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Abstract 

SnO2 has attracted considerable attention in perovskite solar cells (PSCs) due to its 

excellent optical and electrical properties. However, a poor surface morphology, 

specifically with the presence of pinholes after the annealing process, limits its 

application in PSCs. To overcome the drawback of tin oxide, lanthanum (La) is 

herein first to be doped into the SnO2 layer, which is able to alleviate the SnO2 crystal 

aggregation and produce full-coverage and a uniform film. In addition, La:SnO2 can 

effectively reduce the band offset of the SnO2 layer, which results in the high Voc 

of 1.11 V. Systematic analyses revealed that the La:SnO2 layer enhances the electron 

extraction and suppresses charge recombination, leading to the power conversion 

efficiency (PCE) enhancement from 14.24% to 17.08%. 

KEYWORDS: Lanthanide doping, SnO2 electron transport layer, perovskite solar 

cells, high conductivity. 
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PSCs have experienced rapid progress since an organic-inorganic hybrid 

CH3NH3PbI3 perovskite was first introduced as a light absorber in 2009 [1]. The 

organic-inorganic hybrid perovskite (APbX3, A = CH3NH3, CH(NH2)2, or Cs; X = 

I-, Br- or Cl-), in which the organic group stabilizes the (PbX6)- octahedron structure, 

have witnessed a dramatic development in solar cells [2]. The PCE has risen to 

23.1% for a PSC which employed TiO2 as the electron transport layer (ETL) [3-5]. 

However, the traditional TiO2 as an ETL is inefficient for charge extraction at the 

perovskite/TiO2 interface. In addition, the devices using TiO2 suffer from serious 

degradation under ultraviolet light, thus its stability limits its further application. 

SnO2 is a highly conductive n-type semiconductor in nature and quite stable for solar 

radiation. In addition, SnO2 with an electron mobility of 1×10-3 cm2V-1s-1 is higher 

than that of TiO2 of ca. 1×10-4 cm2V-1s-1, which suppresses charges accumulation at 

the SnO2/perovskite interface [6-10]. SnO2 is easily synthesized at low temperature, 

showing the potential for PSCs in large-scale applications [11-13].  To date, You et 

al. achieved the champion PCE of 23.23% for perovskite solar cells based on the 

SnO2 ETL [14]. Therefore, SnO2 is a very promising ETL material for highly 

efficient PSCs. 

However, a SnO2-based ETL with spontaneous aggregation results in pinholes or 

island morphology. The poor film performance hinders photo-generated electron 

injection into the SnO2 electron acceptor. To solve this issue, several solutions have 

been attempted to reduce the SnO2 defects, such as surface passivation, i.e., PCBM, 

n-type metallic oxide, graphene quantum dots [15-27], have proven its effectiveness 

in reducing the surface defects and surface electron traps of SnO2 to improve the 

efficiency [28-29]. Another important strategy is ion doping to change the band 

structure and trap states of the SnO2. Alkali metallic ions, such as Li+, K+, Mg2+, and 

Al3+, are expected to improve the conductivity and stability of the SnO2 layer. The 



superior conductivity of the alkali ions is able to reduce the series resistance, 

consequently improving the open-circuit voltage (Voc) [30-32]. Other dopants, such 

as the n-type Cd3+, Sb3+, Y3+, and Nb5+, are purposed to create donor centers to 

accelerate the charge mobility and to alleviate the photo-generated electron 

accumulation, for enhancements of the short-circuit density (Jsc) and fill factor (FF) 

[33-35]. In addition, F- and Cl- anion dopants have also been discussed. The 

researchers found that the conductivity of anion-doped SnO2 is increased, along with 

the reduced band offset, resulting in an increased Voc [36-39].   

