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Extended Abstract: This paper considers global robust stabilization of a class of nonlinear sys-
tems via output feedback. A new approach to output-feedback backstepping is proposed. The
approach provides us with a systematic design procedure which can handle output-feedback
stabilization problems of strict-feedback nonlinear systems in a uni�ed way. More impor-
tantly, the approach by itself has a mechanism of achieving robust stabilization against a
general class of structured uncertainties in the procedure. Compared with the state-feedback
global stabilization, the the class of uncertainties which has been treated by the literature
of global robust stabilization problems via output feedback is quite restricted in spite of the
practical importance of considering various locations and structure of uncertainties. The ap-
proach presented in this paper can be considered as an successful extension of the author's
state-dependent design for state-feedback backstepping to the output feedback case. Thereby,
this paper shows the power of the general concept of state-dependent scaling design for non-
linear systems control by looking at output-feedback stabilization problems, especially in a
backstepping manner. The scaling approach allows us to treats both static and dynamic un-
certainty in an uni�ed way and , in addition, be able to clarify the di�erence between their
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consequences of stabilization in a simple way. The output feedback design proposed also in-
herits advantages of SD scaling design such as automatic computation of backstepping based
on optimization. Controllers in this paper are dynamic feedback which consists of observer
and feedback gain(or controller). The essential di�erence between nominal stabilization and
robust stabilization is described. It is shown that observer design cannot be separated glob-
ally from controller design. The observer should be designed strong enough to compensate
\nonlinear size" of the uncertainty on the entire state-space. The coupling is natural and
inevitable in robust stabilization as it is for linear systems. In addition, for nonlinear systems,
nonlinearity of the coupling is crucial for global stabilization which cannot be compensated
globally by either feedback-gain or observer-gain independently. This fact contrasts with nom-
inal stabilization in which it is possible to stabilize the whole system globally by designing
controller strong enough whenever the observer dynamics by itself design to be only stable(or,
vice versa). Strong observers required for robust stabilization may not exist unless the output
have the full information of the state. If the nonlinear size of uncertainties are small enough,
the global robust stabilization can be certainly achieved. This paper shows the condition of
allowable size and nonlinearity of uncertainties for which robust stabilization can be done via
backstepping. The condition is considered as the index  which describes the largest allowable
size of uncertainty in robust stabilization via linear H1 control. Indeed, for linear systems,
the condition of  has coupling between feedback gain and observer design(or Riccati inequal-
ities). In addition to the coupling, the condition of the uncertainty size in this paper exhibits
a recursive form because of backstepping. Another feature of the output backstepping proce-
dures in this paper is that it does not require Young's inequality. Instead, the paper uses the
Schur complements formula which gives a necessary and su�cient condition for negativity of
a quadratic form. This paper also proposes a novel recursive procedure of robust observer
design, which resembles backstepping or forwarding for controller design.

Key Words: robust backstepping; state-dependent scaling; global robust stability; output
feedback; observer design; input-to-state stability; matrix inequality; convex optimization.

1 Introduction

For global stabilization of uncertain nonlinear systems in the so-called strict-feedback form, backstepping
requires domination of uncertain nonlinearities at each step of its recursive procedure(Krsti�c et al.,
1995; Freeman and Kokotovi�c, 1996). Such domination is achieved through the choice of appropriate
dominating functions which satisfy certain inequalities in the Lyapunov derivative corresponding to
the locations and characteristics of uncertain components in the system. Ito and Freeman (1998a) has
shown that state-dependent scaling provides us with a systematic and uni�ed method for constructing
suitable dominating functions in robust backstepping design for state-feedback.

The idea of state-dependent(SD) scaling design was proposed in Ito (1998a), which was motivated
by the fact that scaling factors of small-gain conditions are allowed to be functions of state variables
conditions(Ito, 1996). The drawback of nonlinear H1 control as a nonlinear design tool can be over-
come in the sense that SD scaling has the ability to enlarge stability regions in small-gain type robust
stabilization(Ito, 1998b). The methodology of SD scaling design is applicable not only to strict feedback
systems, but also to other general classes of nonlinear systems(Ito, 1998a; Ito, 1998b). The concept of
SD scaling design is general enough to formulate a wide variety of robust nonlinear control problems
and it is amenable to computational optimization techniques. When it comes to uncertain systems in
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the strict-feedback form, the SD scaling design is considered as a uni�ed robust backstepping procedure
which encompasses a large class of uncertain nonlinear systems with structured, memoryless and dy-
namic uncertainties. It has been shown that robust backstepping can be described as recursive selection
of appropriate scaling factors(Ito and Freeman, 1998a; Ito and Freeman, 1998b). The backstepping can
be performed by computational optimization as well.

If the state variables are not available for feedback, one may simply give up seeking global stabilization
and settle for semi-global stabilization. On this standpoint, there are a lot of paper dealing with
semi-global stabilization by output feedback. The idea of input saturation and high-gain observer has
been successful for such semi-global stabilization (Esfandiari and Khalil, 1992; Khalil and Esfandiari,
1993; Lin and Saberi, 1995). Teel and Praly (1995) and Teel and Praly (1994) proposed a useful
semi-global backstepping lemma and high-gain observers with saturating control for dynamic output
feedback. By using these semi-global techniques, a robust stabilization problem was also considered
intensively for a certain type and location of unstructured uncertainty, namely, robustness against
unknown stable zero dynamics. It is possible to deal with unknown parameters in such a semi-global
stabilization as well, e.g.(Lin and Qian, 1998). However, from anther view point, given an uncertain
system, semi-global stabilization using high-gain and saturation may be meaningful only if the system
cannot be globally stabilized.

There are also global results for output-feedback stabilization of nonlinear systems in a form of strict-
feedback or chain of integrators. However, the typical results, e.g.(Krsti�c et al., 1995) are applicable
only to nonlinear systems whose nonlinearities in the system equation do not depend on the states that
are not measured. It is, however, not clear what is the essential ingredient of this assumption, apart
from their technique of constructing observers and controllers. Aside from inverse optimality, discussion
about robust global stabilization via this type of output feedback is absent in spite of their practical
importance.

The �rst objective of this paper is to propose a uni�ed procedure to achieve robust and global
stability via output feedback for the class of uncertainty which is as large as the uncertainty tackled
in the state-feedback control literature, namely, uncertain systems in the strict-feedback form with
nonlinearly bounded uncertainties. In other words, this objective it to enlarging the class of nominal
models and especially the structure of uncertainty, that can be globally stabilized under output feedback,
In order to accomplish this �rst objective, this paper successfully extends the author's state-dependent
design for state-feedback backstepping to the output feedback case. By doing that, the power of the
general concept of state-dependent scaling design for nonlinear systems control is shown as well. The
author's position is seeking global stabilization in stead of settling for semi-global stabilization from the
beginning. Thereby, the paper clari�es essential points required to make global stabilization robust as
desired. Thus, the second objective is to characterize the essential di�erence between nominal global
stabilization and robust global stabilization in output feedback control. The robustness in this paper
is more desirable in that the size and location of uncertainty is prescribed a priori, which is completely
di�erent from the inverse optimal type of robustness. The backstepping is developed without the
assumption that requires the nominal system to have nonlinearities depending only on measured states,
i.e., �(y) where y is the output. This paper clari�es that the feedback-gain part of output feedback design
by itself does not need to exclude nonlinearities such as �(y)x, where x is unnecessarily measured. This
paper describes what kind of task is essentially required for observer design in such a case. The paper
also shows a condition on which robust stabilization can be achieved globally for a prescribed class of
uncertainties. It will be shown that, exclusively for nonlinear systems, \nonlinear size" of uncertainties,
appeared as coupling, is crucial for global robust stabilization, which cannot compensated globally by
either feedback-gain or observer-gain independently.

The idea of SD scaling approach to backstepping in this paper is as follows:
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� characterize robustness analysis by SD scaling

� introduce coordinate transformation to the entire closed-loop system in order to create a freedom
in choosing Lyapunov functions

� use the Schur complements formula to extract a recursive structure of design

� solve the design problem by selecting SD scaling and coordinate transformation recursively.

Furthermore, it is completed by

� show that the design problem is recursively linear in the parameters of SD scaling and coordinate
transformation

� show the existence of solutions

� provide computational formulas and analytical solutions

One feature of the backstepping proposed in this paper is that the procedures are amenable to auto-
mated numerical computation based on convex optimization. Since the backstepping is performed by
domination, it is unnecessary to use precise parameters of systems in the control law, which prevents
the controller from having long and complicated terms. Another important feature of this paper is that
the output backstepping is shown to be feasible without using Young's inequality. Instead, the paper
uses the Schur complements formula which gives a necessary and su�cient condition for negativity of
a quadratic form.

The author needs to explain the standpoint of this paper since it is quite di�erent from those of
nonlinear adaptive control and many of backstepping papers. The author's point of view is similar to
that of linear robust stabilization via H1 control. The roles of H1 types robust control are

� provide a method of solving(more precisely, trying to solve) the problem

� characterize a condition under which the robust stabilization is solvable

� provide information about how large size of uncertainty is allowable.

The latter two roles are necessary since the problem by itself does not always have the solution. The
reason why this situation occurs is that we specify the nominal system and structure and size of uncer-
tainties a priori. A robust stabilization problem is solvable obviously if the uncertainty is su�ciently
small. This type of robust control is attractive in the sense that it provides us with a way to obtain a
control law even if it is not as good as we originally desired. It theoretically persuades us to give up
seeking unreasonably large uncertainty, in particular, since the constantly scaled H1 control is neces-
sary and su�cient for achieving robust stabilization against time-varying uncertainty. This paper looks
at global robust stabilization of nonlinear systems from the same point of view. In addition, this paper
demonstrates a class of uncertain systems which is always robustly stabilizable for arbitrarily large size
and arbitrarily fast growth order uncertainties. The latter standpoint is more common in the nonlinear
literature. In this way, this paper takes practically good positions from both the sides.
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Figure 1: Uncertain nonlinear plant �P

2 Uncertain nonlinear systems

Consider the uncertain nonlinear system �P shown in Fig.1. Here, �0 denotes a nominal plant and ��

represents the uncertainty and modeling error of the plant. We assume that the nominal part �0 is
described by

�0 :

8<
:

_x = A(y)x+B(y)w +G(y)u
z = C(y)x
y = Cy(y)x

;
x(t)2Rn; u(t)2R1

w(t)2Rp; z(t)2Rp

y(t)2Rr
(1)

The matrix-valued functions A, B, C, G and Cy are assumed to be C0 functions. The vectors w and z
are de�ned as

w =

2
6664
w1

w2
...
wn

3
7775 ; z =

2
6664
z1
z2
...
zn

3
7775 ;

wi(t) 2 Rpi

zi(t) 2 Rpi

pi � 0; p =
Pn

i=1 pi
i = 1; 2; � � � ; n

(2)

Suppose that the uncertain system �� has the following structure of nonlinear mappings � : z 7! w.

� = block-diag[�1;�2; � � � ;�n]; (3)

where some of the mappings �i : zi 7! wi, i = 1; 2; : : : ; n can be zero in vector size. Each uncertainty
�i is allowed to have three types of components:

�i : zi=

2
4zidzis
zir

3
5 7! wi=

2
4wid

wis

wir

3
5 ; wi=

2
4�id 0 0
0 �is 0
0 0 �ir

3
5 zi : (4)

Here, �id represents a dynamic system. �is and �ir denote full static and repeated static scalar systems,
respectively. It is unnecessary for �i to have all types of uncertainty. The dynamic uncertainty �id is
de�ned by

�id :
�
_x�i

= f�id
(x�i

; zid; t)
wid = h�id

(x�i
; zid; t)

; (5)

where f�id
(0; 0; t) = 0 and h�id

(0; 0; t) = 0 are satis�ed for all t � 0 and f�id
and h�id

are vector-valued
C0 functions. The full static part �is is described by

�is : wis = h�is
(zis; t); (6)

where h�is
is a vector-valued C0 function and h�is

(0; t) = 0 for all t � 0. The repeated static part �ir

is de�ned with ri > 1 copies of a static scalar system �ir :

�ir =
ri

diag
j=1

�ir = �irIri; �ir : w�ir = h�ir(t)z�ir (7)

where h�ir is a scalar-valued C0 function. We consider the following class of uncertainty ��.
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De�nition 1 The uncertainty �� is said to be admissible if (i)-(iii) are satis�ed for i = 1; 2; : : : ; n:
(i) �id has L2 � gain less than or equal to 1 with a radially unbounded C1 storage function V�i(x�i

)
satisfying V�i(0) = 0. (ii) �is satis�es kz�is

k2 � kw�is
k2 for all t 2 [0;1). (iii) �ir satis�es kz�irk2 �

kw�irk2 for all t 2 [0;1).

The uncertain system �P has an equilibrium point at xcl = 0 when u � 0. Roughly speaking, the
gain of each uncertainty is assumed to be less than or equal to unity. Uncertainty having super-linear
growth (and thus unbounded gain) can still be included by a judicious choice of the nonlinear weights
B(x) and C(x). Indeed, �0 not only describes a nominal plant, but also can include information about
input-output nonlinearities of uncertainty. The manipulation to choose an appropriate pair of (�0;��)
taking nonlinearity into account is essentially similar to the idea of introducing functions of signal norms
(Sontag and Wang, 1996; Sontag, 1998; Mareels and Hill, 1992). Note that �0 also describes how the
uncertainty a�ects the nominal plant such as geometrical locations, structures of uncertainties where
uncertain parameters are present. Remember that B(x) and C(x) specify the \nonlinear size"(including
size, nonlinearity, location and structure) of uncertainties.

