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Abstract. In this study, a novel approach was devel-
oped to achieve fast bipedal walking by using an ac-
tively controlled wobbling mass. Bipedal robots ca-
pable of achieving energy efficient limit cycle walk-
ing have been developed, and researchers have studied
methods to increase their walking speed. When hu-
mans walk, their arm swinging is coordinated with the
walking phases, generating a regular symmetrical mo-
tion about the torso. The bipedal robots with a wob-
bling mass in the torso were mimicked the arm swing-
ing by the proposed control method. We demonstrated
that the proposed method is capable of increasing the
bipedal walking speed.

Keywords: Biped robot, Wobbling mass, Limit cycle
walking

1. INTRODUCTION

Bipedal walkers can flexibly change their walking di-
rection, even in confined spaces, and can traverse a wide
range of terrains. This study aimed to apply these de-
sirable characteristics to a bipedal robot that is capa-
ble of achieving fast and energy efficient dynamic walk-
ing. Several researchers have developed bipedal walkers
that can traverse uneven terrains or climb stairs [1], [2].
Over the last decade, considerable progress has also been
made in the area of improving the energy efficiency of
bipedal robots. One approach has applied passive dy-
namic walking [3], which is also known as limit cycle
walking (LCW) [4]. Limit cycle walkers use their own dy-
namics to achieve more energy efficient walking in com-
parison with the competing designs [4]. However, they are
slower than many other bipedal robots such as ASIMO,
and researchers have attempted to find ways of improving
this.

Asano et al. demonstrated fast LCW by incorporat-
ing designs with arc-shaped feet [5], and a parametric-

excitation mechanism [6]. The effects of these leg mech-
anism consequently generated highly efficient and fast
bipedal walking. Banno et al. demonstrated fast LCW
using a parametric-excitation mechanism with knee and
used it in a robot of their design [7]. Hobbelen et al.
demonstrated LCW using ankle spring [8], which have
excellent effects similar to those of semicircular feet, and
allowing energy efficient and fast dynamic walking. They
have also demonstrated walking speed control of an LCW
robot whose upper-body posture allowed fast walking to
be achieved [8]. Hanazawa et al. have shown that ankle
springs and inerters lend the bipedal robots more appro-
priate mechanical impedance at their ankles to achieve en-
ergy effcient and fast limit cycle walking [9]. They have
also demonstrated fast LCW using asymmetric swing
leg motions [10] and shown that bipedal robots generate
propulsion for dynamic walking when the swing leg mo-
tion is synchronized with the stance leg motion. Bao et al.
demonstrated that fast LCW could be achieved by utiliz-
ing the rhythmic sway of the torso [11].

Therefore, we wanted to develop a novel method
achieving fast LCW. We define fast LCW as walking that
are faster than many previously actuated limit cycle walk-
ers. Previously developed limit cycle walkers have been
demonstrated to walk on level ground at a Froude number
of Fr = 0.15 [12]. The Froude number is an index of the
walking speed, which is defined as the walking speed di-
vided by the square root of gravity multiplied by the leg
length, v/

√
gl.

Rome et al. demonstrated that the walking motions
of human subjects carrying heavy backpacks were im-
proved when elastic elements were applied to the back-
pack’s up-and-down movements [13]. Tanaka et al. in-
creased the speed of a combined rimless wheel by using
the up-and-down movements of a wobbling mass [14]. It
is well known that human achieve level ground walking
with the dynamic arm swinging [15]. The instinctive arm-
swinging movements made by humans during walking
are similar to the up-and-down movements of a wobbling
mass when observed from the sagittal plane, as seen in
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Fig. 1. Analogy between swinging arms and wobbling
mass: the left figure shows the robot with arms, and the right
figure shows the robot with an actively controlled wobbling
mass

Fig. 1. Moreover, we assume a regular pattern of the arm-
swinging movements according that matches the walking
phase.

Humans change the amplitude of their arm swinging to
reflect the walking speed, i.e., a small change is observed
when walking slowly, and a larger change is observed
when walking quickly. This suggests that the walking
speed can be improved by applying actively regular verti-
cal movements to a wobbling mass, partly mimicking the
arm-swinging movements of humans. This study propose
a novel method on this observation. The effectiveness of
the actively controlled wobbling mass is confirmed in this
paper.

