices and a
diffeomorphism which make the matrix M (N, respectively) negative. This is the fundamental of SD
scaling design. Section 4 and 5 investigate how to solve the negativity problems.

Since Ax and Apyy are constant and the pair is observable by the assumption (4), there exist constant
matrices P > 0 and Y such that

(Ay —YAyn) P4+ P(Ay — YAyy) <0 (37)

is satisfied. The observer gain Y can be constructed by using the standard linear control theory.
By Cholesky factorization of P!, there exists a non- singular lower triangular matrix W such that
P =WTPW with a diagonal matrlx P > 0. Hence, the inequality (37) is equivalent to

H=WT(Ay —YAun)TWTP ¢
PW(Ay —YAyun)W™t <0 (38)

Although P can be always an identity matrix in Cholesky factorization, the choice of P # [ may be
exploited to obtain different solutions in design. Note that if Ay and Apn satisfy

(An(aag) — YAy (200) T P+ P(An(2ag) — YAy (221)) < 0 (39)
for all z3; € R™ with constant matrices P> 0and Y, the matrices Ay and Ap;n are allowed to depend
on %, in Section 3-5.

4 Recursive selection of SD scaling and diffeomorphism

This section demonstrates that the structures of diffeomorphism and SD scaling newly proposed in
(20-21) and (31-32) lead us to a recursive procedure of SD scaling design for reduced-order partial-state

8



feedback. Let = denote

] e ]
z=| " =0 | = [“’M] (40)
Tm+1 LTm41 TN
L jn - L in -
We choose the diffeomorphism S(z,_q)) in the form of
1 0 0 ---0
s 1 0 -0
S_I(J}M,JA?N): 0 8‘2 1 0 (41)
0 - 0 5,41
Let smooth scalar functions s; , 89, -+, 8, be
si(xy) for 1 <0 <m (42)
si(xpqy) for m+1<i<n (43)
The smooth function matrix T'(zp,—11) becomes
i 1 0 0 - 0 0 07
*11 1 0 T : 0 0
*2.2 *2.2 1 : 0 0
: : 0 0 0
T(xnm, in) = *mm *mom Kmum 1 0 01, (44)
*m,m—l—l *m,m—l—l Tt *m,m—l—l *m,m—l—l 1 0
_*n—?,n—l *n—?,n—l e *n—?,n—l *n—?,n—l Tt *n—?,n—l 1_

where x; ; denotes any function depending only on z[;, and the functions s; through s; and their partial
derivatives. Note that the only source of Z-dependence in N and M is T and that 7}, 1) does not contain
Zma1. That is why the function s,,41 is chosen to be independent of #,,,1. Let W be represented by

Wi, 0 .. 0
W = W21 Wi 5 (45)
: 0
Wn—m,l e Wn—m,n—m—l Wn—m,n—m
Due to the structure of T', we have
I O(m—l)x(n—m) 1
. P R
M -1 * 0-.---0
A W = m,m 46
[TNM‘|‘TNY] MN *momt1 0o+ 0 (46)
: ceee 0
*n—?,n—l 0--- 0_




We consider a feedback gain (26) in the form of
K= [(—1)”_151---3n Ce —S, 15, Sn] )
The following definitions are needed.

A=[AG], S:= [O‘S_l ]

—0]s,

We choose P as a diagonal matrix:

n k
P = diag P, P; >0, Py =diagh;

Recursive representation is introduced to matrices as follows:

_ Sl 0 - S
St = [0 0 ] Sty = [—U—’“ ]

"OSkll 0"'08k
_ Ty . Tr_11 |0

ayy PP | BETTI 0

agy Ay azy 0 .- 0 gn CO o 0
N . . .. . . _ 21 L2 ) :
Ay = : : oo : , Oy = o . 0

Qp_11 Qk—1,2 ** " * " ap—1) 0 Crr -+ Crio1 Crg
4251 (27 N Grr Ok k41

The k x ¢y, left upper part of

T By 0
(Tnar +TNY)Bas 0

is denoted by B[k], where ¢, = Y%, p;. The recursive definitions of the scaling matrices are

