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Abstract. This study presents a novel swing-leg con-
trol strategy for speed-up of biped robot walking. The
trajectory of tip of the swing-leg is asymmetric at the
center line of the torso in the sagittal plane for this
process. A methodology is proposed enables robots
to achieve synchronized the asymmetric swing-leg mo-
tions with the stance-leg angle to accelerate their walk-
ing speed. The effectiveness of the proposed method
was simulated using numerical methods.

Keywords: Biped robot, Limit cycle, Asymmetric mo-
tion

1. INTRODUCTION

Biped robots have high-performance movement, and
they can capacity to walk on various types of terrain [1],
[2]. Moreover, they are able to change their walking di-
rection in confined spaces. It is considered that biped
robots ultimately have the potential to move with the same
walking characteristics as humans. Biped robots develop-
ment has achieved stability for dynamic walking: how-
ever, the walking movements of biped robots consume a
large amount of energy. Collins et al. have shown that
the energy consumption for the walking movements for
ASIMO is approximately 30 times higher than that for
the walking movements of a human [3]. When the biped
robots achieve high-speed walking, the energy consump-
tion is increased.

To achieve energy-efficient and high-speed for biped
robots, we have studied biped walking based on a pas-
sive dynamic walking model [4]. This type of walking is
frequently called limit cycle walking [5]. Typically, limit
cycle walking robots achieve energy-efficient but slow dy-
namic walking [6], [7], [8], [9].

Recent approaches to achieve variable speed for limit
cycle walking have been studied. Narukawa et al. demon-
strated limit cycle walking using torso effects [10]. Asano
et al. and Kinugasa et al. demonstrated limit cycle walk-
ing using telescopic-leg effects [11], [12]. Hanazawa
et al.demonstrated limit cycle walking using an up-and-
down wobbling mass and swinging-arm effects [13], [14].
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Fig. 1. Schematic for swing-leg motion during dynamic walking

Analogy

Trajectory of CoM of swing-leg 

Fig. 2. Analogy between swing-leg motion and up-and-
down motion of mass

In this study, we elaborate the asymmetric swing-leg mo-
tion in walking to improve the walking speed for limit
cycle walking of biped robots. Asymmetric swing-leg
motion is considered important for dynamic walking. To
demonstrate this mechanism, an analogy was introduced
as shown in Fig. 2. The swing-leg was replaced with
a telescopic mass. Using this simplification, the effects
of ths asymmetric swing-leg motion can be clearly in-
vestigated. Moreover, we propose that biped robots can
achieve speed-up of dynamic walking by using asymmet-
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Fig. 3. Model of telescopic-legged biped robot with arc-feet
and torso

ric swing-leg motion.

2. MODEL OF BIPED ROBOT

2.1. Dynamic equation

Fig. 3 shows the biped robot walking model used for
the numerical method simulations. This robot has tele-
scopic legs like previous robots [12], [15]. The robot has
two linear actuators for control of their telescopic legs and
two rotational actuators for control of their torso angle and
swing-leg. The dynamic equation of the robot is given by

MMM(qqq)q̈qq+HHH(qqq, q̇qq) = SSS1uuu+ JJJc(qqq)Tλλλ , . . . . (1)

where qqq = [θ1, θ2, θ3, b1, b2, x1, z1]
T is the general-

ized coordinate vector, MMM(qqq) ∈ R7×7 is the inertia ma-
trix, HHH(qqq, q̇qq) ∈ R7 is the vector that consists of the Cori-
olis, centrifugal force, and the gravitational vector, uuu =
[u1, u2, u3, u4]

T is the input vector, and SSS ∈ R7×4 is the
driving matrix and is defined as

SSS =



0 −1 0 0
1 0 0 0
−1 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0


. . . . . . . . . (2)

JJJc(qqq) ∈ RN×7 is the Jacobian matrix and is determined
according to the constraint conditions of the robot and N
is the number of constraint conditions. λλλ ∈RN is the con-
straint force vector given by

