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Extended Abstract: This paper considers global robust stabilization of a class of nonlinear sys-
tems via output feedback. A new approach to output-feedback backstepping is proposed. The
approach provides us with a systematic design procedure which can handle output-feedback
stabilization problems of strict-feedback nonlinear systems in a unified way. More impor-
tantly, the approach by itself has a mechanism of achieving robust stabilization against a
general class of structured uncertainties in the procedure. Compared with the state-feedback
global stabilization, the the class of uncertainties which has been treated by the literature
of global robust stabilization problems via output feedback is quite restricted in spite of the
practical importance of considering various locations and structure of uncertainties. The ap-

proach presented in this paper can be considered as an successful extension of the author’s
state-dependent design for state-feedback backstepping to the output feedback case. Thereby,
this paper shows the power of the general concept of state-dependent scaling design for non-
linear systems control by looking at output-feedback stabilization problems, especially in a
backstepping manner. The scaling approach allows us to treats both static and dynamic un-
certainty in an unified way and , in addition, be able to clarify the difference between their
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consequences of stabilization in a simple way. The output feedback design proposed also in-
herits advantages of SD scaling design such as automatic computation of backstepping based
on optimization. Controllers in this paper are dynamic feedback which consists of observer
and feedback gain(or controller). The essential difference between nominal stabilization and
robust stabilization is described. It is shown that observer design cannot be separated glob-
ally from controller design. The observer should be designed strong enough to compensate
“nonlinear size” of the uncertainty on the entire state-space. The coupling is natural and
inevitable in robust stabilization as it is for linear systems. In addition, for nonlinear systems,
nonlinearity of the coupling is crucial for global stabilization which cannot be compensated
globally by either feedback-gain or observer-gain independently. This fact contrasts with nom-
inal stabilization in which it is possible to stabilize the whole system globally by designing
controller strong enough whenever the observer dynamics by itself design to be only stable(or,
vice versa). Strong observers required for robust stabilization may not exist unless the output
have the full information of the state. If the nonlinear size of uncertainties are small enough,
the global robust stabilization can be certainly achieved. This paper shows the condition of
allowable size and nonlinearity of uncertainties for which robust stabilization can be done via
backstepping. The condition is considered as the index ~ which describes the largest allowable
size of uncertainty in robust stabilization via linear H* control. Indeed, for linear systems,
the condition of 4 has coupling between feedback gain and observer design(or Riccati inequal-
ities). In addition to the coupling, the condition of the uncertainty size in this paper exhibits
a recursive form because of backstepping. Another feature of the output backstepping proce-
dures in this paper is that it does not require Young’s inequality. Instead, the paper uses the
Schur complements formula which gives a necessary and sufficient condition for negativity of
a quadratic form. This paper also proposes a novel recursive procedure of robust observer
design, which resembles backstepping or forwarding for controller design.

Key Words: robust backstepping; state-dependent scaling; global robust stability; output
feedback; observer design; input-to-state stability; matrix inequality; convex optimization.

1 Introduction

For global stabilization of uncertain nonlinear systems in the so-called strict-feedback form, backstepping
requires domination of uncertain nonlinearities at each step of its recursive procedure(Krsti¢ et al.,
1995; Freeman and Kokotovi¢, 1996). Such domination is achieved through the choice of appropriate
dominating functions which satisfy certain inequalities in the Lyapunov derivative corresponding to
the locations and characteristics of uncertain components in the system. Ito and Freeman (1998a) has
shown that state-dependent scaling provides us with a systematic and unified method for constructing
suitable dominating functions in robust backstepping design for state-feedback.

The idea of state-dependent(SD) scaling design was proposed in Ito (1998a), which was motivated
by the fact that scaling factors of small-gain conditions are allowed to be functions of state variables
conditions(Ito, 1996). The drawback of nonlinear H., control as a nonlinear design tool can be over-
come in the sense that SD scaling has the ability to enlarge stability regions in small-gain type robust
stabilization(Ito, 1998b). The methodology of SD scaling design is applicable not only to strict feedback
systems, but also to other general classes of nonlinear systems(Ito, 1998¢; Ito, 1998b). The concept of
SD scaling design is general enough to formulate a wide variety of robust nonlinear control problems
and it is amenable to computational optimization techniques. When it comes to uncertain systems in



the strict-feedback form, the SD scaling design is considered as a unified robust backstepping procedure
which encompasses a large class of uncertain nonlinear systems with structured, memoryless and dy-
namic uncertainties. It has been shown that robust backstepping can be described as recursive selection
of appropriate scaling factors(Ito and Freeman, 1998¢; Ito and Freeman, 19980). The backstepping can
be performed by computational optimization as well.

If the state variables are not available for feedback, one may simply give up seeking global stabilization
and settle for semi-global stabilization. On this standpoint, there are a lot of paper dealing with
semi-global stabilization by output feedback. The idea of input saturation and high-gain observer has
been successful for such semi-global stabilization (Esfandiari and Khalil, 1992; Khalil and Esfandiari,
1993; Lin and Saberi, 1995). Teel and Praly (1995) and Teel and Praly (1994) proposed a useful
semi-global backstepping lemma and high-gain observers with saturating control for dynamic output
feedback. By using these semi-global techniques, a robust stabilization problem was also considered
intensively for a certain type and location of unstructured uncertainty, namely, robustness against
unknown stable zero dynamics. It is possible to deal with unknown parameters in such a semi-global
stabilization as well, e.g.(Lin and Qian, 1998). However, from anther view point, given an uncertain
system, semi-global stabilization using high-gain and saturation may be meaningful only if the system
cannot be globally stabilized.

There are also global results for output-feedback stabilization of nonlinear systems in a form of strict-
feedback or chain of integrators. However, the typical results, e.g.(Krstic¢ et al., 1995) are applicable
only to nonlinear systems whose nonlinearities in the system equation do not depend on the states that
are not measured. It is, however, not clear what is the essential ingredient of this assumption, apart
from their technique of constructing observers and controllers. Aside from inverse optimality, discussion
about robust global stabilization via this type of output feedback is absent in spite of their practical
importance.

The first objective of this paper is to propose a unified procedure to achieve robust and global
stability via output feedback for the class of uncertainty which is as large as the uncertainty tackled
in the state-feedback control literature, namely, uncertain systems in the strict-feedback form with
nonlinearly bounded uncertainties. In other words, this objective it to enlarging the class of nominal
models and especially the structure of uncertainty, that can be globally stabilized under output feedback,
In order to accomplish this first objective, this paper successfully extends the author’s state-dependent
design for state-feedback backstepping to the output feedback case. By doing that, the power of the
general concept of state-dependent scaling design for nonlinear systems control is shown as well. The
author’s position is seeking global stabilization in stead of settling for semi-global stabilization from the
beginning. Thereby, the paper clarifies essential points required to make global stabilization robust as
desired. Thus, the second objective is to characterize the essential difference between nominal global
stabilization and robust global stabilization in output feedback control. The robustness in this paper
is more desirable in that the size and location of uncertainty is prescribed a priori, which is completely
different from the inverse optimal type of robustness. The backstepping is developed without the
assumption that requires the nominal system to have nonlinearities depending only on measured states,
i.e., ¢(y) where y is the output. This paper clarifies that the feedback-gain part of output feedback design
by itself does not need to exclude nonlinearities such as ¢(y)x, where x is unnecessarily measured. This
paper describes what kind of task is essentially required for observer design in such a case. The paper
also shows a condition on which robust stabilization can be achieved globally for a prescribed class of
uncertainties. It will be shown that, exclusively for nonlinear systems, “nonlinear size” of uncertainties,
appeared as coupling, is crucial for global robust stabilization, which cannot compensated globally by
either feedback-gain or observer-gain independently.

The idea of SD scaling approach to backstepping in this paper is as follows:



o characterize robustness analysis by SD scaling

e introduce coordinate transformation to the entire closed-loop system in order to create a freedom
in choosing Lyapunov functions

o use the Schur complements formula to extract a recursive structure of design
e solve the design problem by selecting SD scaling and coordinate transformation recursively.
Furthermore, it is completed by

e show that the design problem is recursively linear in the parameters of SD scaling and coordinate
transformation

e show the existence of solutions
e provide computational formulas and analytical solutions

One feature of the backstepping proposed in this paper is that the procedures are amenable to auto-
mated numerical computation based on convex optimization. Since the backstepping is performed by
domination, it is unnecessary to use precise parameters of systems in the control law, which prevents
the controller from having long and complicated terms. Another important feature of this paper is that
the output backstepping is shown to be feasible without using Young’s inequality. Instead, the paper
uses the Schur complements formula which gives a necessary and sufficient condition for negativity of
a quadratic form.

The author needs to explain the standpoint of this paper since it is quite different from those of
nonlinear adaptive control and many of backstepping papers. The author’s point of view is similar to
that of linear robust stabilization via H* control. The roles of H* types robust control are

e provide a method of solving(more precisely, trying to solve) the problem
o characterize a condition under which the robust stabilization is solvable
e provide information about how large size of uncertainty is allowable.

The latter two roles are necessary since the problem by itself does not always have the solution. The
reason why this situation occurs is that we specify the nominal system and structure and size of uncer-
tainties a priori. A robust stabilization problem is solvable obviously if the uncertainty is sufficiently
small. This type of robust control is attractive in the sense that it provides us with a way to obtain a
control law even if it is not as good as we originally desired. It theoretically persuades us to give up
seeking unreasonably large uncertainty, in particular, since the constantly scaled H* control is neces-
sary and sufficient for achieving robust stabilization against time-varying uncertainty. This paper looks
at global robust stabilization of nonlinear systems from the same point of view. In addition, this paper
demonstrates a class of uncertain systems which is always robustly stabilizable for arbitrarily large size
and arbitrarily fast growth order uncertainties. The latter standpoint is more common in the nonlinear
literature. In this way, this paper takes practically good positions from both the sides.
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Figure 1: Uncertain nonlinear plant ¥p

2 Uncertain nonlinear systems

Consider the uncertain nonlinear system ¥p shown in Fig.1. Here, ¥y denotes a nominal plant and ¥
represents the uncertainty and modeling error of the plant. We assume that the nominal part ¥, is

described by
(y)x , w(t)eRP, z(1)eRP (1)
y=Cyly)r y(t)eR’

The matrix-valued functions A, B, C, G and C,, are assumed to be C° functions. The vectors w and z
are defined as

w; 2 wilt) € RP
ws % () € R
= = n 2
w ’ Z 9 pZZO7 p:Zizlpi ( )
Wy, Zn 12172,"',71

Suppose that the uncertain system >, has the following structure of nonlinear mappings A : z +— w.
A = block-diag[A;, Ay, -+, AL, (3)

where some of the mappings A; : z; — w;, ¢+ = 1,2,...,n can be zero in vector size. Each uncertainty
A; is allowed to have three types of components:

Zid Wiq Ay 00
Ai L= Rs | W= | Wi, w,; = 0 Ais 0 Z; . (4)
ZiT wiT 0 0 AiT

Here, A;q represents a dynamic system. A;; and A;, denote full static and repeated static scalar systems,
respectively. It is unnecessary for A; to have all types of uncertainty. The dynamic uncertainty A, is

defined by

n = fa. | Zigy 1)
Ay TA, fA,d(xAla Zid
! {wz'd = ha (2a;, Zia, t) (5)

where fa,,(0,0,%) =0 and ha(0,0,1) = 0 are satisfied for all t > 0 and fa,, and ha,, are vector-valued
C° functions. The full static part A;, is described by