Li(zp) € for 1<i<m
L[k]::{L blockdlagL LZ( Ti- )EL for i1=m+1 }
i=1 (
i\

(3

x )EL for m+2<i:<n
K Ri(x
Ry := ¢ By =block-diag R; : %E

1
2
) €ER;  for 1<i<m
Z1])ER for i=m+1 }
Z2])ER for m+1<i:<n

11—

=1
7

Let N be defined by

< Ny QT Ny, <
Ny q=N
0 l Nio, e M
Nign = S Afyg P+ Py T Apa S
] T _ L
Nl?(x[n—2]) =-P [TNM -]l-WTNY] ApnW 17 (NIZ(x[n—l]) iftm=n-—1)

where [ denotes a k& x k identity matrix. The dependence of N[k] and Npiq on 7 is

N[k](i'[k])a Npgui(zgg) if 1 <k<m
N[k](i'[k—l])a N[k]n(i'[k_q) Hm+1<k<n

10
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In a similar manner, M[k] is defined as

Y _ Mk]ll Q%MIQ Y
M[k] — [Mlek H 9 M[n]

&T 4 iod = T _T
Stg AT Pm + P T Ap S P B+ 55 Cl Bl Sty ClinLin

M (62)

* * —L[k]
I R R e
Tym +TnY | 7MY
_ B]@YT T ~ 0 -1 _ .
M12([L'[n_2]) = —BT W P—R C W 5 (M12($[n_1]) lf m=n — 1) (64)
N N
0 1
I -k CN] W 1
I, 00
i 00 0 i
Qk =0 ]qk 0 ’ Qn = in42P (65)
0 0 O
0 0 [

The dependence of M[k] and Mpgi; on  is the same as in (60-61). Note that Npj = QTN Q) and
Mg = Q;{MH Q. We can verify the following easily.

Theorem 2 Suppose 1 < k < n.

(i-a) N[k] does not include {Sk11,Sk42," 580}

(i-b) Every entry of N[k] is affine in sy.

(i-¢) Every entry of N[k] is simultaneously affine in all the entries of Py.

(i-d) N[k] < 0 implies N[k—l] <0 unless k= 1.

(ii-a) M[k] does not include either {11, Sp4a, S}, { Lty Lryay s L} or {Rpy1, Rigoy -+, Ry}
(ii-b) Every entry of M[k] is simultaneously affine in L, Ry and s.

(ii-c) Every entry of M[k] is simultaneously affine in all the entries of Ly, Ry and Py,.

(ii-d) M[k] < 0 implies M[k—l] <0 unless k = 1.

The problem of SD scaling is recursively linear in design parameters. On the basis of Theorem 2, this
paper proposes the following procedures for reduced-order dynamic partial-state feedback design.
Nominal backstepping : Solve N[k] < 0 for s from k£ =1 through k& =n.

Robust backstepping : Solve M[k] < 0 for {sy, Ly, Ry} from k =1 through k = n.

Both the procedures assume that P, P, W and Y are given. The recursive procedures can be carried
out since the process of finding design parameters at Step & does not require any design parameters
to be found at Step k£ + 1,k + 2,...,n. The recursive procedures are justified by (i-d) and (ii-d). The
problem of finding {Ly, Ry, s} satisfying M[k] < 0 (or N[k] < 0) is a convex problem. Thus these
backstepping procedures via SD scaling are amenable to numerical computation and optimization as it
has been shown for state-feedback control(Ito and Freeman, 19995).

11



5 Existence of solutions

This section investigates whether the solutions exist or not in the recursive procedures proposed in the

previous section. This section also provides their analytical solutions.
Define the following two functions.

Ny = Ny — QF Nio H N, O

Mpg = My — Qf My H™' M{5Qy,
From the Schur complements formula it follows that the equivalence

N[k] <0< N[k] <0
M[k] <0< M[k] <0

are true on the assumption that H < 0 holds. The matrices Njy and My are represented by

[k(f[k) N[k]ll R for 1<k<m-—1
N[k(f[k) :N[k]ll Q) for k=m
N[k(f[k 1) Nkn—QkNmH 1T2Qk for m+1<k<n
My (zpy) = Mg for 1 <k<m-—1
k(:f;k):M 11—@)7 ~ for k=m
k (i’ ) [k 11— Q{MlgH_lMngk fOI’ m —|— 1 S k S n
The matrices © and © are given by
[0 ---0 0
N N . | n 0
i -0 P2Wita?, a0
[ (:) 0 am,m—l—lwl_ll[H_l]l,*YmBmm 0
O(Zpn) = 0 0 0 0
[m] o BTI;mYTg[H ]1,*W1_11am,m+10 0 BTI;mYTg[H_l]YmBmm 0
0 0 0 0

Here, [H™'], . denotes the first row of H~!.

