
Abstract—Harvestability is a quantitative index of how easy 

tomato fruits are to harvest using a robot. Previous studies on 

tomato harvesting robots have focused on tomato fruit detection 

methods, harvesting mechanisms, harvesting success rates, and 

harvesting times. However, tomato fruit harvestability using 

robots has not been quantitatively assessed. In this paper, we 

propose a method for evaluating the tomato fruit harvestability 

using a tomato harvesting robot. We first evaluated the 

harvestability qualitatively, based on the results of harvesting 

experiments conducted in a tomato greenhouse. Harvestability 

was then quantitatively evaluated using a camera (hereinafter 

referred to as a hand camera) attached to an end-effector of the 

tomato harvesting robot developed. The hand camera consists of 

an RGB camera and a depth camera. The occlusion ratio of 

obstacles (stems, peduncles, and other fruits) to a target fruit is 

calculated using the RGB image and depth image acquired by 

the hand camera. The larger the occlusion ratio was, i.e., the 

more obstacles there were in front of the target fruit, the more 

difficult the target fruit was to harvest. Conversely, if the 

occlusion ratio is low, the harvestability is high. This study shows 

that the occlusion ratio is effective as a quantitative indicator of 

the tomato fruit harvestability. 

I. INTRODUCTION

 In the production and distribution of agricultural crops, the 
use of plant factories is an efficient cultivation method for 
addressing issues such as quality preservation and stable 
shipping. Plant factories enable the planned production of 
agricultural crops by equipping a field with infrastructure and 
controlling the cultivation environment (temperature, 
humidity, irrigation). For example, Hibikinada Green Farm 
Co., Ltd. (hereinafter referred to as Hibikinada Green Farm) 
in Japan, which adopted Dutch cultivation methods, has 
implemented long-term multi-stage cultivation of tomato 
plants. 

 Plant factories differ from outdoor cultivation in that they 
have infrastructure equipment. They are used as experimental 
fields for studies aimed at development of smart agriculture 
because it is easy to introduce robot technology, information 
communication technology, and Internet of Things in plant 
factories. Wakamori et al. have clarified the relationship 
between leaf wilting and stem diameter variation in a study 

T. Fujinaga is with the Graduate School of Life Science and Systems 

Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, 

Kitakyushu, Fukuoka, 808-0196, Japan  

(e- mail: fujinaga.takuya835@mail.kyutech.jp). 

S. Yasukawa is with the Graduate School of Life Science and Systems 

Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, 

Kitakyushu, Fukuoka, 808-0196, Japan 

(e- mail: s-yasukawa@brain.kyutech.ac.jp). 

K. Ishii is with the Graduate School of Life Science and Systems 

Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, 

Kitakyushu, Fukuoka, 808-0196, Japan 

 (e- mail: ishii@brain.kyutech.ac.jp). 

conducted in a commercial greenhouse [1]. Yoshida et al. 
have studied automatic harvesting of cherry tomato clusters 
cultivated in a plant factory and proposed a cutting point 
detection method for use with harvesting robots [2]. 

 We seek to automate monitoring tomato plants and 
harvesting tomato fruits using robots, with the cooperation of 
the Hibikinada Green Farm [3, 4]. This paper focuses on the 
automatic harvesting of tomato fruits. Monta et al. have 
studied a tomato harvesting robot from 1980s and developed 
an end-effector which consists of two parallel plate fingers 
and a suction pad [5]. Kondo et al. have developed a tomato 
harvesting robot that has a four-degree-of-freedom (4-DOF) 
horizontal articulated type of manipulator and a cutting 
mechanism that enables harvesting of a tomato cluster [6]. 
Yaguchi et al. have developed a tomato harvesting robot that 
has a six-degree-of-freedom (6-DOF) vertical articulated type 
of manipulator and a harvesting mechanism that grips one 
fruit with grippers and plucks it from the separation layer in 
the peduncle [7]. Additionally, regarding harvesting robots 
that target vegetables or fruits other than tomato fruits, Zhao 
et al. have developed an apple harvesting robot having the 
spoon-shaped end-effector with the pneumatic actuated 
gripper [8]. Feng et al. have developed a strawberry 
harvesting robot having a nondestructive end-effector, used to 
suck the fruit, hold and cut the fruit-stem [9]. Arad et al. have 
developed a sweet pepper harvesting robot [10]. Studies on 
fruit detection methods and harvesting mechanisms for 
harvesting robots have been carried out, and the detection rate, 
harvesting success rate, and harvesting time have been 
examined in these studies. 

