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1 Introduction

Many systems have redundant degrees of freedom to perform desired control. For example, an
arm system of the human has two degrees of freedom to move the hand to a right position.
One freedom is the shoulder joint. The other is the elbow joint. We rarely use the shoulder
joint when we raise and lower the hand quickly. The shoulder, however, is not good at short-
distance and precise movement. The elbow joint is quicker in action although it can generate
less amount of work than the shoulder joint. This two-link structure of the arm e�ciently
creates a quick and precise position control system which can a�ord a required amount of
work. This strategy of dividing the control roles among several freedoms are very useful in
practical engineering. In frequency domain, this control strategy is nothing but dividing the
frequency band of tracking control into several pieces. For the two-link example, the shoulder
joint is responsible for low frequency components of the command input signal. On the other
hand, the elbow is in charge of high frequencies. Thus, an appilcation of appropriate division of
frequency bands to redundant degrees of freedom creates a clever cooperative control system.
The author refers to the control strategy as frequency dividing cooperative control(FDCC).

An FDCC system was designed in Sampei et al. (1991) using H1 control theory. Position
control of a double cart system was considered, where one cart moves on the surface of the
other cart. The control objective is to make the upper cart track the reference signal of its
absolute position. The force driving each cart is available as a control input. The lower cart
is heavier than the upper one. Sampei et al. (1991) obtained a controller as a continuous-
time system. Needless to say, the controller has to be discretized to be implemented as a
practical sampled-data system. In Sampei et al. (1991), the discretization was regarded as an
approximation of a continuous-time control system.

Any sampled-data system has AD/DA converters. A question arising here is what the most
reasonable choice of sampling and holding frequency is. In an FDCC system, since frequency
bands of signals are separated, there could be a choice of multiple frequencies of sampling and
holding determined appropriately for the frequency ranges of individual signals. In the case
of the two-link robot arm, the shoulder link does not require fast sampling frequency while
the elbow does. For the double cart tracking control system, a faster frequency of changing
the control input might not be suitable for the actuator of the heavy lower cart. This is why
this paper focuses on multirate control of systems having redundant degrees of freedom. This
paper shows practical usefulness of multi-rate control via the FDCC.

Multiple rates in a sampled-data control system are useful in many cases. Sensors and
actuators might determine a physically allowable sampling and holding frequency. For exam-
ple, some measurements are only infrequently available specially in chemical industry. Since
aerospace systems often include phenomena covering a wide range of characteristic frequencies,
instrumentation measurements are available at multiple rates(Glasson, 1983). More simply,
unnecessary high rates for low-bandwidth signals just wastes microprocessing power(Semba,
1993). A multirate control structure accommodates these situations.

In a multi-input, multi-output(MIMO) control system having multiple loops, largest time
constant involved in one loop may be quite di�erent from that in the other loops. It may be
advisable to sample and hold slowly in a loop involving a large time constant, while in a loop
involving only small time constants the rate must be fast. Thus, di�erent rates are used in
di�erent feedback paths. A classical frequency domain approach to such an MIMO control
design is the successive loop closure. The faster loop is closed �rst, which is called the inner-
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loop. Then the outer-loop (slow) loop is closed with a slower sampling and hold rate(Franklin
et al., 1990). Therefore, we see that frequencies are decomposed in the design. However, this
successive loop closure has a drawback of ignoring cross coupling and outer-loops in the design
of the inner-loop. The achieved performance can be signi�cantly inferior to that achieved by
direct MIMO design considering the entire system together. It is not until the design comes
to the slowest outer- loop that an accurate performance can be predicted. Moreover, the
performance is only measured in discrete time of the slowest sampling rates.

For multirate systems, stability and performance analysis based on continuous-time signals
becomes very important since signals operating with di�erent sampling and hold periods in-
teract each other through the governing continuous-time system. Unlike single-rate systems,
multirate systems have relativity of sampling and hold periods. Continuous-time performance
analysis is necessary to give a fair judgment for every signal and to appreciate the e�ectiveness
of multirate control correctly. To suggest multirate control rather than single-rate one, design
methods have to be able to take advantage of multirate control. Recently, sampled-data con-
trol theory taking account of intersample behavior has gained much attention (For example,
Kabamba and Hara (1993), Yamamoto (1994), Bamieh and Pearson (1992), Hayakawa et al.
(1994), Araki et al. (1996) and Sun et al. (1992) to name a few). Voulgaris and Bamieh (1993)
presented a complete solution to H1 control problem for multirate sampled-data systems(See
Ito et al. (1995) for correction). Chen and Qiu (1994) also reported a similar result. Those
papers, however, only deal with single objective control problems. When we have to consider
several requirements in several frequency ranges and when there are several disturbances and
perturbations to be evaluated separately, it is natural to consider multiple performance objec-
tives. Approaches to single objective control are no longer directly applicable to this kind of
control problems.

This paper proposes a procedure for dealing with multiple objectives in multirate control
synthesis. This paper also shows how to formulate the frequency dividing cooperative con-
trol(FDCC) of a multirate sampled-data system as an L2-induced norm multi-objective mini-
mizing problem and solve it in state space. Then, it will be demonstrated that the multirate
control yields su�ciently good performance as an FDCC system using appropriately chosen
sampling and hold frequencies. Our standpoint is that it is not clever to design a sampled-data
system which has unnecessarily fast sampling and hold frequencies.