On the other hand, the rare earth element is a good doping candidate due to its 

unique optical and electronic properties from its unfilled 4f electronic shell. When it 

is incorporated into the ETLs, lanthanide could have an impact on the ETL optical 

property and stability. Seok group employed La-doped BaSnO3 as efficient ETL for 

the PSCs. Lanthanide in the BaSnO3 crystal exhibited a high electrical mobility of 

320 cm2V−1s−1, promoted the electron extraction from the perovskite layer, and 

showed a superior steady-state PCE of 21.2% [40]. Gao and his coworker tuned the 

TiO2 ETL Fermi level by doping La3+ into mesoporous TiO2, thus achieving a PCE 

of 15.42% [41]. Due to the inherent properties of the lanthanide, it exerts beneficial 

effects on the SnO2 ETL [42].  

 In this direction, we first employed the lanthanide doped SnO2 compact layer for 

planar PSCs, with the PCE achievement of 17.08%.  After doping the lanthanide, 

the morphology of the SnO2 layer was obviously improved. Lanthanide doping 

affects the crystallization of SnO2 during the annealing process, where perfect film 

coverage was obtained without crystal aggregation and pinholes. In addition, 

lanthanide doping improved the conductivity of the SnO2 layer and upward shift of 

the conductive band minimum (CBM), which contributed to the Voc increase and 

suppressed the hysteresis behavior. Our simple interfacial control approach uses a 



new efficient dopant material, demonstrating that lanthanide doping can be a feasible 

strategy for improving the performance of perovskite solar cells. 

2. Experimental 

2.1. Materials 

Ethanol, diethyl ether, anhydrous dimethylformamide (DMF) (99.8%), 

anhydrous dimethylsulfoxide (DMSO) (99.9%), anhydrous ethanol, anhydrous 

diethyl ether (99.9%), lanthanide chloride (LaCl3
.5H2O, 99.8%) and anhydrous tin 

chloride (SnCl2, 99.95%) were purchased from Wako, Japan. PbI2 and 

methylammonium iodine (MAI) was purchased from Deysol. Spiro-OMeTAD was 

purchased from the Ningbo Borun New Material Corporation. 4-Tert-butylpyridine 

(t-BP), and Li-bis-(trifluoromethanesulfonyl) imide (Li-TFSI) were purchased from 

Alfa-Aesar. All solvents were used without any further purification 

2.2. Compact La:SnO2 layer fabrication 

Fluorine-doped tin oxide (FTO) glass was chemically etched (Zn powder and 2 

M HCl) to attain a partial etching pattern with a width of roughly 5 mm. The etched 

FTO substrate was then cleaned with a surfactant and successively rinsed with 

acetone, ethanol and deionized water and finally dried in an oven. 0.189 g SnCl2 was 

dissolved in 10 mL of absolute ethyl alcohol (0.1mol/L) with an extra 36 μL of 

deionized water. For the lanthanide doping precursors, lanthanide (III) chloride was 

dissolved in absolute ethyl alcohol to form a solution with a 0.8 mol/L concentration. 

Different dosage, 1μL, 2.5 μL, and 5 μL LaCl3 solution were added to the 1 mL tin 

precursor to obtain 1%, 2.5%, and 5% molar ratio doped samples, respectively. All 

the precursor solutions were filtered through a 0.22 μm PTFE filter before use. The 

precursors were spin coated on a clean FTO glass at 2000 rpm for 30s, then annealed 

at 100 C for 10 min and at 180C for 1 h. 



2.3. Perovskite solar cell device fabrication 

A device with an n-i-p regular planar structure of FTO/SnO2/MAPbI3/Spiro-

OMeTAD/Au was fabricated in a N2-filled glove box. The precursor solution of the 

one-step perovskite deposition was prepared by dissolving 0.22g methylammonium 

iodide (CH3NH3I) and 0.64 g lead iodide (PbI2) in a solution of 800 μL DMF and 

200 μL DMSO (4:1, v:v), then stirred for 2 hours at 60 °C. The HTL solution was 

prepared by dissolving 72.3 mg of spiro-OMeTAD, 28.8 μL of 4-tert-butylpyridine, 

and 17.5 μL of lithium bis-(trifluoromethanesulfonyl) imide (Li-TFSI) (520 mg Li-