λλλ =−XXX(qqq)−1(JJJc(qqq)MMM(qqq)−1ΓΓΓ(qqq,q̇qq,uuu)+J̇JJc(qqq, q̇qq)q̇qq), (3)

where

XXX(qqq)=JJJc(qqq)MMM(qqq)−1JJJc(qqq)T, (4)
ΓΓΓ(qqq,q̇qq,uuu)=SSSuuu−HHH(qqq, q̇qq). (5)

2.2. Constraint conditions
Since the contact point of the biped robot is constrained

with ground, constraint equations are expressed as

R(cosθ1 −1)θ̇1 + ẋ1 = 0, (6)

−Rsinθ1θ̇1 + ż1 = 0. (7)

From these equations, we obtain JJJc(qqq) ∈ R2×7 and
J̇JJc(qqq, q̇qq) ∈ R2×7 as

JJJc(qqq)q̇qq =

[
R(cosθ1−1) 0 0 0 0 1 0
−Rsinθ1 0 0 0 0 0 1

]
q̇qq = 0002×1,

(8)

J̇JJc(qqq, q̇qq) =
[
−Rθ̇1 sinθ1 0 0 0 0 0 0
−Rθ̇1 cosθ1 0 0 0 0 0 0

]
. (9)

2.3. Impact equation
It is assumed that the collision of the swing-leg with

the ground is inelastic and instantaneous. The velocity
can thus be derived immediately after impact by solving
the impact equations described as follows. As the contact
point of the biped robot is constrained with the ground at
the collision of the swing-leg, the constraint equations can
be expressed as

2b1C1θ̇1 − (2b2 −R)C2θ̇2 +2S1ḃ1 −2S2ḃ2 + ẋ1 = Rθ̇2,
(10)

−2b1S1θ̇1 +(2b2 −R)S2θ̇2 +2ḃ1C1 −2ḃ2C2 + ż1 = 0.
(11)

where C1 is cosθ1, C2 is cosθ2, S1 is sinθ1 and S2 is sinθ2.
From these equations, the instantaneous constraint matrix
JJJI(qqq) ∈ R2×7 is given by

JJJI(qqq)=
[

J11 J12 0 2S1 −2S2 1 0
J21 J22 0 2C1 −2C2 0 1

]
, (12)

where J11 = 2b1C1, J12 = −(2b2 − R)C2 − R, J21 =
−2b1S1, and J22 = (2b2−R)S2.

An impulse vector, λλλ I ∈ RNI , and a velocity vector,
q̇qq+ ∈ R7, immediately after the impact are given by

λλλ I =−XXX I(qqq)−1JJJI(qqq)q̇qq−, (13)

q̇qq+ = (III7×7 −MMM(qqq)−1JJJI(qqq)TXXX I(qqq)−1JJJI(qqq))q̇qq−, (14)
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where XXX I(qqq)= JJJI(qqq)MMM(qqq)−1JJJI(qqq)T, q̇qq− ∈R7 is the veloc-
ity vector immediately before impact, and NI is the num-
ber of instantaneous constraint conditions at impact. The
biped robot then changes its stance-leg immediately after
impact and the state vector of the robot immediately after
the impact is reset to

[
qqqT

q̇qqT

]
=

[
θ2 θ1 θ3 b2 b1 Q16 Q17
θ̇+

2 θ̇+
1 θ̇+

3 −ḃ+2 −ḃ+1 Q26 Q27

]
, (15)

where the superscript ”+”, indicate those immediately
after impact due to Eq. (14), Q16 = R(θ1−S1), Q17 =
R(1−C1), Q26 = R(1−C1)θ̇+

1 , Q27 = RS1θ̇+
1 .