The paper is organized as follows: In Section 2, a multirate control system to be considered
is introduced and the L2-induced norm suboptimal multi-objective control problem with the
decay rate constraint is stated. In Section 3, a mathematical transformation of the original
problem into a discrete-time equivalent taking account of multiple objectives is newly devel-
oped. In Section 4, the transformation is successfully used to propose a design method of
developing multi-objective multirate controllers. In Section 5, the multi-objective approach
to multirate control design is applied to an FDCC design of a double cart system. First, the
control objective of the FDCC is stated. Then, the section shows how the FDCC problem is
reduced to an L2-induced norm multi-objective constrained minimizing problem. The method
proposed in Section 4 is used to solve the problem. The design illustrates the e�ectiveness
of the multi-objective approach to multirate control design. It also demonstrates practical
usefulness of the multirate strategy in an FDCC design.

In the sequel, ` denotes the space of one-sided sequences de�ned on the set of nonnegative
integers. `n is the space of one-sided sequences of n-dimensional real vectors. The dimension
is dropped if it is clear from the context. L� denotes Banach space of all measurable functions
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(vector-valued) on the time set [0;1) which are �-integrable. kHkB(L�) is L
�-induced norm

of H on L�. kHk1 denotes H1-norm of proper real-rational functions (matrices) of z which
have no poles outside the open unit disk. If H is a function of s, kHk1 is H1-norm of proper
real-rational functions (matrices) which have no poles in the closed right half plane. F`(�; �)
denotes lower linear fractional transformation. In is an identity matrix of the dimension n.
Some parts of this paper originally appeared as conference papers(Ito et al., 1996; Teraoka et
al., 1997).

2 Multi-objective Multirate Control

Consider the multirate sampled-data system shown in Fig.1, which is denoted by �[G;HCS].
Here, w := [wT

1; w
T
2 ]

T is the exogenous input, z := [zT1 ; z
T
2 ]

T is the controlled output, and
both signals are continuous-time. u is the control input, y is the measurement output, and
both signals are discrete-time. G denotes the plant that is a �nite-dimensional linear time-
invariant(FDLTI) continuous-time system. HCS is a linear, causal, multirate sampled-data
controller, where S is the multirate sampler de�ned by

S := diag[S1;S2; � � � ;Sp] (1)

yi=Siyc i ; yi(l) = yc i(lLiT ); i = 1; 2; :::; p :

The signal yc i is a continuous-time signal of dimension ei. A positive integer E denotes the
size of the output vector y = [yT1 ; y

T
2 ; � � � ; y

T
p ]

T and there holds E =
Pp

i=1 ei. The operator H
represents the multirate hold (zero-order):

H := diag[H1;H2; � � � ;Hm] ; uc j=Hjuj (2)

uc j(k(KjT ) + t)=uj(k); 0<t�KjT; j=1; 2; :::;m ;

where uc j is a continuous-time signal of dimension fj. Li and Kj are positive integers. The
size of the input vector u = [uT1 ; u

T
2 ; � � � ; u

T
m]

T is F =
Pm

j=1 fj . Let N be the least common
multiple among Li (i = 1; 2; : : : ; p) and Kj (j = 1; 2; : : : ;m). Then de�ne Pi := N=Li and
Mj := N=Kj for i = 1; 2; : : : ; p and j = 1; 2; : : : ;m. We partition the plant G as"

z
yc

#
=

"
G11 G12

G21 G22

# "
w
uc

#
: (3)

Assume that the plant G is described as

_x = Ax+ B1w +B2uc

z = C1x+D11w +D12uc (4)

yc = C2x :

in the state space. We refer to (A;Bj; Ci;Dij) for the state-space realization of G ij. We
partition B1 as

B1 = [B1
1 B2

1 ] ;

which are compatible in size with the partition of the vector w = [wT
1 ; w

T
2 ]

T . In the same
manner, we write

C1=

"
C1

1

C2
1

#
; D12=

"
D1

12

D2
12

#
; D11=

"
D11

11 D12
11

D21
11 D22

11

#
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so that they are compatible with the output z = [zT1 ; z
T
2 ]

T . We assume that (A;B2) is stabi-
lizable and that (C2; A) is detectable. The common sampling period NT is supposed to be
nonpathological, i.e., whenever � is an eigenvalue of A with nonnegative real part, none of the
points � + j2�k=NT; k 6= 0 is an eigenvalue of A.

LetM =
Pm

j=1Mjfj and a discrete-time lifting operatorWM : `F ! `M is de�ned as follows:

û = fû(k)g1k=0 = WMc =

8>>>>>>>>><
>>>>>>>>>:

2
6666666664

u1(0)
u1(1)...

u1(M1 � 1)
u2(0)...

um(Mm � 1)

3
7777777775
;

2
6666666664

u1(M1)
u1(M1 + 1)...
u1(2M1 � 1)
u2(M2)...

um(2Mm � 1)

3
7777777775
; : : :

9>>>>>>>>>=
>>>>>>>>>;
; (5)

where

u =

8>><
>>:

2
664
u1(0)
u2(0)...
um(0)

3
775 ;
2
664
u1(1)
u2(1)...
um(1)

3
775 ; : : :

9>>=
>>; : (6)

Here, û is the discrete-time lifted input signal. Let P =
Pp

i=1 Piei and we de�ne a discrete-
time lifting operator WP : `E ! `P in the same manner as WM . Here, ŷ := WPy is the lifted
sequence of the output signal y. For details of the lifting, we refer the reader to Ito et al. (1994),
Ito et al. (1995) and Meyer (1990). The set of (Mj; Pi)-shift-varying operators is de�ned by

LSV (Mj; Pi) :=
�
H : linear operator `p ! `m ;

� mX
j=1

S
Mj

j

�
H = H

� pX
i=1

SPi
i

��
; (7)

where Sj denotes the right shift operator on the jth component of the signal vector. It is as-
sumed that the controllerC belongs to LSV (Mj; Pi) and that it is causal and �nite-dimensional.
To put it another way,

C2

8<
: C : (Mj; Pi)-causal, C =W�1

M ĈWP ,

Ĉ is �nite-dimensional, linear shift-invariant

9=
; : (8)

Note that if the operator Ĉ is a �nite-dimensional linear shift-invariant(FDLSI) system whose
direct-feedthrough matrix of the state-space realization satis�es (Mj ; Pi)-causality conditions,
W�1

M ĈWP always belongs to LSV (Mj; Pi) and it is (Mj; Pi)-causal (Ito et al., 1994; Meyer,
1990). We refer to the state of the minimal state-space realizations of Ĉ as the state of the
controller C . Let xk(q); q = 0; 1; 2; : : : denote the state of the controller C .