Ais cWis = hAiS(Zisvt)v (6)

where ha,, is a vector-valued CY function and ha,. (0,t) =0 for all ¢+ > 0. The repeated static part A;,
is defined with r; > 1 copies of a static scalar system ¢;, :

Ay = le&g bip = 041, bip © W, = hs, ()25, (7)

71=1

where hs. is a scalar-valued C° function. We consider the following class of uncertainty Ya.
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Definition 1 The uncertainty X is said to be admissible if (1)-(ii1) are satisfied for « = 1,2,... n:
(i) Ay has Lo — gain less than or equal to 1 with a radially unbounded C' storage function Va;(za,)

satisfying Va;(0) = 0. (i1) Ay, satisfies ||za, ||* > ||wa, ||* for allt € [0,00). (iii) &, satisfies ||z, ||* >
||ws. || for all t € [0, 00).
The uncertain system Yp has an equilibrium point at z,, = 0 when u = 0. Roughly speaking, the

gain of each uncertainty is assumed to be less than or equal to unity. Uncertainty having super-linear
growth (and thus unbounded gain) can still be included by a judicious choice of the nonlinear weights
B(z) and C(z). Indeed, ¥4 not only describes a nominal plant, but also can include information about
input-output nonlinearities of uncertainty. The manipulation to choose an appropriate pair of (Xq,¥A)
taking nonlinearity into account is essentially similar to the idea of introducing functions of signal norms
(Sontag and Wang, 1996; Sontag, 1998; Mareels and Hill, 1992). Note that ¥, also describes how the
uncertainty affects the nominal plant such as geometrical locations, structures of uncertainties where
uncertain parameters are present. Remember that B(x) and C(x) specify the “nonlinear size” (including
size, nonlinearity, location and structure) of uncertainties.

3 SD scaling analysis for observer-feedback control

With definitions of the uncertainty ¥~ in mind, several sets of real-valued scaling matrices will be
defined. For notational simplicity, we assume that A;; and A;, are square in size of input and output
vectors for all ¢ = 1,2,...,n. For the dynamic uncertainty A;;, we define

L;,; := {de = XNalig 1 Aig > 0} (8)

Here, I;; denotes an identity matrix which is compatible in size with the vector z;4. For the full static
uncertainty Ay, a set of scaling is defined by

L;, .= {Lw = )\is(yyi')]i : )\is(y,:?;) >0 V(y,i‘) e R x Rn} (9)
In the case of the repeated static uncertainty A;., we define two sets of scaling matrices.

Liy == {Li, : Li(y, &) = Li(y, &), Li(y, &) > 0Y(y, ) € R" x R"}. (10)
Ri, = {Ri; : Ri(y,&) = —Ri(y, %) ¥(y,2) € R" x R"}. (11)
Here, both ;. and R;. are square matrices whose size is the same as the dimension of z;;. These scaling

matrices are used to estimate the worst case value of the time-derivative of Lyapunov functions(Ito,
19980; Ito and Freeman, 1998a). Let L;(y, &) and R;(y, &) be defined by

L; = {Li(y,:%):[ 0 Li(y,&) 0 ] : Lis € L} (12)
0 0 Lw(yv*%) L, € L,
00 0

R, = {Ri(y,:%) =100 0 R, € Rw} , (13)

fore = 1,2,....n. Note that a constant A > 0 satisfies Al € L; and 0 € R;. Now define two sets of
scaling matrices for the whole Y5 as follows:

L::{L:blocﬁ—diag[/i(y,:%), LZELZ} (14)
=1

R::{R:blocﬁ—diagRi(y,ﬁj), RZERZ}. (15)
=1



These scaling matrices are functions of y and . The situation contrasts sharply with the linear systems
case where constant scalings are used for time-varying uncertainty. Scaling matrices for static uncer-
tainty are chosen as functions of output and state estimate, while static uncertainty arising in a linear
system is usually not distinguished from dynamic uncertainty(Ito, 1996).

We next consider robust stabilization of the uncertain nonlinear system Xp by dynamic output
feedback. We employ the full order observer

{ y - é(y);w Yy, &)y — ) + Gly)u (16)

u= Ky, &)z . (17)
Then, the closed-loop system is written as
d [z A GK x B
ELA:[W%A—Y@+GKH£%{0LU (18)

We now characterize robust stabilization of ¥p using SD scaling, quadratic Lyapunov functions and a
diffeomorphic coordinate change. Consider the diffeomorphism between & € R™ and y € R"™ as follows:

%= S(y,8)3 (19)
The time-derivative of y is obtained as
: as . 9s , as ) as . 9S . as .| : ok . ok

T R T T P ) I

The closed-loop system becomes

AT _ [(VATNA+GK)ST =(VA+TY )] [ VB, (22)
dt | 2 0 A-YC(C, T —-B
We also introduce another coordinate transformation to z:
n=Wz (23)

where W is a constant non-singular matrix. The closed-loop system on the coordinate (,n) is

478] - l(v + )4+ GH)S™ —é{&}j%ﬁ%ﬁ] HERtAL (24)
z:c{SA-JVA][ﬁ] (25)

The following describes the main idea of the SD scaling approach to the output feedback problem.
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Theorem 1 (i) Suppose that there exvist constant symmetric matrices P and P such that

Ny, &) =
ST(A+GE)T(V +T) P+P(V +T)A+ GK)S™ —P(VA+TYC, )W <0 (26)
—W_T(VA + TYCy)TP W_T(A — YCy)TWTP + PW(A — ch)W_l
P>0, P>0 (27)

are satisfied for all (y,&) in R" x R"™, then the nominal nonlinear system g is globally uniformly
asymptotically stabilized by the dynamic output feedback (16-17). Furthermore, a Lyapunov function is
given by V(z,2) = ¥T Py + nT Pr.

(ii) Suppose that there exist constant symmetric matrices P, P and scaling functions L € L and R € R
such that

M(yv ‘%) =
r =T T T b
{ S (;‘(J& i[‘T)) (ZV:GQ) o } PVB4STCTRT  STCTL  _P(VA+TYC,)W-!

BTVTpP4+RCS™ —L 0 —BTWTP_RCW™! <0(28)

LCS™! 0 .y —LCW!
_ 2 _ _ W-T(A-YC)'W!P+
—W-T(VA+TYC)'P  —PWB-W-TCTRT _w-TCT], . v
i (VA+ ) { PW(A-YC,)W™ ]
P>0, P>0 (29)

are satisfied for all (y,&) in R™ x R", then the uncertain nonlinear system Yp is globally uniformly
asymptotically stabilized by the dynamic output feedback (16-17) for any admissible uncertainty Y.
Furthermore, a Lyapunov function is given by V(x,2) = YT PY + 0T Py + X, MaVai(za,).

The analysis problem of robust stability is reduced into the existence of scaling matrices which make
M negative. This is actually considered as the definition of the state-dependent scaling approach to
output feedback control with full-order observers.

Although the representation (22) may seem to allow us to use a sort of separation between state-
feedback stabilization and observer design somehow at a glance, it is certainly not true for nonlinear
systems stabilization. To explain this point, we need the following lemma.

Lemma 1 Consider a symmetric matrix

My, Mm]
M = 30
M, Mo, (30)
(1) Schur complements formula : M < 0 is equivalent to
My <0, My — MyaMy' M, <0 (31)
(ii) Young’s inequality : M < 0 is satisfied if
Moy +T71 <0, My + MipI'MY, <0 (32)
v 0 - 0
I = >0 (33)
0 0 7



Proof : (ii) The inequalities can be derived easily by using elementary linear algebra as follows:
0> My + MioDMY, > My + My UMY, — Myo(T + My," )M, = My — My, My MY, (34)

Instead, the purpose is to show that the pair of inequalities in (32) is an alternative expression of
Young’s inequality:

2Tz <yTTy+ 21T 12 (35)

where y and z are vectors. It is easily verified that

T 4 My My, T T T T
|:Z:| |:Mlj; M22:| |:Z:| = T M11$ —|— 2[1/' M12Z —|— z MQQZ (36)
< "My + :I;TMUFMITQ:I; + 2T 4+ 2T My, (37)
T T M11 + Ml?FMlg 0 T
= -1 (38)
z 0 My + 1 z

The inequalities (32) of matrices are not the formula which is usually called Young’s inequality. However,
this paper refers to that as Young’s inequality in order to distinguish that from the Schur complements
formula. It is also true that the inequalities (32) has appeared as an ordinary Young’s inequality of
vectors or scalars in nonlinear systems control. A common role of Young’s inequality is to get rid of
products of two vectors in the Lyapunov derivative and to get a decoupled quadratic expression. This is
explained in the proof of the above theorem. The Schur complements formula looks at the negativity in
terms of matrices in stead of the scalar value of quadratic forms. The Schur complements formula gives
a necessary and sufficient condition while Young’s inequality is only sufficient. The idea of Young’s
inequality is to replace the full information of the matrix —AM.,," with simple scalar parameters v; at a
price of loosing necessity. Actually, an alternative statement of the Schur complements formula is as
follows: M < 0 holds if and only if there exists a diagonal matrix I' > 0 such that

My +T71 <0, My — MMy ML <0 (39)

are satisfied. Compared with the Schur complements, Young’s inequality is conservative. The Schur
complements is superior to Young’s inequality in this sense although Young’s inequality is a common tool
in nonlinear systems design(Krstic¢ et al., 1995; Freeman and Kokotovi¢, 1996; Sepulchre et al., 1997).
From this standpoint, this paper replaces the task of Young’s inequality with the Schur complements.
The output feedback design will be shown to have recursive structures for backstepping even if Young’s
inequality is not used. In other words, this paper proposes backstepping procedures without introducing
any conservatism in solving problems recursively except that Theorem 1 is a sufficient condition (note
that a recursive structure of solution by itself may have unnecessary conservatism). This may not
only allows the design to tolerate large size of uncertainties, but also prevent controllers from having
unnecessary high gain and harmfully first or slow growth order.

Corollary 1 Assume that there exists a constant matriz P > 0 such that
H(y,2) =W TA-YC)TWIP+ PW(A-YC,) W™ <0 (40)
holds for all (y,1) € R" x R"
(i) Suppose that there exists a constant matriz P > 0 such that the inequality
Ny, &) := Nu(y, &) — Nio(y, &) H™ (y, &) Njy(y, &) <0 (41)
Ny, &) = STTA+ G (V+TY ' PHP(T + V) A+ GK)S™", Nig(y, &) := P(VA+TYC,)W{42)



is satisfied for all (y, &) in R" x R", then the nominal nonlinear system Xq is globally uniformly asymp-
totically stabilized by the dynamic output feedback (16-17). Moreover, if Y is a linear system and if
S is constant, the set of conditions (41) and (40) is equivalent to the existence of P > 0 and P >0
satisfying

Ny = STHA+GK)Y'(V+T)Y'P+P(V+T)A+GK)S™ <0 (43)
H=WTA-YC) WP+ PWA-YC)W <0 (44)

(ii) Suppose that there exist a constant matriz P > 0 and scaling functions L € L and R € R such that
the inequality

M(y, &) == Mu(y, &) — Mi2(y, &) H 'y, 2)M3(y, #) < 0 (45)
ST(A+GE)(V +T) P+ T
P4 VY 4 GRys— [ PVBHSTTOTRT §TT0TL
BTVTPy RCS-! _I 0
LOS 0 7
P(VA+TYC, )W
My, &)= | BTWT P+ ROW ! (47)
LOW-1

M (y, @) = {

(46)

is satisfied for all (y,&) in R” x R", then the uncertain nonlinear system Xp is globally uniformly
asymptotically stabilized by the dynamic output feedback (16-17) for any admissible uncertainty Xa.
Proof : (i) The conditions (41) and (40) are straightforward from (26) by using the Schur complements
formula. Obviously, (41) and (40) imply (43) and (44). Now, suppose that P > 0 is a solution to (43)
with a constant S for a linear system Y. Let P be a solution to (44). If P in (41) is replaced by P,
the inequality (41) is satisfied for a sufficient large constant 5 > 0.