3. CONTROL METHODS

3.1. Input-output linearization
The low-dimensional dynamic equation of the biped

robot for input-output linearization is defined below. The
low-dimensional dynamic equation of the biped robot
(Fig. 3) when the contact point is always constrained by
rotational constraints is given as

MMML(qqqL)q̈qqL +HHHL(qqqL, q̇qqL) = SSSLuuu, . . . . . . (16)

where qqqL = [θ1, θ2, θ3, b1, b2]
T is the generalized

coordinate vector, MMML(qqqL) ∈ R5×5 is the inertia ma-
trix, HHHL(qqqL, q̇qqL) ∈ R5 is the vector that consists of the
Coriolis, centrifugal force and gravitational vector, uuu =
[u1, u2, u3, u4]

T is the input vector, SSSL ∈R5×4 is the driv-
ing matrix and is detailed as

SSSL =


0 −1 0 0
1 0 0 0
−1 1 0 0
0 0 1 0
0 0 0 1

 . . . . . . . . (17)

The control output is defined as

yyy =

−θ1 +θ2 −ϕd
θ3 −θ3d
b1 −b1d
b2 −b2d

→ 0004×1. . . . . . . (18)

ÿyy is then obtained by

ÿyy =

 −1 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 q̈qqL

= TTT q̈qqL

= TTT MMML(qqqL)
−1(SSSLuuu−HHHL(qqqL, q̇qqL)), . . . . (19)

where ϕd is the desired hip-joint angle, θ3d is the desired
torso angle, b1d is the desired length of the b1 and b2d is
the desired length of the b2. The control input for achiev-
ing input-output linearization ÿyy = vvv is given by

uuu = (TTT MMML(qqqL)
−1SSSL)

−1AAA1(vvv,qqqL, q̇qqL), . . . . (20)

where AAA1(vvv,qqqL, q̇qqL)= vvv+TTT MMML(qqqL)
−1HHHL(qqqL, q̇qqL) and vvv=

[v1, v2, v3, v4]
T is the new input vector for the desired

motions.

3.2. Stance-leg and torso control
It was first shown that the control methods for the tele-

scopic stance-leg and torso posture were appropriate for
level ground walking. Level ground walking of the biped
robot was achieved using the following simple PD-control
methods:

v2 =−KP2(θ3 −θ3d)−KD2θ̇3, (21)

v3 =−KP3(b1 −b1d)−KD3ḃ1, (22)

where KP2, KP3, KD2 and KD3 are the control gains.
The biped robot can maintain the desired torso angle
by Eq. (21) and the desired length of the stance-leg by
Eq. (22).

3.3. Swing-leg control
The control method for achieving swing-leg motion

was then designed. Fig. 4 shows the schematic for a biped
walking with a long stride. The swing-leg motion is syn-
chronized with the stance-leg angle during dynamic walk-
ing. It is thus determined that the desired trajectory of the
swing-leg motion of the biped robot is a function of the
stance-leg angle like the previous research [16].

The stance-leg angle was redefined as θv = θ1 − θ s
1

where θ s
1 is the stance-leg angle immediately after the

stance-leg exchange. The desired trajectory functions are
given by

ϕd(θv) = A3θ 3
v +A2θ 2

v +A0, (23)

b2d(θv) = B3θ 3
v +B2θ 2

v +B0. (24)

The boundary conditions are defined as ϕd(0) = ϕ s,
ϕd(θ t

v) = ϕ t , ϕ̇d(0) = ϕ̇d(θ t
v) = 0 and b2d(0) = bs

2,
b2d(θ t

v) = bt
2, ḃ2d(0) = ḃd(θ t

v) = 0, for each coefficient
in Eqs. (23) and (24) are given by the following:

A3=−2(ϕ t−ϕ s)/(θ t
v)

3, A2=3(ϕ t−ϕ s)/(θ t
v)

2,
A0=ϕ s, B3 =−2(bt

2−bs
2)/(θ

t
v)

3,
B2=3(bt

1−bs
2)/(θ

t
v)

2, B0=bs
2,

where the superscript, “s”, indicates the starting value

(b) (c)

Stance leg

(a)
Swing leg

Fig. 4. Schematic for biped walking with long stride
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and the superscript, “t”, indicates the terminal value.
These control methods are given by

v1 =−KP1(θ2 −θ1 −ϕd)−KD1(θ̇2 − θ̇1 − ϕ̇d), (25)

v4 =−KP4(b2 −b2d)−KD4(ḃ2 − ḃ2d), (26)

where KP1, KP4, KD1 and KD4 are the control gains and ϕd
is the desired trajectory of the hip joint angle according
to Eq. (23). b2d is the desired trajectory of the length of
the b2 according to Eq. (24). To lock the angle of the hip
joint and the length of the swing-leg at the desired values,
ϕd and ϕ̇d become ϕd = ϕt and ϕ̇d = 0 when θ2 − θ1 ≤
ϕ t +0.001 is satisfied. b2d and ḃ2d then become b2d = 0.5
and ḃ2d = 0 when b2 ≥ 0.499 is satisfied.