Lemma 1 Suppose 2 < k < n.
(i) The symmetric matriz

N[k;l](i'[k—l]) (Pk(‘%[k]) <0  for 2<k<m
CPi(rn) Welap)
Nie—1)(Zp-17) Pr(ZTpr—1))
(k=11 LT <0 for k=m+1
fbg(l'ﬂc—l]) Uy (Zpg-17) f
[k=1] i‘[k—z]) (Pk(i’[k—l]) <0 for m+2<k<n
O (Tpe-1)  Ur(Tp-1y) f

12
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where @, depends only on (81, -+, 8k_1) and their partial derivatives. The symmetric matriz U, depends
on Sj.
(ii) Assume that P is diagonal. Then, the symmetric matriz

M (1) = Wi(1) (76)

depends only on (Ly, Ry) and s;. Mpyy <0 is equivalent to

Mpy_y(zp-11) Pr(Tpy)
- _ <0 or 2<k<m
COp(apy) Wkl Jor 25k <
b= (T-1) PelZi-1) | 0 o k= 1 -
O (Zpe—1))  Wrl(Zp-1y) Jor mt (77)
My 1y (ZTpe—g)) Pr(Tpp-1))
) - <0 2< k<
O (Zpe—1y)  Yrl(Zp-1y) for mt2sksn

where @y depends only on (Ly, Ry,---, Ly, Ry) and (sy,---,s5_1) and their partial derivatives. The
symmetric matric Wy, depends on (Ly, Rg) and sy.

The proof is straightforward and is similar to (Ito and Krsti¢, 1999). The matrices ® and ¥ for Ny
are obtained as

O = kpp1, Wi =2P(ap + appyrSk +xpo1por) for 1<k <m—1 (78)

Q= xp -1, Vi =2Pi(ars + ap 155 + *pp—1) for k=m (79)

Q=0 5-15-1, Ui =2P(apr + arpr15k + 01 h—1) for m+1<k<n (80)

where o, ;. denotes any function depending only on x[,), [—m], and (s1,---,sz) and their partial

derivatives. As for M[k], matrices ®; and ¥, are obtained as follows:
for 1 <k<m-—-1

(kg ko1 kg1 BE *k—1,k—1cg_Lk
(I)k = *k,k—l 0 (81)
0 0 0
(2P (ag, + ap g1 Sk + *4—14-1) PuBirr + CLRE CL Ly
i * * _Lk
for k=m
[ i—1 *rgh—1 BE 1,610 _ Ly
O = | %1 0 (83)
0 0 0
_2Pk(akk + ap 15k + *pp—1) PrBrr — Gm,m+1W1_11 [H™ Y, .Y, B + CiLRE ClL Ly
U, = « — Ly — BT YTIHY,, By 0 | -(84)
i * * —Lk

form+1<k<n

T T
O k—1h—1 Omk—2k-1010 ®n ok 10 Ly
T
Q) = | Crmk—1h-1 Uk Cmr—3k-1Cnp L (85)
T T
Cmk—1h-1 Crp—3k-18r Cmr—3r1Cxny _ Lk

W, =
2P (apk + g 15k + Omk—1k-1) Omk—1k—1 + (8mp—1k-1 + CL)RE (o1 k-1 +CL)Ly
* — Ly + Ugy (Rk %m0 +%m,0)C A x_ Lk (36)
* * — Ly — LkCN,k,—W[;im] [H_l][k—m]W[;Tm]C]€7k7_Lk
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where ¢, ;5 denotes any function depending only on ([, Z[j—m]) and (L, Rpy), and (s1,-- -, s;) and
their partial derivatives. Form 4+ 1 < k < n,