(ii) It is straightforward from the Schur complements formula. 1

The two inequalities (43) and (44) in this corollary merely represent the separation principle for linear
systems. The conditions (43) and (44), however, do not guarantee global stability for nonlinear ¥y. If
Yo is nonlinear, # in the above proof may be required to be unbounded as y or & goes to +oo. If 3 is
a function of (y, &), there is no guarantee that there exists a Lyapunov function V' which is consistent
with

1% .
R 2 [)%Tpa UTﬁ(yai')P]

for (43) and (44). It is, however, true that (41) can be satisfied semi-globally by a sufficient large
constant 5. We may achieve semi-global stabilization by using the separation (43-44) and taking into
account the level set of the Lyapunov function V(z, &) = I Py+nT 3Py deformed by 3. This paper does
not pursue this obvious direction of semi-global stabilization since it does not capture essential points
required for global and nonlinear stabilization. This paper, instead, is focused on global stabilization
and characterizes requirements for global stabilization. As for robust stabilization, we cannot separate
observer design completely from robust stabilization in a global sense. The separation argument in (i) of
Corollary 1 is not applicable to (ii) either even for linear ¥4 because of the coupling term M;,(especially
the term BTWTP) between feedback and observer in M < 0. In fact, linear robust control theory tells us
that observer design must be coupled with robustification of stabilization against uncertainties. In other
words, the observer should be designed strong enough by taking into account the effect of uncertainty
and robustness objectives.
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4 A robust strict-feedback form and observers

This section defines the class of uncertain nonlinear systems to which output backstepping design via
SD scaling will apply. The output equation of the system is supposed to given by

Yy =1 (48)
or equivalently
C,=[10--0] (49)

This case is sometimes called output feedback in the nonlinear control literature(Krstic¢ et al., 1995).
This paper deals with the uncertain nonlinear system Yp under the following structural assumptions.
First, we assume that A and G can be written in the form

all a12 0 ------ 0
D)1 azp a3 0 0 0
Alay)= o |Gay=] . (50)
0
Up—1,1 An-1,2 " """ An—1,n Qp 41
anl an72 ...... an7n

with C° scalar functions a;; of the measured state 1. The function a;;(x1) is required to satisfy
aiip1(r1) #0, 1<i<n, Ve €R (51)

As for functions B and C', we assume

By 0 - 0 Cyy 0 - 0
Blay) = | P B L ey = | (52)
B BB oy G O
where B;j(x1) € RYP and C;;(z1) € RP**!. Then, the uncertainty affects the system as
BiiAChy 0 0o --- T
B(x)w = | BuACiy 4 By ByyAyCoyy 0 | |12 (53)

T3

This expression is only an aid for illustrating the structure of the uncertainty and is mathematically
ambiguous. The operator A; in the above equation does not represent matrix multiplication but non-
linear mappings which can have dynamics with initial conditions. For simplicity, this paper assumes
that the system does not have any uncertainties in the virtual control coefficients which appear in the
backstepping procedure. It is certainly possible to extend the idea of SD scaling easily to the uncertain
system which has A blocks in a more general manner as in Ito and Freeman (1998a). Because each
entry B;;A;C;; above is scalar, a repeated static uncertainty can always be represented by a scalar full
static uncertainty. However, we include the repeated representation here because it allows more degrees
of freedom in the scaling design and it also prepares the way for a multivariable version of our results.
Two types of properties of observers will be used in this paper.

Ordinary observer : The observer-gain Y (xy) is chosen as a C° function matriz such that there exist
a constant matriz P and a C° function matriz Qy(x1) satisfying

H(zy):=(A-YC)'P+PA-YC,) < —0Q, (54)
P>0, Q,>0 (55)

11



hold for all x1 € R.
Robust observer : Given a matriz-valued function T'(xy) > 0. The C° observer-gain function Y (xy)
and the constant matrix W are chosen such that there exists a constant diagonal matriz P satisfying

H(zy) =W TA-YC)TWIP4+ PW(A-YC,) W™ < I} (56)
P>0 (57)

hold for all xz; € R. Note that H < —I'"! < 0 is equivalent to 0 < —H~! < T,

The requirement of robust observer is stronger than that of ordinary observer. A robust observer
is an ordinary observer. The converse is not true. Suppose that P > 0 is a solution to (54). We can
decompose the matrix into P = WZAW with a lower triangular W and a diagonal matrix A. This
means that (56) is satisfied by replacing I'"' with W=1Q,W~'. However, I=! < W=TQ,W~" is not
guaranteed at all. The first two terms on the left hand side of (56) correspond to the Lyapunov derivative
of the observer error system. The robust observer requires that the observer error system is stable to
a degree prescribed by I'. That is why the robust observer can be used for making a control system
robust against uncertainties. The function I' is considered as an index of robustness. The smaller I' > 0
is, the more robust the resulting observer is. This will be explained later on. Note that for a certain
class of systems, it is always possible to construct observer gains required for ordinary observers and
robust observers. The observer design will be explained in Section 8.

5 Backstepping design for output feedback

We now direct our attention to a diffeomorphism S(y, &) in a special form. The diffeomorphism will lead
us to a recursive structure with which output feedback backstepping is proposed. We thereby extend
the robust backstepping procedure presented in Ito and Freeman (1998a) for output feedback design.
The backstepping is carried out successfully by selecting SD scaling matrices recursively.

Let 2y denote the state of the observer #; through Z;:

i’[k] = [*%17*%27"' 7§;k]T' (58)

Consider smooth scalar-valued functions sy(x1), sa(21,21), -+, Sp—1(21, T[n—2)) which are to be deter-
mined in a recursive manner from s; through s, ;. We define a diffeomorphism S(z, %) as follows:

1 0 0 --- 0
s 1 0 -0
S_l(xlvj;[n—Q]) = 0 8‘2 1 0 (59)
0 .- 0 5,41
1 0 0 0
_ 5, 1 0 e 0
S((El, :%[n—Z]) = 31‘52 —:32 1 0 . (60)
(_1)n_151"'3n—1 St 8p_98p—1 —Sp—1 1
The smooth function V(z1, &[,—1)) and T'(x1, 1) in (20) are obtained as
0 00---0
*111 00---0
Vi{wy, &) = | %122 00 0 (61)
*1p—1m—1 00 -0
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1 0 0 0 0

*17071 1 0 0 0

A _ *122 K112 1 0 0
Py, o) = *133  *13.3 %123 1 01’ (62)

*p—lp—1 "'ttt Flp—ln—1 *1p—2m—1 1

where % ; ; denotes any function depending only on (4, #;)) and the functions s; through s; and their
partial derivatives. We choose a feedback gain (17) in the form of

K = [(—1)”_131---3n Y Sn] (63)

where s, (21, Z[,—1]) is another smooth function yet to be determined. Then, the matrices in (26) and
(28) for the closed-loop system become

N [STAT(V + 1) P+ P(V + T)AS —P(VA+TYC,)W! (64)
o ~-W-T(vVA+TYC)TP W-TA-YC)'WTP + PW(A-YC,)W™!
STAT(V + TYTP+P(V + T)AS  PVB+S~TCTRT  $TCTL  —P(VA+TYC,)W-!
BTvIp4 RCOS™! —L 0 —BTWTP—RCW!
M:= LCS 0 —L —LCwWt
_ ~ _ _ W-T(A-YC,)"WT P+
—-w-twvAa+T1TYC)H'P —PWB-W-TCTRT —w-TCTL L Y
(VA+ v) { PW(A-YC,)W!
(65)
. . g1
We now restrict P to diagonal:
n k
P = di_alg P, P,>0, Py= di_alg P; (66)
We also consider the coordinate transformation W of & in a lower triangular form:
Wy 00 0
W21 W22 0 A 0
W = W31 W32 W33 0 (67)
Wnl . . Wn,n—Q Wn,n—l Wn,n
Define system matrices for the first £ state and input components by
ay apy 0 e e 0
X a1 agg azz 0 - 0
A (e) =1 Do e (68)
Gp—11 Ag—12 " " Gp—1.k 0
4251 (27 N Gk Ok k41
By, 0 - 0 C,y 0 - 0
By B ' : Cy C ' :
Byg(x) = | 72052 0 | Cwle)=| 222 0 (69)
By -+ Byr—1 B Cr o+t Crg-1 Cri

13



In a similar manner, S[ ](:1;1, T[p—2 ),

Sii 2)s Vil & A[k 1), T, i), Wi and Wyt are
defined as k& x k upper left parts of S, .S

, V, T W and W1, respectively. Let
S

Snter i) = | SE | g = [P0 (70)
[FI\T1, Tlk—1] 0---0]sz |’ (4] *0,0,0| Prr

(!

0
(71)
Uk | Akk
Cypg = [1 0+ 0]0] = [Cyp—n|0],  Cypyy =1 (72)
Scaling matrices are also defined recursively as
Ly ::{L block diag Li(z1, Zi—a)), Li€Ly } (73)
=1
Ry := {R[k] = block—diag Ri(xy, Tmy), Ri€ RZ} ) (74)
=1

Now, we define Njy(21, Zpr—1)) by adding subscript [k] to every matrix in the right hand side of (64).
By using

e = [l ] ity = @)

the matrix Np;) can be represented by

N . Ny 11($17§?[k—1]) N[k]12(51?17§?[k—1]) .
Nl i) = [Nalz(wlai[k—l]) Hpyy () o ANm =N (76)

Nt = Sty ALy (Vi + Tpg)" P+ Pog (Visg + Ti) A Sg» Nz == Pog(Vig Apg + Tl Vi Comm) Wi (77)

We also define M[k] as

~ R Mk]ll(xl ) Qk M12($1 Lln— 1]) Y
M _ —= ’ ’ Mn — M 78
[k](xhx[k 1]) [Mé($1, [n—1] )Qk H(xl) 7 . ( )
St Al Vi + Tig) " Pra+ P (Vim * Toa) Aw S 1 i Vi B+ S Clg By Sy Clig Lo
Mgy = B[Tk]V[g]P[k]—I-R[k]?[k]S[Z] — Ly 0 (79)
Ly Cri Sy 0 — L
I, 0 0
P(VA+TYC,)W™! i 000 )

M= | BTWIP+RCW-'|, Qu=1|01;0|, Q,=1lop (80)

LCW™1 000

00 I,

where I, denotes a k x k identity matrix and ¢ := Y-, p;. Note that Mg = QT My10Qy, holds. We can
verify the following.