The rest of this paper is organized as follows. In Sec-
tion II, a bipedal-robot model is introduced. In Section III,
we show an active-control method for a wobbling mass.
In Section IV, level-ground walking with a wobbling mass
is numerically demonstrated. In Section V, we present the
results of our parametrical study on the energy efficiency
and walking speed of the robot. In Section VI, we discuss
using a spring to the energy-efficiency of the walking. Fi-
nally, the paper is concluded in Section VII.

2. MATHEMATICAL MODEL OF ROBOT

2.1. Equation of motion

A bipedal-robot model is shown in Fig. 2. The model
has a torso with an actively controlled wobbling mass and
arc-shaped feet. The wobbling mass can be increased or
decreased through the use of a linear actuator positioned
in the torso. There are two additional actuators that con-
trol the movement of the torso and swing leg. The equa-
tion of motion for the bipedal robot is given as

MMM(qqq)q̈qq+HHH(qqq, q̇qq) = SSS1uuu+ JJJc(qqq)Tλλλ , . . . . (1)

where qqq = [θ1, θ2, θ3, lb, x1, z1]
T is the generalized

coordinate vector, MMM(qqq) ∈ R6×6 is an inertial matrix,
HHH(qqq, q̇qq) ∈ R6 is a Coriolis, centrifugal, and gravitational
force vector, uuu = [u1, u2, u3]

T is an input vector, and the
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Fig. 2. Bipedal robot model with a wobbling mass

driving matrix SSS1 ∈ R6×3 is represented as

SSS1 =


0 −1 0
1 0 0
−1 1 0
0 0 1
0 0 0
0 0 0

 . . . . . . . . . . (2)

JJJc(qqq) ∈ RN×6 is a Jacobian that is depend on the con-
straint of the robot, where N is the number of constraint
conditions. λλλ ∈RN is a constraint force vector, which can
be obtained by

λλλ =−XXX(qqq)−1(JJJc(qqq)MMM(qqq)−1ΓΓΓ(qqq,q̇qq,uuu)+J̇JJc(qqq, q̇qq)q̇qq),
(3)

XXX(qqq)=JJJc(qqq)MMM(qqq)−1JJJc(qqq)T, (4)
ΓΓΓ(qqq,q̇qq,uuu)=SSS1uuu−HHH(qqq, q̇qq). (5)

2.2. Constraint conditions
To analyze the effectiveness of the proposed method,

we investigated LCW under the condition of active
control of the up-and-down motions in freely movable
and physically constrained wobbling mass. We derived
JJJc(qqq), J̇JJc(qqq, q̇qq) for each of the following cases.

2.2.1. Freely movable case
Since the bipedal robot’s is only in contact with the

ground, the constraint equations are expressed as follows:

R(cosθ1 −1)θ̇1 + ẋ1 = 0, (6)

−Rsinθ1θ̇1 + ż1 = 0. (7)
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From Eqs. (6) and (7), we determined JJJc(qqq) ∈ R2×6 and
J̇JJc(qqq, q̇qq) ∈ R2×6 as follows:

JJJc(qqq)q̇qq =

[
R(cosθ1−1) 0 0 0 1 0
−Rsinθ1 0 0 0 0 1

]
q̇qq = 0002×1, (8)

J̇JJc(qqq, q̇qq) =
[
−Rθ̇1 sinθ1 0 0 0 0 0
−Rθ̇1 cosθ1 0 0 0 0 0

]
. (9)

2.2.2. Physically constrained case
When the wobbling mass is physically constrained (i.e.,

lb = l0), we obtained the following constraint equation:

l̇b = 0. . . . . . . . . . . . . . . . . (10)

Based on Eqs. (6), (7), and (10), JJJc(qqq) ∈ R3×6 and
J̇JJc(qqq, q̇qq) ∈ R3×6 can be expressed as follows:

JJJc(qqq)q̇qq =

R(cosθ1−1) 0 0 0 1 0
−Rsinθ1 0 0 0 0 1

0 0 0 1 0 0

 q̇qq = 0003×1,

(11)

J̇JJc(qqq, q̇qq) =

−Rθ̇1 sinθ1 0 0 0 0 0
−Rθ̇1 cosθ1 0 0 0 0 0

0 0 0 0 0 0

 . (12)

2.3. Impact equation
We assume that contact between each swing leg and

the ground is inelastic and instantaneous. The velocity
immediately after impact can be derived by solving the
impact equations. Additionally, the angles and angular
velocities are updated in the simulations.