iy = (Ve me | oy = =, o)
%] F0 HH—I ek | [n—m)] ) (1]
Wit o
-1 _ k-1 1 _ -1 1 _ ypr—1
Wi = [ 00 W—;] » Womm =W, Wy =Wy (88)
_ [Cp=u| 0 ] _ [Cp-10 _
C[k] N |: *m,O |Ckk:| B |: Ck,— :| ? Ck,— - [Ck71 Ck,m|CN,k,—] (89)
are used. The definition of
Um—l—l,m-l—l(x[m]) c RPm+1 ><pm+17 U*,m-l—l(x[m]) c quXpm+1 for k = m + 1 (90)
Ukk(x[m]7 i'[k_g]) € Rkapk, U*Jg(l'[m], i'[k_g]) € R&»=1*Pk for m 4 2 <k<n (91)
are given by
U = =[BYW' P + RyCyW T HT [BRWT P 4+ RyCy W (92)
Uk = —Up—y H [ BRYWT P + RyCy WL (93)
where
Ry = blod?—diag R; (94)

[BYWTP 4+ RyCyW—1,,
BIWTP 4 RyCywt = | [BAWIP A+ BNOn W

[BEWTP + RyCyW 1,
0 _
RNCN] W 1) (96)

According to (70) and (71), the matrices N and My from k = 1 to k = m — 1 are exactly the same
as those for the state-feedback(Ito and Freeman, 1999b). The backstepping procedure to find Ly, Ry
and sy satisfying M[k] < 0 (or N[k] < 0) can be carried out for all entries of xps but x,, as it is done for
the state-feedback case.

. _BT yvT .
Upg = [y, 0] ([ BA]% ]WTP—l—

Lemma 2 Let k is any integer belonging to [1,m — 1].
(i) Assume that N[k_l](:f[k_l]) < 0 hold for all xp_y € R unless k = 1. There always exisls a
scalar-valued smooth function si(Tp) such that

Nig(ap) <0 (97)

is satisfied for all Ty € RE.
(i)) Assume that My_y(Tp—1) < 0 hold for all Ty_q € R unless k = 1. There always exist a
scalar-valued smooth function si(2p) and a C° function \y(Zpy) such that

My(Z) <0, Ae(Epg) > 0 (98)
are satisfied with Ly = A1, and Ry =0 for all Ty € Rk,

14



Let jk(:f;[k_l]) € R'*! be defined with
U, — &)}{N[;il]ci)k for m+1<k<n (99)
We also define Ji(Zp—1)) € R, E(Zp_1)) € RV and Fy(ZTp_1)) € R*PF**Pk as

Ji

U — O MLy = | pr gy

] for m+1<k<n (100)
The matrices jm(:i'[m]), o (Zpn))s L (Zm)) and F,(Z[,) are defied in the same way. Using the Schur
complements of (99) and (100) , we have the following.

Lemma 3 Let k is any integer belonging to [m + 1, n].
i) Assume that Ny_11(Zpe_q) < 0 is satisfied for all Tr_q1 € R*2. Then, Ny(Zp_11) < 0 holds for all
(k=N L [k~2] [k—2] (K]\ L [k~1]
Tg—1] € REYif and only if

Ji <0 (101)

is satisfied for all Tp,_q) € REL,
(i) Assume that My_y(Tp-g) < 0 is satisfied for all Tp_y € RF=2. Then, M(Zpg—1y) < 0 holds for
all Zp—q) € R* if and only if
Fp <0, Jp— ExF7PEL <0, when py #0 (102)
Jr <0, when py =0 (103)

are satisfied for all Tp,_q) € R,
iti) The statements (i) and (it) are true for k = m by replacing Tp,_1) with Zp,.
[m—1] [m]

From (79) and (80), the function Jy is given by
Je = 2P (agr + ak 155 + 0 h—14-1) (104)

This implies that there always exist a scalar-valued smooth function s;(Zp_11) such that jk(:i'[k_l]) <0
is satisfied for all zp_q (Z},] in the k = m case). Hence, we can obtain the following.

Theorem 3 The nominal nonlinear system Yoy can be globally uniformly asymptotically stabilized by
the reduced-order dynamic feedback law (16-17) with a smooth function K.