TFSI in 1 mL acetonitrile) in 1 mL of chlorobenzene. All solutions were filtered 

through a PTFE filter (0.2 µm pore size) before use. After the SnO2 or La:SnO2 layer 

was treated by UV-Ozone for 15 min, the MAPbI3 precursor was spin-coated at 4000 

rpm for 30 s. A 150 μL of ethyl acetate was dropped on top of the perovskite 

precursor 20s before the end. Afterward, the perovskite layer was sintered at 100 C 

for 10 min. A 75 μL of spiro-OMeTAD was spin coated at 4000 rpm for 30s. Before 

the device was tested, 80 nm Au was thermally evaporated on the device at a ratio 

of 0.5 Å/s. 

2.4. Characteristics  

The X-ray diffraction (XRD) was scanned from 5 ° to 80 ° at the rate of 0.01s-1 

using an X-ray diffractometer (Rigaku Co., Ltd., Tokyo, Japan) with Cu Kα radiation 

(λ=1. 54056 Ǻ). The field emission scanning electron microscope (FE-SEM) (JSM-

6701, JEOL) was used to capture the morphology of the perovskite films. A UV-

VIS-NIR spectrophotometer (V-670, JASCO Co., Ltd., USA) was measured to 

characterize the optical properties of the samples. The Fourier transform infrared 

spectroscopy (FTIR) was carried out using a spectrometer (4100, Jasco Instruments, 

USA). The IPCE was applied to record the perovskite absorption by monochromatic 

illumination (A 300 W Xenon arc lamp through a Nikon G250 monochromator). 



The transient photovoltage decay measurements were carried out using a 630-nm 

diode laser via the 5ns pulse duration and frequency of 4 Hz. The voltage responses 

from the device were recorded using a DS-5554 Iwatsu digital oscilloscope. The 

electrochemical impedance spectroscopy (EIS) was carried out by the 1255B 

Solartron Analytical. The current response to voltage (J-V) curve was measured by 

a Keithley 2450 solar simulator interfaced with a Xenon lamp (Bunko Keiki 

BSOX150LC) at 100 mW cm-2 under AM 1.5G conditions. The cell area was 

controlled at 0.08 cm2 by a black metal mask to measure the photovoltaic 

performance of the devices. The valence band of the SnO2 films was measured using 

photoelectron yield spectroscopy (KV205-HK energy instrument, Japan). When the 

SnO2 layer is activated by the certain incident light, the photoelectron current is 

detected by the sensor. The output data are photo energy (Eg) and yield of 

photoelectrons (Yield). The resolution of PYS was 0.01 eV.  

3. Results and discussion 

3.1. Characterization of La:SnO2 layer and La:SnO2-based PSCs device 

FTIR was first employed to study the effect of lanthanide on the tin solution 

precursor. As shown in Figure 1a, the peaks at around 3340 cm-1, 2979 cm-1, 1039 

cm-1 represent O-H, C-H, and C-O stretching vibrations of ethanol, respectively. The 

peaks at 1380 cm-1 and 878 cm-1 are attributed to the C-H bending vibration. It should 

be noted that peak at 3670 cm-1 is attributed to the tin-induced O-H stretching 

vibration, which is commonly observed in a ligand complex solution. In addition, 

the peak is sharper after lanthanide doping of the precursor. The characteristic peaks 

of the lanthanide ethanol solution are located at 2357 cm-1 and 1735 cm-1. Similar 

peaks are also observed for the lanthanide-doped precursor, indicating a small 

amount of lanthanide doping into the precursor lead to a chemical atmosphere 

change. Therefore, lanthanide doping affects the crystallization of SnO2 during the 



annealing process. The influence of dopants on the precursor are universal but rarely 

mentioned, and the mechanism could be explained by the Debye-Hückel equation 

(Equation S1). La3+ dopant enhances the stability of tin ligand compound in solution, 

wherein it prevents the small tin ethanol complex from aggregating during the 

sintering process. 