2.3.1. Freely movable case
For the freely movable wobbling mass, the constraint

equations are expressed as follows:

l1 cosθ1θ̇1 +((R− l1)cosθ2 −R)θ̇2 + ẋ1 = 0, (13)

−l1 sinθ1θ̇1 +(l1 −R)sinθ2θ̇2 + ż1 = 0. (14)

The instantaneous constraint matrix JJJI(qqq) ∈ R2×6 is then
given by

JJJI(qqq) =
[

A1 A2 0 0 1 0
A3 A4 0 0 0 1

]
, . . . . (15)

where A1 = l1 cosθ1, A2 = (R− l1)cosθ2 − R, A3 =
−l1 sinθ1, and A4 = (l1 −R)sinθ2.

2.3.2. Physically constrained case
The following constraint equation is applicable under

the condition that the wobbling mass is constrained (lb =
l0):

l̇b = 0. . . . . . . . . . . . . . . . . (16)

(b)(a) (c)

Fig. 3. Bipedal walking with active dual-arm movement

From Eqs. (13), (14), and (16), JJJI(qqq) ∈ R3×6 is given by

JJJI(qqq)=

 B1 B2 0 0 1 0
B3 B4 0 0 0 1
0 0 0 1 0 0

 , . . . . (17)

where B1 = l1 cosθ1, B2 = (R− l1)cosθ2, B3 =−l1 sinθ1,
B4 = (l1−R)sinθ2. The impulsive force vector, λλλ I ∈RN ,
and corresponding velocity vector, q̇qq+ ∈ R6, immediately
after the impact are respectively given by

λλλ I =−XXX I(qqq)−1JJJI(qqq)q̇qq−, (18)

XXX I(qqq) = JJJI(qqq)MMM(qqq)−1JJJI(qqq)T, (19)

q̇qq+ = (III −MMM(qqq)−1JJJI(qqq)TXXX I(qqq)−1JJJI(qqq))q̇qq−, (20)

where q̇qq− ∈ R6 is the velocity vector immediately prior
to the impact, and N is the number of instantaneous con-
straint conditions upon impact. We apply Eq. (15) in the
case of the freely movable wobbling mass and Eq. (17)
in the case of the physically constrained wobbling mass.
The bipedal robot changes the stance-leg immediately af-
ter the collision of the feet with ground.

3. CONTROL METHOD

3.1. Control for torso and swing-leg
Level ground walking was achieved by applying the

following simple partial differential control equations:

u1 =−KP1(ϕd − (θ1 −θ2))−KD1(θ̇2 − θ̇1), (21)

u2 =−KP2(θ3 −θ3d)−KD2θ̇3 +u1, (22)

where KP1, KP2, KD1 and KD2 are the control gains, ϕd
is the desired hip-joint angle, and θ3d is the desired torso
angle. Eq. (21) allows the bipedal robot to raise its swing-
leg, whereas Eq. (22) allows it to maintain the desired
torso angle.

3.2. Control of the wobbling mass for fast walking
The vertical movement of the wobbling mass was as-

sumed to be analogous to dual arm movement in human
walking. Fig. 3 shows bipedal walking with active dual
arm movement. The masses of dual arm descend from

Journal of Robotics and Mechatronics Vol.0 No.0, 200x 3
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(b)(a) (c)

Fig. 4. Bipedal walking with a wobbling mass

their initial position immediately after the collision of the
swing leg, and reach the lowest point at the vertical stance
leg. Moreover, the mass points then ascend until the next
collision of the swing leg. These relationships are not de-
pendent on the walking speed, and humans automatically
adjust their arm swings during a gait cycle. Similarly, the
amplitude of the vertical wobbling movement of the mass
points is also adjusted with the waking speed, i.e., the am-
plitude is large when the robot is walking fast, and small
when it is walking slowly.

As shown in Fig. 4, we therefore treated the serial
motion as the actively controlled wobbling motion of
the mass. Considering the above-described analysis of
human-arm swinging, the mass was setup to immediately
descend after the collision of the swing leg (Fig. 4(a)),
reaches the lowest point in its trajectory when the angle
of the stance leg is vertical (Fig. 4(b)), and ascend until
the next collision of the swing leg (Fig. 4(c)). This mo-
tion is in antiphase with the vertical motion of the center
of mass of the torso, Our proposed method regulates the
antiphase motion of the mass using the control input:

u3 =−KP3(lb − lbd)−KD3(l̇b − l̇bd), . . . . (23)

where KP3 and KD3 are the control gains, The desired tra-
jectory function for the wobbling mass lbd is given by

lbd := Ka(Pz −dt)+dw, . . . . . . . . . (24)

where Ka is the parameter that decides the wobbling am-
plitude, Pz is the height of the mass point in the torso, and
dt is the desired height of this mass point when the stance
leg angle is vertical. In this case, dt = l1 + a2, since the
torso is always vertical (θ3 = 0) , and dw is the parame-
ter that determines the maximum length of lb. The time
differentiation for the desired trajectory is given by

l̇bd = Ka(ż1 − l1 sinθ1θ̇1 −a2 sinθ3θ̇3). . . . (25)

This control almost ensures that the wobbling movement
of the mass is in antiphase with that of the torso mass.