Theorem 2 Suppose 1 < k < n.

(i-a) Ny does not include {spq1, Skt2, 550}
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(i-b) Every entry of Ny is affine in sy,

(i-c) Every entry of Ny is simultancously affine in all the entries of Py.

(i-d) Ny < 0 implies Ny—1) < 0 unless k= 1.

(ii-a) M[k] does not include either {sp11,Sp42, S}, {Lrks1s Livay s L} or {Rgy1, Riqay -+, Ry}
(ii-b) Every entry of M[k] is simultaneously affine in Ly, Ry and sy.

(ii-c) Every entry of M[k] is simultaneously affine in all the entries of Ly, Ry and Py,.

(ii-d) M[k] < 0 implies M[k—l] <0 unless k = 1.

Although the system is nonlinear in state variables, the above theorem shows that the problem of
SD scaling is recursively linear in decision variables(or design parameters). This suggests that the
nonlinearity of the system essentially do not make the problem seriously difficult. The character of the
problem still remains the same as that of robust linear design in this sense.

On the basis of Theorem 2, this paper proposes the following procedures of backstepping for feedback
gain design.
Nominal backstepping : Solve

N[k](l’lai'[k—l]) < 0, V(xl, i’[k—l]) € R x RF1! (81)

for si from k = 1 through £ = n.
Robust backstepping : Solve

My, 2p—q) <0, ¥(z1,dp-1) € R x RF! (82)
for {sy, Lg, Ry} from k = 1 through k = n.

Both the procedures suppose that P, P and Y are given. The above procedures can be carried
out recursively since the process of finding decision parameters at Step k£ does not require any decision
parameters to be found at Step k4 1,k + 2,...,n. The recursive procedures can be also justified in
that Step k is a necessary step for accomplishing Step k 4+ 1,k +2,....n.

Theorem 3 (i) If the whole procedure of nominal backstepping is completed from k =1 through k =n
properly, the parameters {sq, s2,...,8,} solve

N(x1, &pe]) <0, Y(21,3p-1) € R x R™ (83)

(i) If the whole procedure of robust backstepping is completed from k = 1 through k = n properly, the
parameters {s1,82,...,8,} , {L1,La,..., Ly} and {Ry, Ry, ..., R,} solve

M (z1, 3p—1]) <0, V(xy,dp-1]) € R x R*! (84)

For instance, the problem of finding { Ly, Ry, s} satisfying M[k] < 0 is a convex optimization problem.
The nominal backstepping and the robust backstepping for output feedback design via SD scaling are
amenable to computation based on optimization as it has been shown for state-feedback design in Ito
and Freeman (1998a). It is ready for automated numerical calculation by computer. The recursive
design proposed in this section does not require precise knowledge of each system parameter since the
design is based on domination instead of cancelation. An exactly canceling formula is considered as one
special solution to the domination. Moreover, the domination approach can be exploited to get rid of
the propagation of complicated and long terms in the control law K.

The subsequent sections investigate whether the solutions exist or not in the recursive procedures. In
other words, a condition of the allowable size and nonlinearity of uncertainty will be derived. Existence
conditions and analytical solutions will be developed. Furthermore, a class of systems which can be
always robustly stabilizable against arbitrarily large uncertainties by output feedback via the robust
backstepping will be shown.
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6 Equivalent recursive procedures

This section transforms the nominal backstepping and robust backstepping into problems which are
suitable for finding analytical solutions. No conservatism will be introduced in this section. Solving a
transformed problem is equivalent to performing the backstepping in Section 5.

Define the following two functions.

Nigy(w1, &pem1) := Nyga (@1, pe—)) — Npgrz(@, Spen) Hyg (01) Njgra (21, 31 (85)
My (e, Eemny) = Mg (2, dpoq)) — Qf Maa(@y, &) H™ My (21, 1)) Q (86)
From the Schur complements, the equivalence
N[k] <0 & Npyp<0 (87)
M[k] <0 & M[k] <0 (88)

are obviously true on the assumption that H < 0 holds. Due to structures of S, W and the strict-
feedback form of ¥g , we can prove the following for Njj and My

Theorem 4 Suppose 2 < k < n.
(i) The symmetric matriz

Npy(1) = Wy () (89)

depends only on s;. N[k](:zjl, Tre—1)) < 0 is equivalent to

V(o dpay) Duan ipen) | 90

O (21, dgms) Welwrs i) | = (50)
where ®;, depends only on (81, 8k—1) and their partial derivatives. The symmetric matrix W), depends
on Sj.

(ii) Assume that P is diagonal:

P = dlag P, P. >0, Py = diag P (91)

=1 =1

Then, the symmetric matrix

Mpy(a1) = Wi (a1) (92)

depends only on (Ly, Ry) and sy. Mpy(zy, &p_qy) <0 is equivalent to

Mye_nj(w1, A=) Pulwr, Ap-1y)
; )L <0, 93
O (x4, &) Wi(ey, Fpqy) (93)
where @), depends only on (Lyy, Ryy) and (sq,---,sp_1) and their partial derivatives. The symmetric
matriz Wy, depends on (L, Ry) and sy.
Proof : Recall that
0
5 A _ 5Y[k—1](9€17e’]z’[k—z]) : 1 A - 5@1_1](51?175%%—3])‘0
S, Fp-1y) = 0 [ Spyl(en dp—zg) = *h—2h1 |1
0 |Sk
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A[k](l’l) = [A[k_l](xl)‘ 0 ], Bpy(zy) = [B[k_l]($1)| 0 ]

*1,0,0 |Gk,k+1 *1,0,0 |Bkk

Cpg(21) = [C[k—l]($1)| 0 ] _ [C[k_1](:1i1)| 0 ] _ [Ck—1 (21) 0]

%100 | Chk ke | Che Ch —
~ Vk_ (l’l,i'k_ )0 ~ Tk_ (l’l,i'k_ )0
Vig (21, dp_y) = [ [ ;ik_m_[l 2 IO , o Tog(z, dpg) = | ;ik_l’k_[l s Il

A Li_ 7A _ 0 . R 7A B 0
Lualers: fe-1) = [ : 1](16 - 3])|Lk]7 Ry, dp—) = [ : l](x(} - 3])|Rk]

Then, we have the following.

A

Py(Vigy + Tig) Ay Sty =

Py (Me—uy(@ 1, Epe—21) + Tje-1y(@1, Epe—9)) 0
A[k_l](xl)s[k_l](l'l, i'[k_g]) Pk—lak—l,k
Pk g1 51 | Pr(ark + appr156 +*15—-1,6-1)
Pro_qVik—n(@1, Ep—27) Byr—11(21)]0
PigVi By = [ et ]*1 k—l[k—l] =l Io

_ ProoqVig—q(x1, Fp—2)) App—1y (1) | 0
PV A le[[kl][kl] 1, Lle—g)) App—1y(@1 ]
U] TR R E*1,k—1,k—1 |Pk*1,k—1,k—1

_ P Theoay(21, &rp—a) Yieo 1 (z) W2 0 -+ 0]0
P[k]T[k]Y[k]Cy,[k]W[ 1 l [k—1]1 [k 1](]31k*1[:_i]2_£k 1(z) Wiy 0 0}0] )

Thus, we obtain

N, H' NE * P
—1 arT . [k—1)12447 4 E—1112 X1,k—1,k—11k
NoguzHyg Nz = l Pk*l[k—l]k—[l | Pl o1 k—l] (94)
- N, * Ny @
Now — [ [h—1] Lh—1,h—1 ] _ | V=1 @5 95
[k] *1 p—1h—1 2Pk(arr + ap 18K + *15—14k-1) o7 v, (95)
To prove the claim for M[k], we need
- P qWy_qBp_q(z1)] 0
PoiWia B — [k=1] "V [k—1]P[k—1]\*1 96
TR 2 l *1,0,0 ‘PkkakBkk ( )
_ Lip—yy (1, #pp_s) Creey(21) S5 1 (21, T )‘ 0
LiaCinS 1 =1\ L1, Pe=3] )~ [e=1]\ Y1 )P q)\ 41y H[k—-3] 97
T2k l Li(Cr*15—-34k—2 +Chkk*1 k—2,k—1) | LiChri (97)
_ Ry ((E z _ )Ck_ (xl)S_l ((El (%k_g)‘ 0
Rocrg=1 — | B=n(@ -9 O (21) Sy (21, Epp-g 93
IR 21 l Ri(CruH 1 p—si—2 +Crr*1k—24-1) |chkk (98)
LaCra Wt — Lpp—n(21, &p-g) Cpp—y (e ) Wity 0 (99)
1R T LiyCr—%000 | Li.Cru W3
_ R _ ((E (%k_g) )Ck—l ([El)W_l ‘ 0
oot — | B0 3p-9) O 1] 100
(k] [#] (K] l chk,—*0,0,0 ‘chkka_kl ( )
Now, let U denote
Uy, #p0g) = —(BTWT P+ RCW Y YH Y (PW B + W-TCTRT) (101)
The following recursive notation is used.
. Upe—1)(1, Tpeg)) Usp(1, Tp—g)) .
Vgl =) = [ &Zk%l'lai'[k[—ﬂg Ukk(:lih:%[[k—z]]) » Ukl dp-g) € R (102)
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The definition of these matrices are given by

[BTWTP + RCW '],
[BTWTP + RCW 1],

[BTWTP + RCW™),

. . Ty T D -1
BTWTP+RCW—1: ,[BTWTP+RCW_1][k]: [B %% P—I—RCW ]2

[BTWTP + RCW™], [BTWTP + RCW™1],,
Upe = —[BTWTP + RCW ", H ' [BTWTP + ReWw T
U= —[BTWTP + ROW |y H ' [BTWTP + ROW ]

Let [H™"]yy be defined as

_ HYypq| *
[ g () = [ i=t] o

= H = H"" 103
*1,0,0 |[H l]kk ’ [ ][ ] ( )
Consider a non-singular matrix.
i1 000 0 0
0 00/ 0 0
o r,000 o0
@=19 000 L, 0|
0 01,00 0
0 000 01,
where ¢ := Y%= p;. Then, we have
Z (w1, Fpmn) = —QFQF Maa(wy, dpumy) H ™" (w1) My (21, #p—1) Qi Qr (104)
i *1,k—1,k—1 *1,k—2,k—2R£ *1,k—2,k—201%;_[fk i
Zip—1) | Qrk-1,k-1 Uik <>1,k—3,k—1C;%_Lk
B Q1 —1,k—1 O1p_sp1 RY ‘ Ol,k—S,k—le'_Lk (105)
- * sz*l,k—l,k—l *1 k—1,k—1 T *l,k—l,k—lRé *1,k—1,k—10é7_[fk
* U (Ry %100 -I-*1,o,o)C;€_Lk
I * ¥ =L Crp W TH Wy CF_ Ly |
I *1,k—1,k—1 *1,k—2,k—1R£ *1,k—2,k—101€_[fk 1
My _11 *1,k—1,k—1 0 0
T 0 0 0
M _ v , 106
Qi My @ * * 2P (apk + appiisk +xip14-1) CLRP Cl Ly (106)
* * * * —Ly 0
| * * * * * —L, ]
where ¢ ; denotes any function depending only on (1, Zf3), (Lyj, B) and (s1, - -, s;) and their partial
derivatives. By using Q;{M[k]Qk = Q{M[k]an + Zy), we arrive at
- . Mpy_1y(21, Ep_g) Pulay, Fp_1y)
T _ [k=1]\L1, L[k—2] E\41, L[k—1]
M, _ = N . , 107
Qk [k](l'l,l'[k 1])Qk (I)z(l'l,l'[k—l]) \I}k(l'lyl'[k—l]) ( )
where the functions ®; and ®; are obtained as
*1,k—1,k—1 *1,k—2,k—1R£ *1,k—2,k—101%;_[fk
Dr(21, o)) = | Crr—1h-1 Uik <>1,k—3,k—1C;%_Lk (108)
Ora—th1 Orp_sp1 RY Crp—3k-1C% Lk
\I’k(l'l, i’[k—u) =
2P (ags + ap g5k + *1h—1h-1) *1h-1h-1 + (*1p-16-1 + CP)RE (k1p_1h-1 + CE) Ly,
* — Ly + U, (R *100 ‘|‘*1,0,0)013:_Lk (109)
* * — Ly, — LG Wi [H Wi CF_ L
Hence, the claim is established. 1
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The task of the SD scaling backstepping is to show how to achieve M[k—l] <0 (N[k—l] < 0) by choosing
sk and scaling functions Ly and Ry if Mpp_q) < 0 (Npp—1) < 0, respectively) is guaranteed at the previous
step. The converse directions follows from the above theorem.