The multirate control system �[G;HCS] shown in Fig.1 is said to be continuous-time
internally stable if there exist positive real constants �c; �c such that the associated unforced
system satis�es

kx(t)k � kX(0)k�ce
��ct ; 8t � 0 (9)

kxk(q)k � kX(0)k�ce
��cqNT ; 8q = 0; 1; 2; : : : (10)

for any initial state X(0) = [x(0)T ; xk(0)T ]T . The continuous-time internal stability describes
not only a property of an unforced system, but also an input-output property of a system with
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hybrid external signals. The system �[G ;HCS] is said to be L� hybrid stable if the operator
mapping (w; v; r) to (z; y; u) is bounded from L� � `� � `� to L� � `� � `� in Fig.2. Here, � is
any number in [1;1]. The internal stability can be rephrased in terms of L� hybrid stability,
(See Ito et al. (1995) and Ito et al. (1994) for details).

Theorem 1 The following statements are equivalent for any � 2 [1;1].
(i) �[G ;HCS] is continuous-time internally stable.
(ii) �[G ;HCS] is L� hybrid stable.

The following theorem clari�es the equivalence between continous-time internal stability and
discrete-time internal stability. It is important that the decay rate of the state transition of
�[G;HCS] can be predicted precisely by the discrete decay rate.

Theorem 2 Suppose that �d is a positive real number. There exists a positive real number �d
such that the state transition of �[G ;HCS] with w � 0 satis�es

kx(qNT )k � kX(0)k�de
��dq; kxk(q)k � kX(0)k�de

��dq; 8q = 0; 1; 2; : : : (11)

for any initial state X(0) = [x(0)T ; xk(0)
T ]T if and only if there exists a positive real number

�c such that the state transition satis�es

kx(t)k � kX(0)k�ce
�

�d
NT

t; 8t � 0; kxk(q)k � kX(0)k�ce
��dq; q = 0; 1; 2; : : : (12)

for any X(0) = [x(0)T ; xk(0)
T ]T

Proof : Substituting t = qNT and �c = �d, we obtain (11) straightforwardly from (12).
Conversely, to derive (12) from (11), we can apply the proof of Theorem 3.1 in Ito et al. (1994)
to (11). Equation (12) is found to be satis�ed with �c = �de

�d+kAkNT .

In Fig.1, we consider two pairs of exogenous input and output to take account of signals
with di�erent characteristics. Namely, we consider, for example, a situation where w1 is a
disturbance which dominates in high frequencies and w2 is a signal in low frequencies. Let

T =

"
T11 T12
T21 T22

#
= F`(G;HCS) (13)

denote the closed loop map from the disturbance input w := [wT
1 ; w

T
2 ]

T to the controlled output
z := [zT1 ; z

T
2 ]

T , where Tij denotes the operator from wj to zi with zero initial conditions. This
paper considers the following multirate sampled-data H1 control problem with two objectives
subject to a decay rate constraint.

Problem 1 Find a multirate controller C which continuous-time internally stabilizes the plant
G and satis�es prescribed norm bounds

kT11kB(L2) < 1 and kT22kB(L2) < 1 (14)

and a continuous-time decay rate �c, i.e.,

kx(t)k � kX(0)k�ce
��ct ; 8t � 0; kxk(q)k � kX(0)k�ce

��cqNT ; 8q = 0; 1; 2; : : : (15)

A complete solution to Problem 1 is not known at the present time.
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3 Norm preserving transformation

This section derives state-space formulas of a norm preserving transformation to evaluate
continuous-time performance with two objectives and the transition decay rate. We will show
how to construct a system �G which is called the discrete-time equivalent plant. The main
theorem will be stated after that.

To begin with, we temporarily consider the single-objective version of multirate sampled-
data H1 control. In this single-objective case, we are interested in a discrete-time system �G
for which the following two statements are equivalent.

(T1) �[G ;HCS] is continuous-time internally stable and kT kB(L2) < 1.

(T2) �[ �G; Ĉ ] is discrete-time internally stable and k �T k1 < 1.

Here, T = F`(G;HCS) and S, H, G and C are de�ned with (1) (2) (3), (4) and (8). The
shift-invariant system �G achieving the equivalence is obtained through the following steps.

Step 1: Compute B̂2; Ĉ2 and Â
0

which are de�ned by

B̂2 =

2
64 B̂2(1; 1) � � � B̂2(1;m)

...
. . .

...
B̂2(N + 1; 1) � � � B̂2(N + 1;m)

3
75

[B̂2(i;j)]h=

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

0
if i � (h� 1)Kj + 1

(i�1)�(h�1)KjX
q=1

eA[(i�1)�(h�1)Kj�q]T B̂2(j)

if (h� 1)Kj+1<i<hKj+1

KjX
q=1

eA[(i�1)�(h�1)Kj�q]T B̂2(j)

if hKj + 1 � i

B̂2(i; j) = [[B̂2(i; j)]1; [B̂2(i; j)]2; � � � ; [B̂2(i; j)]Mj
]

B̂2(j) :=
Z T

0
eA�d�B2 ;j ; Ĉ2(i; j)=

2
66664

[Ĉ2(i; j)]1
[Ĉ2(i; j)]2

...
[Ĉ2(i; j)]Pi

3
77775

Ĉ2=

2
664
Ĉ2(1; 1) � � � Ĉ2(1; N + 1)

...
. . .