4. WALKING ANALYSIS

4.1. Realization of dynamic walking
We present the results of implementing our control

method in a numerical simulation. Table 1 lists the phys-
ical parameters of the bipedal robot. We empirically de-
termined the control parameters listed in Table 2.

Figs. 5, 6, and 7 show the phase trajectories for level
ground walking with an actively wobbling mass. Figs. 8
and 9 show the input torques and force with respect to
time for the one gait cycle. Figs. 10, 11, and 12 show
the potential energy, kinetic energy and mechanical en-
ergy, respectively. It can be seen that the bipedal robot
achieved one-period LCW. We next investigated the wob-
bling movement with respect to the stance leg angle and
the vertical movement of the torso mass. Fig. 13 shows
the stance leg angle in LCW, Fig. 14 shows the height
of the torso, and Fig. 15 shows the height of the wob-
bling mass relative to the torso mass. The movement of
the actively controlled wobbling mass was in antiphase
with the vertical movement of the torso. Table 3 show the
walking speed under three conditions: no wobbling mass,

Table 1. Physical parameters

Symbol Value Unit
l0 0.25 m
l1 1.0 m
l2 1.0 m

a1 = b1 = l1/2 0.5 m
a2 = b2 = l2/2 0.5 m

R 0.1 m
m1 5.0 kg
m2 5.0 kg
mH 5.0 kg
mb 2.0 kg
I1 4.17×10−1 kg· m2

I2 4.17×10−1 kg· m2

Table 2. Control parameters

Symbol Value Unit
KP1 100 N·m/rad
KD1 25 N·m/(rad/s)
KP2 1000 N·m/rad
KD2 200 N·m/(rad/s)
KP3 1000 N/m
KD3 50 N/m
ϕd 0.60 rad
θ3d 0.00 rad
dt 1.5 m
dw 0.5 m
Ka 5.0 -
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Fig. 5. Phase trajectories of the stance leg (θ1 − θ̇1) during
LCW with an actively wobbling mass
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Fig. 6. Phase trajectories of the swing leg (θ2 − θ̇2) during
LCW with an actively wobbling mass
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Fig. 7. Phase trajectories of the movement of the actively
wobbling mass (lb − l̇b) during LCW

with a physically constrained wobbling mass, and with
an up-and-down wobbling mass. The fastest walking was
achieved when the actively wobbling mass was used, con-
firming that our proposed method can increase the speed
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Fig. 8. u1 and u2 with respect to time
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Fig. 9. u3 with respect to time
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Fig. 10. Total potential energy during LCW with an actively
wobbling mass

of bipedal robots. Specifically, the robot with an actively
controlled mass achieved considerably fast walking at Fr
= 0.25. In the next subsection, we analyze the details of
the speed-up mechanism.
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Fig. 11. Total kinetic energy during LCW with an actively
wobbling mass
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Fig. 12. Total mechanical energy during LCW with an ac-
tively wobbling mass
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Fig. 13. Stance leg angle during LCW with an actively wob-
bling mass

4.2. Using the vertical movement of the wobbling
mass to improve walking speed

To consider the contribution of the wobbling mass to
the reaction force under the conditions of our control
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Fig. 14. Height of the mass point of the torso during LCW
with an actively wobbling mass
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Fig. 15. Relative height of actively wobbling mass during LCW

Table 3. Walking speed under each condition

Condition Speed
no mass 0.59 m/s

locked mass 0.53 m/s
actively controlled mass 0.79 m/s

method, we defined a position vector from the origin to
the torso mass (m2) as

pppt =

 x1 + l1 sinθ1 +a2 sinθ3
0

z1 + l1 cosθ1 +a2 cosθ3

 , . . . . (26)

where each x, y and z element of the vector is as shown in
Fig. 2. Since our model is planar, the y element of the vec-
tor has a value of 0 m. Since the wobbling motions of the
mass are dependent on the height of the mass point of the
torso, this constitutes the third element of Eq. (26)(i.e.,
the z element of the vector).