Note that Ay and Apn are allowed to depend on xyy if (39) is satisfied. The result of (Kanellakopoulos,
1991) without the adaptive mechanism can be considered as the special case xp; = x; of the above
theorem. Theorem 3, however, employs domination instead of exact cancelation.

As for robust stabilization, from (83-86), the matrices Jj is given by

Ji = 2Pg(ark + app158) + Omh—1h-1 (105)
for m < k <n.

Lemma 4 Let k is any integer belonging to [m+1,n]. Suppose that C° function matrices Ly(xn], L—z))
and Ry(x.), Tr_q)) belong to Ly, and Ry, respectively. Then, there always exist a scalar-valued smooth
Junction s (Zp_y)) such that Jy, — Eka_lEg < 0 is satisfied for all Tp_q) € RF1. This fact is also true
for k =m by replacing Zp,—1) with T(,.
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Due to (83-86), for m < k < n, the matrices F; and F}, defined with Rj, = 0 are

Ey(2p, Tp-1)) = [Qm,k—1,k—1 (CL + Qm,k—1,k—1)Lk] (106)
Fo(zpm) = fork=m (107)
—L,, — BY YT[H'Y,, By *mo0CE L,
=m0, (108)
* —Lpy — Ly Cry _Fp20C Ly,
Fk(x[m],i'[k_g]) = for k>m+1 (109)
—Ly - B]E,_,kwgg_m)f)(k—m)([H_l](k_m) + Fa1) P iy Wik my Br— k- (%m0 — BﬁkWTPJ?mz)C;Z_Lk
* —L — Lk(CN,k,—W[;im][H_l][k—m]W[;Tm]Cﬁh_ + Ck,—FkZZC]Z_)Lk
T
B 9 O k—2,k—1 B 9 O k—2,k—1 Fruy Fiis
Fi(@pm), Tppme)) = | Uk $mp—sh-1 M[;il] Ui Omp—si-1 | = an r ] (110)
0 k-3 k-1 Qi k=3 k-1 M2 Lk
~ . ~ _ 0
Up(@ ), #pg) = —Up—yy 1~ [In_;m] (111)
T
_ 92,00 . ®,,,00
Fnoa () = | 0 My | 0 (112)
0 0
Here, the following expressions are used.
0
BN = [BNm-I-l |BNm-I-2|' : |BNn] = BN,—,m—l—l - : ) BN,—,n = Bnn (113)
BN,—,m—I—Z 0
. BN,—,n
rCy |0 -+ 07 Oy |0 -+ 07
O = 027_ 0 : ,CN: CN727_ 0 : (114)
: 0 : 0
L Cn,— i L CN,n,— J
1 [H_l]kk *0,0 1 -1 1 -1
[H ](k) = [ *0.0 %[H_l](k—l)‘| ) [H ](1) =H ) [H ](n—m) — [H ]n—m,n—m (115)

. Pl 0 . . . .
Py = Py =P —m) — Pn—m 116
(*) [%0 P<k+1>] . Pay="P Pl (116)

_[Wi| O B B
Wy = [*o,o W(k—l—l)] > Wy =W Wy = Wamnom (117)

Lemma 5 (i) For k = m: Suppose that R,, =0, p,, # 0. Assume that M[m_l](:f[m_l]) < 0 holds for all
T[pm—1] € R™=L. There exists a scalar-valued C° function Ae(@[m) such that

Ae(@my) > 0, Fi(pny) <0 (118)
are satisfied for all x,) € R™ with Ly(2p) = Me(2p) Ly, of

Mo (=B, Y H™Y, B ) Anas (—Cim Fian CF_) <

mm = m

(119)

el M

holds for all x(,) € R™.
(it) For m +1 < k < n: Suppose that R, = 0, py # 0. Assume that Mpy_1)(Z—y) < 0 holds for all
T[p—g] € RF=2. There exists a scalar-valued C° function Ao @[, Tpeg)) such that

Ak (@pms pe-2) > 0, Fio(@pm)s Tpe-21) < 0 (120)
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are satisfied for all (xp,), Tp_g) € R™ X RF=2 with Li(2p, Ti—9) = Me(@pn), o) p if