3 SD scaling analysis for observer-feedback control

With de�nitions of the uncertainty �� in mind, several sets of real-valued scaling matrices will be
de�ned. For notational simplicity, we assume that �id and �is are square in size of input and output
vectors for all i = 1; 2; : : : ; n. For the dynamic uncertainty �id, we de�ne

Lid := fLid = �idIid : �id > 0g: (8)

Here, Iid denotes an identity matrix which is compatible in size with the vector zid. For the full static
uncertainty �is, a set of scaling is de�ned by

Lis := fLis = �is(y; x̂)Iis : �is(y; x̂) > 0 8(y; x̂) 2 Rr �Rng: (9)

In the case of the repeated static uncertainty �ir, we de�ne two sets of scaling matrices.

Lir := fLir : L
T
ir(y; x̂) = Lir(y; x̂); Lir(y; x̂) > 0 8(y; x̂) 2 Rr �Rng: (10)

Rir := fRir : R
T
ir(y; x̂) = �Rir(y; x̂) 8(y; x̂) 2 Rr �Rng: (11)

Here, both Lir and Rir are square matrices whose size is the same as the dimension of zis. These scaling
matrices are used to estimate the worst case value of the time-derivative of Lyapunov functions(Ito,
1998b; Ito and Freeman, 1998a). Let Li(y; x̂) and Ri(y; x̂) be de�ned by

Li :=

8<
:Li(y; x̂)=

2
4Lid 0 0

0 Lis(y; x̂) 0
0 0 Lir(y; x̂)

3
5 : Lid 2 Lid

Lis 2 Lis

Lir 2 Lir

9=
; (12)

Ri :=

8<
:Ri(y; x̂) =

2
4 0 0 0
0 0 0
0 0 Rir(y; x̂)

3
5 : Rir 2 Rir

9=
; ; (13)

for i = 1; 2; : : : ; n. Note that a constant � > 0 satis�es �I 2 Li and 0 2 Ri. Now de�ne two sets of
scaling matrices for the whole �� as follows:

L :=
�
L=

n

block-diag
i=1

Li(y; x̂); Li2Li

�
(14)

R :=
�
R=

n

block-diag
i=1

Ri(y; x̂); Ri2Ri

�
: (15)
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These scaling matrices are functions of y and x̂. The situation contrasts sharply with the linear systems
case where constant scalings are used for time-varying uncertainty. Scaling matrices for static uncer-
tainty are chosen as functions of output and state estimate, while static uncertainty arising in a linear
system is usually not distinguished from dynamic uncertainty(Ito, 1996).

We next consider robust stabilization of the uncertain nonlinear system �P by dynamic output
feedback. We employ the full order observer

(
_̂x = A(y)x̂+ Y (y; x̂)(y � ŷ) +G(y)u
ŷ = Cy(y)x̂

(16)

By using the signal x̂ estimated by the observer, we choose a dynamic output feedback law as

u = K(y; x̂)x̂ : (17)

Then, the closed-loop system is written as

d

dt

�
x
x̂

�
=
�
A GK
YCy A� Y Cy +GK

� �
x
x̂

�
+
�
B
0

�
w (18)

We now characterize robust stabilization of �P using SD scaling, quadratic Lyapunov functions and a
di�eomorphic coordinate change. Consider the di�eomorphism between x̂ 2 Rn and �̂ 2 Rn as follows:

�̂ = S(y; x̂)x̂ : (19)

The time-derivative of �̂ is obtained as

_̂� =

"
@S

@y1
x̂;
@S

@y2
x̂; � � � ; @S

@yn
x̂

#
Cy _x+

"
@S

@x̂1
x̂;
@S

@x̂2
x̂; � � � ; @S

@x̂n
x̂

#
_̂x+ S(y; x̂) _̂x = V (y; x̂) _x+ T (y; x̂) _̂x :(20)

De�ne ~x = x̂� x. Then,

d

dt

�
�̂
~x

�
=
�
V (y; x̂) T (y; x̂)
�I I

�
d

dt

�
x
x̂

�
;

�
x
x̂

�
=

"
S(y; x̂)�1 �I
S(y; x̂)�1 0

# �
�̂
~x

�
(21)

The closed-loop system becomes

d

dt

�
�̂
~x

�
=
�
(V + T )(A+GK)S�1 �(V A+ TY Cy)

0 A� Y Cy

� �
�̂
~x

�
+
�
V B
�B

�
w (22)

We also introduce another coordinate transformation to ~x:

� = W ~x (23)

where W is a constant non-singular matrix. The closed-loop system on the coordinate (�̂; �) is

d

dt

�
�̂
�

�
=

"
(V + T )(A+GK)S�1 �(V A+ TY Cy)W

�1

0 W (A� Y Cy)W�1

# �
�̂
�

�
+
�
V B
�WB

�
w (24)

z = C
h
S�1 �W�1

i � �̂
�

�
(25)

The following describes the main idea of the SD scaling approach to the output feedback problem.
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Theorem 1 (i) Suppose that there exist constant symmetric matrices P and ~P such that

N(y; x̂) ="
S�T (A+GK)T (V + T )TP+P (V + T )(A+GK)S�1 �P (V A+ TY Cy)W

�1

�W�T (V A+ TY Cy)TP W�T (A� Y Cy)TWT ~P + ~PW (A� Y Cy)W�1

#
<0 (26)

P > 0; ~P > 0 (27)

are satis�ed for all (y; x̂) in Rr � Rn, then the nominal nonlinear system �0 is globally uniformly
asymptotically stabilized by the dynamic output feedback (16-17). Furthermore, a Lyapunov function is
given by V (x; x̂) = �̂TP �̂+ �T ~P�.
(ii) Suppose that there exist constant symmetric matrices P , ~P and scaling functions L 2 L and R 2 R

such that

M(y; x̂) =2
666666664

(
S�T (A+GK)T (V + T )TP+

P(V + T )(A+GK)S�1

)
PV B+S�TCTRT S�TCTL �P (V A+ TY Cy)W

�1

BTV TP+RCS�1 �L 0 �BTW T ~P�RCW�1

LCS�1 0 �L �LCW�1

�W�T (V A+ TY Cy)TP � ~PWB�W�TCTRT �W�TCTL

(
W�T (A� Y Cy)TW T ~P+

~PW (A� Y Cy)W
�1

)

3
777777775
<0(28)

P > 0; ~P > 0 (29)

are satis�ed for all (y; x̂) in Rr � Rn, then the uncertain nonlinear system �P is globally uniformly
asymptotically stabilized by the dynamic output feedback (16-17) for any admissible uncertainty ��.
Furthermore, a Lyapunov function is given by V (x; x̂) = �̂TP �̂+ �T ~P� +

Pn
i=1 �idV�i(x�i

).

The analysis problem of robust stability is reduced into the existence of scaling matrices which make
M negative. This is actually considered as the de�nition of the state-dependent scaling approach to
output feedback control with full-order observers.

Although the representation (22) may seem to allow us to use a sort of separation between state-
feedback stabilization and observer design somehow at a glance, it is certainly not true for nonlinear
systems stabilization. To explain this point, we need the following lemma.

Lemma 1 Consider a symmetric matrix

M =
�
M11 M12

MT
12 M22

�
(30)

(i) Schur complements formula : M < 0 is equivalent to

M22 < 0; M11 �M12M
�1
22 M

T
12 < 0 (31)

(ii) Young's inequality : M < 0 is satis�ed if

M22 + ��1 < 0; M11 +M12�M
T
12 < 0 (32)

� =

2
66664
1 0 � � � 0

0 2
. . .

...
...
. . . . . . 0

0 � � � 0 n

3
77775 > 0 (33)
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Proof : (ii) The inequalities can be derived easily by using elementary linear algebra as follows:

0 > M11 +M12�M
T
12 > M11 +M12�M

T
12 �M12(� +M�1

22 )M
T
12 =M11 �M12M

�1
22 M

T
12 (34)

Instead, the purpose is to show that the pair of inequalities in (32) is an alternative expression of
Young's inequality:

2yT z � yT�y + zT��1z (35)

where y and z are vectors. It is easily veri�ed that

�
x
z

�T �M11 M12

MT
12 M22

� �
x
z

�
= xTM11x+ 2xTM12z + zTM22z (36)

� xTM11x+ xTM12�M
T
12x+ zT��1z + zTM22z (37)

=
�
x
z

�T "
M11 +M12�MT

12 0
0 M22 + ��1

# �
x
z

�
(38)

The inequalities (32) of matrices are not the formula which is usually called Young's inequality. However,
this paper refers to that as Young's inequality in order to distinguish that from the Schur complements
formula. It is also true that the inequalities (32) has appeared as an ordinary Young's inequality of
vectors or scalars in nonlinear systems control. A common role of Young's inequality is to get rid of
products of two vectors in the Lyapunov derivative and to get a decoupled quadratic expression. This is
explained in the proof of the above theorem. The Schur complements formula looks at the negativity in
terms of matrices in stead of the scalar value of quadratic forms. The Schur complements formula gives
a necessary and su�cient condition while Young's inequality is only su�cient. The idea of Young's
inequality is to replace the full information of the matrix �M�1

22 with simple scalar parameters i at a
price of loosing necessity. Actually, an alternative statement of the Schur complements formula is as
follows: M < 0 holds if and only if there exists a diagonal matrix � > 0 such that

M22 + ��1 < 0; M11 �M12M
�1
22 M

T
12 < 0 (39)

are satis�ed. Compared with the Schur complements, Young's inequality is conservative. The Schur
complements is superior to Young's inequality in this sense although Young's inequality is a common tool
in nonlinear systems design(Krsti�c et al., 1995; Freeman and Kokotovi�c, 1996; Sepulchre et al., 1997).
From this standpoint, this paper replaces the task of Young's inequality with the Schur complements.
The output feedback design will be shown to have recursive structures for backstepping even if Young's
inequality is not used. In other words, this paper proposes backstepping procedures without introducing
any conservatism in solving problems recursively except that Theorem 1 is a su�cient condition (note
that a recursive structure of solution by itself may have unnecessary conservatism). This may not
only allows the design to tolerate large size of uncertainties, but also prevent controllers from having
unnecessary high gain and harmfully �rst or slow growth order.

Corollary 1 Assume that there exists a constant matrix ~P > 0 such that

H(y; x̂) := W�T (A� Y Cy)
TW T ~P + ~PW (A� Y Cy)W

�1 < 0 (40)

holds for all (y; x̂) 2 Rr �Rn

(i) Suppose that there exists a constant matrix P > 0 such that the inequality

�N(y; x̂) := N11(y; x̂)� N12(y; x̂)H
�1(y; x̂)NT

12(y; x̂) < 0 (41)

N11(y; x̂) := S�T (A+GK)T (V + T )TP+P (T + V )(A+GK)S�1; N12(y; x̂) := P (V A+ TY Cy)W
�1(42)
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is satis�ed for all (y; x̂) in Rr�Rn, then the nominal nonlinear system �0 is globally uniformly asymp-
totically stabilized by the dynamic output feedback (16-17). Moreover, if �0 is a linear system and if
S is constant, the set of conditions (41) and (40) is equivalent to the existence of P > 0 and ~P > 0
satisfying

N11 := S�T (A+GK)T (V + T )TP+P (V + T )(A+GK)S�1 < 0 (43)

H := W�T (A� Y Cy)
TW T ~P + ~PW (A� Y Cy)W

�1 < 0 (44)

(ii) Suppose that there exist a constant matrix P > 0 and scaling functions L 2 L and R 2 R such that
the inequality

�M(y; x̂) :=M11(y; x̂)�M12(y; x̂)H
�1(y; x̂)MT

12(y; x̂) < 0 (45)

M11(y; x̂) :=

2
6664
(
S�T (A+GK)T (V + T )TP+

P (T + V )(A +GK)S�1

)
PV B+S�TCTRT S�TCTL

BTV TP+RCS�1 �L 0
LCS�1 0 �L

3
7775 (46)

M12(y; x̂) :=

2
64P (V A + TY Cy)W�1

BTW T ~P+RCW�1

LCW�1

3
75 (47)

is satis�ed for all (y; x̂) in Rr � Rn, then the uncertain nonlinear system �P is globally uniformly
asymptotically stabilized by the dynamic output feedback (16-17) for any admissible uncertainty ��.
Proof : (i) The conditions (41) and (40) are straightforward from (26) by using the Schur complements
formula. Obviously, (41) and (40) imply (43) and (44). Now, suppose that P > 0 is a solution to (43)
with a constant S for a linear system �0. Let ~P be a solution to (44). If ~P in (41) is replaced by � ~P ,
the inequality (41) is satis�ed for a su�cient large constant � > 0.
(ii) It is straightforward from the Schur complements formula.