We suppose that the radius of the arc-shaped feet is neg-
ligibly small, and that z1 is negligibly small during dy-
namic walking. The control input for the torso ensures
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that it maintains a nearly vertical posture. Since the torso
angle (θ3) is nearly 0 rad, the following relationship is
satisfied:

a2 cos(θ3)≈ a2 ×1 = a2. . . . . . . . . (27)

Since the height of the wobbling mass is determined
by the second term in the third element of Eq. (26),
l1 cosθ1, the height of the wobbling mass is dependent
on the angle of the stance leg (θ1). This height monoton-
ically increases over time beginning at the point at which
the stance leg changes, and reaching its maximum value
when this leg is vertical (θ1 = 0).

The height then monotonically decreases over time
when θ1 > 0. The control input for the wobbling mass
ensures that its up-and-down motion is in antiphase with
the torso-mass height, and it generates a reaction force
that serves to drive the robot to perform forward dynamic
walking when the stance leg angle is negative (θ1 < 0)
as shown in Fig. 16. It also generates a reaction force to
produce forward driving effects during dynamic walking
when the stance leg angle is positive (θ1 > 0) as shown in
Fig. 17. These reaction forces generate torque around the
contact point of the stance leg, which can be described as
follows:

M = [0 1 0](rrr×FFF), . . . . . . . . . . . (28)

where rrr is the position vector from the contact point of
the stance leg to the hip joint and FFF is the reaction force
vector generated by the control mechanism. A bipedal
robot can be considered to have a virtual actuator at the
ankle, which generates the driving torque.

To more clearly elucidate the forward driving effects,
we suppose that the stance leg angle (θ1) monotonically
increases through the stance phase. We further suppose
that the reaction force induced by the wobbling mass
is always positive when the stance leg angle is negative
(θ1 < 0) and negative when this angle is positive (θ1 > 0).
Under these assumptions, the contribution of the torque
generated by the virtual actuator at the ankle to the driving
effect at the equilibrium point (θ1 ≈ 0) of the mechanical
energy can be determined as follows:

E =
∫ T0

Ts

θ̇1(−Fl1θ1)dt+
∫ Te

T0

θ̇1(Fl1θ1)dt, . . (29)

where Ts is the time immediately after the stance leg
changes, T0 is the time at which the stance leg angle is
vertical, and Te is the time immediately after the collision
of the swing leg with the ground. The stance leg angle is
negative from Ts to T0 and positive from T0 to Te.

If all assumptions are satisfied, the first term on the
right-hand side of Eq. (29) is always positive from Ts
to T0, whereas the second term is always positive from
T0 to Te. The torque generated by the virtual ankle then
transfers the positive mechanical energy to the bipedal
robots, propelling it forward. Since these assumptions
are mostly satisfied by our proposed control method, the
antiphase up-and-down motion effectively increases the
LCW speed. Fig. 18 shows that the mechanical energy
from Ts to Te is calculated by Eq. (29). It can be seen that

1θ−
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+
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z
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Fig. 16. θ1 < 0 , i.e.,
when wobbling mass
falls
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Fig. 17. θ1 > 0 , i.e.,
when wobbling mass
rises

the effects of the wobbling mass cause the mechanical en-
ergy to monotonically increase.

5. PARAMETRIC STUDY

To explore the other elements that affect walking per-
formance, e.g., the size of the wobbling mass, the ampli-
tude of the up-and-down motion, and the arc-radius of the
feet, we conducted a parametric study.

5.1. Effects of the size of the wobbling mass
Fig. 19 shows that walking speed monotonically in-

creased as the size of wobbling mass increased. We next
investigated the energy-efficiency of the method by using
the specific-resistance (SR) as the energy-efficiency index
in bipedal robots. The SR is expressed as follows:

SR :=
p

Mtgv
, . . . . . . . . . . . . . (30)

where p [J/s] is the average input power, Mt [kg] is the
total mass of the robot and v [m/s] is the average walking
speed. The average input power, p, is given by

p :=
1
T

∫ T

0

(
|u1(θ̇2 − θ̇3)|+|u2(θ̇3 − θ̇1)|+|u3 l̇b|

)
dt,(31)

For example, the SR of the humanoid robot Asimo is 1.6
[4].

Fig. 20 shows the same behaviour for the SR. From
these results, we can see that the walking speed and SR in-
creases when the wobbling mass increases: this is because
increasing this mass increases the reaction force under the
condition of our control method, thereby enhancing the
forward driving effects that enable dynamic walking.