Amag (_B]€7_7kW(£_m)P(k—m)([H_l](k—m) + i) Py Wii—my BN,—,k)
<

mas (—Cnbe Wit ™ g WLy Cp - — Crm Fran O )

: (121)

]

holds for all (xp,), T—g) € R™ X RF-2,

Since the entries of B and €' matrices represent the nonlinear bounds of uncertainties, the conditions
(119) and (121) are considered as the nonlinear size of tolerable uncertainties. We obtain the following

Theorem 4 Suppose that B and C satisfy (119) for k = m and (121) for all k = m+1,...,n. Assume
that the uncertainty XA only has static uncertain components ;s and ;.. Then, the system Xpy can be
globally uniformly asymptotically stabilized for any admissible uncertainty by the reduced-order dynamic
feedback law (16-17) with a smooth function K.

We can always achieve robust stabilization for the following class of uncertain systems.
Theorem 5 Suppose that B,,,, =0 and By = 0.

(1) If the uncertainty ¥ o only has static uncertain components A;; and A;,, the system Xp; can be glob-
ally uniformly asymptotically stabilized for any admissible uncertainty by the reduced-order dynamic
feedback law (16-17) with a smooth function K.

(ii) If the uncertainty XA has dynamic uncertain components Ny, the system Y py can be semi-globally
uniformly asymptotically stabilized for any admissible uncertainty by the reduced-order dynamic feed-
back law (16-17) with a smooth function K .

Global robust stabilizability against dynamic uncertainties is not always achievable if the nonlinear
size of uncertainty is prescribed a priori. However, if we relax the robustness requirement, a stability
robustness in terms of Input-to-State Stability(ISS) can be obtained.

Theorem 6 Assume that B,,,, is uniformly bounded and By = 0. Then, the system Yo can be 1SS
stabilized by the reduced-order dynamic feedback law (16-17) with a smooth function K.

Note that Ay and Apy are allowed to depend on apy if (39) is satisfied. The difference between full-
order observer and reduced-order observer is clearly seen in Theorem 5 and 6. For robust stabilization,
it has been demonstrated that observer design cannot be completely separated from feedback-gain
design(Ito and Krstic, 1999). The observer must be designed strong enough by taking into account the
size of uncertainty. The reduced-order observer does not have any dynamics for xy; so that this part
of the system cannot be made robust by the observer. This is why the constraint on B,,,, is required
in Theorem 5 and 6 in order to guarantee that robust stabilization is always achievable for arbitrariy
large admissible uncertainties. The constraint is not required in the full-order observer case(Ito and
Krsti¢, 1999). In contrast, there are no difference between the reduced-order observer and the full-order
observer in achieving nominal stabilization as shown in Theorem 3.

6 Static partial-state feedback

This section focuses on static partial-state feedback control for the class of uncertain systems defined
with ZPQ.
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Consider the static feedback law as
u=K(zy)ry (122)

We consider the diffeomorphism between x € R™ and y € R”™ as follows:

X =S(xy)x . (123)
The time-derivative of y is obtained as
a5 a5 a8
(= ool day + S(ay)i =T i 124
X (9:]1;m_|_1:]c7 8:1;m_|_2x’ ’ 8:1;n$ iy + S(xn)T (xar, aN)E (124)

Note that the matrix 7' may contain unmeasured signal z; even if S only contains . We now choose
a diffeomorphism S(xy) in a particular form of

10 0 0 0 0
01 .00 0
L0l .o
Gy = |0 01 0 0 - 0 125
() 0--- 00 1 0 --- 0 (125)
0= 0 Ospps 10
0--- 0 0| 0 Suot 1]
where all s;, t=m 4+ 1,m+2,...,n are smooth functions of xn. These functions are chosen such that
their dependence on xpy is consistent with
$i(Tpqpy) if m+1<i<n (126)
Here, ,, 4[] denotes
Tm+1
Tm42
T[] = : (127)
T4
and Z,,4[—m] = *n. Due to (126), we have
1 0 I 0 I 0
-1 _ _ J—
S (xN)——[O S&%xN)]’ S(an) = L)SN(xN)]v jxxN)_‘[Ojkme)] (128)
i 1 0 0 0
- 1 0 0
Sn(an) = Sm415m+2 —Smtz 1 0 (129)
L (_1)n_m_13m—|—1"'3n—1 e Sp—28p—-1 —Sn—1 1
i 1 0 0 e 0
*m+1,m+1 1 0 T 0
Tn(zn) = | *mt2mez *mizmrz 1 -0 (130)
L *n—1,n—1 Tt Tt Rpo1n—1 1
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where *,,4;,4; denotes any function depending only on z,,,[; and the functions s, through s, ;
and their partial derivatives. Here, the function 7" only depends on the measured state xn. We now
consider a feedback gain (122) in the form of