Fig.5 shows the schematic for the trajectory of swing-
leg mass point. Here: (a) the start point, is the point im-
mediately after the stance-leg exchange: (b) pass point,
is the point at the minimum length of the swing-leg: and
(c) terminal point, is the point immediately before the next
stance-leg exchange. We thus design the b2d from (a) to
(b) and from (b) to (c) by Eq. (24).

4. WALKING ANALYSIS

4.1. Numerical analysis
Table 1 lists the physical parameters of the biped robot

and Table 2 lists the control parameters where the bp
2 is

the minimum length of the b2.
Fig. 6 plots a stick diagram for the limit cycle walking

with θ p
1 = 0 rad in a step where θ p

1 is the control param-
eter for pass point at b2 = bp

2 . Fig. 7 shows the length of
b2 and the input for walking for 3 steps under the actua-
tor torque and force limit (the torque limit is 200 Nm and
force limit is 600 N) and Fig. 8 shows the extended figure
of the torque. It can be seen that the biped robot achieves
limit cycle walking.

Specific resistance (SR) is used as an index for energy-
efficiency in the simulations. The SR is an index of

Coronal 

plane

(a)Start point 

(b)Pass point

(c)Terminal point

Fig. 5. Schematic for trajectory of swing-leg mass point

Fig. 6. Stick diagram of dynamic walking where θ p
1 = 0 rad

energy-efficiency in dynamic walking given by

SR :=
p

Mgv
, . . . . . . . . . . . . . . (27)

where p [J/s] is the average input power, M [kg] is the
total mass of the robot and v [m/s] is the average walking
speed. Average input power, p, is given by

p :=
1
T

∫ T

0
(|P1|+|P2|+|P3|+|P4|)dt, . . . . (28)

where P1 = u1(θ̇2−θ̇3), P2 = u2(θ̇3−θ̇1), P3 = u3ḃ1, P4 =
u4ḃ2, and T [s] is the total walking time.

Fig. 9 shows the walking speed, the step period, and

Table 1. Physical parameters

Symbol Value
b3 0.5 m
R 0.5 m

m1 5.0 kg
m2 5.0 kg
mh 5.0 kg

Table 2. Control parameters

Symbol Value Symbol Value
KP1 100000 N·m/rad KD1 2000 N·m/(rad/s)
KP2 50000 N·m/rad KD2 2500 N·m/(rad/s)
KP3 50000 N/m KD3 2500 N/(m/s)
KP4 50000 N/m KD4 2500 N/(m/s)
ϕt −0.70 rad θ3d 0.20 rad

b1d 0.50 m bp
2 0.40 m

bt
2 0.50 m

4 Journal of Robotics and Mechatronics Vol.0 No.0, 200x
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Fig. 8. Torque with respect to time in limit cycle walking
where the torque range from -20 to 20 Nm

the SR for limit cycle walking with respect to θ p
1 . These

results show that the walking speed and energy-efficiency
depend on the swing-leg trajectory. We can see that the
walking speed and SR monotonically increase and the
step period monotonically decreases with respect to θ p

1 .
The walking speed especially increases when θ p

1 is big-
ger than 0 [rad].