...

Ĉ2(p; 1) � � � Ĉ2(p; N + 1)

3
775 ; Â

0

=

2
6664

I
eAT...
eANT

3
7775

[Ĉ2(i; j)]r =

(
C2 ;i if j � 1 = (r � 1)Li

0 otherwise
:

Step 2: Compute W :=
R T
0 eA

T
V
�CT

VCV e
AV �d� usingZ T

0
eA

T
V
�CT

V CV e
AV �d� = �T

W�W ;
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"
� �W
0 �W

#
= exp

("
�AT

V CT
VCV

0 AV

#
T

)

AV=

2
64

A �B1B
T
1 = B2

CT
1 C1= �AT CT

1 D12=
0 0 0

3
75 ; CV=[0 �BT

1 0]:

Step 3: Calculate

B̂1i = eAiTCBe
ABTBB ; i = 0; 1; : : : ; N�1 ;

AB=

"
A B1CV =
0 AV

#
; BB=

"
0

W�1=2


#
; CB = [ In 0 ] :

Step 4: Compute M̂ = �T
N�N and M = BT

NM̂BN where

"
� �N
0 �N

#
= exp

("
�AT

N CT
NCN

0 AN

#
T

)
;

AN=

2
64
A B1CV = B2

0 AV 0
0 0 0

3
75; BN=

2
64
I 0 0
0 W�1=2

 0
0 0 I

3
75; CN=[C1 0 D12 ]:

Step 5: Obtain Ĉ10; D̂0; D̂12 from the equation M1=2
 = [Ĉ10; D̂0; D̂e12] and D̂12(i) =

D̂e12
�H((i � 1)T ) . Here, �H(t) represents a zero-order hold function in the lifted domain,

which is de�ned by

�H(t)=

2
66664
11(t) 0

12(t)
. . .

0 1m(t)

3
77775

1j(t) = [1j1(t) 1j2(t) � � � 1jMj
(t)] ;

1jl(t)=

(
Ifj t2 [kNT+(l�1)KjT; kNT+lKjT );
0 otherwise ,

where k is any nonnegative integer and l = 1; 2; : : : ;Mj .

Step 6: Calculate the following matrices.

Ĉ1=

2
664
Ĉ10 0 0

. . .
...

0 Ĉ10 0

3
775 ; D̂11=

2
664
D̂0 0

. . .

0 D̂0

3
775 ;

D̂12=

2
666664

D̂12(1)

D̂12(2)
...

D̂12(N)

3
777775 ; B̂1=

2
666666664

0 � � � � � � 0

B̂10 0 � � � 0

B̂11 B̂10 0
...

...
. . . . . . . . .

B̂1 (N�1) � � � B̂11 B̂10

3
777777775
:
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Step 7: Compute �B1; �C1; �D11; �D12 and �D21 de�ned by

�B1=[B̂1(N�1) � � � B̂11 B̂10] ; �C1=Ĉ1Â
0

�D11=D̂11 + Ĉ1B̂1 ; �D12=D̂12 + Ĉ1B̂2 ; �D21=Ĉ2B̂1 :

Step 8: �A; �B2; �C2; �D22 are given by

�A = eANT ; �B2 = [B̂2(N + 1; 1) � � � B̂2(N + 1;m)]
�C2 = Ĉ2Â

0

; �D22 = Ĉ2B̂2 :

Step 9: Finally, the equivalent system �G is obtained as

�G =

2
666664

�A �B1
�B2

�C1
�D11

�D12

�C2
�D21

�D22

3
777775 =

2
64 �G11

�G12

�G21
�G22

3
75 (16)

For the sake of brevity, the idea and details of driving this norm-preserving transformation
for the single-objective problem are omitted since the complicated proof certainly takes up a
lot of space and it is essentially similar to Kabamba and Hara (1993). The added di�culty
is that, for a system given with multirate signals, we must de�ne the hybrid state space
representation which is easy of handling. The complex nature of the input-output relation
also makes a di�culty of discretizing the controlled output. It might be better to mention
that, when seeking the equivalent system, we utilized the discrete-time lifting in calculating
an adjoint system and an equivalent of the worst case disturbance, and that we introduced an
idea of using a nonstandard and nonminimal description of the system in order to reduce the
complexity of the input-output relation and to minimize required computational tasks.

Now, we are ready to return to the multi-objective problem. In order to extend the above
transformation technique to the two-objective case, we need to construct two pairs of exogenous
input and output matrices. More precisely, it is required to carry out Step 2 to Step 7 for each
Tii, i = 1; 2. Let 2

666664
�A �Bi

1
�B2

�C i
1

�Di
11

�Di
12

�C2
�Di
21

�D22

3
777775 =

2
64 �G

i

11
�G
i

12

�G
i

21
�G22

3
75 = �G

i
(17)

denote the single-objective discrete-time equivalent of the continuous-time system2
666664

A Bi
1 B2

C i
1 Dii

11 Di
12

C2 0 0

3
777775 =

2
64 G i

11 G
i
12

G
i
21 G22

3
75 =G i (18)

de�ned for the i-th objective. Namely,

Tii = F`(G
i;HCS); i = 1; 2 (19)
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holds. It should be noted that the quartet ( �A; �B2; �C2; �D22) is nothing but the discrete-time
lifting representation of (A;B2; C2; 0), and it is obvious that �D22 satis�es (Pi;Mj)-causality
conditions. Therefore, the two realizations of �G22 obtained for the two objectives case are
identical so that we can combine the two realizations as

