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Abstract— This paper presents inerer effect for achieving
high-speed running of legged robots. The previous simplest
biped robot with mechanical impedance consisted of a mass
and a telescopic leg with a spring. However, the running speed
of the robot is limited by the natural period of the model, which
cannot be freely designed. Our proposed method overcomes
this limitation by virtue of the inerter. The effectiveness of
the proposed method is demonstrated through a mathematical
analysis and numerical simulations.

I. INTRODUCTION

Recently biped robots achieve stable dynamic walking [1],

[2]. Many researchers have concentrated on Zero Moment

Point (ZMP) based control biped robots, which achieves

relatively fast running speeds [1], [3], [4]. However, the

current generation of robots cannot reach human running

speeds, and the achievement of faster than human running

speeds remains a challenging task. When we consider model

of the running robot, we deal with the simple telescopic leg

robot with spring [5], [6], [7], [8], [9]. One legged robot with

the spring was developed as a simple running robot based on

human and animal running [10], [11], [12], [13]. This robot

model is a convenient tool for running analysis and is used

in the design of running control methods.

To achieve high-speed running by the robot, we require ap-

propriate dynamics of the robot. The running speed depends

on the angle of the leg from the vertical line at the lift-off

(LO). Fig. 1 illustrates slow and fast running in the robot.

Slow and fast running speeds are obtained by shortening and

the lengthening the step length, respectively. To accelerate

the running, the LO timing is delayed by the robot dynamics.

The LO timing depends on the natural period of the robot

imposed by the mass and spring. However, as the amplitude

of the leg length during running also depends on the mass

and spring, we cannot freely design the natural period of the

robot. Therefore, the robot cannot attain very fast running

speeds.

To resolve the above problem, we propose a robot for

high-speed running robots with the inerter. The inerter is

a mechanical element that treats inertia as a mechanical

impedance [14]. It is constructed from gears and a flywheel

and the inertia is altered by changing the gear ratio and the

flywheel inertia. Through the inerter, we can freely design

the natural period of the robot. We expect that increasing the
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Fig. 1. Schematic of slow and fast running in the simplest running robot

natural period of the robot will increase its running speed.

In this paper, we analytically study the simplest robot with

the inerter and confirm its effectiveness through numerical

simulations.

II. MODEL OF ROBOT

A. Dynamic Equation

The proposed model is schematized in Fig. 2. The robot

performs passive dynamic walking [15] on a slope. The

robot is constructed from a flywheel body, an actuator, and

a telescopic-leg with a spring and inerter.

The dynamic equation of the robot is given by

M(q)q̈ +H(q, q̇) = S(u+ τK + τB) + JT
c λ, (1)

where q = [θ1, θ2, l1, x1, z1]
Tis the generalized coordinate

vector, M(q) ∈ R
5×5 is the inertia matrix, H(q, q̇) ∈ R

5 is

a vector comprising the Coriolis force, centrifugal force, and

gravitational vector, and u = [u1, 0]T is the input vector,

τK = [0, fK ]T and τB = [0, fB ]
T are the force vectors

associated with the spring of the leg, and the inerter of the

leg, respectively. S ∈ R
5×2 is the following driving matrix:

S =

⎡
⎢⎢⎢⎢⎣

−1 0
1 0
0 1
0 0
0 0

⎤
⎥⎥⎥⎥⎦ .



z

x

O

g

+

1u

Im ,2

1m

1θ

2θ

1l

),( 11 zx

K

φ

φ

B

Inerter

Fig. 2. Running model with mechanical impedance on a slope. The
mechanical impedance components are with a spring (with spring constant
K) and inerter (with inerter constant B)

The force due to the spring is given by

fK = −K(l1 − l0), (2)

where K [N/m] is the spring constant. The force due to the

inerter is given by

fB = −Bl̈1, (3)

where B [N/(m/s2)] is the inerter constant. We transform the

dynamic equation,

MB(q)q̈ +H(q, q̇) = S(u+ τK) + JT
c λ, (4)

where the new inertia matrix MB(q) comprises M(q) and

the inertia imposed by the inerter. Here the third-row third-

column element in MB(q) is given by

MB33 = M33 +B, (5)

where M33 is the third-row third-column element in M(q).
Therefore, the inerter changes only the inertia matrix without

changing the gravitational vector.

Jc ∈ R
N×5 is the Jacobian matrix, determined under the

N constraint conditions of the robot. The constraint force

vector λ ∈ R
N is given by

λ=−X(q)−1(JcMB(q)
−1Γ(q,q̇,u)+J̇cq̇), (6)

where

X(q) = JcMB(q)
−1JT

c , (7)

Γ(q, q̇,u) =S(u+ τK)−H(q, q̇). (8)

B. Constraint Conditions of the Robot

Running changes the contact conditions in our model. The

contact phase is assumed as the contact period of the leg-tip

with the ground, and flight phase occurs when the leg leaves

the ground. In the contact phase, the leg-tip is constrained

on the ground, and the constraint equations are given by

ẋ1 = 0, (9)

ż1 = 0. (10)

From these equations, Jc ∈ R
2×5 and J̇c ∈ R

2×5 are

obtained as

Jcq̇ =

[
0 0 0 1 0
0 0 0 0 1

]
q̇ = 02×1, (11)

J̇c = 02×5. (12)

C. Generated LO Condition

During running, LO transitions the dynamics from contact

phase to flight phase. LO is assumed to be generated by zero

of the ground reaction force of the leg-tip. The LO condition

is then given by

Fz = 0, (13)

where Fz is the vertical elements of the constraint force at

the leg-tip. When Eq. (13) is satisfied, we set λ = 0 in

Eq. (4).