The two inequalities (43) and (44) in this corollary merely represent the separation principle for linear
systems. The conditions (43) and (44), however, do not guarantee global stability for nonlinear �0. If
�0 is nonlinear, � in the above proof may be required to be unbounded as y or x̂ goes to �1. If � is
a function of (y; x̂), there is no guarantee that there exists a Lyapunov function V which is consistent
with

@V

@[�̂T ; �T ]T
= 2

h
�̂TP; �T�(y; x̂) ~P

i

for (43) and (44). It is, however, true that (41) can be satis�ed semi-globally by a su�cient large
constant �. We may achieve semi-global stabilization by using the separation (43-44) and taking into
account the level set of the Lyapunov function V (x; x̂) = �TP�+�T� ~P� deformed by �. This paper does
not pursue this obvious direction of semi-global stabilization since it does not capture essential points
required for global and nonlinear stabilization. This paper, instead, is focused on global stabilization
and characterizes requirements for global stabilization. As for robust stabilization, we cannot separate
observer design completely from robust stabilization in a global sense. The separation argument in (i) of
Corollary 1 is not applicable to (ii) either even for linear �0 because of the coupling termM12(especially
the term BTW T ~P ) between feedback and observer inM < 0. In fact, linear robust control theory tells us
that observer design must be coupled with robusti�cation of stabilization against uncertainties. In other
words, the observer should be designed strong enough by taking into account the e�ect of uncertainty
and robustness objectives.
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4 A robust strict-feedback form and observers

This section de�nes the class of uncertain nonlinear systems to which output backstepping design via
SD scaling will apply. The output equation of the system is supposed to given by

y = x1 (48)

or equivalently

Cy = [ 1 0 � � � 0 ] (49)

This case is sometimes called output feedback in the nonlinear control literature(Krsti�c et al., 1995).
This paper deals with the uncertain nonlinear system �P under the following structural assumptions.
First, we assume that A and G can be written in the form

A(x1)=

2
6666664

a11 a12 0 � � � � � � 0
a21 a22 a23 0 0...

...
...

. . . . . .
......

...
...

. . . 0
an�1;1 an�1;2 � � � � � � an�1;n
an;1 an;2 � � � � � � an;n

3
7777775
; G(x1)=

2
6664

0
...
0

an;n+1

3
7775 : (50)

with C0 scalar functions aij of the measured state x1. The function aij(x1) is required to satisfy

ai;i+1(x1) 6= 0; 1 � i � n; 8x1 2 R (51)

As for functions B and C, we assume

B(x1) =

2
66664
B11 0 � � � 0

B21 B22
. . .

...
...

. . . . . . 0
Bn;1 � � � Bn;n�1 Bn;n

3
77775 ; C(x1) =

2
66664
C11 0 � � � 0

C21 C22
. . .

...
...

. . . . . . 0
Cn;1 � � � Cn;n�1 Cn;n

3
77775 (52)

where Bij(x1) 2 R1�pi and Cij(x1) 2 Rpi�1. Then, the uncertainty a�ects the system as

B(x)w =

2
664

B11�1C11 0 0 � � �
B21�1C11 +B22�2C21 B22�2C22 0

. . .
...

...
. . .

3
775
2
664
x1
x2
x3...

3
775 (53)

This expression is only an aid for illustrating the structure of the uncertainty and is mathematically
ambiguous. The operator �i in the above equation does not represent matrix multiplication but non-
linear mappings which can have dynamics with initial conditions. For simplicity, this paper assumes
that the system does not have any uncertainties in the virtual control coe�cients which appear in the
backstepping procedure. It is certainly possible to extend the idea of SD scaling easily to the uncertain
system which has � blocks in a more general manner as in Ito and Freeman (1998a). Because each
entry Bii�jCji above is scalar, a repeated static uncertainty can always be represented by a scalar full
static uncertainty. However, we include the repeated representation here because it allows more degrees
of freedom in the scaling design and it also prepares the way for a multivariable version of our results.

Two types of properties of observers will be used in this paper.
Ordinary observer : The observer-gain Y (x1) is chosen as a C0 function matrix such that there exist
a constant matrix ~P and a C0 function matrix Qy(x1) satisfying

H(x1) := (A� Y Cy)
T ~P + ~P (A� Y Cy) < �Qy (54)

~P > 0; Qy > 0 (55)

11



hold for all x1 2 R.
Robust observer : Given a matrix-valued function �(x1) > 0. The C0 observer-gain function Y (x1)
and the constant matrix W are chosen such that there exists a constant diagonal matrix ~P satisfying

H(x1) := W�T (A� Y Cy)
TW T ~P + ~PW (A� Y Cy)W

�1 < ���1 (56)
~P > 0 (57)

hold for all x1 2 R. Note that H < ���1 < 0 is equivalent to 0 < �H�1 < �.
The requirement of robust observer is stronger than that of ordinary observer. A robust observer

is an ordinary observer. The converse is not true. Suppose that ~P > 0 is a solution to (54). We can
decompose the matrix into ~P = W T�W with a lower triangular W and a diagonal matrix �. This
means that (56) is satis�ed by replacing ��1 with W�TQyW

�1. However, ��1 � W�TQyW
�1 is not

guaranteed at all. The �rst two terms on the left hand side of (56) correspond to the Lyapunov derivative
of the observer error system. The robust observer requires that the observer error system is stable to
a degree prescribed by �. That is why the robust observer can be used for making a control system
robust against uncertainties. The function � is considered as an index of robustness. The smaller � > 0
is, the more robust the resulting observer is. This will be explained later on. Note that for a certain
class of systems, it is always possible to construct observer gains required for ordinary observers and
robust observers. The observer design will be explained in Section 8.

5 Backstepping design for output feedback

We now direct our attention to a di�eomorphism S(y; x̂) in a special form. The di�eomorphism will lead
us to a recursive structure with which output feedback backstepping is proposed. We thereby extend
the robust backstepping procedure presented in Ito and Freeman (1998a) for output feedback design.
The backstepping is carried out successfully by selecting SD scaling matrices recursively.

Let x̂[k] denote the state of the observer x̂1 through x̂k:

x̂[k] = [x̂1; x̂2; � � � ; x̂k]T : (58)

Consider smooth scalar-valued functions s1(x1), s2(x1; x̂1), � � �, sn�1(x1; x̂[n�2]) which are to be deter-
mined in a recursive manner from s1 through sn�1. We de�ne a di�eomorphism S(x1; x̂) as follows:

S�1(x1; x̂[n�2]) =

2
66664
1 0 0 � � � 0
s1 1 0 � � � 0
0 s2 1

. . . 0...
...

. . . . . .
...

0 � � � 0 sn�1 1

3
77775 (59)

S(x1; x̂[n�2]) =

2
66664

1 0 0 � � � 0
�s1 1 0 � � � 0
s1s2 �s2 1

. . . 0...
...

. . . . . .
...

(�1)n�1s1���sn�1 � � � sn�2sn�1 �sn�1 1

3
77775 : (60)

The smooth function V (x1; x̂[n�1]) and T (x1; x̂[n�1]) in (20) are obtained as

V (x1; x̂[n�1]) =

2
66664

0 0 0 � � � 0
?1;1;1 0 0 � � � 0
?1;2;2 0 0

. . . 0...
...
...
. . .

...
?1;n�1;n�1 0 0 � � � 0

3
77775 (61)
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T (x1; x̂[n�1]) =

2
6666664

1 0 0 0 � � � 0
?1;0;1 1 0 0 � � � 0
?1;2;2 ?1;1;2 1 0

. . . 0
?1;3;3 ?1;3;3 ?1;2;3 1

. . . 0...
...

...
. . . . . .

...
?1;n�1;n�1 � � � � � � ?1;n�1;n�1 ?1;n�2;n�1 1

3
7777775
; (62)

where ?1;i;j denotes any function depending only on (x1; x̂[i]) and the functions s1 through sj and their
partial derivatives. We choose a feedback gain (17) in the form of

K =
h
(�1)n�1s1���sn � � � �sn�1sn sn

i
(63)

where sn(x1; x̂[n�1]) is another smooth function yet to be determined. Then, the matrices in (26) and
(28) for the closed-loop system become

N :=

"
ŜT ÂT (V + T )TP+P (V + T )ÂŜ �P (V A+ TY Cy)W�1

�W�T (V A+ TY Cy)
TP W�T (A� Y Cy)

TW T ~P + ~PW (A� Y Cy)W
�1

#
(64)

M :=

2
6666664

ŜT ÂT (V + T )TP+P (V + T )ÂŜ PV B+S�TCTRT S�TCTL �P (V A+ TY Cy)W�1

BTV TP+RCS�1 �L 0 �BTWT ~P�RCW�1

LCS�1 0 �L �LCW�1

�W�T (V A+ TY Cy)
TP � ~PWB�W�TCTRT �W�TCTL

(
W�T (A� Y Cy)

TWT ~P+
~PW (A � Y Cy)W�1

)

3
7777775

(65)

Â := [A G] ; Ŝ :=
�

S�1

0 � � � 0 sn
�

We now restrict P to diagonal:

P =
n

diag
i=1

Pi; Pi > 0; P[k] =
k

diag
i=1

Pi (66)

We also consider the coordinate transformation W of ~x in a lower triangular form:

W =

2
66664
W11 0 0 � � � 0
W21 W22 0 � � � 0
W31 W32 W33

. . . 0...
...

. . . . . .
...

Wn1 � � � Wn;n�2 Wn;n�1 Wn;n

3
77775 (67)

De�ne system matrices for the �rst k state and input components by

Â[k](x1)=

2
666664

a11 a12 0 � � � � � � 0
a21 a22 a23 0 � � � 0
...

...
...

. . . . . .
...

ak�1;1 ak�1;2 � � � � � � ak�1;k 0
ak1 ak2 � � � � � � akk ak;k+1

3
777775 (68)

B[k](x1) =

2
664
B11 0 � � � 0
B21 B22

. . .
......

. . . . . . 0
Bk1 � � � Bk;k�1 Bkk

3
775 ; C[k](x1)=

2
664
C11 0 � � � 0
C21 C22

. . .
......

. . . . . . 0
Ck1 � � � Ck;k�1 Ckk

3
775 (69)
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In a similar manner, S[k](x1; x̂[k�2]), S
�1
[k] (x1; x̂[k�2]), V[k](x1; x̂[k�1]), T[k](x1; x̂[k�1]), W[k] and W�1

[k] are

de�ned as k � k upper left parts of S, S�1, V , T , W and W�1, respectively. Let

Ŝ[k](x1; x̂[k�1]) =

"
S�1[k]

0 � � � 0 sk

#
; ~P[k] =

"
~P[k] ?0;0;0
?0;0;0 ~Pkk

#
(70)

A[k] =

2
666664
A[k�1]

0
...
0

ak�1;k
ak;� akk

3
777775 ; Y[k] =

�
Y[k�1]
Yk

�
(71)

Cy[k] = [ 1 0 � � � 0 0 ] = [Cy[k�1] 0 ] ; Cy[1] = 1 (72)

Scaling matrices are also de�ned recursively as

L[k] :=

(
L[k]=

k

block-diag
i=1

Li(x1; x̂[i�2]); Li2Li

)
(73)

R[k] :=

(
R[k]=

k

block-diag
i=1

Ri(x1; x̂[i�2]); Ri2Ri

)
: (74)

Now, we de�ne N[k](x1; x̂[k�1]) by adding subscript [k] to every matrix in the right hand side of (64).
By using

[H][k](x1) =
�
[H][k�1] ?1;0;0
?1;0;0 [H]kk

�
; [H][n] = H (75)

the matrix N[k] can be represented by

N[k](x1; x̂[k�1]) =

"
N[k]11(x1; x̂[k�1]) N[k]12(x1; x̂[k�1])
NT

[k]12(x1; x̂[k�1]) H[k](x1)

#
; N[n] = N (76)

N[k]11 := ŜT
[k]Â

T
[k](V[k] + T[k])

TP[k]+P[k](V[k] + T[k])Â[k]Ŝ[k]; N[k]12 := P[k](V[k]A[k] + T[k]Y[k]Cy[k])W
�1
[k] (77)

We also de�ne ~M[k] as

~M[k](x1; x̂[k�1]) =

"
M[k]11(x1; x̂[k�1]) QT

kM12(x1; x̂[n�1])
MT

12(x1; x̂[n�1])Qk H(x1)

#
; ~M[n] =M (78)

M[k]11 :=

2
664
ŜT
[k]Â

T
[k](V[k] + T[k])

TP[k]+P[k](V[k] + T[k])Â[k]Ŝ[k] P[k]V[k]B[k]+S
�T
[k] C

T
[k]R

T
[k] S

�T
[k] C

T
[k]L[k]

BT
[k]V

T
[k]P[k]+R[k]C[k]S

�1
[k] �L[k] 0

L[k]C[k]S
�1
[k] 0 �L[k]

3
775(79)

M12 :=

2
64P (V A+ TY Cy)W�1

BTW T ~P+RCW�1

LCW�1

3
75 ; �Qk =

2
66664
Ik 0 0
0 0 0
0 I�q 0
0 0 0
0 0 I�q

3
77775 ; �Qn = In+2P (80)

where Ik denotes a k� k identity matrix and �q :=
Pk

i=1 pi. Note thatM[k]11 = �QT
kM11

�Qk holds. We can
verify the following.

Theorem 2 Suppose 1 � k � n.

(i-a) N[k] does not include fsk+1; sk+2; � � � ; sng.
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(i-b) Every entry of N[k] is a�ne in sk.

(i-c) Every entry of N[k] is simultaneously a�ne in all the entries of P[k].

(i-d) N[k] < 0 implies N[k�1] < 0 unless k = 1.