 On the other hand, harvestability, which pertains to how 
easy or difficult fruits are to harvest using a harvesting robot, 
has not been examined in previous studies. To improve the 
intelligence of harvesting robots, we propose a method for 
evaluating harvestability and describe the results of 
verification experiments carried out in plant factories. The 
remainder of this paper is organized as follows. The design 
and harvesting behavior of the tomato harvesting robot used 
in the verification experiments are described in Section II, the 
method for evaluating harvestability is detailed in Section III, 
the verification experiments are presented in Section IV, the 
results are discussed in Section V, and the conclusions are 
presented in Section VI. 

II. DEVELOPED TOMATO HARVESTING ROBOT

 We have developed tomato harvesting robots based on a 
modular design [4]. The robots consist of four elements: a 
moving mechanism for moving on a rail in a tomato 
greenhouse, a vision sensor for detecting tomato fruits, an 
end-effector for harvesting tomato fruits, and a manipulator 
for approaching a target fruit with the end-effector and 
carrying the harvested fruit to a harvest box. In a previous 
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study [4], we described three different tomato harvesting 
robots with different components. In this section, the design 
and harvesting behavior of a rail movement-type tomato 
harvesting robot with a three-axis orthogonal manipulator 
used to evaluate the harvestability are described. 

A. Robot Design

Figure 1 shows an image of the tomato harvesting robot.
The movement mechanism is designed such that the robot can 
move on a rail 600 mm wide in a tomato greenhouse. We 
adopted a suction cutting device as the end-effector. This 
end-effector sucks a target fruit, holds the sucked fruit inside 
the device, and then cuts the peduncle of the target fruit.  
While the end-effector proposed by Yaguchi et al. plucks the 
fruit, the suction cutting device cuts the peduncle, so it is 
possible to harvest the fruit with calyx.  Therefore, it is 
possible to ship the fruit to market while maintaining 
freshness. In addition, this end-effector is attached to a camera 
to evaluate the tomato fruit harvestability. The camera is 
described in detail in Section III. The manipulator is of a 
three-axis orthogonal type, and the stroke lengths along the x, 
y, and z axes are 200, 200, and 500 mm, respectively. The 
payload of the manipulator at the hand position is 4 kg. A 
Microsoft Kinect is used as a vision sensor. 

B. Harvesting Behavior

Figure 2 shows a flowchart of the harvesting behavior of
the tomato harvesting robot. This robot searches for tomato 
fruits using the vision sensor while moving on the rail 
(process (i) in Fig. 2). When mature fruits are detected 
(process (ii) in Fig. 2), the mature fruits in the workspace of 
the robot are counted (process (iii) in Fig. 2). Regarding the 
detection method, in order to recognize mature and immature 
tomato fruits, we referenced k-means++ method which is one 
of the unsupervised classification methods [11]. The RGB 
images acquired by the vision sensor mounted on the robot are 
used to detect mature and immature fruits, and the positions of 
the detected fruit are calculated using the detection results and 
the depth value in the Depth image.  Next, a harvest priority 
value is calculated for each detected fruit, and the fruit with 
the highest harvest priority value is selected as the target fruit 
(process (iv) in Fig. 2). The harvest priority value is 
determined based on the distance from the vision sensor to the 
detected fruit and whether there are other fruits around the 
detected fruit. The harvest priority value is highest when the 
distance is the smallest and there are no other fruits around the 
detected fruit. If there are other fruits around the detected fruit, 
they may be damaged during the harvesting motion, so the 
harvest priority value is lowered. The target fruit is 
determined, the end-effector approaches the target fruit 
(processes (v)-1 to (v)-3 in Fig. 2), and the harvesting motion 
is performed (processes (v)-4 to (v)-6 in Fig. 2). If the target 
fruit is sucked and it is judged that cutting is possible, the 
cutting motion is carried out. If the cutting is successful 
(process (vi) in Fig. 2), the harvested fruit is carried to a 
harvest box (process (viii) in Fig. 2). If the harvesting is 
successful and there are other harvestable fruits at this 
position, processes (iii) to (ix) in Fig. 2 are repeated.  When it 
is judged that the target fruit cannot be cut and the harvesting 
motion fails but that there are other fruits at this position 

(process (ix) in Fig. 2), the fruit with the second highest 
harvest priority value is selected as the next target fruit, and 
the harvesting motion is performed again. However, if the 
harvesting motion fails twice at the position at which the robot 
is stopped (process (vii) in Fig. 2) or if there is no fruit in the 
robot workspace (process (ix) in Fig. 2), the robot moves 
along the rail, and searches for tomato fruits again (process (i) 
in Fig. 2). If there is only one fruit at the position and the 
harvesting motion fails once, the harvesting behavior shifts to 
process (i) in Fig. 2. 

Fig. 1. Tomato harvesting robot. This robot consists of four elements: a mobile 
vehicle, vision sensor, end-effector, and manipulator.  