 

 

Figure 1. (a) The Fourier transform infrared spectroscopy (FTIR) of tin and La-

doped tin precursors in ethanol solution. (b) XRD pattern of SnO2 and La:SnO2 (2.5% 

molar ratio) deposited on FTO substrate. (c) XPS surveys of La 3d pattern on 

La:SnO2 and SnO2 layers. (d) Photoelectron yield spectroscopy (PYS) spectrum of 

SnO2 and La:SnO2 layers, respectively. 

After the precursor is spin coated on the FTO substrate, the corresponding X-ray 

diffraction (XRD) spectrum is presented in Figure 1b. The main peaks located at 

26.33, 37.80, 51.47 are indexed to (110), (101), and (211) respectively, indicative 

of a tetragonal rutile SnO2 structure, and importantly, the lanthanide dopant does not 



induce disruption [40]. In addition, the XRD peaks of SnO2 with or without the La 

dopant are identical, indicating that the lanthanide dopant is homogeneously 

dispersed in the SnO2 crystal. Figure 1c displays the XPS pattern of La:SnO2 where 

the SnO2 layer with 2.5% lanthanide doping exhibits four peaks with binding 

energies of 832.1 eV, 835.9 eV, 848.9 eV, and 853.2 eV, which correspond to La 

3d5/2 and La 3d3/2, thus proving the existence of La3+. The wide spectrum of XPS and 

Sn 3d is showed in Fig. S1, the Sn 3d have no obvious changed after La doping. The 

valence band maximum (VBM) of the La:SnO2 and SnO2 layers were determined by 

photoelectron yield spectroscopy (PYS). As Figure 1d revealed, the VBM edge is 

determined from the intersection point between the tangent line and the baseline of 

the spectra. Subsequently, by combining the results of the band gap energy (Ebandgap) 

and VBM, the conduction band minimum (CBM) is determined, as depicted in 

Figure S2. The shallower CBM increase (shifted from -4.09 eV to -4.02 eV) thus 

increases the Voc of the PSCs.  

The conductivity of the SnO2 before and after the addition of the lanthanide was 

investigated by a bias voltage sweep under the light condition, as illustrated in Figure 

2a. The electrical conductivity of the pristine SnO2 recorded a value of 50 cm-2 

and it increases along with the change in the lanthanide to 30cm-2, which is 

consistent with the conductivity value reported in the literature (30 cm-2) [43]. 

Figure 2 shows the optical transmission spectra of SnO2 from the wavelength of 300 

nm to 800 nm. The transparency increase after the lanthanide doping indicates that 

the La3+ is beneficial for the SnO2 optical transmittance performance. La:SnO2 

samples with a high transparency and conductivity enhance the electron transport. 

Also, the addition of La within the SnO2 framework shifted the CBM closer to the 

perovskite layer (-4.02 eV), hence, an ease transport of electrons to the ETL layer. 

Figure 2d displays a cross-sectional SEM image of the complete device. The 



perovskite crystal is in close contact with the compact La:SnO2 layer, which benefits 

the longitudinal carrier transport.  

 

Figure 2. (a) J-V curve of pristine SnO2 and La:SnO2 layers with La contents 1%, 

2.5%, and 5%, respectively.  (b) Transmittance spectra of pristine SnO2 and La:SnO2 

films with different La contents. (c) The energy level diagram of PSCs. (d) Cross-

sectional SEM of the device on La:SnO2 ETL. 

The top view morphological images of SnO2 and La:SnO2 are shown in Figure 3. 

The pristine SnO2 (Figure 3a) growth on the FTO was aggregated with the formation 

of pinholes (red-circled), while a pinhole-free morphological surface of SnO2 

(Figures 3b and c) was observed upon the incorporation of a minute amount of La 

within the SnO2 lattice. It is hypothesized that the pinholes and aggregated island 

surface could cause severe recombination at the interface between the ETLs and 

perovskite layer, which is a disadvantage for PSC applications. However, when the 

dopant concentration is further increased, the morphological surface of the 5% 



La:SnO2 with pinholes was again revealed, which implies optimizing the 

concentration of La is indeed important for the best PSC performances. Clearly, 

lanthanide doping effectively enhances the SnO2 film coverage quality, reduces the 

surface-state traps, thus leading to a high photo-generated electron collection ability. 