(ii-a) ~M[k] does not include either fsk+1; sk+2; � � � ; sng, fLk+1; Lk+2; � � � ; Lng or fRk+1; Rk+2; � � � ; Rng.
(ii-b) Every entry of ~M[k] is simultaneously a�ne in Lk, Rk and sk.

(ii-c) Every entry of ~M[k] is simultaneously a�ne in all the entries of L[k], R[k] and P[k].

(ii-d) ~M[k] < 0 implies ~M[k�1] < 0 unless k = 1.

Although the system is nonlinear in state variables, the above theorem shows that the problem of
SD scaling is recursively linear in decision variables(or design parameters). This suggests that the
nonlinearity of the system essentially do not make the problem seriously di�cult. The character of the
problem still remains the same as that of robust linear design in this sense.

On the basis of Theorem 2, this paper proposes the following procedures of backstepping for feedback
gain design.
Nominal backstepping : Solve

N[k](x1; x̂[k�1]) < 0; 8(x1; x̂[k�1]) 2 R�Rk�1 (81)

for sk from k = 1 through k = n.
Robust backstepping : Solve

~M[k](x1; x̂[k�1]) < 0; 8(x1; x̂[k�1]) 2 R�Rk�1 (82)

for fsk; Lk; Rkg from k = 1 through k = n.
Both the procedures suppose that P , ~P and Y are given. The above procedures can be carried

out recursively since the process of �nding decision parameters at Step k does not require any decision
parameters to be found at Step k + 1; k + 2; : : : ; n. The recursive procedures can be also justi�ed in
that Step k is a necessary step for accomplishing Step k + 1; k + 2; : : : ; n.

Theorem 3 (i) If the whole procedure of nominal backstepping is completed from k = 1 through k = n

properly, the parameters fs1; s2; : : : ; sng solve

N(x1; x̂[n�1]) < 0; 8(x1; x̂[n�1]) 2 R�Rn�1 (83)

(i) If the whole procedure of robust backstepping is completed from k = 1 through k = n properly, the
parameters fs1; s2; : : : ; sng , fL1; L2; : : : ; Lng and fR1; R2; : : : ; Rng solve

M(x1; x̂[n�1]) < 0; 8(x1; x̂[n�1]) 2 R�Rn�1 (84)

For instance, the problem of �nding fLk; Rk; skg satisfying ~M[k] < 0 is a convex optimization problem.
The nominal backstepping and the robust backstepping for output feedback design via SD scaling are
amenable to computation based on optimization as it has been shown for state-feedback design in Ito
and Freeman (1998a). It is ready for automated numerical calculation by computer. The recursive
design proposed in this section does not require precise knowledge of each system parameter since the
design is based on domination instead of cancelation. An exactly canceling formula is considered as one
special solution to the domination. Moreover, the domination approach can be exploited to get rid of
the propagation of complicated and long terms in the control law K.

The subsequent sections investigate whether the solutions exist or not in the recursive procedures. In
other words, a condition of the allowable size and nonlinearity of uncertainty will be derived. Existence
conditions and analytical solutions will be developed. Furthermore, a class of systems which can be
always robustly stabilizable against arbitrarily large uncertainties by output feedback via the robust
backstepping will be shown.
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6 Equivalent recursive procedures

This section transforms the nominal backstepping and robust backstepping into problems which are
suitable for �nding analytical solutions. No conservatism will be introduced in this section. Solving a
transformed problem is equivalent to performing the backstepping in Section 5.

De�ne the following two functions.

�N[k](x1; x̂[k�1]) := N[k]11(x1; x̂[k�1])�N[k]12(x1; x̂[k�1])H
�1
[k] (x1)N

T
[k]12(x1; x̂[k�1]) (85)

�M[k](x1; x̂[k�1]) :=M[k]11(x1; x̂[k�1])� �QT
kM12(x1; x̂[n�1])H

�1MT
12(x1; x̂[n�1]) �Qk (86)

From the Schur complements, the equivalence

�N[k] < 0 , N[k] < 0 (87)

�M[k] < 0 , ~M[k] < 0 (88)

are obviously true on the assumption that H < 0 holds. Due to structures of S, W and the strict-
feedback form of �0 , we can prove the following for �N[k] and �M[k].

Theorem 4 Suppose 2 � k � n.
(i) The symmetric matrix

�N[1](x1) = ~	1(x1) (89)

depends only on s1. �N[k](x1; x̂[k�1]) < 0 is equivalent to

"
�N[k�1](x1; x̂[k�2]) ~�k(x1; x̂[k�1])
~�T
k (x1; x̂[k�1]) ~	k(x1; x̂[k�1])

#
< 0 ; (90)

where ~�k depends only on (s1; � � � ; sk�1) and their partial derivatives. The symmetric matrix ~	k depends
on sk.
(ii) Assume that ~P is diagonal:

~P =
n

diag
i=1

~Pi; ~Pi > 0; ~P[k] =
k

diag
i=1

~Pi (91)

Then, the symmetric matrix

�M[1](x1) = 	1(x1) (92)

depends only on (L1; R1) and s1. �M[k](x1; x̂[k�1]) < 0 is equivalent to

"
�M[k�1](x1; x̂[k�2]) �k(x1; x̂[k�1])
�T

k (x1; x̂[k�1]) 	k(x1; x̂[k�1])

#
< 0 ; (93)

where �k depends only on (L[k]; R[k]) and (s1; � � � ; sk�1) and their partial derivatives. The symmetric
matrix 	k depends on (Lk; Rk) and sk.
Proof : Recall that

Ŝ[k](x1; x̂[k�1]) =

2
666664
Ŝ[k�1](x1; x̂[k�2])

0
...
0
1

0 sk

3
777775 ; S�1[k] (x1; x̂[k�2]) =

"
S�1[k�1](x1; x̂[k�3]) 0

?1;k�2;k�1 1

#
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Â[k](x1) =

"
Â[k�1](x1) 0
?1;0;0 ak;k+1

#
; B[k](x1) =

�
B[k�1](x1) 0
?1;0;0 Bkk

�

C[k](x1) =
�
C[k�1](x1) 0
?1;0;0 Ckk

�
=
�
C[k�1](x1) 0
Ck;� Ckk

�
=
�
C[k�1](x1) 0

Ck;�

�

V[k](x1; x̂[k�1]) =
�
V[k�1](x1; x̂[k�2]) 0

?1;k�1;k�1 0

�
; T[k](x1; x̂[k�1]) =

�
T[k�1](x1; x̂[k�2]) 0

?1;k�1;k�1 1

�

L[k](x1; x̂[k�2]) =
�
L[k�1](x1; x̂[k�3]) 0

0 Lk

�
; R[k](x1; x̂[k�2]) =

�
R[k�1](x1; x̂[k�3]) 0

0 Rk

�

Then, we have the following.

P[k](V[k] + T[k])Â[k]Ŝ[k] =2
64
(
P[k�1](V[k�1](x1; x̂[k�2]) + T[k�1](x1; x̂[k�2]))

Â[k�1](x1)Ŝ[k�1](x1; x̂[k�2])

)
0

Pk�1ak�1;k

Pk?1;k�1;k�1 Pk(akk + ak;k+1sk + ?1;k�1;k�1)

3
75

P[k]V[k]B[k] =
�
P[k�1]V[k�1](x1; x̂[k�2])B[k�1](x1) 0

?1;k�1;k�1 0

�

P[k]V[k]A[k]W
�1
[k] =

�
P[k�1]V[k�1](x1; x̂[k�2])A[k�1](x1) 0

Pk?1;k�1;k�1 Pk?1;k�1;k�1

�

P[k]T[k]Y[k]Cy;[k]W
�1
[k] =

"
P[k�1]T[k�1](x1; x̂[k�2])Y[k�1](x1)W

�1
kk 0 � � � 0 0

Pk?1;k�1;k�1 0 � � � 0 0

#
:

Thus, we obtain

N[k]12H
�1
[k] N

T
[k]12 =

"
N[k�1]12H

�1
[k�1]N

T
[k�1]12 ?1;k�1;k�1Pk

Pk?1;k�1;k�1 P 2
k ?1;k�1;k�1

#
(94)

�N[k] =
� �N[k�1] ?1;k�1;k�1
?1;k�1;k�1 2Pk(akk + ak;k+1sk + ?1;k�1;k�1)

�
=

"
�N[k�1]

~�k

~�T
k

~	k

#
(95)

To prove the claim for �M[k], we need

~P[k]W[k]B[k] =

"
~P[k�1]W[k�1]B[k�1](x1) 0

?1;0;0 ~PkkWkkBkk

#
(96)

L[k]C[k]S
�1
[k] =

"
L[k�1](x1; x̂[k�3])C[k�1](x1)S

�1
[k�1](x1; x̂[k�3]) 0

Lk(Ck;� ?1;k�3;k�2 +Ck;k?1;k�2;k�1) LkCkk

#
(97)

R[k]C[k]S
�1
[k] =

"
R[k�1](x1; x̂[k�3])C[k�1](x1)S

�1
[k�1](x1; x̂[k�3]) 0

Rk(Ck;� ?1;k�3;k�2 +Ck;k?1;k�2;k�1) RkCkk

#
(98)

L[k]C[k]W
�1
[k] =

"
L[k�1](x1; x̂[k�3])C[k�1](x1)W

�1
[k�1] 0

LkCk;�?0;0;0 LkCkkW
�1
kk

#
(99)

R[k]C[k]W
�1
[k] =

"
R[k�1](x1; x̂[k�3])C[k�1](x1)W

�1
[k�1] 0

RkCk;�?0;0;0 RkCkkW
�1
kk

#
(100)

Now, let U denote

U (x1; x̂[n�2]) = �(BTW T ~P +RCW�1)H�1( ~PWB +W�TCTRT ) (101)

The following recursive notation is used.

U[k](x1; x̂[k�2]) =

"
U[k�1](x1; x̂[k�3]) U�;k(x1; x̂[k�2])
UT
�;k(x1; x̂[k�2]) Ukk(x1; x̂[k�2])

#
; Ukk(x1; x̂[k�2]) 2 Rpk�pk (102)
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The de�nition of these matrices are given by

BTW T ~P +RCW�1=

2
6664
[BTW T ~P +RCW�1]1
[BTW T ~P +RCW�1]2

� � �
[BTWT ~P +RCW�1]n

3
7775 ; [BTWT ~P +RCW�1][k]=

2
6664
[BTW T ~P +RCW�1]1
[BTW T ~P +RCW�1]2

� � �
[BTW T ~P +RCW�1]k

3
7775

Ukk = �[BTW T ~P + RCW�1]kH
�1[BTW T ~P +RCW�1]Tk

U�;k = �[BTW T ~P +RCW�1][k�1]H
�1[BTW T ~P +RCW�1]Tk

Let [H�1][k] be de�ned as

[H�1][k](x1) =

"
[H�1][k�1] ?1;0;0
?1;0;0 [H�1]kk

#
; [H�1][n] = H�1 (103)

Consider a non-singular matrix.

Qk =

2
6666664

Ik�1 0 0 0 0 0
0 0 0 I1 0 0
0 Iq 0 0 0 0
0 0 0 0 Ipk 0
0 0 Iq 0 0 0
0 0 0 0 0 Ipk

3
7777775
;

where q :=
Pk�1

i=1 pi. Then, we have

Z[k](x1; x̂[n�1]) = �QT
k
�QT
kM12(x1; x̂[n�1])H

�1(x1)M
T
12(x1; x̂[n�1]) �QkQk (104)

=

2
666666664

?1;k�1;k�1 ?1;k�2;k�2R
T
k ?1;k�2;k�2C

T
k;�Lk

Z[k�1] }1;k�1;k�1 U�;k }1;k�3;k�1C
T
k;�Lk

}1;k�1;k�1 }1;k�3;k�1R
T
k }1;k�3;k�1C

T
k;�Lk

� � � P 2
k ?1;k�1;k�1 ?1;k�1;k�1 + ?1;k�1;k�1R

T
k ?1;k�1;k�1C

T
k;�Lk

� � � � Ukk (Rk ?1;0;0 +?1;0;0)C
T
k;�Lk

� � � � � �LkCk;�W
�1
[k] [H

�1][k]W
�T
[k] C

T
k;�Lk

3
777777775

(105)

QT
kM[k]11Qk =

2
66666664

?1;k�1;k�1 ?1;k�2;k�1R
T
k ?1;k�2;k�1C

T
k;�Lk

M[k�1]11 ?1;k�1;k�1 0 0
0 0 0

� � � 2Pk(akk + ak;k+1sk + ?1;k�1;k�1) CT
kkR

T
k CT

kkLk

� � � � �Lk 0
� � � � � �Lk

3
77777775
(106)

where}1;i;j denotes any function depending only on (x1; x̂[i]), (L[j]; R[j]) and (s1; � � � ; sj) and their partial
derivatives. By using QT

k
�M[k]Qk = QT

kM[k]11Qk + Z[k], we arrive at

QT
k
�M[k](x1; x̂[k�1])Qk =

"
�M[k�1](x1; x̂[k�2]) �k(x1; x̂[k�1])
�T

k (x1; x̂[k�1]) 	k(x1; x̂[k�1])

#
; (107)

where the functions �k and �k are obtained as

�k(x1; x̂[k�1]) =

2
64
?1;k�1;k�1 ?1;k�2;k�1R

T
k ?1;k�2;k�1C

T
k;�Lk

}1;k�1;k�1 U�;k }1;k�3;k�1C
T
k;�Lk

}1;k�1;k�1 }1;k�3;k�1R
T
k }1;k�3;k�1C

T
k;�Lk

3
75 (108)

	k(x1; x̂[k�1]) =2
64
2Pk(akk + ak;k+1sk + ?1;k�1;k�1) ?1;k�1;k�1 + (?1;k�1;k�1 + CT

kk)R
T
k (?1;k�1;k�1 + CT

kk)Lk

� �Lk + Ukk (Rk ?1;0;0 +?1;0;0)C
T
k;�Lk

� � �Lk � LkCk;�W
�1
[k] [H

�1][k]W
�T
[k] C

T
k;�Lk

3
75 :(109)

Hence, the claim is established.
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The task of the SD scaling backstepping is to show how to achieve �M[k�1] < 0 ( �N[k�1] < 0) by choosing
sk and scaling functions Lk and Rk if �M[k�1] < 0 ( �N[k�1] < 0, respectively) is guaranteed at the previous
step. The converse directions follows from the above theorem.