Now, the negativity problems in Theorem 4 are equivalently transformed into problems in smaller

size of matrices again. Let Jk(:zjl, Tp—1]) € R be defined with
. cpo_1 &%
\I/l = Jl for k=1
We also define Ji(x1, Zp_1)) € R, Ey(ay, Ep_q)) € R and Fi(x, Zp_1)) € R¥PH7Pk as
U, — T o, = | 5B gor k>0
kA1) ET B,
(111)
v, = [ B for k=1
VT LET By o=

Using the Schur complements of (110) and (111) , we have the following.

Corollary 2 Let k is any integer belonging to [1,n].
(i) Assume that Ny_qj(21, &) < 0 is satisfied for all (z1,3p—y) € R X RF"? unless k = 1. Then,
N[k](:zjl, Tre—1]) < 0 holds for all (x1, Tp—1]) € R X R if and only if

Jy <0 (112)
is satisfied for all (zq,dp-1) € R x R*1L.
(ii) Assume that My, 1](:1;1, Ak-g) < 0 is satisfied for all (x1,d—y) € R x R¥"? unless k = 1. Then,
My (@1, Eg—1y) < 0 holds for all (z1,&p_y)) € R x R if and only if
F, <0, J, — ExF7PER <0, when p £ 0 (113)
Jr <0, when py =0 (114)

are satisfied for all (a1, ¥p_q7) € R x R¥1.

7 Existence and analytical solution

This section derives the condition of allowable uncertainty under which the robust stabilization problem
can be always solved by robust backstepping proposed in Section 5. As for nominal stabilization, It will
be shown that the stabilization problem is always solvable on the assumption that nominal observers
exist. The section also provides us with analytical versions of nominal and robust backstepping and
their analytical solutions. The backsteping procedure based on materials in this section can be done by
numerical calculation again. In the robust stabilization case, the problem is no longer affine in decision
parameters. Although it may be difficult to solve it as an optimization problem, the backstepping can
be easily performed only by curve fitting of a real-valued function whose range is specified by intervals.
Analytical solutions of such functions are also available.
First, nominal stabilization is briefly explained. From (95), the function Jy is given by

Je = 2Ps(are + arpp15x + *15-14-1) (115)

for k =1,2,....,n. We can prove the following.

19



Theorem 5 Let k is any integer belonging to [1,n]. Let yx(xy) be any C® function. There always exist
a scalar-valued smooth function sp(x1, Zpp—1)) such that jk(:zjl, Tre—1]) < 0 s satisfied for all (zq, Zp—1)) €
R x RF-1L,

Proof : Remember that ay ;41(2) is non-zero for all ; € R. Since aj ;41 and other functions in (115)
are CY functions defined on R x R*~!, there exist a smooth function si(z1, I[x—1)) such that

2Py (g + appy156 + *1p—14-1) <0 (116)
is satisfied for all (zy, &p_1)) € R x RF7L. 1
This theorem leads us to the following statement for nominal stabilization.

Theorem 6 Given an ordinary observer, the nominal nonlinear system g can be always globally uni-
formly asymptotically stabilized by the dynamic output-feedback law (16-17) with a smooth function K .
Proof : Let W = I. Theorem 5 guarantees that Ji < 0 can be achieved, which turns out to be
N[l](:zjl) < 0 for all xy € R by Corollary 2. Suppose that Nk (21, Fp—g)) < 0 is satisfied for all
(@1, Tp—g)) € R X R*=2. Then, we can obtain J; < 0 again by using Theorem 5 and Corollary 2 implies
N[k](:zjl, Trp-11) < 0 for all (z1, Tpp-1)) € R X R 1. Finally, Corollary 1 proves the claim. 1

We now move onto the robust stabilization problem. From (108) and (109), the matrices Jj, is given
as follows:

Jl(wl) = 2P1(a11 -I' a1251 —|—*17070) fOf k =1 (117)
Ji(1, =) = 2Pk(are + g py15k + 1 p—1h—1) + Q1 p—1h—1 for k> 2 (118)

The following can be proved.

Theorem 7 Let k is any integer belonging to [1,n]. Suppose that C° function matrices Ly(a1, Z—a)
and Ry(xy,%p_q) belong to Ly and Ry, respectively. Then, there always exist a scalar-valued smooth
function Sk(l'l, Ap_11) such that J, — ExFy BT < 0 is satisfied for all (z1, 3pp_1) € R x R¥1.

Next, the existence of Ly and Ry is investigated. Due to (108) and (109), the matrices Fjy and Fj
defined with R, = 0 are

L+ U *100CT L
E =% CL 4 5q00)L1 |, F = L ool 119
(o) [ oo [t 17070) 1] > Aile) [LlCII*I,O,O —L, - L1C11W111[H_1]11W11101TlL1]( )
Ek(l'l,ff?[k—l]) = [Ql,k—l,k—l (Cka + <>1,k—1,k—1)[fk] for k > 2 (120)
Fy(xq, &ppmq)) = for k > 2
[_Lk — Bi;gng)P(k)([H_l](f) ‘|’~Fk11)p(k)W(k)B—,k (*100 — BkTWTPsz)CkTL_Lk ] (121)
chk,—(h,o,o — F,CTIZPWBk) —L; — LkCh_(W[;]l [H‘l][k]W[;]T + FkQQ)C,Z_Lk
B JUNE ST 0 %y p2r-1
Fi(21, 2p—g) = | Ur 1 p—3,h—-1 M[ Ui $1j—3k-1 (122)
0 $1p—s k-1 0 <>1k 3,k—1
n A Fkn(l'l i’[k—z]) Fklz(l'l 51?[k—2])
F _q) = | = L — L for k> 2 123
k(xhx[k 2]) lele(l'hfl?[k—z]) Fk22(x17x[k—2]) ’ orr = ( )
- . ~ _ _ 0
Up(x1, #p_g) = —[B"WTP + RCW gl [In_;m] (124)

20



Here, the following expressions are used.

B — B_’l - 9 B—,n — Bnn (125)
B_, 0
e B_m
_ [[H] * _ _ _ _
H 1 — [ kk 1,0,0 H 1 — 1 H 1 - H 1 o 126
[ ](k) *1,0.0 [H_l](k—l) ) [ ](1) ) [ ]( ) [ ] ( )

. Pl o . . . .
Py = Py =P =P 127

_ [ W] O _ _
W<k> = [*07070 W(k-|—1)] , W<1> = W, W<n> =W, (128)

Note that Fi. < 0 holds if M[k_l] < 0 1s satisfied.

Theorem 8 Let 1 < k < n. Suppose that Ry = 0 and p, # 0. Assume that H(x1) < 0 and
Mip_qj(1, Fp—g)) < 0 hold for all (xq, &p—g) € R X R*=2 unless k = 1. There exists a scalar-valued C°
Junction A\p(x1, Zp_q)) such that

)\k(l’l,i}[k_g]) > 0, Fk(l'l, i’[k—2]) <0 (129)
are satisfied for all (w1, Tpp_q) € R X RF¥=% with Ly(xy, Tip—2)) = Me(@1, Tppeg)) L, of

)‘max (_BT,ng];)P(k)([H_l](k) + Fkll)P(k)W<k>B_7k) X

_ _ _ - 1
M na (—Ck,—(W[k]l[H 1][k]W[k]T + szz>03,_) < n (130)
holds for all (xy,2p_q) € R X RF-2,
Proof : Define the following matrices
Ly = —Bi,gW(j];)P(k)([H_l](k) + Fkll)p(k)W(k)B—,k (131)
Zy = (%100 — P, PWB_ ) CF _ (132)
Zc = —Ch_(W[;]l [H_l][k] W[;]T —|— szz)cg:_ (133)
with which £}, is represented as
[N+ Z, A2y,
b= [ MZT N+ Agzc] (134)

Looking at the definition of F} in terms of W), and @, carefully, M}, < 0 and H < 0 imply that

Za D

AL (135)
holds for all (z1, Zjp-2) € R X R*=2. Now, define
a = Apaz(Za) (136)
b= Ao Z1 Zy) (137)
¢ = Anaz(Ze) (138)
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Here, A,..(-) denotes the maximum eigenvalue of a matrix. The inequality (135) directly proves that
these non-negative numbers @, b and ¢ satisfy b < ae for all (z, Ik-2) € R x RF2. Now, we consider
Fy, at an arbitrary point (1, Z_q) in R X R =2, From Young’s inequality, the inequality £} < 0 for
the matrix (134) is implied by the existence of ¢ > 0 satisfying

M+ Zo 4T <0, NZo— M+ g izl 72, <0 (139)
Obviously, (139) is met if the inequalities
¢g'<M\—a, b<qgl'(A\t—¢) (140)
are satisfied. The existence of ¢ > 0 in (140) is guaranteed by
AM—a>0, b< (A —¢)( M\ —a) (141)
Thus, it has been shown that £}, < 0 holds if

A > a (142)
Me+(b—ac— DA\ +a<0 (143)

are satisfied. By manipulating the determinant of (143) together with the condition (142), it is verified
that there exists a real number Ay such that (142) and (143) are satisfied if and only if

b<ac+1—2Vae, ac<1 (144)

hold. Moreover, the solution Ay € R to (143) automatically satisfies (142). Recall that the triplet
(a,b,c) satisfies b < ae. It is obvious that the two condition in (144) are met if

1 —4ac > 0 (145)
is satisfied. Hence, if (130) holds, then, any real number belonging to

((1+ac—b)—\/(1+ac—b)2—4ac (1—|—ac—b)—|—\/(1—|—ac—b)2—4ac)

146
2¢ ’ 2¢ (146)
achieves Iy < 0. Note that (146) becomes (@, +00) as ¢ goes to 0. Since all functions @, b and ¢ are C°

functions defined on R* x R*~2, there exits C° function Ap(x1, Tfp_g)) such that the two inequalities in
(129) hold for all (z1, Tp—9) € R¥ x R*? under the assumption (130). 1

The condition (130) is only sufficient for existence of Ly in the backstepping procedure. For instance,
Young’s inequality is sufficient when p, > 1. The sufficiency is only for the purpose of obtaining a
simple and explanatory condition. It should be emphasized that the backstepping procedure by itself
does not need any conservatism introduced in the proof of the above theorem. To check whether the
backstepping selects { Ly, Ry, s} properly or not, one only has to compute M[k] < 0 or My < 0. Since
the entries of B and C matrices represent the nonlinear bounds of uncertainties, the condition (130) is
considered as the upper bound and nonlinearity of tolerable uncertainties. In order to make this point
clear, we temporarily suppose that C' and B are block diagonal matrices and R = 0, W = [. In this
simple case, uncertainties appear in ¥p as B;A;C;; and the condition (130) becomes

1
)\max(BT Bkk))\maac(ckaT) S PN
H T dy(y — fo) PP

(147)

3 3 R *1,k—2k—1 4 B *1 k—2,k—1
fi=0, fk(xlvx[k—Z]) = | 1 k—3k-1 M[;il] Crp—sp—1 | <0 for k>2

O1k—3 k1 1 p—3,k—1
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where y(xy) is any function satisfying

7 0

0 | >-H">0 (148)

D
Although Theorem 8 is derived with R, = 0 for simplicity, the parameters Rj are not useless. One
advantage of the SD scaling approach in Section 5 is that we can introduce the additional parameters R,
into each step of backstepping to improve controller performance other than mere robust stabilization
(a controller obtained without Rj may not be the best one).