�G =

2
666666664

�A �B1
1

�B2
1

�B2

�C1
1

�D1
11 0 �D1

12

�C2
1 0 �D2

11
�D2
12

�C2
�D1
21

�D2
21

�D22

3
777777775
=

2
666664

�G
1

11 � �G
1

12

� �G
2

11
�G

2

12

�G
1

21
�G

2

21
�G22

3
777775 (20)

where � denotes appropriate transfer matrices. The system �G de�ned here is a causal, �nite-
dimensional linear shift-invariant discrete-time system. Let �[ �G ; Ĉ ] denote a discrete-time
closed-loop system shown in Fig.3. De�ne linear shift-invariant operators �Tij, i; j = 1; 2 by

�z =

"
�z1
�z2

#
= �T �w =

"
�T11 �T12
�T21 �T22

# "
�w1

�w2

#
: (21)

Recall that C belongs to LSV (Mj; Pi) and C = W�1
M ĈWP so that the direct-feedthrough

matrix of the FDLSI system Ĉ satis�es (Mj; Pi)-causality conditions. Then, we have the
following theorem.

Theorem 3 Consider the multirate sampled-data system �[G ;HCS] shown in Fig.1. Suppose
that �c and �c are positive real numbers. Then, the following are equivalent.

(i) �[G ;HCS] is continuous-time internally stable and satis�es

kx(t)k � kX(0)k�ce
��ct ; 8t � 0; kxk(q)k � kX(0)k�ce

��cqNT ; 8q = 0; 1; 2; : : : (22)

Moreover, kT11kB(L2) < 1 and kT22kB(L2) < 1 are hold.

(ii) �[ �G ; Ĉ ] is discrete-time internally stable and has all the closed-loop poles in the closed
disc with radius e��cNT and center at origin in z-domain. Moreover, k �T11k1 < 1 and
k �T22k1 < 1 are hold.

Proof : Since �G
i
for each Tii, i = 1; 2 guarantees the equivalence between (T1) and (T2)

in terms of each objective, it is straightforward to see that the transformation from G to �G
in (20) preserves multiple L2-induced norms of the two operators. It can be veri�ed that the
quartet ( �A; �B2; �C2; �D22) of the multi-objective equivalent �G is a state-space realization of the
FDLSI system WPSG22HW

�1
M . Therefore, �[ �G; Ĉ ] has all the closed-loop poles in the closed

disc of radius e��cNT if and only if there exists a positive real number �d such that the state
transition with �w � 0 satis�es

k�x(q)k � k �X(0)k�de
��cNTq; kxk(q)k � k �X(0)k�de

��cNTq; 8q = 0; 1; 2; : : : (23)

for any initial state �X(0) = [�x(0)T ; xk(0)
T ]T . Here, �x denotes the state variable of �G. From

�x(q) = x(qNT ) and Theorem 2 it follows that (23) is identical with (22). This concludes the
proof.
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Remark 1 One might expect that Theorem 3 is considered as a multi-objective version of re-
sults in Voulgaris and Bamieh (1993) and Chen and Qiu (1994). However, it is not. Theorem
3 of this paper takes the same idea as Kabamba and Hara (1993) which has been developed for
single-objective single-rate control and it is di�erent from their ideas in two abovementioned pa-
pers. The combination in (20) is not successful if the approach in Voulgaris and Bamieh (1993)
is adopted because of the loop shifting transformation which alters the state space completely
with respect to the measurement output, control input and state. Voulgaris and Bamieh (1993)
has to remove the operator mapping the continuous-time input to the continuous-time output
by using the loop shifting technique, while in our approach the operator is taken into account
directly in discretization of the controlled output. Moreover, since the method in Voulgaris and
Bamieh (1993) a�ects the system, the decay rate is not preserved either. The drawback of using
the loop shifting in discretization was also pointed out for single-rate systems in Hayakawa et
al. (1994) and Fujioka et al. (1994). It also should be noted that the approach proposed by
Chen and Qiu (1994) has the option of using the H1 discretization of Hayakawa et al. (1994)
which does not a�ect the subsystem G 22.

4 Controller synthesis

The norm-preserving transformation developed in Section 3 reduces the original control prob-
lem to a multi-objective control problem of a pure discrete-time system. The following approach
based on bilinear transformation and LMIs is proposed to solve the discrete-time H1=H1 con-
trol problem with a pole placement constraint stated in (ii) of Theorem 3.

Algorithm 1
Step 1: Obtain a two-objective equivalent �G from an original plant G with two objectives by

following the procedure in Section 3 and (20).

Step 2: De�ne

E(z) = �G (z)

"
I 0
0 1

z
IM

#
:

Step 3: Let �E(s) = E

 
2 + �s

2� �s

!
.

Step 4: Find a controller �F (s) such that
1) �[ �E; �F ] is internally stable;
2) k[F`( �E; �F )]11k1 < 1 and k[F`( �E; �F )]22k1 < 1,
where �T = F`( �E; �F ) and"

�z1
�z2

#
=

"
[F`( �E; �F )]11 [F`( �E; �F )]12
[F`( �E; �F )]21 [F`( �E; �F )]22

# "
�w1

�w2

#
:

3) All poles of �[ �E; �F ] are in the closed disc D with center at (c; 0) and radius d :

c =
2(e�2�cNT + 1)

�(e�2�cNT � 1)
, d =

�4e��cNT

�(e�2�cNT � 1)
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Step 5: De�ne F (z) = �F

 
2(z � 1)

�(z + 1)

!
.

Step 6: Let Ĉ (z) =
1

z
F (z).

Step 7: Then C = W�1
M ĈWP is the multirate controller.