Fig. 10 plots a stick diagram for limit cycle walking
where θ p

1 = −0.16 rad, where the walking speed is the
slowest in Fig. 9. Fig. 11 plots a stick diagram for limit
cycle walking where θ p

1 = 0.16 rad, where the walking
speed is the fastest in Fig. 9. We can see that the swing-
leg trajectory where θ p

1 =−0.16 rad considerably differs
from the swing-leg trajectory where θ p

1 = 0.16 rad
Moreover, Fig. 12 and Fig. 13 show the walking speed,

step period, and SR where m1 = 4.0 kg and m1 = 6.0
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(a) Walking speed
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S
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 [
−
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(c) Specific resistance

Fig. 9. Walking speed, step period, and SR of limit cycle
walking with respect to θ p

1 where m1 = 5.0

kg, respectively. Although the leg mass changes, these
property are conserved. The walking speed and SR both
monotonically increase and the step period monotonically
decreases with respect to θ p

1 .
It is inferred that the asymmetric swing-leg trajectory

when the mass point of the swing-leg is raised at a posi-
tive stance-leg angle has propulsive effects for speeding-
up the pace of walking. To show this principle of propul-
sive effects, the asymmetric swing-leg motions are math-
ematically analyzed in the next section.

4.2. Mathematical analysis
The reaction force owing to the swing-leg motion

showing the propulsive effect of the asymmetric swing-
leg trajectory was analyzed. rrr is defined as the position
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Fig. 10. Stick diagram of dynamic walking where θ p
1 =

−0.16 rad

Fig. 11. Stick diagram of dynamic walking where θ p
1 = 0.16 rad

vector from the contact point to the mass point of hip (mh),
and FFF is the reaction force vector owing to lengthen and
contract the swing-leg. We thus see that the reaction force
owing to the swing-leg generates moment at the contact
point of the stance-leg that as given by

MMM = rrr×FFF , . . . . . . . . . . . . . . (29)

where this moment is around Y-axis moment.
Fig. 14 shows the moment owing to the reaction force

when the swing-leg contracts. The reaction force at the
positive stance-leg angle generates a clockwise moment
around the contact point. These moments generate a
propulsive effect when the angle of the stance-leg is posi-
tive but do not generate propulsive effects when the angle
of the stance-leg is negative. Fig. 15 shows the moments
owing to the reaction force when the swing-leg length-
ens. These moments generate a propulsive effect when
the angle of the stance-leg is negative but do not gener-
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(c) Specific resistance

Fig. 12. Walking speed, step period and SR of limit cycle
walking with respect to θ p

1 where m1 = 4.0

ate a propulsive effects when the angle of the stance-leg
is positive.

Fig. 16 shows a schematic for the both symmetric and
asymmetric swing-leg motion. It can be seen that sym-
metric swing-leg motion in Fig. 16(a) always generates
negative torque from the left side in Fig. 14 and the right
side in Fig. 15 whereas asymmetric swing-leg motions as
shown in Fig. 16(b) generates a positive torque for a ris-
ing swing-leg mass when θ1 > 0. If it is assumed that the
angle of the stance-leg monotonically increases, then the
change in mechanical energy can be defined by

E =
∫ T2

T1

|rrr×FFF |θ̇1dt, . . . . . . . . . . (30)

where T1 is the start time for contraction of the swing-leg

6 Journal of Robotics and Mechatronics Vol.0 No.0, 200x
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Fig. 13. Walking speed, step period and SR of limit cycle
walking with respect to θ p

1 where m1 = 6.0

in the positive stance-leg angle, T2 is the end time for the
contraction of swing-leg. It can be seen that the asymmet-
ric swing-leg motion by this method can generate positive
energy. From this result, it is considered that the walking
speed in Fig. 9 monotonically increases with respect to an
increasing θ p

1 in θ p
1 > 0.

4.3. Design of the asymmetric swing-leg trajectory
based on the principle

This principle verification of asymmetric swing-leg
motion for high-speed walking was obtained by numer-
ical and mathematical analysis. The asymmetric swing-
leg motion was then designed using this principle. The
desired trajectory for b2 was considered at the two pass
points P1 and P2 as shown in Fig.17. P1 is the pass point

x

z

+

g

O

4
u

1
θ− 1

θ
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FrM ×=

F

4
u

FrM ×=

r
r

Fig. 14. Reaction force owing to contracted swing-leg

x

z

+

g

O

4
u

1
θ− 1

θ

F

FrM ×=

F

4
u

FrM ×=

r
r

Fig. 15. Reaction force owing to lengthened swing-leg

when the stance leg is vertical and P2 is the pass point
when the biped robot maximizes the contraction of the
swing-leg. We thus designed the desired trajectory ac-
cording to the two pass points by Eq.(24).