Theorems 7 and 8 show that M[k] < 0 can be achieved globally for (z,2p_1) € R x RF1 by
using scaling matrices in the form of Ay(zy, Zp_g)lp, > 0. If Ap(21, Ip_g) > 0 is replaced with a
positive constant number Ay, the inequalities (129) might not be met globally. The size of region where
these inequalities are satisfied depends on parameters of (A[k], B, Cri) and (s, -+ -, sk—1, Lpg—1], Bpr—1))-
In order to achieve the robust stabilization of Xp with output feedback via SD scaling, according to
Corollary 1, Ag(#1,Zp_9)I should be in the scaling set Ly. Although the SD scaling Ap(xy, Zpp_q)/
belongs to the scaling sets for both the full and repeated static uncertainties, it does not belong to the
scaling set for dynamic uncertainties. Note that 0 is a member of the scaling sets R;. Thus, we obtain
the following.

Theorem 9 Suppose that a robust observer is chosen such that
)‘max (_BT,ng];)P(k)([H_l](k) + Fkll)P(k)W<k>B_7k) X

Amaz (= Croe (Wi [H Wi + Fraz) L) < 2, W@, dpg) € R x RF2 (149)

1
Zv
is satisfied for all k =1,2,...,n.

(1) Assume that the uncertainty Yo only has static uncertain components A;; and A;,. The system

Yp can be globally uniformly asymptotically stabilized for any admissible uncertainty by the dynamic
output-feedback law (16-17) with a smooth function K.

(ii) Assume that the uncertainty Yo has dynamic uncertain components N;q. If there exists a constant
A belonging to (146) for each k =1,2,...,n. then, the system Yp can be globally uniformly asymp-
totically stabilized for any admissible uncertainty by the dynamic output-feedback law (16-17) with a
smooth function K.

Proof : Omitted. 1

The condition (149) may be satisfied for any C° functions B and C by taking sufficiently small C°

L' < T holds for a robust observer. This is always the

functions y;(21) > 0, ¢ = 1,2,...,n since —H~
case when n < 3(The n = 3 case is proved by making s; and Y depend on & as well as x;.). However,
this argument is valid only if an observer is constructed for such a large I'"'. The smaller v, puts a
heavier burden on the observer. The required strong observers may not always exist unless the full
information of the state x is available for feedback. Even if an observer exists, the magnitude of Y
and W may become very large when 4; is too small. Recall that F; depends on Y and W. In this
way, the condition (149) shows that there is a strong coupling between observer-gain design and the
feedback-gain design. The coupling is due to the existence of the term PW B as expected in Section 3.
This fact reveals that the output-feedback robust stabilization problem is not always solvable globally
in a backstepping manner for arbitrarily large uncertainties. The condition (149) actually describes the
tolerable uncertainties in a recursive manner. This constants sharply with state-feedback control by
which global stabilization can be always achieved for arbitrarily large uncertainties(Ito and Freeman,

19984).
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8 Recursive global observer design for output feedback

As it has been shown in previous sections, to design an output-feedback control law via backstepping,
one is required to find an observer whose error dynamics is stable to a certain degree. This section
shows how to construct such observers in the output feedback case y = ;.

The ordinary observer defined in Section 4 can be constructed whenever the C° function A(x;)x
satisfies

Alxy)ae = Ara + (1)
with a constant matrix A; (Krsti¢ et al., 1995). To explain this fact, we rewrite A(z)z as
Aly)e = Az + Ax(zy)y = Ay + Ay(2q)Cp
The observer gain Y = —Y; + A,(y) with a constant vector Y; yields
A-YC, = A — Y1C,

The right hand side of the above equation is obviously a constant matrix which can be always made
stable by choosing Y;. This implies that (54) is satisfied with a constant matrix ¢, > 0. However, this
observer-gain is not enough for creating a robust observer. We need to develop a method of constructing
robust observer gain.

Again, the matrices A, Y and I' are supposed to be C° functions of 3, namely, they are represented
by A(z1), Y(21) and I'(21), respectively. The matrix W is constant and non-singular. Given I'(2),
it is required to find the coordinate transformation W and the observer gain Y () such that (56) is
satisfied for all z; € R with a diagonal Lyapunov matrix P >0.

First, we choose W' as

1 0 0 ---0
wy 1 0 ---0
W=]0uw 1 -0 (150)
0 0 w,1
1 0 0 0
—w, 1 0 )
W_l = wz‘w3 —7:03 1 0 (151)
(-1 twyw, o w_w, —w, 1

These entries w; for 2 <17 < n are constant numbers. Now define

W:[wl(ml)o”'ol (152)

wT

where w; () is a C° function defined on z; € R yet to be determined. Let the observer gain be

wq
Y(ay) = W [wlg@'l)] . o (153)
(—1)”_11;)1w2---wn
Then, we obtain
[CT AT W = —CIyTWT + ATWT = (A" — Ty Tyw? (154)
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The inequality (56) is equivalent to

H(zy) = WIATW=L P~ 4 PTUW-TAW 4+ PT'T'P 1 <0 (155)
A=l AT (156)

Now, let P be any diagonal matrix with positive entries. We now pay attention to the structure of
(155) which is actually the same as that of feedback gain design via backstepping except that the lower
triangular structure is replaced by the upper triangular one. That is why the parameters of W can be
determined recursively from w,, to wy. To explain this, the following notation is needed.

7 T AT w-lp- p—1 -1 A 11—

for k =1,2,...,n, where

A1) = [akBLk A<:+1>] C A=A Ay = [ ] (158)
Ly (1) = [70’“ F<1?+1>] s Ty =T, Ty =m (159)
Py = lﬁk p(fﬂ)] , Py=P, Puy=PF (160)
Wy = li W<2+1>] , Wy =W, Wy =1 (161)
Wiy = [w—’“f@%}] , Way =W, Wy = [uﬂ (162)

Obviously, H = ]:]<1>. Recall that a;_q # 0 holds for all z; € R for every k = 2,3, ..., n by assumption.
The following can be proved.

Theorem 10 Suppose that %1(3) and U5y are constant matrices. Given an inleger k € [1,n], assume
that H<k_|_1>(:1;1) < 0 holds for all 1 € R unless k = n.

(i) Fork=n,n—1,...3

There always exists a constant wy, such that H(k) < 0 is satisfied.

(i) For k =2

There always exists a constant wy such that H<2>(:1;1) < 0 is satisfied for all x4 € R if there exists positive
constants ¢; such that

o
72(51?1)6112(51?1)

< ¢ (163)

hold for all x, € R.
(iii) For k =1
There always exists a smooth function wy(x1) such that H<1>(:1;1) < 0 is satisfied for all x1 € R.

Because of space limitation, the proof is omitted. Explicit and simple formulas of constructing wy, are
available. The constant and growth requirement of A and I" guarantees wy to be constant for 2 < k < n.
The conditions in (163) are met automatically if A(g) is constant. The matrix A(g) is constant if and
only if the C function A(xy)x satisfies

A(l’l)l’ = Aol' —|— Al(l'l)l'l —|— Al(l’l)l’g (164)
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where Ag is a constant matrix. The condition (163) is introduced to guarantee that H < 0 can be
globally achieved. It is important that H < 0 is always semi-globally achievable without the condition
(163).

This recursive design of observers resembles backstepping very much. The design starts with a
parameter away from observer-gain and back to the actual observer-gain. The recursive structure is in
an upper triangular form which is similar to forwarding(or a dual procedure of backstepping). This type
of design procedure for observer is a unique feature of this paper. It is ready for automated numerical
calculation by computer as well. Another feature of the recursive design of observers in this section
is that precise knowledge of the system equation is not required for calculating w; since the design is
based on domination instead of cancelation. The approach is amenable to robustification in that the
entries of A are allowed to be uncertain. Since observers can be always designed strong enough to an
arbitrary degree for linear systems, we can prove the following.

Theorem 11 Consider the uncertain system Xp in the strict-feedback form defined as in Section 4.
Suppose that the uncertain system Xp is linear. Then, Xp is always robustly stabilizable for arbitrarily
large static uncertainties by the dynamic output-feedback law (16-17) with constant K and Y .

Proof : Due to the block lower triangular structure of B and C', the closed-loop system Xp with
memoryless uncertainties can be described as

dR]_[S(4s+GR)s™  —syc,wt % (165)
dtLnl 0 W(As =YC,)W=1] Iy
with the uncertain matrix:
ap; aig 0 e 0 011 0 0 .- 0
a1 Qg a3z 0 0 691 bz 0 0 0
As= o | Tl o 0 (166)
Op_11 Gp_12 " " """ Ap—1n 571_171 57%_172 ...... 0
an71 an72 ...... an7n 57%,1 57%2 ...... 57%,7%

where each ¢;; is a uniformly bounded function of ¢. By using the observer design in this section,
WT(As —YC)TWTP + PW(As —YC,) W™ <0 (167)
can be achieved uniformly in ¢ for all admissible uncertainties ¢;;. It is also true that
ST (As + GKY'STPHPS(As 4+ GK)S™ <0 (168)

can be satisfied by constant S and K (Freeman and Kokotovié¢, 1996; Ito and Freeman, 1998a). Ac-
cording to the argument in (i) of Corollary 1, N < 0 is satisfied for As. Finally, Theorem 1 completes
the proof. 1

This theorem reveals that for strict-feedback linear systems, independent robustification of observer
design and feedback-gain design can result in robust stabilization of the whole system. This separation
of robust observer design from robust feedback-gain design in robustly achieving N < 0 semi-globally is
valid even for a nonlinear system Y. p. However, for globalstabilization of nonlinear systems, independent
robust observer design is not enough. The robust observer design should be coupled with the robust
feedback-gain design to compensate the nonlinear size of uncertainties together (see Section 7, 9 and
10).