Here, � > 0 is an arbitrary real number. The multirate sampled-data controller HW�1
M ĈWPS

is easily implemented with Ĉ and parallelizing and deparallelizing calculators.
The controller C obtained by using Algorithm 1 is a solution to Problem 1. In fact, it is

not di�cult to verify that the bilinear transformation s = f2(z � 1)g=f�(z + 1)g is bijective
between the closed disc �D with radius e��cNT and center at 0 in the z-plane and the disc D
in the s-plane. Since the bilinear transformation preserves H1-norm, Theorem 3 implies that
the existence of �F (s) in Step 4 is su�cient for the existence of solutions to Problem 1. The
condition is not necessary since the lifted controller Ĉ (z) is restricted to be strictly proper.
This restriction, however, guarantees that Algorithm 1 gives a causal multirate controller C
belonging to LSV (Mj; Pi). Compared with the design over all the (Mj; Pi)-causal controllers,
Algorithm 1 may result in a conservative design on the one hand. On the other hand, due
to this modi�cation, the multi-objective problem with the pole-placement constraint in Step
4 of Algorithm 1 can be reduced to a convex optimization problem in terms of LMIs which is
readily solvable.

The continuous-time H1=H1 output-feedback control problem with the pole-placement
constraint in Step 4 can be solved using the LMI approach developed in Scherer et al. (1997).
The concept of LMI region (Chilali and Gahinet, 1996; Gahinet et al., 1995) can be used
directly to represent the disc D for the pole placement constraint.

Remark 2 If we use the single-objective transformation in Voulgaris and Bamieh (1993), we
will have two di�erent models for the individual objectives. The LMI approach to multi-objective
output-feedback control such as Scherer et al. (1997) is not applicable to the multiple objectives
expressed with multiple models. This illuminates the multi-objective transformation proposed
in Section 3.

Remark 3 A tractable solution to the multi-objective and decay-rate constrained problem with
(Mj; Pi)-causality conditions is not known at the present time although in the single-objective
case, the decay-rate unconstrained problem with (Mj ; Pi)-causality conditions has been solved
by Chen and Qiu (1994). Therefore, this paper circumvented the di�culty of the (Mj ; Pi)-
causality by imposing strictly properness on Ĉ . It should be noted that the (Mj ; Pi)-causality
constraints on the controller in the synthesis cannot be represented by LMIs with respect to
decision variables to solve. If Ĉ is strictly proper, the controller C does not make any action
for the initial NT seconds. In other words, C has an NT -delay element. This may limits
achievable performance. However, at the same, time we should also aware that for real-time
implementation controllers have to have some delay. In the single-rate case, strictly proper
controllers are used commonly. This means that at least one T -delay element exists. In the
multirate-case, a T -delay may be enough for real-time computation and NT is unnecessarily
long in some fast loops. Nevertheless, the double cart example in Section 5 demonstrates that
the performance achieved with a strictly proper Ĉ is still good enough.
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5 Frequency dividing Cooperative Control

5.1 Double Cart System

Consider the double cart system (Sampei et al., 1991) shown in Fig.4. The variable h1 denotes
the position of the lower cart measured from a certain initial point on the oor. The position
of the upper cart measured relatively to the lower cart is denoted by h2. Hence, the absolute
position of the upper cart is h = h1 + h2. The control objective is to make the upper cart
track the reference signal r. Error signals e and e1 are de�ned by e = r � h and e1 = r � h1.
The control inputs of the double cart system are the forces f1 and f2 directly driving the
lower cart and upper cart, respectively. For measurement signals, the error e and the cart
positions h1; h2 are available. The mass M1 of the lower cart is 4 kg. The mass M2 of the
upper cart is 0:4 kg so that the cart is more exible and requires less amount of energy than
the lower one to follow the reference signal. That is why we naturally prefer frequency dividing
cooperative control(FDCC) in which the upper cart moves quickly and accurately while the
lower cart moves slowly and roughly. In other words, when the reference r only contains signals
of low frequencies, the lower cart should contributes to tracking. For reference signals in high
frequencies, the upper cart moves to track the reference while the lower cart almost does not.
The equations of motion of the double cart are

M1
�h1 +D1

_h1 �D2
_h2 = f1 � f2

M2(�h1 + �h2) +D2
_h2 = f2 ;

where viscous friction coe�cients are D1 = 20[N � sec =m] and D2 = 2[N � sec =m]. �f2 in
the upper equation represents the reaction force from the upper cart to lower cart, i.e., for
instance, the upper cart is driven by an electric motor whose stator is �xed to the lower cart.
With all equations given in the above, a mapping from (r; f1; f2) to (e1; h1; h2; e) is de�ned as
a continuous-time FDLTI system which is denoted by P .

Since the lower cart is supposed to act in low frequencies, the force signals f1 may not
need to have high frequency components and only low frequency components of h1 may be
important. On the other hand, high frequency components of h2, e and f2 are necessary
since the upper cart should act in high frequencies. Therefore, we can expect that in order
to synthesize a desired tracking control system with sampled-data controllers based on such
an FDCC strategy, the period T1 of sampling h1 and holding f1 can be larger than the period
T2 of sampling h2, e and holding f2. Figure 5 depicts the multirate control of the double cart
system.

5.2 Controller Design

Now, consider the augmented system �[G;HCS] shown in Fig.6 which gives a block diagram
of the closed-loop control system. The stable FDLTI systemW1 is a low-pass �lter representing
the frequency band in which the lower cart should be driven. The FDLTI low-pass system W2

has higher bandwidth to make the tracking error small by moving the upper cart at high
frequencies. The stable FDLTI system Wi which has unit magnitude is also a low-pass �lter
representing the total frequency band of the reference signal r. The FDCC problem of the
double cart system can be stated as follows:

13



Double cart control problem : Let T1 > T2. Find a multirate controller C which achieves

min
C

max
n
kT11kB(L2); kT22kB(L2)

o
(24)

subject to

� the closed-loop system is continuous-time internally stable.