Now, the negativity problems in Theorem 4 are equivalently transformed into problems in smaller
size of matrices again. Let ~Jk(x1; x̂[k�1]) 2 R1�1 be de�ned with

~	k � ~�T
k
�N�1
[k�1]

~�k = ~Jk for k � 2
~	1 = ~J1 for k = 1

(110)

We also de�ne Jk(x1; x̂[k�1]) 2 R1�1, Ek(x1; x̂[k�1]) 2 R1�2pk and Fk(x1; x̂[k�1]) 2 R2pk�2pk as

	k � �T
k
�M�1
[k�1]�k =

�
Jk Ek

ET
k Fk

�
for k � 2

	1 =
�
J1 E1

ET
1 F1

�
for k = 1

(111)

Using the Schur complements of (110) and (111) , we have the following.

Corollary 2 Let k is any integer belonging to [1; n].
(i) Assume that �N[k�1](x1; x̂[k�2]) < 0 is satis�ed for all (x1; x̂[k�2]) 2 R � Rk�2 unless k = 1. Then,
�N[k](x1; x̂[k�1]) < 0 holds for all (x1; x̂[k�1]) 2 R�Rk�1 if and only if

~Jk < 0 (112)

is satis�ed for all (x1; x̂[k�1]) 2 R�Rk�1.
(ii) Assume that �M[k�1](x1; x̂[k�2]) < 0 is satis�ed for all (x1; x̂[k�2]) 2 R �Rk�2 unless k = 1. Then,
�M[k](x1; x̂[k�1]) < 0 holds for all (x1; x̂[k�1]) 2 R�Rk�1 if and only if

Fk < 0; Jk � EkF
�1
k ET

k < 0; when pk 6= 0 (113)

Jk < 0; when pk = 0 (114)

are satis�ed for all (x1; x̂[k�1]) 2 R �Rk�1.

7 Existence and analytical solution

This section derives the condition of allowable uncertainty under which the robust stabilization problem
can be always solved by robust backstepping proposed in Section 5. As for nominal stabilization, It will
be shown that the stabilization problem is always solvable on the assumption that nominal observers
exist. The section also provides us with analytical versions of nominal and robust backstepping and
their analytical solutions. The backsteping procedure based on materials in this section can be done by
numerical calculation again. In the robust stabilization case, the problem is no longer a�ne in decision
parameters. Although it may be di�cult to solve it as an optimization problem, the backstepping can
be easily performed only by curve �tting of a real-valued function whose range is speci�ed by intervals.
Analytical solutions of such functions are also available.

First, nominal stabilization is briey explained. From (95), the function ~Jk is given by

~Jk = 2Pk(akk + ak;k+1sk + ?1;k�1;k�1) (115)

for k = 1; 2; : : : ; n. We can prove the following.
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Theorem 5 Let k is any integer belonging to [1; n]. Let k(x1) be any C
0 function. There always exist

a scalar-valued smooth function sk(x1; x̂[k�1]) such that ~Jk(x1; x̂[k�1]) < 0 is satis�ed for all (x1; x̂[k�1]) 2
R�Rk�1.
Proof : Remember that ak;k+1(x1) is non-zero for all x1 2 R. Since ak;k+1 and other functions in (115)
are C0 functions de�ned on R�Rk�1, there exist a smooth function sk(x1; x̂[k�1]) such that

2Pk(akk + ak;k+1sk + ?1;k�1;k�1) < 0 (116)

is satis�ed for all (x1; x̂[k�1]) 2 R�Rk�1.

This theorem leads us to the following statement for nominal stabilization.

Theorem 6 Given an ordinary observer, the nominal nonlinear system �0 can be always globally uni-
formly asymptotically stabilized by the dynamic output-feedback law (16-17) with a smooth function K.
Proof : Let W = I. Theorem 5 guarantees that ~J1 < 0 can be achieved, which turns out to be
�N[1](x1) < 0 for all x1 2 R by Corollary 2. Suppose that �N[k�1](x1; x̂[k�2]) < 0 is satis�ed for all

(x1; x̂[k�2]) 2 R�Rk�2. Then, we can obtain ~Jk < 0 again by using Theorem 5 and Corollary 2 implies
�N[k](x1; x̂[k�1]) < 0 for all (x1; x̂[k�1]) 2 R�Rk�1. Finally, Corollary 1 proves the claim.

We now move onto the robust stabilization problem. From (108) and (109), the matrices Jk is given
as follows:

J1(x1) = 2P1(a11 + a12s1 + ?1;0;0) for k = 1 (117)

Jk(x1; x̂[k�1]) = 2Pk(akk + ak;k+1sk + ?1;k�1;k�1) +}1;k�1;k�1 for k � 2 (118)

The following can be proved.

Theorem 7 Let k is any integer belonging to [1; n]. Suppose that C0 function matrices Lk(x1; x̂[k�2])
and Rk(x1; x̂[k�2]) belong to Lk and Rk, respectively. Then, there always exist a scalar-valued smooth
function sk(x1; x̂[k�1]) such that Jk � EkF

�1
k ET

k < 0 is satis�ed for all (x1; x̂[k�1]) 2 R�Rk�1.

Next, the existence of Lk and Rk is investigated. Due to (108) and (109), the matrices Ek and Fk

de�ned with Rk = 0 are

E1(x1)=
h
?1;0;0 (C

T
11 + ?1;0;0)L1

i
; F1(x1)=

"
�L1 + U11 ?1;0;0C

T
11L1

L1C11?1;0;0 �L1 � L1C11W
�1
11 [H

�1]11W
�1
11 C

T
11L1

#
(119)

Ek(x1; x̂[k�1]) =
h
}1;k�1;k�1 (CT

kk +}1;k�1;k�1)Lk

i
for k � 2 (120)

Fk(x1; x̂[k�2]) = for k � 2"�Lk �BT
�;kW

T
hki

~Phki([H
�1]hki + �Fk11) ~PhkiWhkiB�;k (?1;0;0 �BT

kW
T ~P �Fk12)CT

k;�Lk

LkCk;�(?1;0;0 � �F T
k12

~PWBk) �Lk � LkCk;�(W
�1
[k] [H

�1][k]W
�T
[k] + �Fk22)C

T
k;�Lk

#
(121)

�Fk(x1; x̂[k�2]) =

2
4 0 ?1;k�2;k�1
�Uk }1;k�3;k�1

0 }1;k�3;k�1

3
5
T

�M�1
[k�1]

2
4 0 ?1;k�2;k�1
�Uk }1;k�3;k�1

0 }1;k�3;k�1

3
5 (122)

�Fk(x1; x̂[k�2]) =

"
�Fk11(x1; x̂[k�2]) �Fk12(x1; x̂[k�2])
�F T
k12(x1; x̂[k�2]) �Fk22(x1; x̂[k�2])

#
; for k � 2 (123)

�Uk(x1; x̂[k�3]) = �[BTW T ~P +RCW�1][k�1]H
�1
�

0
In�k+1

�
(124)
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Here, the following expressions are used.

B =

2
6664

0 � � � 0

B�;1
. . .

...
B�;2 0

� � � B�;n

3
7775 ; B�;n = Bnn (125)

[H�1]hki =

"
[H�1]kk ?1;0;0
?1;0;0 [H�1]hk�1i

#
; [H�1]h1i = H�1; [H�1]hni = [H�1]nn (126)

~Phki =

"
~Pk 0

0 ~Phk+1i

#
; ~Ph1i = ~P ; ~Phni = ~Pn (127)

Whki =
�
Wkk 0
?0;0;0 Whk+1i

�
; Wh1i = W; Whni = Wnn (128)

Note that �Fk � 0 holds if �M[k�1] < 0 is satis�ed.

Theorem 8 Let 1 � k � n. Suppose that Rk = 0 and pk 6= 0. Assume that H(x1) < 0 and
�M[k�1](x1; x̂[k�2]) < 0 hold for all (x1; x̂[k�2]) 2 R�Rk�2 unless k = 1. There exists a scalar-valued C0

function �k(x1; x̂[k�2]) such that

�k(x1; x̂[k�2]) > 0; Fk(x1; x̂[k�2]) < 0 (129)

are satis�ed for all (x1; x̂[k�2]) 2 R �Rk�2 with Lk(x1; x̂[k�2]) = �k(x1; x̂[k�2])Ipk if

�max

�
�BT

�;kW
T
hki

~Phki([H
�1]hki + �Fk11) ~PhkiWhkiB�;k

�
�

�max

�
�Ck;�(W

�1
[k] [H

�1][k]W
�T
[k] + �Fk22)C

T
k;�

�
� 1

4
(130)

holds for all (x1; x̂[k�2]) 2 R�Rk�2.
Proof : De�ne the following matrices

Za = �BT
�;kW

T
hki

~Phki([H
�1]hki + �Fk11) ~PhkiWhkiB�;k (131)

Zb = (?1;0;0 � �F T
k12

~PWB�;k)
TCT

k;� (132)

Zc = �Ck;�(W
�1
[k] [H

�1][k]W
�T
[k] + �Fk22)C

T
k;� (133)

with which Fk is represented as

Fk =
���kI + Za �kZb

�kZ
T
b ��kI + �2kZc

�
(134)

Looking at the de�nition of Fk in terms of 	k and �k carefully, �M[k�1] < 0 and H < 0 imply that

�
Za Zb

ZT
b Zc

�
� 0 (135)

holds for all (x1; x̂[k�2]) 2 R �Rk�2. Now, de�ne

�a = �max(Za) (136)
�b = �max(Z

T
b Zb) (137)

�c = �max(Zc) (138)
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Here, �max(�) denotes the maximum eigenvalue of a matrix. The inequality (135) directly proves that
these non-negative numbers �a, �b and �c satisfy �b � �a�c for all (x1; x̂[k�2]) 2 R�Rk�2. Now, we consider
Fk at an arbitrary point (x1; x̂[k�2]) in R�Rk�2. From Young's inequality, the inequality Fk < 0 for
the matrix (134) is implied by the existence of q > 0 satisfying

� �kI + Za + q�1I < 0; �2kZc � �kI + q�2kZ
T
b Zb < 0 (139)

Obviously, (139) is met if the inequalities

q�1 < �k � �a; �b < q�1(��1k � �c) (140)

are satis�ed. The existence of q > 0 in (140) is guaranteed by

�k � �a > 0; �b < (��1k � �c)(�k � �a) (141)

Thus, it has been shown that Fk < 0 holds if

�k > �a (142)

�2k�c+ (�b� �a�c� 1)�k + �a < 0 (143)

are satis�ed. By manipulating the determinant of (143) together with the condition (142), it is veri�ed
that there exists a real number �k such that (142) and (143) are satis�ed if and only if

�b � �a�c+ 1� 2
p
�a�c; �a�c < 1 (144)

hold. Moreover, the solution �k 2 R to (143) automatically satis�es (142). Recall that the triplet
(�a;�b; �c) satis�es �b � �a�c. It is obvious that the two condition in (144) are met if

1� 4�a�c > 0 (145)

is satis�ed. Hence, if (130) holds, then, any real number belonging to0
@(1 + �a�c� �b)�

q
(1 + �a�c� �b)2 � 4�a�c

2�c
;
(1 + �a�c� �b) +

q
(1 + �a�c� �b)2 � 4�a�c

2�c

1
A (146)

achieves F1 < 0. Note that (146) becomes (�a;+1) as �c goes to 0. Since all functions �a, �b and �c are C0

functions de�ned on Rk �Rk�2, there exits C0 function �k(x1; x̂[k�2]) such that the two inequalities in
(129) hold for all (x1; x̂[k�2]) 2 Rk �Rk�2 under the assumption (130).