K = [(_1)n—m—18m+1,..8n cer —S8,_1S, Sn] (131)

By using the matrices

A . g1
the following is straightforward from Ito and Freeman (19990).

Theorem 7 (i) Suppose that there exist a constant matriz P = PT > 0 such that
N(zy) :=STATTTP+PTAS < 0 (132)

is satisfied for all xn in R™™™. Then, the nominal nonlinear system Yoy ts globally uniformly asymp-
totically stabilized by the static feedback law (122). Furthermore, a Lyapunov function is given by
V =yTPy.

(ii) Suppose that there exist a constant matriz P = PT > 0 and scaling functions L € L and R € R
such that

STATTT P4 PTAS PTB+S-TCTRT S-TCT[,
M(zy)= | BTTTP+RCS™! —L 0 |<0 (133)
LCS™! 0 7

is satisfied for all xn in R"™". Then, the nonlinear system X py is globally uniformly asymptotically
stabilized for any admissible uncertainty X5 by the static feedback law (122). Furthermore, a Lyapunov
function is given by V = xTPx + ", MiaVai(za, ).

Let Npy and My be defined by adding subscript [k] to every matrix in (132) and (133), respectively.
The individual matrices are defined in the same way as in Section 4 except that

Srd ]
4U—r for k=m
Sy = [0"'00 (134)

k] — S—l
[0...k ] for m+1<k<n

OSk
P[m] 0
Pugr 00 0 P for k=m
P = 0 0 Puys - , P[k]:{[ [k—1] 0] for m+1<k<n (135)
0 0 Pk - -
0 . 0 P,

where F,,,; need not be diagonal. The dependence of SD scaling matrices are chosen as

Li(pmy1), Rip(tpgg) for 1 <kE<m (136)
Li(2psp), Be(zpsp) form+1<k<n (137)

From
Am) = A, Bpny = By, C = O (138)
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and the definition of S[m], Ny and M) are given by

T MS[ ] C]\T4L[m]
Nim)(Tmi1) = Ay Prr+PruAn, Mpp)(2my1) = & 0 (139)
L[m]CM 0 —L[m]
AT P+ Py Ay PuBy+CLRY
Msi(2mar) = | M M= [m] 140
) = B P RCy — L o

This section uses the following assumptions.

Assumption 1 There exists a constant symmetric matriz P,y > 0 such that Ny,)(2m41) < 0 is satisfied
forallz,, 1 €R.

Assumption 2 There exist a constant symmetric matriz Py, > 0, C° functions Lip)(2m41) € Lip and
Ry (@mg1) € Ry such that My (2m41) < 0 is satisfied for all x4, € R.

According to Theorem 7, Assumption 1 says that the x/-subsystem is globally uniformly asymptotically
stable. Assumption 2 requires the zj;-subsystem is globally uniformly asymptotically stable for all
admissible uncertainties appearing in the xp;-subsystem. It is obvious that the properties in Theorem
2 are satisfied for My and Ny of this section. Thereby, the following procedures are proposed.
Nominal backstepplng Solve Ny <0 for s;, from k& = m + 1 through k& = n.

Robust backstepping : Solve My < 0 for {sg, Ly, Ry} from k = m 4 1 through k& = n.

Note that the backstepping is only required for the measured part of the state. We can prove the
following.