� the decay rate �c is greater than � ln(0:1) � 2:30.

Here, Tii, i = 1; 2 denotes the map between wi and zi in Fig.6. Let the weighting functions be
chosen as

Wi =
100

(s + 10)2
; W1 =

0:07

s+ 0:07
; W2 =

5

s+ 5
:

The min-max problem (24) is expressed alternatively by

min
C

 subject to k
1


T11kB(L2) < 1; k

1


T22kB(L2) < 1 : (25)

This problem can be readily solved by using Algorithm 1. The minimization is done by an
iterative search of .

Before moving on to the controller design, we need to modify the decay-rate speci�cation.
According to Theorem 3, the decay rate constraint is identical with

� �[ �G; Ĉ ] has all closed-loop poles inside the closed disc �D de�ned with radius e��cNT and
center at origin in z-domain.

or equivalently,

� �[ �E; �F ] has all closed-loop poles inside the closed disc D in s-domain.

Here, notice that the mode �0:07 of W1 is not observable from (h1; h2; e). No controller can
change the decay rate of the mode, which is against �c > 2:30. The system �[ �G ; Ĉ ] will
have a pole outside the closed disc, i.e., at e�0:07NT . Remember that the system G is not the
actual double cart system but an augmented one just for controller synthesis. Since the actual
double cart is P which does not includeW1, the decay rate constraint should be applied to the
state transition of the actual closed-loop system �[P ;HCS]. This means that we can leave
the mode �0:07 unchanged. For this purpose, the closed disc is modi�ed to include the mode
�0:07:

� �[ �G; Ĉ ] has all closed-loop poles inside the region �E in z-domain.

which is equivalent to

� �[ �E; �F ] has all closed-loop poles inside E1 \ E2:
E1 : Conic sector f(x; y) : y � kx; y � �kxg

k = tan

 
arcsin

 
2e��cNT

e�2�cNT + 1

!!

E2 : Ellipsoid f(x; y) : ((x� c)=a)2 + (y=b)2 � 1g

c =
e��cNT + 1

�(e��cNT � 1)
; a = c; b =

�4e��cNT

�(e�2�cNT � 1)
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Here, the closed set �E is de�ned such that E1 \ E2 is the image of the bilinear transformation
of �E. Figure 7 shows the original region �D(dashed line) and the modi�ed region �E(solid line).
The dotted line is the unit circle and the location of the mode �0:07 in the plane is indicated
by \o". We used this reasonable approximation E1 \ E2 in Step 4 of Algorithm 1 instead of
using D.

Using Algorithm 1 together with the above modi�cation of region, we designed controllers
for the following three cases.

Fast single-rage case : T1 = 0:01[sec]; T2 = 0:01[sec]
Multi-rate case : T1 = 0:03[sec]; T2 = 0:01[sec]
Slow single-rage case : T1 = 0:03[sec]; T2 = 0:03[sec]

The L2-induced norm of two objective mappings and the decay rate are shown in Table 1.
Note that L2-induced norms in Table 1 are the minimum values Algorithm 1 achieves, which
are not guaranteed to be global optima. The decay rate �c achieved was computed as �c =
� ln(�)=NT , where � is the maximum absolute value of the poles of �[P̂ 22; Ĉ ] (See Appendix
A). Numerical data of a multirate controller C obtained is given in Appendix B. Sampled-
data frequency responses (Yamamoto and Khargonekar, 1996; Araki et al., 1996; Hara et al.,
1995; Yamamoto et al., 1997) of the 0:03[sec]-periodic closed-loop system in the three cases are
shown in Fig.8 and Fig.9 for each objective. Peak values over frequencies are the L2-induced
norm of Tii, i = 1; 2. These plots indicate the aliasing e�ect when signals are sampled with
the lower frequency. In consequence, the curves of sampled-data frequency responses in the
slow single-rate case are pushed up a lot. These responses illustrate the di�erences among a
multirate controller and single-rate controllers and it is seen that the multirate case makes a
satisfactory compromise successfully. The poles of the multirate systems �[P̂ 22; Ĉ ] obtained
are plotted in Fig.7. All poles of the closed-loop are contained in �E and they are in �D as
well. The time responses to sinusoid inputs in the multi-rate case are shown in Fig.10, Fig.11
and Fig.12. According to Fig.10, for the low frequency input r = sin 0:3t, while the upper is
almost at rest, the lower cart achieves nearly perfect tracking. In the case of the high frequency
sinusoid r = sin 10t in Fig.12, the movement of the upper cart compensates the discrepancy
between the reference signal and the lower cart successfully. For the middle frequency range
r = sin 3t, Fig.11 shows that the lower cart moves in cooperation with the upper cart to achieve
a required level of tracking performance. Figure.13 shows the time response to a band limited
step-type signal r(t) given by

r(s) = F (s)rs(s); F (s) =
10000

(s+ 100)2
; rs(t) =

8><
>:

0 for 0 � t < 0:1
1 for 0:1 � t < 1
0 for 1 � t

: (26)

The response illustrates the feature of an FDCC system and it is seen that the settling time is
consistent with the decay rate we speci�ed.

To make anther comparison, we also computed controllers by using a transform method
which discretizes continuous-time controllers. A continuous-time controller was found as a
solution to the continuous-time H1=H1 control problem. Then, it was transformed to a
single-rate sampled-data controller with sampling period T by using the bilinear transformation
s = f2(z�1)g=fT (z+1)g. Here, the L2-induced norm is identical withH1-norm of the transfer
function when the controller is an FDLTI continuous-time system. The norms achieved in the
continuous-time design were kT11k1 = 4:7 � 10�6 and kT22k1 = 4:3 � 10�7. The maximum
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absolute values of discrete closed-loop poles of the resulting sampled-data system �[P̂ 22; Ĉ ]
were 460:8 and 246:3 for sampling period T = 0:01 and T = 0:03, respectively. Although
the norms are very small in continuous time, the discretized controllers does not stabilize the
system at all.