The biped robot must minimize the contraction of the
swing-leg from the start point to P1 since the contracting
swing-leg from the start point to P1 cause a decreasing
walking speed as shown in Fig. 14. However, P1 must
also be set to avoid scuffing of the tip of the leg with
ground. Moreover, the biped robot increases the contract-
ing swing-leg from P1 to P2 since the contracting swing-
leg from P1 to P2 causes an increase in walking speed as
shown in Fig. 14.

Table 3 lists the control parameters where the θ P1
1 and

bP1
2 are the parameters relating to the P1 and θ P2

1 and bP2
2

are parameters relating to the P2.
Fig. 18 shows the walking speed, walking period, and

SR with respect to Kϕ where Kϕ is the control parame-
ter in Table 3. When Kϕ is big value, the biped robot
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(a)   (b)   

Fig. 16. Schematic for symmetric and asymmetric swing-
leg trajectories

Coronal 

plane

(a)Start point 

(c)Pass point 2

(d)Terminal point

(b)Pass point 1

Fig. 17. Schematic for swing-leg mass point for redesign
asymmetric trajectory

quickly raises the swing-leg. It can be seen that the walk-
ing speed monotonically increases with a decreasing Kϕ
value. However, It can also be seen that SR does not
considerably change with respect to a changing walking
speed. Fig. 19 shows a stick diagram for limit cycle walk-
ing where Kϕ = 3.4, and Fig. 20 shows the inputs for limit
cycle walking. Fig. 21 shows extended figure of torque.
The walking speed is at a maximum in Fig. 18 and it can
be seen that the swing-leg trajectory in this example is
asymmetric. Therefore, the speed of limit cycle walking
using asymmetric swing-leg trajectories can be improved
for biped robots based on the principle.
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Fig. 18. Walking speed, step period, and SR of limit cycle
walking with respect to Kϕ

Table 3. Control parameters for b2

Symbol Value Symbol Value
θ P1

1 0.00 rad bP1
2 0.49 m

θ P2
1 ϕ t/Kϕ rad bP2

2 (= bp
2) 0.40 m

5. CONCLUSION AND FUTURE WORK

In this study, a novel method for increasing the speed
of limit cycle walking for biped robots using asymmet-
ric swing-leg motions has been demonstrated. It was
first shown that the swing-leg motion has an impact on
the walking speed by using numerical simulations. It
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Fig. 19. Stick diagram of limit cycle walking with re-
designed asymmetric swing-leg motion
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Fig. 20. b2 and input with respect to time in limit cycle walking

was then proven mathematically that the contraction and
lengthening of swing-leg motions generates torque for
producing propulsive effects. Moreover, it was shown that
the biped robot can achieve a high walking speed by em-
ploying asymmetric swing-leg motion based on this prin-
ciple. Future work plans to verify the effectiveness of this
proposed method by experimental trials and extend this
method to biped robots with knees.
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Fig. 21. Torque with respect to time in limit cycle walking
where the torque range from -20 to 20 Nm
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Appendix
MMM(qqq) matrix and HHH(qqq, q̇qq) vector in Eq.(1) Mi j is i-th

row and j-th column element in MMM(qqq) and Hi is i-th row
element in HHH(qqq, q̇qq).

M11 = b2
1(5m1 +4m2 +4mh)

M12 =−2b1b2m1cos(θ1 −θ2)
M13 = 2b1b3m2cos(θ1 −θ3)
M14 = 0
M15 = 2b1m1sin(θ1 −θ2)
M16 = b1cosθ1(3m1 +2m2 +2mh)
M17 =−b1sinθ1(3m1 +2m2 +2mh)
M21 = M12
M22 = b2

2m1
M23 = 0
M24 =−2b2m1sin(θ1 −θ2)
M25 = 0
M26 =−b2m1cos(θ2)
M27 = b2m1sin(θ2)
M31 = M13
M32 = M23
M33 = b2