5.2. Effects of amplitude of the wobbling movement
The walking speed with respect to the amplitude of

movement of the wobbling mass is shown in Fig. 21. The
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Fig. 18. Mechanical energy generated by wobbling motion
during the time period ranging from Ts to Te
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Fig. 19. Walking speed with respect to wobbling mass

speed monotonically increased as the wobbling amplitude
increased. Fig. 22 shows the SR with respect to the wob-
bling amplitude and indicates that the energy efficiency
decreased as the amplitude increased. Figs. 23, 24, and
25 show stick diagrams of LCW under the condition of
Ka = 0.0, 4.0, and 8.0, respectively. As shown in Fig. 23,
the wobbling movement of the mass was synchronized
with that of the torso mass, resulting in the slowest walk-
ing speed. In Figs 24 and 25, the wobbling movement of
the mass is shown to be in antiphase with that of the torso
mass. The largest amplitude can be seen in Fig. 25, and it
corresponds to the fastest walking speed.

5.3. Radius of the arc-shaped feet
The bipedal robots used in this model were assumed to

have arc-shaped feet, and we investigated the effects of
changing their arc-radius. Fig. 26 shows that the walking
speed increased as a function of this arc-radius. Fig. 27
shows the SR results with respect to the arc-radius: it
can be seen that increasing the arc-radius under the con-
ditions of the proposed method also improved the energy-
efficiency. Furthermore, as was observed in a previous
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Fig. 20. SR with respect to wobbling mass
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Fig. 21. Walking speed with respect to amplitude of up-and-
down motion
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Fig. 22. SR with respect to amplitude of up-and-down motion

study of bipedal robots [5], the use of arc-shaped feet im-
proved the energy efficiency and walking speed.
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6. IMPROVING THE WALKING PERFOR-
MANCE BY USING A SPRING

We have demonstrated that fast level ground walking
can be realized as a result of using the proposed control
method. We also considered that the energy efficiency
could be improved by incorporating a spring. In this sec-
tion, we examine the effects of incorporating a spring
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Fig. 27. SR with respect to arc-radius
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Fig. 28. Bipedal robot model with a spring and an actively
controlled wobbling mass

on level ground walking with a wobbling mass. Fig. 28
shows the bipedal robot model with a spring and an ac-
tively controlled wobbling mass. The spring force is given
by

fb =−Kb(lb − l0), . . . . . . . . . . . (32)

where Kb is the spring constant and l0 is the natural spring
length. Fig. 29 shows the walking speed with respect to
the spring constant. Fig. 30 shows the SR results with
respect to the spring constant. We see that the walk-
ing speed slightly decreases when the spring constant in-
creases. However, the SR were convex downward and we
can see that minimum value at the specific spring constant
in each case.

Fig. 31 shows the walking speed with respect to the nat-
ural angular frequency. Fig. 32 shows the SR results with
respect to the natural angular frequency. It can be seen
that the walking speed slightly decreases when the natural
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Fig. 29. Walking speed with respect to spring constant
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Fig. 30. SR with respect to spring constant
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Fig. 31. Walking speed with respect to natural angular fre-
quency

angular frequency increases. However, the SR improves
when the natural angular frequency (ωn =

√
Kb/mb) is

approximately 8.5 rad/s. Thus, we should design the
wobbling mass and adjust the spring constant to satisfy
ωn ≈ 8.5 rad/s.
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Fig. 32. SR with respect to natural angular frequency

7. CONCLUSION AND FUTURE WORK

In this study, we developed a novel fast walking method
that entails the installation of an up-and-down wobbling
mass in the torso and have validated its effectiveness
through numerical simulation. We mathematically ana-
lyzed the gait cycle of a bipedal robot equipped with such
a wobbling mass to clarify the mechanism by which the
observed increase in speed was achieved. Based on the
results of analysis, the wobbling movement of the mass
in antiphase with that of the torso mass generated a vir-
tual ankle torque, thereby generating a propulsive force
that propels the robot forward. Our proposed mechanism
can be used to further increase the speed of a limit cycle
walker. Moreover, the walking speed of bipedal robots
with dual-arm can be improved by arm-swinging move-
ment based on the propulsive effects due to the up-and-
down of a wobbling mass [16]. In the future, we want
to develop a bipedal robot with a wobbling mass and ver-
ify the effectiveness of our control method by perform-
ing walking experiments. Additionally, we intend to de-
velop a derivation method for the analytical solution of
our model.
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