D. Impact Equation

Leg collisions with ground are assumed to be inelastic and

instantaneous. The velocity of the robot immediately after a

collision is obtained by impact equation [16]. When the leg-

tip touches the ground, the constraint equation JI ∈ R
2×5

of the robot is given by

JI q̇ =

[
0 0 0 1 0
0 0 0 0 1

]
q̇ = 02×1.

(14)

The impulse vector, λI ∈ R
2 and the velocity vector

immediately after impact, q̇+ ∈ R
5 are respectively given

by

λI = −XI(q)
−1JI q̇

−, (15)

q̇+ = (I5 −MB(q)
−1JT

I XI(q)
−1JI)q̇

−, (16)

where XI(q) := JIMB(q)
−1JT

I and q̇− ∈ R
5 is the

velocity immediately before impact

III. CONTROL METHODS

The input to the contact phase is given by

u1 = −KP1θ2 −KD1θ̇2, (17)

where KP1, KD1 are the control gains. This input achieves

a vertical torso angle. The input to the flight phase is then

given by

u1 = −KP2(θ1 − α)−KD2θ̇1, (18)



where KP2, KD2 are the control gains, and α is the desired

leg angle. This input ensures a leg angle of α in the flight

phase.

As the ideal 1-periodic running trajectory, we assume a

symmetrical running trajectory. More specifically, the leg

angle at touch down (TD) and LO are symmetrical about

the vertical line, as expressed in the following equation:

−θiTD = θiLO = −θi+1
TD = θi+1

LO . (19)

The leg angle α governed by the control method should

satisfy Eq. (19) as far as possible. Fig. 3 is a schematic of

the control method. The black and red solid lines show the

actual and ideal leg postures during TD and LO, respectively,

at the i-th step. The ideal leg postures are symmetric about

the middle point of c defined as the distance between the

mass points at the TD and LO:

c = liTD sin(−θiTD) + liLO sin θiLO. (20)

We then assumed that the length of the robot’s leg is the

natural length L at the desired posture. The desired leg angle

α is then given by

α = − sin−1
( c

2L

)
. (21)

IV. ANALYSIS OF TRANSLATIONAL MOTION IN

CONTACT PHASE

To validate the effectiveness of the inerter, we analyze the

translational motion in the contact phase. For simplicity, we

consider the model with a spring, damper and inerter similar

to the robot vertically fixed on the ground as shown in Fig. 4.

The dynamic equation is given by

M1z̈ = −K1z −D1ż −B1z̈ −M1g, (22)

Rearranging Eq. (22), we obtain

z̈ + 2ζωnż + ω2
nz = −F. (23)

where 2ζωn = D1/MI , ω2
n = K1/MI , F = M1g/MI , and

MI = M1 +B1
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Fig. 3. Schematic of the control method

Taking the Laplace transform of Eq. (23) and setting the

initial value as z(0) = ż(0) = 0, we get the following

equation:

s2Z(s) + 2ζωnsZ(s) + ω2
nZ(s) = −F

s
. (24)

Eq. (24) then transforms as

Z(s) = −F
( 1

ω2
n

1

s
−

1
ω2

n
s+ 2 ζ

ωn

s2 + 2ζωns+ ω2
n

)
,

= − F

ω2
n

(1
s
− s+ 2ζωn

(s+ ζωn)2 − ζ2ω2
n + ω2

n

)
,

= − F

ω2
n

(1
s
−

( s+ ζωn

(s+ ζωn)2 + ω2
d

(25)

+
ζωn

(s+ ζωn)2 + ω2
d)

))
,

where ωd = ωn

√
1− ζ2.

Taking the inverse Laplace transformation of Eq. (25), we

get

z = − F

ω2
n

(
1−

(
e−ζωnt cosωdt+

ζωn

ωd
e−ζωnt sinωdt

))
,

= − F

ω2
n

(
1− e−ζωnt

1√
1− ζ2

sin(ωdt+ ψ)
)
, (26)

where ψ = tan−1(
√
1− ζ2/ζ).

For simplicity, we assumed that the viscosity constant D1

of the damper is negligibly small. From F = M1g/MI and

ωn =
√

K1/(M1 +B1), we get

z = −M1

K1
g
(
1− sin

(√ K1

M1 +B1
t+ π/2

))
. (27)

The parameters M1 and K1 determine the amplitude and

natural frequency of the robot leg, respectively. The natural

frequency additionally depends on B1. Therefore, the inerter

allows free design of the natural period (Tn = 2π/ωn).