Figures 3e and d show the top-view SEM images of the perovskite film deposited 

on the untreated SnO2 and La:SnO2 ETL. The perovskite film exhibits a uniform 

crystal size of ca. 400 nm along with a smooth coverage surface coverage. The top 

SEM of the perovskite layer also reveals the presence of small crystals. It suggests 

that this tiny crystal at the grain boundary is PbI2 in accordance with the XRD results. 

The PbI2 is beneficial to decrease the grain boundary, thus suppress the hole (H+) 

and electron (e-) recombination at the interface and consequently improve the Jsc of 

the device [44].  Through morphology comparison, there is no obvious changes on 

the crystal size of MAPbI3 either growth on the SnO2 and La:SnO2-based ETLs. The 

crystal size of MAPbI3 has no obvious change in the SnO2 and La:SnO2-based ETLs.  

 



Figure 3. (a), (b), (c), and (d) SEM images of SnO2, 1% La:SnO2, 2.5% La:SnO2 

and 5% La:SnO2 layer, respectively. (e) and (f) SEM of perovskite crystal growth 

on the pristine SnO2 and La:SnO2 ETLs. 

The previously mentioned changes show that the SnO2 film is significantly 

improved upon the doping of lanthanide. The stable La:SnO2 layer supported a PSC 

device with an improved efficiency. Figure 4a reveals the XRD pattern of the 

perovskite coated on the pristine SnO2 and La:SnO2. Both of the peaks (blue and 

black) are identical to that previously reported. The detail information of the internal 

crystal strain and crystallite size are fitted by the Williamson-Hall equation 

(Equation S2). The Williamson-Hall plot is commonly used to reveal trends in the 

crystallite size and strain, which in turns reveals the properties change of the product. 

As shown in Figure 4b, the slope of the plot response to the strain and the intercept 

is related to the inverse crystalline size. The strain of the perovskite is hypothesized 

to be relaxed on the La:SnO2 layer with a reduced density of crystal defects. The 

fitted crystalline size of the La:SnO2 perovskite is consistent with the SEM results. 

 



Figure 4. (a) XRD pattern of perovskite on SnO2 and La:SnO2 (2.5% mol ratio) 

ETLs respectively. (b) Williamson-Hall fitting of perovskite layer on SnO2 and 

La:SnO2 layers.  

3.2. Photovoltaic Performance 

The photovoltaic performances of the La:SnO2-based PSCs were provided in 

Figure 5a and Table S2. When the lanthanide doping molar ratio was increased to 

the optimum concentration of 2.5%, the PCE was substantially increased to 17.08% 

from 14.24% (for pristine SnO2). However, further increasing of the La 

concentration (5%) does not improve the PCE, conversely, the PCE dropped to 

15.92%. The pristine SnO2 ETL gives a PCE of 14.24% with Jsc of 20.67 mAcm−2, 

VOC of 1.06 V, and FF of 0.65 from a reverse scan direction. When La is doped into 

the SnO2 ETL, the PCE rapidly increased to 17.08% with the Jsc of 21.77 mAcm−2, 

VOC of 1.09 V, and FF of 0.72. The enhanced JSC and FF are due to the higher 

electron conductivity and reduced resistance of the La:SnO2 ETL. The increased VOC 

is ascribed to the upshifted conduction band level of La:SnO2 which is perfectly 

matched to the perovskite layer. Figure 5b shows the IPCE and integrated current 

based on the various ETLs. The IPCE integrated current density for the SnO2-based 

cell is 19.31mAcm−2, and it increased to 21.07 mAcm−2 for the device on the 

La:SnO2 layer, which is in accordance with the J-V measurement values. The EIS 

plot of the devices on the pristine SnO2 and La:SnO2 ETLs are shown in Figure S4d 

where the series resistance (Rs), which corresponds to fitting R1, decreased from 

4.92 to 1.12, implying an efficient injection and transfer of electrons at the 

La:SnO2/perovskite interface.  