Fig. 2. Flowchart of the harvesting behavior. The robot searches for tomato 
fruits while moving along the rail (process (i)). When the robot detects tomato 
fruits, the harvesting motion is started (processes (ii) to (v)). The end-effector 
approaches the target fruit (processes (v)-1 to (v)-3), the target fruit is harvested 



by the suction cutting device (processes (v)-4 to (v)-6)), and the harvested fruit 
is carried to the harvest box (processes (viii)-1 to (viii)-3). 

III. EVALUATION OF HARVESTABILITY

 To evaluate the harvestability, the end-effector has a 
camera (hereinafter referred to as a hand camera). In this 
section, the design of the hand camera and the method for 
evaluating harvestability are described. 

A. Hand camera mounted on end-effector

Before deciding on the specifications of the hand camera,
we carried out harvesting experiments and qualitatively 
evaluated the characteristics of fruits that were easy or 
difficult to harvest using the developed robot. Figure 3 shows 
an example of images of the tomato clusters before and after 
the harvesting experiments. These images were taken from the 
front of the tomato clusters, using a commercial camera. The 
fruits with numbers 1, 2, 4, 5, 6, and 8 in Fig. 3 were 
successfully harvested, but the fruits with numbers 3, 7, 9, and 
10 were not. It was confirmed that there were stems and 
peduncles in front of most of the fruits that were not 
successfully harvested. Therefore, it was concluded that it is 
possible to quantify harvestability by detecting obstacles in 
front of the target fruit. 

To evaluate harvestability, it is desirable to be able to 
recognize stems, peduncles, and fruits and to remove the 
background objects from the image. In this study, we used a 
hand camera, which is a combination of an RGB camera and a 
depth camera. Figure 4 shows the position at which the hand 
camera is attached to the end-effector and the appearance of 
the hand camera. The hand camera is attached to the upper 
part of the cutting part of the end-effector. A C920 camera 
manufactured by Logitech was used as the RGB camera, and a 
CamBoard pico flexx camera manufactured by PMD 
Technologies was used as the depth camera. We calibrated the 
alignment of the images using a checkerboard to overlap 
regions of the images acquired by the RGB camera with those 
acquired by the depth camera. Corners were detected by 
applying the algorithm proposed by Harris et al. [12] to the 
images of the checkerboard acquired by each camera. The 
original point for alignment was determined from the detected 
points, and alignment was performed. This calibration and the 
evaluation method described below were implemented using 
MATLAB/Simulink. 

B. Evaluation method

Figure 5 shows the processing flow of the method for
evaluating harvestability. The RGB image and depth image 
acquired by the hand camera are input images (process (i) in 
Fig. 5). To recognize mature fruits and obstacles, RGB color 
space is converted to HSV color space, and binarization is 
performed based on each threshold to extract each candidate 
region (process (ii) in Fig. 5). In this study, the thresholds for 
extracting mature fruits and obstacles were empirically 
determined. Next, an image with the background region 
removed is generated using the binarized image of each 
candidate region of mature fruits and obstacles, and the depth 
image (process (iii) in Fig. 5). The local minimum value of the 
candidate region of the mature fruits in the depth image is 

used as the center position of the target fruit, and a region of 
radius r is recognized as one tomato fruit (process (iv) in Fig. 
5).  When there are two or more mature fruits in the image, 
other fruits are recognized from the candidate region, 
excluding the first recognized fruit region. The radius r is 
empirically determined based on the distance from the vision 
sensor to the target fruit. To recognize stems, peduncles, and 
immature fruits that may become obstacles, the binarized 
image, which is the candidate region for obstacles, is labeled 
for each connected pixel (process (v) in Fig. 5). In the 
recognized candidate region for labeled obstacles within the 
recognized mature fruit region, if the depth value of the 
candidate region for the obstacles is smaller than that of the 
center coordinates of the target fruit, the region is defined as 
the obstacle region (process (vi) in Fig. 5)). In the image in the 
fourth column of Fig. 5, the black region is the background 
region, the red circle is the recognized target fruit region, the 
green region is the obstacle candidate region, and the white 
region is the obstacle region. The harvestability is evaluated 
using the occlusion ratio of the obstacle region to the target 
fruit region (process (vii) in Fig. 5)). 

Fig. 3. Tomato clusters before and after harvesting experiment. Fruits 

numbered 1, 2, 4, 5, 6, and 8 were able to be harvested, and fruits numbered 3, 

7, 9, and 10 were not able to be harvested. 

Fig. 4. Hand camera for evaluating harvestability. This camera is fixed to the 

cutting part and consists of two cameras: an RGB camera (Logitech, C920) 

and a depth camera (PMD Technologies, CamBoard pico flexx).



Fig. 5.  Processing flow for evaluating harvestability. RGB and depth images 

acquired by the hand camera are input images (process (i)). Candidate regions 

of mature fruits and obstacles are extracted using the RGB image (process (ii)), 

and the background region is removed using the depth image (process (iii)). 