The result in this section showed that it is important to select suitable periods of sampling
and holding by taking account of frequency characteristics of systems and signals. By using
multirate control and the idea of FDCC, we could avoid unnecessarily fast sampling and holding
to obtain a tracking control system with a required level of accuracy.

6 Conclusions

This paper has discussed multi-objective control design of multirate sample-data systems.
Explicit state-space formulas have been derived for an L2-induced norm preserving trans-
formation of the multirate sample-data systems. These formulas are particularly suited for
multi-objective control with pole placement constraints. Actually, they have been successfully
used to suggest an approach to multi-objective multirate controller synthesis with decay rate
speci�cations. Furthermore, we introduced the multi-objective multirate control design into
frequency dividing cooperative control of systems having redundant degrees of freedom. The
frequency dividing cooperative control is very useful in practical situations where there are
several components, disturbances and perturbations which have diverse characteristics. The
multi-objective approach to multirate systems proposed in this paper can be utilized to select
suitable sampling and hold periods.
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A Estimating decay rate

Now, let (AP ; BP ; CP ; 0) denote the state space model of P , where input and output matrices
are given by

BP =
h
Br Bf1 Bf2

i
; CP =

2
6664
Ce1

Ch1

Ch2

Ce

3
7775 :

The unforced closed-loop system is represented by �[P 22;HCS]. Here,

P 22 :=

2
666666664

AP Bf1 Bf2

Ch1 0 0

Ch2 0 0

Ce 0 0

3
777777775

This state-space model is a reduced-order realization of G22, which is obtained by removing all
modes of W1, W2 and Wi. The discrete-time lifted system of SP 22H is represented by P̂ 22 =
WPSP 22HW

�1
M . Using argument similar to Theorem 3, it is easy to see that �[P ;HCS] has

the continuous-time decay rate �c > 0 if and only if the poles of �[P̂ 22; Ĉ ] has all poles in the
closed disc �D de�ned with radius e��cNT and center at the origin.

B A controller designed

A multirate controller C = W�1
M ĈWP with which the double cart system is continuous-time

internally stable is given by

Ĉ =

"
Ac Bc

Cc Dc

#
;

where

Ac = diag

"
0:019;�0:157;�0:375;

"
0:442 �0:332
0:332 0:442

#
;

�0:624;�0:802; 0:829; 0:992;

"
2:216 �0:535
0:535 2:216

##

Bc =

2
666666666666666666664

8:28 4:4 4:06 �1:36 �4:07 5:1 5:41
85:3 49:9 44:0 �33:6 �33:4 75:5 48:7
136:5 83:2 84:2 �40:34 �54:3 100:6 102:5
2:07 �0:71 2:46 12:05 �9:99 �15:35 11:07
10:16 1:57 0:14 10:97 �15 �8:25 7:85
�36:9 �24:56 �26:7 10 12:61 �26:1 �32:72
�13:12 �7:83 �9:19 2:25 6 �6:75 �12:38

0 �1:99 �6:49 2:09 �9 0:01 �5:83
0:03 1:65 0:83 0:34 1:17 0:64 0:54

�66:2 �52:9 �92:3 �280:2 170:9 271 �269:4
48:2 45:6 89:4 192:5 �108:9 �195:3 219:1

3
777777777777777777775

18



Cc =

2
6664

�6:1 �6:4 0:7 �79:2 �7:3 21:7 �43:6 1:7 4:2 �49:6 �34:7
60:8 72:9 �53:1 56:0 �24 �29:5 �13:8 �51:0 14:4 �66:5 �26:4
44:4 20:2 �35:8 �13:6 14:9 �34 �30:7 23:8 �6:7 7:3 �3

�24:2 6:7 �16:4 �20:9 19:5 �16:7 �20:4 22:4 �9:7 31:7 11:9

3
7775

Dc = 0

This controller was obtained after model reduction of the 16th-order multirate controller com-
puted in Table 1. The coe�cients were rounded to the nearest numbers in short length . The
controller given in the above achieves kT11kB(L2) = 0:0039 and kT22kB(L2) = 0:0098. The decay
rate is �c = 5:26.
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Table 1: L2-induced norm and decay rate achieved

Fast single-rate Multi-rate Slow single-rate

kT11kB(L2) 0.0012 0.0037 0.0123
kT22kB(L2) 0.0024 0.0091 0.0371
Decay rate �c 3.81 5.26 2.07
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Figure 1: Multirate system with two objectives
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Figure 7: Speci�ed region and closed-loop poles in z-domain:
Multi-rate case, � = 0:007
Modi�ed region �E (solid); Original disc �D (dashed); Unit circle(dotted).
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Figure 8: Sampled-data frequency response of T11:
Multirate(solid); Fast single-rate(dashed); Slow single-rate(dash-dot).
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Figure 9: Sampled-data frequency response of T22:
Multirate(solid); Fast single-rate(dashed); Slow single-rate(dash-dot).
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Figure 10: Reference r = sin 0:3t and response of two carts:
Lower cart h1(dashed); Upper cart h(solid); Reference r(dash-dot).
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Figure 11: Reference r = sin 3t and response of two carts:
Lower cart h1(dashed); Upper cart h(solid); Reference r(dash-dot).
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Figure 12: Reference r = sin 10t and response of two carts:
Lower cart h1(dashed); Upper cart h(solid); Reference r(dash-dot).
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Figure 13: Reference signal and time response of two carts:
Lower cart h1(dashed); Upper cart h(solid); Reference r(dash-dot).
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