The condition (130) is only su�cient for existence of Lk in the backstepping procedure. For instance,
Young's inequality is su�cient when pk > 1. The su�ciency is only for the purpose of obtaining a
simple and explanatory condition. It should be emphasized that the backstepping procedure by itself
does not need any conservatism introduced in the proof of the above theorem. To check whether the
backstepping selects fLk; Rk; skg properly or not, one only has to compute ~M[k] < 0 or �M[k] < 0. Since
the entries of B and C matrices represent the nonlinear bounds of uncertainties, the condition (130) is
considered as the upper bound and nonlinearity of tolerable uncertainties. In order to make this point
clear, we temporarily suppose that C and B are block diagonal matrices and R = 0, W = I. In this
simple case, uncertainties appear in �P as Bii�iCii and the condition (130) becomes

�max(B
T
kkBkk)�max(CkkC

T
kk) �

1

4k(k � �fk) ~P 2
k

(147)

�f1 = 0; �fk(x1; x̂[k�2]) =

2
4 ?1;k�2;k�1}1;k�3;k�1

}1;k�3;k�1

3
5
T

�M�1
[k�1]

2
4 ?1;k�2;k�1}1;k�3;k�1

}1;k�3;k�1

3
5 � 0 for k � 2
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where (x1) is any function satisfying2
664
1 0 � � �
0

. . . . . .
...
. . . n

3
775 > �H�1 > 0 (148)

Although Theorem 8 is derived with Rk = 0 for simplicity, the parameters Rk are not useless. One
advantage of the SD scaling approach in Section 5 is that we can introduce the additional parameters Rk

into each step of backstepping to improve controller performance other than mere robust stabilization
(a controller obtained without Rk may not be the best one).

Theorems 7 and 8 show that �M[k] < 0 can be achieved globally for (x1; x̂[k�1]) 2 R � Rk�1 by
using scaling matrices in the form of �k(x1; x̂[k�2])Ipk > 0. If �k(x1; x̂[k�2]) > 0 is replaced with a
positive constant number �k, the inequalities (129) might not be met globally. The size of region where
these inequalities are satis�ed depends on parameters of (Â[k]; B[k]; C[k]) and (s1; � � � ; sk�1; L[k�1]; R[k�1]).
In order to achieve the robust stabilization of �P with output feedback via SD scaling, according to
Corollary 1, �k(x1; x̂[k�2])I should be in the scaling set Lk. Although the SD scaling �k(x1; x̂[k�2])I
belongs to the scaling sets for both the full and repeated static uncertainties, it does not belong to the
scaling set for dynamic uncertainties. Note that 0 is a member of the scaling sets Rk. Thus, we obtain
the following.

Theorem 9 Suppose that a robust observer is chosen such that

�max

�
�BT

�;kW
T
hki

~Phki([H
�1]hki + �Fk11) ~PhkiWhkiB�;k

�
�

�max

�
�Ck;�(W

�1
[k] [H

�1][k]W
�T
[k] + �Fk22

�
CT

k;�) �
1

4
; 8(x1; x̂[k�2]) 2 R�Rk�2 (149)

is satis�ed for all k = 1; 2; : : : ; n.

(i) Assume that the uncertainty �� only has static uncertain components �is and �ir. The system
�P can be globally uniformly asymptotically stabilized for any admissible uncertainty by the dynamic
output-feedback law (16-17) with a smooth function K.

(ii) Assume that the uncertainty �� has dynamic uncertain components �id. If there exists a constant
�k belonging to (146) for each k = 1; 2; : : : ; n. then, the system �P can be globally uniformly asymp-
totically stabilized for any admissible uncertainty by the dynamic output-feedback law (16-17) with a
smooth function K.

Proof : Omitted.

The condition (149) may be satis�ed for any C0 functions B and C by taking su�ciently small C0

functions i(x1) > 0, i = 1; 2; : : : ; n since �H�1 < � holds for a robust observer. This is always the
case when n � 3(The n = 3 case is proved by making s1 and Y depend on x̂1 as well as x1.). However,
this argument is valid only if an observer is constructed for such a large ��1. The smaller k puts a
heavier burden on the observer. The required strong observers may not always exist unless the full
information of the state x is available for feedback. Even if an observer exists, the magnitude of Y
and W may become very large when i is too small. Recall that �Fk depends on Y and W . In this
way, the condition (149) shows that there is a strong coupling between observer-gain design and the
feedback-gain design. The coupling is due to the existence of the term ~PWB as expected in Section 3.
This fact reveals that the output-feedback robust stabilization problem is not always solvable globally
in a backstepping manner for arbitrarily large uncertainties. The condition (149) actually describes the
tolerable uncertainties in a recursive manner. This constants sharply with state-feedback control by
which global stabilization can be always achieved for arbitrarily large uncertainties(Ito and Freeman,
1998a).
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8 Recursive global observer design for output feedback

As it has been shown in previous sections, to design an output-feedback control law via backstepping,
one is required to �nd an observer whose error dynamics is stable to a certain degree. This section
shows how to construct such observers in the output feedback case y = x1.

The ordinary observer de�ned in Section 4 can be constructed whenever the C0 function A(x1)x
satis�es

A(x1)x = A1x+  (x1)

with a constant matrix A1 (Krsti�c et al., 1995). To explain this fact, we rewrite A(x1)x as

A(y)x = A1x+ A2(x1)y = A1x+ A2(x1)Cyx

The observer gain Y = �Y1 + A2(y) with a constant vector Y1 yields

A� Y Cy = A1 � Y1Cy

The right hand side of the above equation is obviously a constant matrix which can be always made
stable by choosing Y1. This implies that (54) is satis�ed with a constant matrix Qy > 0. However, this
observer-gain is not enough for creating a robust observer. We need to develop a method of constructing
robust observer gain.

Again, the matrices A, Y and � are supposed to be C0 functions of y, namely, they are represented
by A(x1), Y (x1) and �(x1), respectively. The matrix W is constant and non-singular. Given �(x1),
it is required to �nd the coordinate transformation W and the observer gain Y (x1) such that (56) is
satis�ed for all x1 2 R with a diagonal Lyapunov matrix ~P > 0.

First, we choose W as

W =

2
66664
1 0 0 � � � 0
w2 1 0 � � � 0
0 w3 1

. . . 0...
...

. . . . . .
...

0 � � � 0 wn 1

3
77775 (150)

W�1 =

2
66664

1 0 0 � � � 0
�w2 1 0 � � � 0
w2w3 �w3 1

. . . 0...
...

. . . . . .
...

(�1)n�1w2���wn � � � wn�1wn �wn 1

3
77775 (151)

These entries wi for 2 � i � n are constant numbers. Now de�ne

Ŵ =

"
w1(x1) 0 � � � 0

W T

#
(152)

where w1(x1) is a C
0 function de�ned on x1 2 R yet to be determined. Let the observer gain be

Y (x1) = �W�1
�
w1(x1)

0

�
= �

2
6664

w1

�w1w2
...

(�1)n�1w1w2���wn

3
7775 (153)

Then, we obtain h
CT

y AT
i
Ŵ = �CT

y Y
TWT + ATW T = (AT � CT

y Y
T )WT (154)
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The inequality (56) is equivalent to

�H(x1) := Ŵ T �ATW�1 ~P�1 + ~P�1W�T �AŴ + ~P�1��1 ~P�1 < 0 (155)

�A :=
h
CT

y AT
i

(156)

Now, let ~P be any diagonal matrix with positive entries. We now pay attention to the structure of
(155) which is actually the same as that of feedback gain design via backstepping except that the lower
triangular structure is replaced by the upper triangular one. That is why the parameters of W can be
determined recursively from wn to w1. To explain this, the following notation is needed.

�Hhki(x1) := Ŵ T
hki

�AT
hkiW

�1
hki

~P�1
hki +

~P�1
hkiW

�T
hki

�AhkiŴhki + ~P�1
hki�

�1
hki

~P�1
hki (157)

for k = 1; 2; : : : ; n, where

�Ahki(x1) =

"
ak�1;k ?

0 �Ahk+1i

#
; �Ah1i = �A; �Ahni = [ an�1;n an;n ] (158)

�hki(x1) =
�
k 0
0 �hk+1i

�
; �h1i = �; �hni = n (159)

~Phki =

"
~Pk 0

0 ~Phk+1i

#
; ~Ph1i = ~P ; ~Phni = ~Pn (160)

W�1
hki =

"
1 0
? W�1

hk+1i

#
; W�1

h1i = W�1; W�1
hni = 1 (161)

Ŵhki =

"
wk 0 � � � 0
Ŵ T

hki

#
; Ŵh1i = Ŵ ; Ŵhni =

�
w1

1

�
(162)

Obviously, �H = �Hh1i. Recall that ak�1;k 6= 0 holds for all x1 2 R for every k = 2; 3; : : : ; n by assumption.
The following can be proved.

Theorem 10 Suppose that �Ah3i and �h3i are constant matrices. Given an integer k 2 [1; n], assume
that �Hhk+1i(x1) < 0 holds for all x1 2 R unless k = n.
(i) For k = n; n� 1; : : : 3
There always exists a constant wk such that �Hhki < 0 is satis�ed.
(ii) For k = 2
There always exists a constant w2 such that �Hh2i(x1) < 0 is satis�ed for all x1 2 R if there exists positive
constants ci such that ����� ai2(x1)a12(x1)

����� � ci; i = 2; 3; : : : ; n;

����� 1

2(x1)a12(x1)

����� � c0 (163)

hold for all x1 2 R.
(iii) For k = 1
There always exists a smooth function w1(x1) such that �Hh1i(x1) < 0 is satis�ed for all x1 2 R.

Because of space limitation, the proof is omitted. Explicit and simple formulas of constructing wk are
available. The constant and growth requirement of A and � guarantees wk to be constant for 2 � k � n.
The conditions in (163) are met automatically if �Ah2i is constant. The matrix �Ah3i is constant if and
only if the C0 function A(x1)x satis�es

A(x1)x = A0x+ A1(x1)x1 + A1(x1)x2 (164)
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where A0 is a constant matrix. The condition (163) is introduced to guarantee that �H < 0 can be
globally achieved. It is important that �H < 0 is always semi-globally achievable without the condition
(163).

This recursive design of observers resembles backstepping very much. The design starts with a
parameter away from observer-gain and back to the actual observer-gain. The recursive structure is in
an upper triangular form which is similar to forwarding(or a dual procedure of backstepping). This type
of design procedure for observer is a unique feature of this paper. It is ready for automated numerical
calculation by computer as well. Another feature of the recursive design of observers in this section
is that precise knowledge of the system equation is not required for calculating wi since the design is
based on domination instead of cancelation. The approach is amenable to robusti�cation in that the
entries of A are allowed to be uncertain. Since observers can be always designed strong enough to an
arbitrary degree for linear systems, we can prove the following.

Theorem 11 Consider the uncertain system �P in the strict-feedback form de�ned as in Section 4.
Suppose that the uncertain system �P is linear. Then, �P is always robustly stabilizable for arbitrarily
large static uncertainties by the dynamic output-feedback law (16-17) with constant K and Y .
Proof : Due to the block lower triangular structure of B and C, the closed-loop system �P with
memoryless uncertainties can be described as

d

dt

�
�̂
�

�
=

"
S(A� +GK)S�1 �SY CyW

�1

0 W (A� � Y Cy)W
�1

# �
�̂
�

�
(165)

with the uncertain matrix:

A�=

2
6666664

a11 a12 0 � � � � � � 0
a21 a22 a23 0 0...

...
...

. . . . . .
......

...
...

. . . 0
an�1;1 an�1;2 � � � � � � an�1;n
an;1 an;2 � � � � � � an;n

3
7777775
+

2
6666664

�11 0 0 � � � � � � 0
�21 �22 0 0 0...

...
...

. . . . . .
......

...
...

. . . 0
�n�1;1 �n�1;2 � � � � � � 0
�n;1 �n;2 � � � � � � �n;n

3
7777775

(166)

where each �ij is a uniformly bounded function of t. By using the observer design in this section,

W�T (A� � Y Cy)
TW T ~P + ~PW (A� � Y Cy)W

�1 < 0 (167)

can be achieved uniformly in t for all admissible uncertainties �ij. It is also true that

S�T (A� +GK)TSTP+PS(A� +GK)S�1 < 0 (168)

can be satis�ed by constant S and K (Freeman and Kokotovi�c, 1996; Ito and Freeman, 1998a). Ac-
cording to the argument in (i) of Corollary 1, N < 0 is satis�ed for A�. Finally, Theorem 1 completes
the proof.

This theorem reveals that for strict-feedback linear systems, independent robusti�cation of observer
design and feedback-gain design can result in robust stabilization of the whole system. This separation
of robust observer design from robust feedback-gain design in robustly achieving N < 0 semi-globally is
valid even for a nonlinear system �P . However, for global stabilization of nonlinear systems, independent
robust observer design is not enough. The robust observer design should be coupled with the robust
feedback-gain design to compensate the nonlinear size of uncertainties together (see Section 7, 9 and
10).

Finally, let the author mention some remarks about output-feedback nonlinear design using this
recursive observer design and the recursive feedback-gain design proposed in Section 5. Let Nhki and
Mhki be de�ned by adding subscript hki to every matrix in the right hand side of (64) and (65),
respectively. The observer design has a property which is similar to the feedback gain design.
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Theorem 12 Suppose 1 � k � n.

(i-a) Nhki does not include fw1; w2; � � � ; wk�1g.
(i-b) Every entry of Nhki is a�ne in wk.

(i-c) Nhki < 0 implies Nhk+1i < 0 unless k = n.

(ii-a) Mhki does not include either fw1; w2; � � � ; wk�1g, fL1; L2; � � � ; Lk�1g or fR1; R2; � � � ; Rk�1g.
(ii-b) Every entry of Mhki is simultaneously a�ne in Lk, Rk and wk.