Lemma 6 Suppose 1 < k <n—m.
(1) Npngr)(Tmapr) <0 is equivalent to

[NNT[m](:I?mH) m+1(:1?m+1) <0 for k=1 (141)
(I)m—l—l(xm-l-l) m-I—l( m—|—1)
[N[m““ n(@ms-1) Lmar(Entn) | o Jor 2<k<n-—m, (142)
OF o (@miw) V(e k) -
where (i)m-l—k depends only on (Sp,q1, -+, Sk_1) and their partial derivatives. The symmetric matrix \Tlm_l_k
depends on S, 4.
(i) Mppyr)(pmgm)) <0 is equivalent to
Mm](xm—l—l) m—l—l(xm—l—l)]
<0 k=1 143
[q)%{q-l(xm-l—l) m+1($m+1) for ( )
Mgk (Zmsfe-1]) Progr(z m—l—[k]):|
<0 for 2<k<n-—m, 144
e e <0 dor 22k (144)
where ®,,, 4y, depends only on (Lipyi)s Bpnyr) and (Spq1,- -+, Smyk—1) and their partial derivatives. The

symmetric matric U,y depends on (Lpyk, Rur) and Spqp.

The next theorem is proved by following the argument of state-feedback control(Ito and Freeman,
19995).

Lemma 7 Let k be an integer in [1,n — m)].

(i) Assume that

(145)

N[m]($m+1) < 0, V$m+1 ER
Nintb-1)(@mape—1)) <0,  Va,ip-1 € RF!
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holds. Then there always exist a smooth function s, p(%ppp) such that

{ \?k(xm+1) - (i)?(l’mﬂ)N[:n1+1]($m+1)(i)k($m+1) <0 iof k=1 (146)
Ui (@ma)) = Ph(@ms 1) Ny sy (@t i1 Po(Tmap) <O if 2<k <n—m
is satisfied for all z,, 1) € RE.
(ii) Assume that
M[m+k_1](:1;m+[k_1]) <0, Va,ip-1 € RFL f 2<k<n—m

holds. Then there always exist a C® function Apyi(@pim) and a smooth function S yp(Tpip) such
that

{ Vi (Tpmy1) — (I);}F(l’mﬂ)M[;l1+1]($m+1)q)k($m+1) <0 iof k=1 (148)
W (2mtp) = PF (Lot ) My (T te=1)) Or (T <O if 2<k<n—m
Atk (Tmgg) > 0 (149)

are satisfied for all x,, 1 € RE with Ly, = AL, and Ry = 0.

The explicit formulas of analytical solutions {sg, Az} to the problems of the above theorem are the same
as those of the state-feedback case(Ito and Freeman, 19990). By using Lemma 7 recursively from k£ = 1
through k£ = n — m, we directly obtain the main results of this section.

Theorem 8 [f Assumption 1 is satisfied, then, the nominal nonlinear system gy can be globally uni-
formly asymptotically stabilized by the static feedback law (122) with a smooth function K .

Theorem 9 Suppose that Assumption 2 is satisfied.

(1) Assume that the uncertainty X o only has static uncertain components A;; and A;,. The system ¥ py
can be globally uniformly asymptotically stabilized for any admissible uncertainty by the static feedback
law (122) with a smooth function K.

(ii) Assume that the uncertainty Xa has dynamic uncertain components Ay. The system Ypy can be
semi-globally uniformly asymptotically stabilized for any admissible uncertainty by the static feedback
law (122) with a smooth function K.

Theorem 10 Assume that there exist a constant matriv Pyy > 0, a constant scaling Ly, € Ly, and
a constant number v > 0 such that Mgy, +vI < 0 holds for all x,, 11 € R with R},,) = 0. Then, the
system Yoy can be made 1SS by the static feedback law (122) with a smooth function K.

Proof : If Mg + v < 0 holds for all x,, 11 € R, there exists a C° function Cyp(x,,41) such that
M) 4+ vl <0 holds for all x,,1y € R with the constant Li,) and R, = 0. The rest of the proof is
completed in the same way as (Ito and Freeman, 1999a).

The results of this section are similar to the result of Chapter 7 in Freeman and Kokotovi¢ (1996)
which considers a tracking control problem without uncertainty. This section considers stabilization of
uncertain systems. Assumption 1 is identical with the assumption in Freeman and Kokotovié¢ (1996)
for nominal stabilization. The paper extends their observation to the robust stabilization. In addition,
this section shows that controllers can be static for global stabilization against a general class of struc-
tured uncertainties, while tracking problems which cause change of the equilibrium requires dynamic
controllers.
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