The target fruit and obstacle region are recognized from among candidate 

regions of mature fruits and obstacles (processes (iii) to (vi)). Harvestability is 

evaluated using the occlusion ratio of the obstacle region to the target fruit 

region (process (vii)). 

IV. VERIFICATION OF PROPOSED METHOD

We carried out experiments in Hibikinada Green Farm on 
February 24, 2020, using ten tomato fruits to verify the 
evaluation method. In the experiments, the developed tomato 
harvesting robot was set up on the rail in the Hibikinada Green 
Farm. The robot automatically performed the harvesting 
behavior described in II-B. While the robot was harvesting, 
the images were acquired by the hand camera at 10fps. In 
order to evaluate the proposed method, we used the images 
based on the harvesting results. Regarding the images used to 
evaluate the proposed method, in the harvesting behavior 
shown in Fig. 2, the images acquired when the robot detects 
the fruit and approaches the end-effector to the target fruit 
position with the manipulator was used. The images shown in 
Fig. 5 are examples of images acquired by a hand camera 
during the above-mentioned harvesting behavior. 

The tomato harvesting robot successfully harvested six of 
the ten fruits.  Table 1 shows the harvesting time results, from 
selecting the target fruits to carrying the harvested fruits to a 
harvest box when the harvesting is successful. The time until 
the fruit is detected while the robot is moving along the rail is 
not mentioned in this paper because it depends on the position 
of the fruit grown in the tomato greenhouse. “Average” in 
Table 1 is the average time required for harvesting a target 
fruit when the harvest is successful, that is, the average of six 
successful harvests. “S.D.” is the standard deviation of the 
harvesting time. Table 2 shows the verification results for the 
evaluation method for the ten tomato fruits. “Occlusion ratio” 
is the ratio of the fruit region to the obstacle region, “O” 
indicates when the harvesting motion succeeds, and “X” 
indicates when the harvesting motion fails. 

TABLE 1: Harvesting time per fruit. “Average” is the average of six 

harvesting times. “S.D.” is the standard deviation of the harvesting times. 

Motion 
Time [s] 

Average S.D. 

Select a target tomato  

Approach and suction 

Cut 

Drop 

1.0 

8.2 

8.8 

4.9 

0.2 

2.6 

1.1 

1.6 

Total 22.9 3.4 

TABLE 2: Verification results. “Occlusion ratio” is the ratio of the fruit 

region to the obstacle region. “O” indicates when the harvesting motion 

succeeds, and “X” indicates when the harvesting motion fails. 

Fruit number Occlusion ratio O or X 

1 0.00 O 

2 0.02 O 

3 0.04 O 

4 0.06 O 

5 0.09 O 

6 0.16 O 

7 0.29 X 

8 0.33 X 

9 0.35 X 

10 0.49 X 



V. DISCUSSION

A. Harvesting time

In the results shown in Table 1 for the harvesting time per
fruit, the standard deviation of the “Select a target tomato” 
process is smaller than that of other processes, and this time 
depends on the specifications of the control computer. The 
“Approach and Suction” and “Drop” processes depend on the 
position of the target fruit, and the “Cut” process depends on 
the speed and torque of the driving part in the cutting part of 
the end-effector. It is possible to eliminate the “Drop” time by 
adding a mechanism to guide the harvested fruits to the 
harvesting box rather than sequentially carrying the harvested 
fruits to the harvesting box. This would reduce the overall 
harvesting time. 

B. Evaluation of harvestability

The results of the evaluation of harvestability are shown in
Table 2. The occlusion ratio in the cases of successful harvests 
were smaller than those in the cases of unsuccessful harvests. 
When there were obstacles in front of the target fruit, the 
occlusion ratio was higher, and the target fruit was more 
difficult to harvest. It is possible to improve tomato harvesting 
efficiency by implementing this harvestability evaluation 
method in modifying the harvesting behavior of the tomato 
harvesting robot and selecting a harvesting strategy that is 
based on maximizing the harvestability determined by the 
evaluation method. 

VI. CONCLUSIONS

We have proposed a method for evaluating the 
harvestability of tomato fruits using harvesting robot. We 
have shown quantitatively that the occlusion ratio of obstacles 
to the target fruit is effective as an evaluation indicator of 
harvestability. If the occlusion ratio is low, the harvestability 
is high, and if it is large, the harvestability is low. In future 
work, not only the occlusion ratio but also the position 
relationship between the target fruit and the obstacles will be 
added as an evaluation indicator of tomato fruit harvestability. 
It is necessary to consider a harvesting strategy based on the 
harvestability for a tomato harvesting robot. The manipulator 
of the harvesting robot used in this study was a three-axis 
orthogonal type of manipulator. Another subject of future 
research will be evaluation of tomato harvestability when 
using a manipulator with a higher number of degrees of 
freedom. 
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