(ii-c) Mhki < 0 implies Mhk+1i < 0 unless k = n.

In general, the two recursive designs cannot interlace with each other. For example, the observer design
must be completed before performing feedback design. There are three reasons. Design parameters of
two recursive designs are coupled in M (or N). The feedback-gain design augments the system from
top to bottom, and the observer-gain design does from bottom to top. For instance, w1 is not available
when one want to design s1. In order to carry out the observer design to achieveMhki < 0 (or Nhki < 0),
the parameter matrix W should be a function instead of a constant. Further research is needed in this
direction.

9 Robust stabilization problems with guaranteed solutions

This section focuses on a special class of uncertain systems considered in previous sections. It will be
shown that the class of systems is always robustly stabilized by output feedback for arbitrarily large
uncertainties.

The class of systems is described in the following assumptions.

Assumption 1 The state x1 is available for feedback control. The system matrices A, B and C depend
only on x1. The B and C matrices satisfy

B(x1) =

2
6664
B11(x1)
B21(x1)

...
Bn1(x1)

3
7775 ; C(x1) = [C11(x1) 0 � � � 0 ] (169)

where Bi1(x1) 2 R1�p1, C11(x1) 2 Rp1�1 and p1 = p.

Assumption 2 The function A(x1)x satis�es

A(x1)x = A0x+  (x1) + �(x1)x2 (170)

with a constant matrix A0 and C0 functions  and �. There exists positive constants ci such that

����� a
2
i2(x1)

a12(x1)

����� � ci; i = 2; 3; : : : ; n (171)

hold for all x1 2 R.

Since A(x1)x is zero at x = 0,  (x1) satis�es  (0) = 0. This implies that (170) is equivalent to

A(x1)x = A0x+ A1(x1)x1 + A2(x1)x2 (172)
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with C0 functions A1(x1) and A2(x1). This assumption is weaker than a common assumption

A(x1)x = A0x +  (x1);  (0) = 0 (173)

in which the nonlinearities are allowed to depend only on the measured state. Note that if �1(x1)(the
�rst row of the vector �) is a constant, we do not need the constraint (171) since such a system can be
transformed to a system with � = 0 by using coordinate transformation.

The coordinate transformation W of ~x is a constant matrix represented as

W =

2
66664
1 0 0 � � � 0
w2 1 0 � � � 0
0 w3 1

. . . 0...
...

. . . . . .
...

0 � � � 0 wn 1

3
77775 =

�
1 0 � � � 0
Wl

�
(174)

W�1 =

2
66664

1 0 0 � � � 0
�w2 1 0 � � � 0
w2w3 �w3 1

. . . 0...
...

. . . . . .
...

(�1)n�1w2���wn � � � wn�1wn �wn 1

3
77775 (175)

We also use the following recursive representation.

W�1
[k] =

"
W�1

[k�1] 0
?0;0;0 1

#
; B[k]1 =

2
6664
B11

B21
...

Bk1

3
7775 (176)

Let ~P be a diagonal matrix. Then, we have

[P[k](V[k] + T[k])Â[k]Ŝ[k]](x1; x̂[k�1]) =2
64
(
P[k�1](V[k�1](x1; x̂[k�2]) + T[k�1](x1; x̂[k�2]))

Â[k�1](x1)Ŝ[k�1](x1; x̂[k�2])

)
0

Pk�1ak�1;k
Pk?1;k�1;k�1 Pk(akk + ak;k+1sk + ?1;k�1;k�1)

3
75

[P[k]V[k]B[k]1](x1; x̂[k�1]) =
�
P[k�1]V[k�1](x1; x̂[k�2])B[k�1]1(x1)

?1;k�1;k�1

�

[LCS�1](x1) = [L1(x1)C11(x1) 0 � � � 0 ] ; [RCS�1](x1) = [R1(x1)C11 0 � � � 0 ]
[LCW�1](x1) = [L1(x1)C11(x1) 0 � � � 0 ] ; [RCW�1](x1) = [R1(x1)C11(x1) 0 � � � 0 ]
[P[k]V[k]A[k]W

�1
[k] ](x1; x̂[k�1]) =

"
P[k�1]V[k�1](x1; x̂[k�2])A[k�1](x1)W

�1
[k�1] 0

Pk?1;k�1;k�1 Pk?1;k�1;k�1

#

[P[k]T[k]Y[k]Cy;[k]W
�1
[k] ](x1; x̂[k�1]) =

�
P[k�1]T[k�1](x1; x̂[k�2])Y[k�1] 0 � � � 0 0

Pk?1;k�1;k�1 0 � � � 0 0

�

[BTW T ~P ](x1) =
h
BT
11(x1) ~P1 B(x1)TWT

l
~Ph2i

i
By using these structures, we obtain the following.

Theorem 13 (i) For k = 1 : The symmetric matrix

�M[1](x1) = 	1(x1) (177)

depends only on (L1; R1) and s1.
(ii) For 2 � k � n : �M[k](x1; x̂[k�1]) < 0 is equivalent to"

�M[k�1](x1; x̂[k�2]) �k(x1; x̂[k�1])
�T

k (x1; x̂[k�1]) 	k(x1; x̂[k�1])

#
< 0 ; (178)
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where �k depends only on (L1; R1) and (s1; � � � ; sk�1) and their partial derivatives. The symmetric
matrix 	k depends on sk.

The functions �k and 	k are obtained as follows:

	1(x1) = (179)2
64 2P1(a11 + a12s1 + ?1;0;0) ?1;0;0 + (?1;0;0 + CT

11)R
T
1 (?1;0;0 + CT

11)L1

� �L1 � ( ~PWB +W�1CTRT
1 )

TH�1( ~PWB +W�1CTRT
1 ) (?1;0;0 +R1?1;0;0)C

T
11L1

� � �L1 � L1C11[H�1]11CT
11L1

3
75

�k(x1; x̂[k�1]) =

2
4 ?1;k�1;k�1}1;k�1;k�1

}1;k�1;k�1

3
5 ; for 2 � k � n (180)

	k(x1; x̂[k�1]) = 2Pk(akk + ak;k+1sk + ?1;k�1;k�1); for 2 � k � n (181)

where ?1;i;j denotes any function depending only on (x1; x̂[i]) and (s1; � � � ; sj) and their partial derivatives.
If a function ?1;i;j also depends on (L1; R1), it is denoted by }1;i;j.

Next, we de�ne Jk(x1; x̂[k�1]) 2 R1�1, E1(x1) 2 R1�2p1 and F1(x1) 2 R2p1�2p1 as

	1 =
�
J1 E1

ET
1 F1

�
; for k = 1 (182)

	k � �T
k
�M�1
[k�1]�k = Jk; for k � 2 (183)

Using the Schur complements formula, we have the following.

Corollary 3 Let k is any integer belonging to [1; n]. Assume that �M[k�1](x1; x̂[k�2]) < 0 is satis�ed for
all (x1; x̂[k�2]) 2 R�Rk�2 unless k = 1. Then, �M[k](x1; x̂[k�1]) < 0 holds for all (x1; x̂[k�1]) 2 R�Rk�1

if and only if

F1 < 0; J1 � E1F
�1
1 ET

1 < 0; when k = 1 (184)

Jk < 0; when k � 2 (185)

are satis�ed for all (x1; x̂[k�1]) 2 Rk �Rk�1.

Theorem 14 Let k is any integer belonging to [1; n]. Given arbitrary L1 2 L1 and R1 2 R1, there
always exist a scalar-valued smooth function sk(x1; x̂[k�1]) such that

J1 � E1F
�1
1 ET

1 < 0; when k = 1 (186)

Jk < 0; when k � 2 (187)

are satis�ed for all (x1; x̂[k�1]) 2 Rk �Rk�1.

Theorem 15 Let R1 = 0. Assume that H(x1) < 0 holds for all x1 2 R. There exists a scalar-valued
C0 function �1(x1) such that

�1(x1) > 0; F1(x1) < 0 (188)

are satis�ed for all x1 2 R with L1(x1) = �1(x1)Ip1 if

�[H�1]11�max

�
�BTWT ~PH�1 ~PWB

�
�max

�
C11C

T
11

�
� 1

4
(189)

hold for all x1 2 R.
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I should be noted that the simple form L1 = �1I is used in the above theorem only for the purpose of
deriving a simple condition like (189). Remember that the actual backstepping does not need to use
the above theorem. Although L1 = �1I is enough to show the existence, one had better exploit the
freedom allowed in Li to avoid unnecessary high-gain and growth order of control laws. Indeed, this
is an advantage of the scaling approach. For example, if uncertain parameters appear in the system
equation as scalar-valued functions, the scaling L1 can be a diagonal matrix with independent entries:

L1 =

2
666664
�11 0

. . .
...

0 �12
. . .

...
...

. . . . . . 0
� � � � � � 0 �1;p1

3
777775 (190)

The condition (189) can be always satis�ed for any B and C by a su�ciently small and positive function
�[H�1]11(x1). If H < ���1 is satis�ed by a robust observer, [�H�1]11 < 1 holds. The smaller 1 puts
a heavier burden on the observer. However, in Section 8, it has been shown that such a strong observer
can be always constructed for arbitrary function 1(x1) > 0 and arbitrary constants k, k = 3; 4; : : : ; n
under Assumption 2. Recall thatW is independent of 1 in the observer design. In this way, Assumption
1 allows us to have the following.

Theorem 16 Consider the uncertain system �P under Assumption 1 and Assumption 2.

(i) Assume that the uncertainty �� only has static uncertain components �is and �ir. The system
�P can be globally uniformly asymptotically stabilized for any admissible uncertainty by the dynamic
output-feedback law (16-17) with a smooth function K.

(ii) Assume that the uncertainty �� has dynamic uncertain components�id. If there exists a constant �1
belonging to (146) for k = 1. then, the system �P can be globally uniformly asymptotically stabilized
for any admissible uncertainty by the dynamic output-feedback law (16-17) with a smooth function K.

Proof : Since a12(x1) 6= 0 for all x1 2 R by assumption, we can de�ne a C0 function as follows:

2(x1) =
1q

a212(x1)
;

����� 1

2(x1)a12(x1)

����� = 1; 2(x1) > 0; 8x1 2 R (191)

Let 1(x1) be de�ned such that

1�max

�
BTW T ~P� ~PWB

�
�max

�
C11C

T
11

�
� 1

4
(192)

is satis�ed for all x1 2 R. Choose i, i = 3; 4; : : : ; n as any positive numbers. Due to Theorem 10 and
Assumption 2, there always exists Y (x1) such that �H(x1) < 0 holds for all x1 2 R. Theorem 14 and 15
also guarantees �M(x1; x̂[k�1]) < 0 for all (x1; x[k�1]) 2 R�Rk�1 on the Assumption 1, Thus, Corollary
1 proves the claim.

Remember that Assumption 2 only comes from observer design to ensure that the obsever is globally
strong enough.

As seen in the above theorem, global robust stabilizability against dynamic uncertainties via output
feedback is not always achievable if the uncertainty structure and size of uncertainty is prescribed a
priori. However, if we relax the robustness requirement, a stability robustness in terms of Input-to-State
Stability(ISS) can be obtained.
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Theorem 17 Assume that the system �0 satis�es Assumption 1 and Assumption 2. The system �0

can be ISS stabilized by the dynamic output-feedback law (16-17) with a smooth function K.
Proof : First, set R1 = 0. Let F1 be represented as

F1 =
���1I + Za �1Zb

�1Z
T
b ��1I + �21Zc

�
� 0 (193)

Za = �BTW T ~PH�1 ~PWB; ; Zb = ?1;0;0C
T
11; Zc = �C11[H

�1]11C
T
11 (194)

Maximum eigenvalues of the above matrices are denoted by

�a = �max(Za); �b = �max(Z
T
b Zb); �c = �max(Zc) (195)

Choose constants

�1 > 0; � > 0; � > 0 (196)

arbitrarily. Let 1(x1) be a C
0 function such that

1(x1)�max(B
T
11(x1) ~P

2
1B11(x1)) + �max(B

T (x1)W
T
l
~Ph2i�h2i ~Ph2iWlB(x1)) = �1 (197)

holds for all x1 2 R, where �h2i > 0 is any constant matrix. The existence of a robust observer with
respect to these 1 and �h2i is guaranteed by Theorem 10. From 0 < �H�1 < � it follows that

�1 � �max(B
TW T ~P� ~PWB) � �max(�BTW T ~PH�1 ~PWB) = �a (198)

Let C11 be

C11(x1) = �1(x1) ~C11 (199)

where ~C11 is a constant matrix satisfying �max( ~C11
~CT
11) = 1. Choose a C0 function �1(x1) such that

(��[H�1]11�
2
1(x1) + �b(x1)) <

�(�1 + �)

(�1 + � + �)2
(200)

holds for all x1 2 R. There exists such a function �1 since �b(x1) = �max(C11 ?
2
1;0;0 C

T
11) � 0 and

�[H�1]11 < 0. Now, choose �1 as a positive constant de�ned by

�1 = �1 + � + � (201)

From �c = �[H�1]11�
2
1 , the inequality (200) is rewritten as

�c < (��11 � ���21 )� �b(�1 � �1 � �)�1; �1 � �1 � � > 0 (202)

The condition (202) is equivalent to

�1 � �1 � � > 0; �b < (��11 � �c� ��21 �)(�1 � �1 � �) (203)

This implies that there exists a function q(x1) > 0 such that

q�1 < �1 � �1 � �; �b < q�1(��11 � �c� ��21 �) (204)

Since �1 � �a � 0, it is also true that

q�1 < �1 � �a� �; �b < q�1(��11 � �c� ��21 �) (205)
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By using Young's inequality, we have

���1I + Za �1Zb

�1Z
T
b ��1I + �21Zc

�
+ �I < 0 (206)

It has been veri�ed that the positive constant �1 = �1 + � + � solves F1(x1) + �I < 0 for all x1 2 R.
Since Jk, k = 1; 2; : : : ; n is a�ne in sk, it is always possible to achieve

M(x1; x̂[n�1]) + �I < 0 (207)

for all (x1; x̂[n�1]) 2 R�Rn�1 by selecting sk. Using the Schur complements formula ofM , we arrive at

d

dt
V (x; x̂) � ��

�
�̂
�

�T �
�̂
�

�
+ wT

1 (L1 � �I)w1 (208)

for all (x; x̂) 2 Rn �Rn. Here, L1 � �I = �1I � �I is a positive de�nite constant matrix. Since S and
W are global di�eomorphism it follows that the closed-system is ISS.