 

Figure 5. (a) The J−V curves of PSCs devices based on pristine SnO2 and La:SnO2 

with different La doping contents. (b) IPCE of the PSCs based on SnO2 and La:SnO2 

ETLs, respectively. 

The stability and reproducibility of the device were studied by preparing more 

than 20 individual devices based on the SnO2 and La:SnO2 ETLs without 

encapsulation.  Figure S3 presents the distribution of the PCE, Voc, and Jsc with the 

statistics summarized in Table S3. During the measurements, the cells were kept 

under light coverage at a humidity of ca. 70%. For the La:SnO2-based PSC, the PCE 

of the cells could still retain 74% of its initial efficiency after 10 days of storage, 

while only 45% of its initial efficiency was retained for the SnO2-based device. The 

improved stability performance could be due to the alleviated hysteresis effect 

(4.5%) of the La:SnO2 relative to the high hysteresis of the pristine SnO2 layer 

(5.5%). The steady state output (Figure S4) at the maximum power point of the PSCs 

was carried out, in which there was no obvious decrease in the current after a 30-

min constant illumination.  

 



 

 

Figure 6. (a) Steady-state photoluminescence (PL) spectra of the FTO/perovskite, 

FTO/SnO2/perovskite, and FTO/La:SnO2/perovskite samples. (b) Time-resolved 

photoluminescence (TRPL) of perovskite absorber deposited on SnO2 and La:SnO2 

substrates. 

To investigate the electron extraction and transport mechanism of the device, the 

steady-state PL and TRPL were measured for the perovskite layer on the SnO2 and 

La:SnO2 layers, respectively. As shown in Figure 6a, the PL spectra of the 

FTO/perovskite apparently exhibited the highest PL intensity, indicating a serious 

recombination in the cell. The FTO/La:SnO2/ perovskite sample with reduced 

recombination, led to a more effective electron extraction ability. Figure 6b displays 

the TRPL spectra of the same devices. The PL decay time and amplitudes are fitted 

using the exponential ExpDecay 2 (Equation S3) and the fitting results are listed in 

Table 1. Commonly, the fast component (1) in the PL decay is expected to indicate 

the presence of defect trapping, and the slow component (2) is responsible for the 

recombination lifetime. The average decay time of the FTO/SnO2/perovskite is 

41.05 ns, and it reduces to 27.33 ns for the device on La:SnO2. This indicated that 

the electron transport is faster from the perovskite layer into the La:SnO2 ETL. The 

rapid charge injection rate from the perovskite layer to La:SnO2 ETL is beneficial to 

 



the electron-hole separation and effectively suppressed the charge recombination at 

the interface, resulting in higher Jsc and FF values. 

Table 1. A fitting summary of the TRPL Spectroscopy based on the FTO/Perovskite, 

FTO/SnO2/Perovskite, and FTO/La:SnO2/Perovskite, respectively 

Samples ave (ns) 1 (ns) 
Amplitude 
1 (%) 

2 (ns) 
Amplitude 
2 (%) 

FTO/perovskite 671.62 51.01 65.01 750.23 34.99 
FTO/SnO2/perovskite 41.05 10.21 67.44 35.17 32.56 

FTO/La:SnO2/perovskite 27.33 6.4 67.11 35.12 32.89 
 

4. Conclusions 

In summary, La:SnO2 as an effective ETL in PSCs has been successfully 

prepared by a low temperature processing at 180 C. We found that the addition of 

lanthanide to the tin precursor solution can reduce the SnO2 crystal aggregation, 

resulting in a pinhole-free surface morphology. The conductivity and transparency 

of the SnO2 were enhanced after the lanthanide addition, thus facilitated the charger 

injection and transfer of electrons. Furthermore, the upshift of the CBM reduces the 

band offset at the La:SnO2/perovskite interface, thus minimizing the energy loss 

leading to a Voc up to 1.11 V. This study revealed the advantages of lanthanide 

doping within the SnO2 layer, which is an important approach for improving the 

performance of PSCs with a low-temperature processed ETL fabrication. 
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