3m2
M34 = 2b3m2sin(θ1 −θ3)
M35 = 0
M36 = b3m2cosθ3;
M37 =−b3m2sin(θ3)
M41 = M14
M42 = M24
M43 = M34
M44 = 5m1 +4m2 +4mh
M45 =−2m1cos(θ1 −θ2)
M46 = sinθ1(3m1 +2m2 +2mh)
M47 = cosθ1(3m1 +2m2 +2mh)
M51 = M15
M52 = M25
M53 = M35
M54 = M45
M55 = m1
M56 =−m1sinθ2
M57 =−m1cosθ2
M61 = M16
M62 = M26
M63 = M36
M64 = M46
M65 = M56
M66 = 2m1 +m2 +mh
M67 = 0
M71 = M17
M72 = M27
M73 = M37
M74 = M47
M75 = M57
M76 = M67
M77 = 2m1 +m2 +mh
H1 = 2b1(b3m2sin(θ1 − θ3)θ̇ 2

3 − 2ḃ2m1cos(θ1 −
θ2)θ̇2 − b2m1sin(θ1 − θ2)θ̇ 2

2 + 5ḃ1θ̇1m1 + 4ḃ1θ̇1m2 +

4ḃ1θ̇1mh)−b1gsinθ1(3m1 +2m2 +2mh)
H2 = 2b2m1(b1sin(θ1 − θ2)θ̇ 2

1 − 2ḃ1cos(θ1 − θ2)θ̇1 +

ḃ2θ̇2)+b2gm1sinθ2
H3 = 2b3θ̇1m2(2ḃ1cos(θ1 − θ3)− b1θ̇1sin(θ1 − θ3))−

b3gm2sinθ3
H4 = 2b2θ̇ 2

2 m1cos(θ1 − θ2)− 4b1θ̇ 2
1 m2 − 4b1θ̇ 2

1 mh −
4ḃ2θ̇2m1sin(θ1 − θ2) − 5b1θ̇ 2

1 m1 − 2b3θ̇ 2
3 m2cos(θ1 −

θ3)+gcosθ1(3m1 +2m2 +2mh)
H5 = m1(2b1cos(θ1 − θ2)θ̇ 2

1 + 4ḃ1sin(θ1 − θ2)θ̇1 −
b2θ̇ 2

2 )−gm1cosθ2
H6 = 6ḃ1θ̇1m1cosθ1 − 2ḃ2θ̇2m1cosθ2 +

4ḃ1θ̇1m2cosθ1 + 4ḃ1θ̇1mhcosθ1 − 3b1θ̇ 2
1 m1sinθ1 −

2b1θ̇ 2
1 m2sinθ1 + b2θ̇ 2

2 m1sinθ2 − b3θ̇ 2
3 m2sinθ3 −

2b1θ̇ 2
1 mhsinθ1

H7 = 2ḃ2θ̇2m1sinθ2−6ḃ1θ̇1m1sinθ1−4ḃ1θ̇1m2sinθ1−
4ḃ1θ̇1mhsinθ1 − 3b1θ̇ 2

1 m1cosθ1 − 2b1θ̇ 2
1 m2cosθ1 +

b2θ̇ 2
2 m1cosθ2−b3θ̇ 2

3 m2cosθ3−2b1θ̇ 2
1 mhcosθ1+g(2m1+

m2 +mh)

Name:
Yuta Hanazawa

Affiliation:
Dept. of Applied Science for Integrated System
Engineering, Graduate School of Engineering,
Kyushu Institute of Technology

Address:
1-1 Sensui, Tobata, Kitakytushu, Fukuoka 804-8550, JAPAN
Brief Biographical History:
Your History
Main Works:
• Your Works
Membership in Academic Societies:
• Your Learned Societies

Name:
Fumihiko Asano

Affiliation:
School of Information Science, Japan Advanced
Institute of Science and Technology

Address:
1-1 Asahidai, Nomi, Ishikawa 923-1292, JAPAN
Brief Biographical History:
Your History
Main Works:
• Your Works
Membership in Academic Societies:
• Your Learned Societies

10 Journal of Robotics and Mechatronics Vol.0 No.0, 200x