Finally, let the author mention some remarks about output-feedback nonlinear design using this
recursive observer design and the recursive feedback-gain design proposed in Section 5. Let Ny and
My be defined by adding subscript (k) to every matrix in the right hand side of (64) and (65),
respectively. The observer design has a property which is similar to the feedback gain design.
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Theorem 12 Suppose 1 < k < n.

(i-a) Nyy does not include {wy,wy, -+, wp_1}.

(i-b) Every entry of Ny is affine in wy,.

(i-c) Ny < 0 implies Npyqy < 0 unless k = n.

(ii-a) My does not include either {wy,wq, -+, wi_1}, {L1, Ly, Ly} or {Ry, Ry, -+, Ry_1}.

(ii-b) Every entry of My is simultaneously affine in Ly, Ry, and wy.

(ii-c) My < 0 implies Myyqy < 0 unless k =n.

In general, the two recursive designs cannot interlace with each other. For example, the observer design
must be completed before performing feedback design. There are three reasons. Design parameters of
two recursive designs are coupled in M (or N). The feedback-gain design augments the system from
top to bottom, and the observer-gain design does from bottom to top. For instance, w; is not available
when one want to design s;. In order to carry out the observer design to achieve My < 0 (or Ny < 0),

the parameter matrix W should be a function instead of a constant. Further research is needed in this
direction.

9 Robust stabilization problems with guaranteed solutions

This section focuses on a special class of uncertain systems considered in previous sections. It will be
shown that the class of systems is always robustly stabilized by output feedback for arbitrarily large
uncertainties.

The class of systems is described in the following assumptions.

Assumption 1 The state x is available for feedback control. The system matrices A, B and C depend
only on xy. The B and C' matrices satisfy

Bn(l’l)

By (x4
B(z,) = ( ) . Clay) =[Ciafa1) 0 -+ 0] (169)

Bnl.(l'l)
where By(xy) € RYP1, Cpy(xy) € RPYXY and py = p.
Assumption 2 The function A(xy)x satisfies
Alzy)x = Aox + (1) + (1), (170)
with a constant matriz Ag and C° functions yp and ¢. There exists positive constants ¢; such that

a?z(xl)

a12 51?1)

<e¢, 1=2,3,....n (171)

hold for all x1 € R.

Since A(xq)x is zero at @ = 0, ¢ (xq) satisfies 1(0) = 0. This implies that (170) is equivalent to
Azy)ae = Aor + Ar(x1)xr + Az(aq) s (172)
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with C° functions A;(x;) and Ay(z;). This assumption is weaker than a common assumption
Alxy)ae = Agx + (), %(0)=0 (173)

in which the nonlinearities are allowed to depend only on the measured state. Note that if ¢ (xq)(the
first row of the vector ¢) is a constant, we do not need the constraint (171) since such a system can be
transformed to a system with ¢ = 0 by using coordinate transformation.

The coordinate transformation W of & is a constant matrix represented as

1 0 0 ---0
wy 1 0 ---0
. 10---0
S R o (7
0 -+ 0 w,1
1 0 0 - 0
—w, 1 0 e 0
W_l = w2‘w3 —7:03 1 . 0 (175)
(-1 twyw, o w,_qw, —w, 1

We also use the following recursive representation.

By
witlo B
-1 _ k-1 _
Wiy = l —— 1] » Bun=| (176)
B
Let P be a diagonal matrix. Then, we have
[Py (Ve + Tig) Ay Staal (1, 2pe—y) =
Py (Vg (@1, Epe—gg) + Ty (21, :??Ek_z])) 0
A[k_l](xl)s[k_l](l'l, J}[k_g]) Pk—lak—l,k
Prxy g1 51 |Pk Ak -I- A 415k + %1 p—1,5-1)
~ Pk— Vk— (xvjjk— )
PR TR )

[LCS™(@1) = [La(z1)Cra(a1) 0 -+ 0], [RCS™(ay) = [R1(21)Cry 0 -+ 0]
[LCW ™ (2y) = [La(1)Cra(21) 0 -+ 0], [RCW (1) = [ Ry(21)Cra(21) O -+ 0]

_ A P Vie— (w1, @ a) Apeag (2) Wiy | 0
PVAWlx,x_: [F—1] V[k—1]\-11, L[k—2] ) S [k—1] [k—1]
[PV AWy 1@, Ep-1)) l T — y
i a0y = [T (@, Epog) Yiea) 0 -~ 0]0
(B T Yin Cotg Wiy 121, &pp-1y) = J— 000

[BTWTP)(e1) = [ B (20) Py B(ay) W] Py |
By using these structures, we obtain the following.
Theorem 13 (i) For k =1 : The symmetric matrix
My (1) = Wy (1) (177)

depends only on (Ly, Ry) and s;.
(it) For 2 <k <n: M[k](xl, Tre—1]) < 0 is equivalent to

My_qy(21, Ep—g) Pr(ar, Ep—1y)

K n <0, 178
@f(:r:ul‘[k_l]) \I’k(l'la:l?[k—l]) ( )
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where @y depends only on (Ly, Ry) and (sy,---,8,_1) and their partial derivatives. The symmetric
matriz Uy depends on sy.

The functions ®; and ¥, are obtained as follows:

Uy(xqy) = (179)
2P (a11 + a1281 + *10,0) R *100 + (%100 -|-~01Tl)RlT (%100 + ClTl)Ll
*  —L — (PWB+WICTROTH-Y(PWB +W=ICTRT) (%100 + Ri*100)Ch L
* * —Ll — L1C11[H_1]1101T1L1
*1 k—1,k—1
(I)k(l’h i’[k—l]) = <>1,k—1,k—1 ) for2<k<n (180)
Q1 —1,k—1
Uy (21, ) = 2Pe(apr + apjpr5e + *1p-16-1), for2<k<n (181)
where %4 ; ; denotes any function depending only on (1, Zf;;) and (s, - -, s;) and their partial derivatives.
If a function *;; ; also depends on (L, Ry), it is denoted by ¢4, ;.
Next, we define Ji(x1, Zp_1)) € € R Ey(xy) € RV and Fy(xy) € R*1*P1 a5
Ji FE
= EiT FI] for k=1 (182)
Uy, — O Mt @y = Sy, for k>2 (183)

Using the Schur complements formula, we have the following.

Corollary 3 Let k is any integer belonging to [1,n]. Assume that My_yj(x1, Fp—q) < 0 is satisfied for

all (1, &p—g) € R X RF% unless k = 1. Then, Mpyg(1, 2p—1)) < 0 holds for all (zq,3p-1)) € R x R¥!
if and only if

F<0, Jy — ByFTVED <0, when k=1 (184)

Jp <0, when k > 2 (185)

are satisfied for all (xy, ¥p_qy) € R* x RFL

Theorem 14 Let k is any integer belonging to [1,n]. Given arbitrary Ly € Ly and Ry € Ry, there
always exist a scalar-valued smooth function sp(xy1, Ty_q)) such that

Jy— B FTTET <0, when k=1 (186)
Ji <0, when k > 2 (187)

are satisfied for all (w1, ¥p_qy) € R* x RFL

Theorem 15 Let Ry = 0. Assume that H(xy) < 0 holds for all 1 € R. There exists a scalar-valued
C° function A\i(xy) such that

A(xy) >0, Fi(xy) <0 (188)

are satisfied for all x1 € R with Li(x1) = M(x1)1,, if

—[H 1A aw (= BTWTPHT PWB) Ay (C1iC) < (189)

]

hold for all x1 € R.
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I should be noted that the simple form L; = A1 is used in the above theorem only for the purpose of
deriving a simple condition like (189). Remember that the actual backstepping does not need to use
the above theorem. Although [y = A{[ is enough to show the existence, one had better exploit the
freedom allowed in L; to avoid unnecessary high-gain and growth order of control laws. Indeed, this
is an advantage of the scaling approach. For example, if uncertain parameters appear in the system
equation as scalar-valued functions, the scaling [, can be a diagonal matrix with independent entries:

Li=| 0 Az’ (190)

The condition (189) can be always satisfied for any B and C by a sufficiently small and positive function
—[H™11(2y). It H < =T~ is satisfied by a robust observer, [—H ~'];; < 7 holds. The smaller ~; puts
a heavier burden on the observer. However, in Section 8, it has been shown that such a strong observer
can be always constructed for arbitrary function ~;(x1) > 0 and arbitrary constants v, k = 3,4,...,n
under Assumption 2. Recall that W is independent of 4, in the observer design. In this way, Assumption
1 allows us to have the following.

Theorem 16 Consider the uncertain system Xp under Assumption 1 and Assumption 2.

(1) Assume that the uncertainty X a only has static uncertain components A;; and A;,. The system
Yp can be globally uniformly asymptotically stabilized for any admissible uncertainty by the dynamic
output-feedback law (16-17) with a smooth function K.

(ii) Assume that the uncertainty ¥ a has dynamic uncertain components A;y. If there exists a constant A\
belonging to (146) for k = 1. then, the system Yp can be globally uniformly asymptotically stabilized
for any admissible uncertainty by the dynamic output-feedback law (16-17) with a smooth function K.

Proof : Since ay3(x1) # 0 for all z; € R by assumption, we can define a C° function as follows:

1 1
Ya(71) = : =1, 7(z)>0, Ve €R (191)
afy(zy) Ya(z1)ara ()
Let v1(21) be defined such that
T/ T BT P T 1
Yidmaz (BEWIPTPW B) Ay (C1iC) < T (192)
is satisfied for all 27 € R. Choose v;, = = 3,4,...,n as any positive numbers. Due to Theorem 10 and

Assumption 2, there always exists Y (z;) such that H(z;) < 0 holds for all #; € R. Theorem 14 and 15
also guarantees M (xq, &p—1)) < 0 for all (zy,2p-1]) € R X REL on the Assumption 1, Thus, Corollary
1 proves the claim. 1

Remember that Assumption 2 only comes from observer design to ensure that the obsever is globally
strong enough.