Note that the signal z is not required for ISS since ISS is a property de�ned only with state and
disturbance input signals. That is why the matrix C is considered as a free parameter to prove the
above theorem.

The class of systems �0 which satisfy Assumption 1 and Assumption 2 includes

_x1 = x2 +  1(x1) + �1(x1)x2 + b1(x1)w (209)

_x2 = x3 +  2(x1) + �2(x1)x2 + b2(x1)w (210)
...

... (211)

_xn = g(x1)u+  n(x1) + �n(x1)x2 + bn(x1)w (212)

y = x1 (213)

where � has positive constants ci, i = 2; 3; : : : ; n such that

����� �i(x1)

1 + �1(x1)

����� � ci (214)

holds for all x1 2 R. As for uncertain systems, the class of uncertain systems �P which satisfy
Assumption 1 and Assumption 2 includes

_x1 = x2 +  1(x1) + �1(x1)x2 + �1(x1; t) (215)

_x2 = x3 +  2(x1) + �2(x1)x2 + �2(x1; t) (216)
...

... (217)

_xn = g(x1)u+  n(x1) + �n(x1)x2 + �n(x1; t) (218)

y = x1 (219)

where �i satis�es (214). For each i 2 [1; n], the uncertain part �i(x1; t) is any function whose absolute
value is bounded above by a C0 function, namely, there exists a C0 function fi such that

j�i(x1; t)j � jfi(x1)j; fi(0) = 0 (220)
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holds for all x1 2 R and t � 0. In fact, since the function fi(x1) can be decomposed as fi(x1) = mi(x1)x1,
the uncertain system can be represented by �0 with

C11 =

2
6664
1
1
...
1

3
7775 ; B =

2
66664
m1 0 � � � 0

0 m2
. . .

...
...

. . . . . . 0
0 � � � 0 mn

3
77775 ; p1 = n (221)

The uncertain block consists of wi = h�i
(zi; t), i = 1; 2; : : : ; n which have instantaneous gain less than

equal to one.

10 Enlarging the class of nonlinearities

This section shows how to remove the constraint (171). To overcome the limitation, we need to modify
the coordinate change for the recursive observer design. Consider the di�eomorphism between ~x and �
as a function of x̂1 and ~x1.

� = W (x̂1; ~x1)~x (222)

Since the matrix W depends on x̂1 as well as ~x1, we have

_� = ~W (x̂1; ~x) _̂x+ �W (x̂1; ~x) _~x (223)

with appropriate matrices ~W and �W . Now we choose �W as

�W (x̂1; ~x1) = �W (x1) =

2
66664

1 0 0 � � � 0
�w2(x1) 1 0 � � � 0
0 �w3 1

. . . 0...
...

. . . . . .
...

0 � � � 0 �wn 1

3
77775 (224)

Here, the parameter �w2 is a C
0 function of x1 instead of a constant. Let W have the following structure:

W (x1; x̂1) =

2
66664

1 0 0 � � � 0
w2(x̂1; ~x1) 1 0 � � � 0

0 w3 1
. . . 0...

...
. . . . . .

...
0 � � � 0 wn 1

3
77775 (225)

Then, we have

w2(x̂1; ~x1)~x1 =
Z ~x1

0
�w2(x̂1 � �)d�; wi = �wi; i = 3; 4; : : : ; n (226)

~W (x̂1; ~x1) =

2
666664

0 0 � � � 0
~w2(x̂1; ~x1) 0 � � � 0

0 0 � � � 0
...

...
. . .

...
0 0 � � � 0

3
777775 ; ~w2(x̂1; ~x1) =

dw2(x̂1; ~x1)

dx̂1
~x1 (227)

From _̂� = (V + T ) _̂x and _̂�1 = _̂x1 it follows that

_� = ~W (x̂1; ~x1) _̂�+ �W (x̂1; ~x1) _~x (228)
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The closed-loop system becomes

d

dt

�
�̂
�

�
=

"
(V + T )(A+GK)S�1 �(V A+ TY Cy)W

�1

~WT (A+GK)S�1 �W (A� Y Cy)W�1 � ~WTY Cy

# �
�̂
�

�
+
�
V B
�B

�
w (229)

Here, ~WV = 0 is used. The observer inequality becomes

H := (W�T (A� Y Cy)
T �WT � CT

y Y
TT T ~W T ) ~P + ~P ( �W (A� Y Cy)W

�1 � ~WTY Cy) < ���1 (230)

The matrix �M is obtained as

�M(x1; x̂) :=M11(x1; x̂)�M12(x1; x̂)H
�1(x1; x̂1)(x1; x̂)M

T
12(x1; x̂) (231)

M11(x1; x̂) :=

2
6664
(
S�T (A+GK)T (V + T )TP+

P (T + V )(A+ GK)S�1

)
PV B+S�TCTRT S�TCTL

BTV TP+RCS�1 �L 0
LCS�1 0 �L

3
7775 (232)

M12(x1; x̂) :=

2
64P (V A+ TY Cy)W

�1 � S�T (A+GK)TT T ~W T ~P
BT �W T ~P+RCW�1

LCW�1

3
75 (233)

We next show that it is always possible to construct an observer-gain such that (230) holds. By
using

�W�1 ~WT = �W�1 ~W; CyW = Cy (234)

we have

�W (A� Y Cy)W
�1 � ~WTY Cy = �W (A � Y Cy � �W�1 ~WY Cy)W

�1 (235)

Let the modi�ed observer-gain �Y be de�ned by

�Y = (I + �Q)Y; �Q = �W�1 ~W =

2
666664

0 0 � � � 0
~w2 0 � � � 0

?0;0;0 0 � � � 0
...

...
. . .

...
?0;0;0 0 � � � 0

3
777775 (236)

where (I + �Q) is invertible. The actual observer-gain can be recovered by Y = (I + �Q)�1 �Y . Then, we
obtain

�W (A� Y Cy)W
�1 � ~WTY Cy = �W (A� �Y Cy)W

�1 (237)

Choose the modi�ed observer gain as

�Y (x1; x̂1) = � �W�1(x1)
�
�w1(x1; x̂1)

0

�
= �

2
6664

�w1

� �w1 �w2
...

(�1)n�1 �w1 �w2��� �wn

3
7775 (238)

Then, the inequality (230) is equivalent to

�H(x1; x̂1) := ŴT �ATW�1 ~P�1 + ~P�1W�T �AŴ + ~P�1��1 ~P�1 < 0 (239)

�A :=
h
CT

y AT
i
; Ŵ (x1; x̂1) =

"
�w1(x1; x̂1) 0

�W T

#
(240)

where �w1(x1; x̂1) is a C0 function de�ned on (x1; x̂1) 2 R �R yet to be determined. Now, let ~P be a
diagonal matrix with positive entries. Then, the structure of (239) is the same as that of (155) so that
the parameters of W can be always determined recursively from �wn to �w1.
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Theorem 18 Suppose that �Ah3i and �h3i are constant matrices. The parameter 2 is allowed to depend
only on x1, and 1 is allowed to depend only on (x1; x̂1). Given an integer k 2 [1; n], assume that
�Hhk+1i(x1) < 0 holds for all x1 2 R unless k = n.
(i) For k = n; n� 1; : : : 3
There always exists a constant �wk such that �Hhki < 0 is satis�ed.
(ii) For k = 2
There always exists a smooth function �w2(x1) such that �Hh2i(x1) < 0 is satis�ed for all x1 2 R.
(iii) For k = 1
There always exists a smooth function �w1(x1; x̂1) such that �Hh1i(x1; x̂1) < 0 is satis�ed for all (x1; x̂1) 2
R�R.

Next, we consider the feedback-gain design on Assumption 1. The procedure of backstepping can be
carried out in the same way as Section 5 or 9. The rest of section investigates the existence of solutions
fs1; s2; : : : ; sn; L1; R1g in the recursive design. According to (231), the term which is structurely di�erent
from the constant W case appears only in M12 as

�S�T (A+GK)TT T ~W T ~P =

2
6666664

0 ~w2
~P2(a11 + a12s1) 0 � � � 0

0 ~w2
~P2a12 0 � � � 0

0 0 0 � � � 0
...

...
...
. . .

...
0 0 0 � � � 0

3
7777775

(241)

Thus, �k (2 � k � n) and 	k (1 � k � n) are the same as (180) and (181). This implies that the
recursive design yields a solution (s1; s2; : : : ; sn) to �M < 0 whenever there exists s1 solving 	1 < 0. We
shall calculate an analytical expression of the existence condition for s1. Assume that a diagonal matrix
� satis�es �H�1 < �. Only for the purpose of showing an explanatory analytical solution, �H�1 is
temporarily replaced with � in the de�nition of �M[1], i.e., 	1. This replacement is valid since

M[1]11 � �QT
1M12H

�1MT
12
�Q1 �M[1]11 + �QT

1M12�M
T
12
�Q1 (242)

We now de�ne 	1 as the right hand side of the above equation instead of the left hand side. Then, the
matrix 	1 is

	1(x1; x̂1) =2
6664
2P1(a11 + a12s1 + �1) CT

11R
T
1 + �2 (CT

11 + 1?1;0;0)L1

�
(
�L1 + 1(BT

11
~P1 +R1C11)( ~P1B11 + CT

11R
T
1 )

+BTWT
l
~Ph2i�h2i ~Ph2iWlB

)
1(B

T
11
~P1 +R1C11)C

T
11L1

� � �L1 + 1L1C11C
T
11L1

3
7775 (243)

�1 = 1P
2
1 �w

2
1 + 2 ~P

2
2 ~w

2(a11 + a12s1)
2 (244)

�2 = �1P1 �w1( ~PB
T
11 +R1C11) + 2 ~P

2
2 ~w2(a11 + a12s1)( �w2B11 +B21) (245)

The function F1 2 R2pi�2pi is identical with that in Section 9(replacing �H�1 with �). This implies
that Theorem 15 is valid for 	1 in (243). As for Theorem 14, the inequality

J1 � E1F
�1
1 ET

1 < 0 (246)

becomes

2 ~w
2
2
~P 2
2 (1 + 2?

2
1;0;0)(a11 + a12s1)

2 + (2P1 + 12 �w1 ~w2?1;0;0)(a11 + a12s1) + 1 �w
2
1P

2
1 (1 + 1?

2
1;0;0) < 0 :(247)
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Since this inequality is quadratic in s1, the existence of solution s1 is not guaranteed. Note that ~w2

and �w1 depend on x̂1. If solutions s1 exist, they are functions of x̂1 as well as x1. By making 1 small,
the inequality (247) seems to have a solution s1(x1; x̂1). However, this is not always the case since the
magnitude of �w1 may become large when 1 is too small. Let Ds denote

Ds = (2P1 + 12 �w1 ~w2?1;0;0)
2 � 412 �w

2
1 ~w

2
2P

2
1
~P 2
2 (1 + 1?

2
1;0;0)(1 + 2?

2
1;0;0) (248)

Then, we have the following theorem.

Theorem 19 Consider the uncertain system �P satis�es Assumption 1 and (170). If there exists a C0

function 1(x1; x̂1) > 0 such that Ds(x1; x̂1) > 0 and

1�max

�
�BTWT ~P��1 ~PWB

�
�max

�
C11C

T
11

�
� 1

4
(249)

are satis�ed for all (x1; x̂1) 2 R � R, then, the system �P can be globally uniformly asymptotically
stabilized for any admissible static uncertainty by the dynamic output-feedback law (16-17) with a smooth
function K.

Note that W in (189) is independent of 1. Recall that 1 is an index of how much the observer is made
robust against uncertainty. Thus, the observer-gain parameter �w1 depends on 1. There is inevitable
interplay between observer design for choosing �w1 and feedback-gain design for s1. The existence of 1
in Theorem 19 for the class of systems has not been proved at this time. This sort of coupling exists
even in stabilization of a nominal system. If the system does not have any uncertainties, the design
inequality of s1 is

J1 = 2 ~w
2
2
~P 2
2 (a11 + a12s1)

2 + 2P1(a11 + a12s1) + 1 �w
2
1P

2
1 < 0 : (250)

Although (249) disappears in nominal stabilization, the solvability of (250) is apparently coupled with
observer design.
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