Using simple examples, we now show the effectiveness of

the inerter of the model. The natural period of the motion

z
g

1M

1K 1B1D

Fig. 4. Translational analysis of a spring, damper, and ineter model with
a vertically fixed posture
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Fig. 5. Telescopic motions of the model under four conditions in the
translational analysis

given by Eq. (27) is Tn = 0.36 s, where M1 = 5 kg

K1 = 1500 N/m D1 = 0 N/(m/s) and B1 = 0 N/(m/s2)

(the Normal condition). This motion is defined as the normal

motion. We then doubled the natural period of the normal

motion.

To increase the natural period, we increased the mass of

the robot to M1 = 19.7 kg maintaining K1 = 1500 N/m

D1 = 0 N/(m/s) and B1 = 0 N/(m/s2) the Mass condi-

tion . Fig. 5 shows the telescopic motions of Eq. (27) over

time. Increasing the mass increased the natural period from

0.36 s to 0.72 s, but also increased the amplitude of the

robot leg. The amplitude is quadruple with respect to that of

the normal motion.

We then increased the natural period by decreasing the

spring constant of the robot to K1 = 380.1 N/m maintain-

ing the other parameters as M1 = 5 kg, D1 = 0 N/(m/s) and

B1 = 0 N/(m/s2) (the Spring condition). Although the natural

period was double identically, the spring constant quadrupled

the amplitude of the robot leg relative to normal motion (see

Fig. 5). Therefore, changing the mass or spring affects the

amplitude as well as the natural period.

Finally, we increased the natural period by activating the

inerter. The parameters were set as M1 = 5 kg K1 =
1500 N/m D1 = 0 N/(m/s) and B1 = 14.7 N/(m/s2) (the

Inerter condition). Under this condition, the natural period

doubled from 0.36 s to 0.72 s, while the amplitude of the

robot leg was unchanged from the normal motion.

To assess how the motion depend on the inerter constant,

we varied B1 as 0.0, 5.0, 10.0, and 14.7 N/(m/s2). The

temporal dynamics under the four inerter constants are

plotted in Fig. 6. Clearly the natural period monotonically

increasing function B1, whereas the amplitude of the robot

leg is constant with respect to B1.

V. RUNNING ANALYSIS

Finally, we demonstrate the effectiveness of the ineter

through numerical simulations. The physical and control
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Fig. 6. Telescopic motions of the model in the translational analysis,
showing the effect of changing the inerter parameter B1

parameters in the simulations are listed in Table I and

Table II, respectively. The initial values were set as follows:

θ1 = 0.30 rad, θ2 = 0.00 rad, l1 = 0.65 m, x1 = 0.00 m,

z1 = 0.00 m, θ̇1 = 0.00 rad/s, θ̇2 = 0.00 rad/s, l̇1 =
0.00 m/s, ẋ1 = 0.00 m/s, ż1 = 0.00 m/s. The slope angle was

set to φ = 0.008 rad. Under these conditions, the running

converged to 1-periodic running at a speed of 0.89 m/s. To

increase the running speed, we increased the natural period

of the robot through the inerter. This action should increase

the running speed by delaying the LO timing and increasing

the step length.

Fig 7, Fig 10, Fig 13 and Fig. 8, Fig 10, Fig 13 plot

the running speed and step length, with respect to inerter

constant with K = 1500, 1525, 1550 N/m, respectively.

Speed and SR are monotonically increased with increasing

inerter constant. In contrast, changing the inerter constant

negligibly affected the step time (Fig. 9, Fig. 12, Fig. 15),

respectively.

TABLE I

PHYSICAL PARAMETERS IN THE SIMULATIONS

Symbol Unit Value
m1 kg 0.05

m2 kg 5.0

l0 m 0.8

K N/m 1500

I kg · m2 0.5×m2 × (0.15)2

g m/s2 9.8

TABLE II

CONTROL PARAMETERS IN THE SIMULATIONS

Symbol Value Symbol Value
KP1 1.0 KD1 0.1

KP2 −10.0 KD2 −0.5
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Fig. 7. Running speed with respect to inerter constant B with K = 1500
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Fig. 8. Step length with respect to inerter constant B with K = 1500
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Fig. 9. Step time with respect to inerter constant B with K = 1500
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Fig. 10. Running speed with respect to inerter constant B with K = 1525
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Fig. 11. Step length with respect to inerter constant B with K = 1525
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Fig. 12. Step time with respect to inerter constant B with K = 1525
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Fig. 13. Running speed with respect to inerter constant B with K = 1550
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Fig. 14. Step length with respect to inerter constant B with K = 1550
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Fig. 15. Step time with respect to inerter constant B with K = 1550

VI. CONCLUSION

This paper presents the inerter effects for running robot

with mechanical impedance. The property of the inerter

were demonstrated in the mathematical analysis. The inerter

enables free design of the natural period of the robot, and

increases the step length of the model during running. High-

speed running of the robot was confirmed in numerical

simulations by the inerter effects.

In future work, we will develop an efficient method for de-

signing the spring and inerter in a high-speed running robot.

By appropriately setting the spring and inerter constants, we

expect to achieve faster running in legged robots with the

inerter than in conventional legged robots.
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