As seen in the above theorem, global robust stabilizability against dynamic uncertainties via output
feedback is not always achievable if the uncertainty structure and size of uncertainty is prescribed «
priori. However, if we relax the robustness requirement, a stability robustness in terms of Input-to-State

Stability (ISS) can be obtained.
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Theorem 17 Assume that the system Yq satisfies Assumption 1 and Assumption 2. The system g
can be 1SS stabilized by the dynamic output-feedback law (16-17) with a smooth function K.
Proof : First, set Ry = 0. Let I} be represented as

= _AAIIIZJQTZG —Al?lfbﬁzc 20 (193)
Z,=—-BTWITPH'PWB, |, Z,=%,00ChL, Z.=—-Cnu[HCL (194)
Maximum eigenvalues of the above matrices are denoted by
0= Mmae(Za), 0= Aol 2L 2), &= Apau(Ze) (195)
Choose constants
a; >0, v>0, €>0 (196)
arbitrarily. Let v;(z;) be a C° function such that
Y1(21) Mnac (Bl (21) PEB11(21)) + Amaa( BT (21) W/ Pyl 9y Py Wi B(1)) = oy (197)

holds for all #; € R, where '3y > 0 is any constant matrix. The existence of a robust observer with
respect to these 7y and I'yy is guaranteed by Theorem 10. From 0 < —H~" < T' it follows that

1 > Mae(BTWIPTPWB) > \pau(—BTWITPH'PWB) =a (198)
Let C41 be
Chi(z1) = Ai(x1)Ci (199)
where én is a constant matrix satisfying )\max(éllélTl) = 1. Choose a C° function j3;(zy) such that

e(ay + €)

(—e[H™ 1B (1) + b(z1)) < m

(200)

holds for all z; € R. There exists such a function 3, since b(xy) = Apae(Chy *%7070 Cl) > 0 and
e[H™'11 < 0. Now, choose \; as a positive constant defined by

M=oy +v+te (201)
From ¢ = —[H %1137, the inequality (200) is rewritten as
e< M=AbA —a =), M —a—v>0 (202)
The condition (202) is equivalent to
M—ar—v>0, b<(A\'—e—=AN*v)(M — o — 1) (203)
This implies that there exists a function ¢(x;) > 0 such that
<M —ar—v, b<qg 'Ot —c— ) (204)
Since oy > a > 0, it is also true that

¢gl<M—a—v, b<qg !N —c— ) (205)
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By using Young’s inequality, we have

M+ 7, M 7y

It has been verified that the positive constant Ay = oy + v + € solves Fy(xy) + vI < 0 for all ; € R.
Since Ji, k =1,2,...,n is affine in s, it is always possible to achieve

M(l’l, i’[n—l]) + vl <0 (207)

for all (z1, #[,—17) € R X R"™! by selecting sx. Using the Schur complements formula of M, we arrive at

T

A

X
U]

d A
—V(z,2) < —v ?7(

o < 4wl (Ly — vI)wy (208)

for all (x,2) € R™ x R™. Here, L4 — vl = A\ I — vI is a positive definite constant matrix. Since S and
W are global diffeomorphism it follows that the closed-system is ISS. 1

Note that the signal z is not required for ISS since ISS is a property defined only with state and
disturbance input signals. That is why the matrix C is considered as a free parameter to prove the
above theorem.

The class of systems Yo which satisfy Assumption 1 and Assumption 2 includes

&1 = w2+ P1(xr) + d1(xr)ae + by(21)w
Ty = w3+ Pa(x1) + da(ar) 22 + bo(aq)w

Tn = g(x1)u + Yu(1) + Gpl@1) T2 + by(2))w

212
y= 213
where ¢ has positive constants ¢;, ¢ = 2,3,...,n such that
‘M <e (214)
1+ ¢1(21)

holds for all ;1 € R. As for uncertain systems, the class of uncertain systems ¥p which satisfy
Assumption 1 and Assumption 2 includes

&1 = w2+ P1(xr) + o1(xr)as + 61(21,1)
Ty = w3+ Pa(x1) + da(wr)ae + d2(x1,1)

[\
—
[op)

[\
—
09

2, = g(x1)u + Yu(z1) + Gnl(@1) s + 6071, 1)

Yy =1

©)
~
-1

R

(
(
(
(
(

where ¢, satisfies (214). For each ¢ € [1,n], the uncertain part é;(xy,t) is any function whose absolute
value is bounded above by a C° function, namely, there exists a C° function f; such that

0i(@1, )] < [fiza)], fi(0) =0 (220)
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holds for all #; € R and ¢ > 0. In fact, since the function f;(z) can be decomposed as f;(xy) = m;(xy)xy,
the uncertain system can be represented by ¥y with

1 m; 0 -+ 0
T T T R R (221)
1 0 0 m,
The uncertain block consists of w; = ha,(2;,t), ¢ = 1,2,...,n which have instantaneous gain less than

equal to one.

10 Enlarging the class of nonlinearities

This section shows how to remove the constraint (171). To overcome the limitation, we need to modify
the coordinate change for the recursive observer design. Consider the diffeomorphism between & and n
as a function of z; and z4.

Since the matrix W depends on &; as well as %;, we have

= W(ky, 2) + W(i, 1)2 (223)

with appropriate matrices W and W. Now we choose W as

1 O 0 ---0

_ _ we(x1) 10 -+ 0

Wz, ) =W(xy) = 0 ws ‘1 0 (224)
0 - 0 w, 1

1 0 0 ---0
wg(:%l,:%l) 1 0O ---0
0 ‘ 0 w, 1
Then, we have
wZ(*%lvt%l)*%l :/ 171)2(*%1 _f)dfv w; = w, i:3747"'7n (226)
0
0 0---0
71)2((%1,(%1) 0 -0 n o
. d
W((%l,t%l) = 0 0 0 5 UJQ(I%l,t%l) = wQElelwfl)t%l (227)
Dot 1
0 0---0

From ¢ = (V+ T):JZ' and )%1 =, it follows that

=Wk, 2% + W(dy, &)@ (228)
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The closed-loop system becomes

d [X] _ [(er T) A+ GK)S™ —(VA+TYC,)W~! ] [X] N [VB]

di Ln WT(A+ GK)S™Y W(A-YC)W-1—WTYC,| |1 _plw (229)

Here, WV = 0 is used. The observer inequality becomes
H:=WTA-YC)' W = CIYTTTWT) P+ PW(A-YC )W = WTYC,) < —T" (230)

The matrix M is obtained as

M(l’l, [%) = Mll(fﬁl,i') — M12($1, (%)H_l(wl, t’%l)(wl, (%)Mlj;(fﬁl, [%) (231)

i( o-T AT T
STAFGRY (VA T) PA py gy g-10T g g-T01,
My (21, 8) = P(T+V)(A+ GK)S (232)
e BTVTP+RCS™! —L 0
i LCS™! 0 —L
[P(VA+TYC)W™! — STT(A+ GE)TTTWTP
Mya(2y, #) = BTWT P+ RCW-! (233)
i Lcwt
We next show that it is always possible to construct an observer-gain such that (230) holds. By
using
WWr =wtWw, oW =, (234)
we have
WA-YC) W —WTYC,=W(A-YC, - WWYyC,) W (235)
Let the modified observer-gain Y be defined by
0 0---0
Wy 0+ 0
Y=(+Q)Y, Q=WT1'W= %0000 (236)
I

where (I + Q) is invertible. The actual observer-gain can be recovered by Y = (I + Q)™'Y. Then, we
obtain

W(A-YC,) W —WTYC, =W(A-YC,) W™ (237)
Choose the modified observer gain as
wy
_ . _ ¥ - —11)11])2
V(a1 @) = =W (21) [W(“’g’xl)] =— . (238)
(= 1)~ gy,
Then, the inequality (230) is equivalent to
H(zy, &) = WIATW I P~ 4 PIW-TAW 4+ P7IT'P! < 0 (239)
A= [CTAT], Wy, i) = l—T—wl(%}xl)m] (240)

where w;(z1, %) is a C? function defined on (xy,%;) € R X R yet to be determined. Now, let P be a
diagonal matrix with positive entries. Then, the structure of (239) is the same as that of (155) so that
the parameters of W can be always determined recursively from w, to w;.
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Theorem 18 Suppose that %1(3) and I'(sy are constant matrices. The parameter v, is allowed to depend
only on x1, and v, is allowed to depend only on (x1,%1). Given an integer k € [1,n], assume that
H<k_|_1>(:1;1) < 0 holds for all 1 € R unless k = n.

(i) Fork=n,n—1,...3

There always exists a constant wy, such that H(k) < 0 is satisfied.

(i) For k =2

There always exists a smooth function wy(x1) such that H(g)(xl) < 0 is satisfied for all x1 € R.

(iii) For k =1

There always exists a smooth function wy(xy, 1) such that H(1>(:1:1, T1) < 0 is satisfied for all (x1,341) €
R X R.

Next, we consider the feedback-gain design on Assumption 1. The procedure of backstepping can be
carried out in the same way as Section 5 or 9. The rest of section investigates the existence of solutions
{81,82,...,8n, L1, Ry} in the recursive design. According to (231), the term which is structurely different
from the constant W case appears only in M, as

0 11)2?2(@1{ + Cl1281) 0---0

0 IT)QPQCllQ 0---0
—STTA+GK)TTTWTP = |0 0 0---0 (241)

0 0 000

Thus, &5 (2 < k < n) and ¥y (1 < k < n) are the same as (180) and (181). This implies that the
recursive design yields a solution (s1,$2,...,5,) to M < 0 whenever there exists s; solving U; < 0. We
shall calculate an analytical expression of the existence condition for s;. Assume that a diagonal matrix
I' satisfies —H ™1 < I'. Only for the purpose of showing an explanatory analytical solution, —H ! is

temporarily replaced with I' in the definition of M[l], i.e., Wy. This replacement is valid since
My — Q1 M H™ ' M5Q1 < My + Q1 MioT' M50, (242)

We now define W, as the right hand side of the above equation instead of the left hand side. Then, the
matrix Wy 1s

q’l(l’h 51?1) =
2P (a1 + a1 + p1) . CLRT + p . (CT 4 yi%x100) L1
e Y R R CHE T
* * —Ly + ’71L101101T1L1
p1L = ’71P12w% + 72]52217)2(%1 + G1231)2 (244)
p2 = =1 Puwy (PBY + RiCiy) + 1 Pliby(an + arzs:) (0,811 + Bar) (245)

The function F; € R?*:*?Fi is identical with that in Section 9(replacing —H ! with T'). This implies
that Theorem 15 is valid for Wy in (243). As for Theorem 14, the inequality

Jy— B F7'ET <0 (246)
becomes
7217)%]522(1 + 72*%7070)(%1 + G1231)2 + (2P 4+ yy2w1 a1 0,0) (@11 + ar251) + 71@%]312(1 + 71*%7070) < (247)
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Since this inequality is quadratic in sy, the existence of solution s; is not guaranteed. Note that w,
and w; depend on 2. If solutions s; exist, they are functions of #; as well as x;. By making v, small,
the inequality (247) seems to have a solution s;(x1, #1). However, this is not always the case since the
magnitude of w; may become large when v, is too small. Let D, denote

Dy = (2P) + 317201 thsx1 00)? — 4717900705 PEP(1 4 7153 0,0) (1 + Y%7 0.0) (248)
Then, we have the following theorem.

Theorem 19 Consider the uncertain system Yp satisfies Assumption 1 and (170). If there exvists a C°
function yy(xy, &) > 0 such that Dy(xy, &) > 0 and

Yidmaz (—BTWTPTT PWB) Aoy (C1iCY) < (249)

1
4
are satisfied for all (x1,3) € R X R, then, the system Yp can be globally uniformly asymptotically
stabilized for any admissible static uncertainty by the dynamic output-feedback law (16-17) with a smooth
function K.

Note that W in (189) is independent of v1. Recall that +; is an index of how much the observer is made
robust against uncertainty. Thus, the observer-gain parameter w; depends on 7. There is inevitable
interplay between observer design for choosing w; and feedback-gain design for s;. The existence of v4
in Theorem 19 for the class of systems has not been proved at this time. This sort of coupling exists
even in stabilization of a nominal system. If the system does not have any uncertainties, the design
inequality of sq is

Jl = "}/21])%?22(@11 + Cl1281)2 + 2P1(Cl11 + Cl1281) + ’7171)%P12 < 0. (250)

Although (249) disappears in nominal stabilization, the solvability of (250) is apparently coupled with
observer design.
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