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ABSTRACT Network resource management is one of the key technologies needed to ensure that multiple
applications in edge networks provide reliable and stable performance. Although throughput has previously
been seen as the primary network performance metric, recent applications do not focus on throughput
alone. Instead, Quality of Experience (QoE) is attracting significant attention as an indicator of network
resource management performance because it allows a wide variety of applications to be compared within
a single metric. In this study, we tackle QoE measurements for a video streaming service as a way
to evaluate QoE-based network management. However, there are several problems related to measuring
QoE. For example, in-network components are difficult to measure because QoE is normally measured
at end-points, and several properties that are deeply related to application settings are required for those
calculations. Additionally, the measurements set forth in the International Telecommunication Union’s
ITU-T G.1071 standard require a certain duration, which is too long for network resource management
evaluations. Therefore, this paper proposes a two-staged in-network QoE estimation method for video flows
that can resolve these issues. In the first stage, we focus on producing a fast and rough QoE estimate to
start forwarding the arriving flow onto an appropriate route as soon as possible. Next, the second stage
is designed to produce precise QoE estimations based on careful long-duration measurements. In both
stages, the proposed method uses a parameter estimation process that converts in-network information to
end-point information for QoE calculations by following ITU-T G. 1071 and corrects measurement errors
reducing QoE calculation errors to the greatest extent possible. Through experimental evaluations, we then
demonstrate that the QoEs of all flows can be maximized by selecting appropriate routes based on the
predicted QoE at the first stage, and that the accuracy of the QoE estimation at the second stage can be
improved in real-time even when packet losses occur.

INDEX TERMS Error correction, network measurement, OpenFlow, RTP, software defined networking,
quality of experience, video streaming.

I. INTRODUCTION
Network traffic is increasing significantly due to the spread
of rich video-based contents such as movie streaming, vlogs,
and even newscasts. According to a report by Cisco Systems
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Inc., [1], video streaming services have grown to become a
key component of the Internet. Since this trend has resulted in
several problems that must be resolved, including alleviation
of huge traffic amounts and reductions to communication
latency, contents tend to be delivered from near proximity to
their end-users, such as local data centers or edge servers [2].
In such local content delivery models, network resource
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management is one of the key technologies needed to ensure
that multiple applications in edge networks provide reliable
and stable performance.

Additionally, although previous studies have examined
throughput-oriented resource management [3]–[5], providing
good network performance for some applications is partic-
ularly difficult because not all emerging applications focus
solely on throughput. Thus, a network resource management
evaluation that is based on another simple and useful metric
is required. One candidate metric is Quality of Experience
(QoE), which indicates application performance at an end
host. Because QoE enables us to compare a wide variety
of different application flows on a network with a single
common metric, it is expected to be useful for resource
management on networks where amultiplicity of applications
coexist.

Ideally, the fundamental QoE concept is the user’s percep-
tion of an application [6], which means its score should be
based on subjective user evaluations. However, since such
scoring is not applicable to network management, several
other ways ofmeasuringQoEwithout human perception have
been proposed and standardized [7], [8],[9]. If we feed the
QoE scores of every flows to a network management system,
it is possible to optimize network resources (network routes)
that maximize the QoEs for those same flows.

Video streaming is a representative application that does
not rely solely on throughput and QoE measurements regard-
ing it have been studied extensively for decades [10].
However, there are several problems when attempting to
apply QoE measurements to network resource management.
First, in-network components cannot measure QoE because
QoE is an end-point performance metric, and standards
such as the International Telecommunication Union’s ITU-
T G.1071 require end-point measurements. Second, several
of the parameters needed for QoE calculations cannot be col-
lected within a network because they are deeply and directly
related to the properties of the displayed video. Third, QoE
measurements normally require a certain duration after a
designated flow begins, which imposes delays that make it
difficult to promptly arrange network resources for newly
arriving flows. Fourth, since video streaming is particularly
sensitive to packet losses, the calculated QoE score is signif-
icantly decreased if even a minor measurement error occurs.

To enable QoE scores to be used for resource manage-
ment and resolve the above-mentioned problems, we pro-
pose a two-staged in-network QoE estimation method for
video flows. For ‘‘in-network’’ realization, we employ Open-
Flow [11] software-defined network (SDN) technology,
which enables us to collect statistical information for each
flow from network switches in between end hosts. To adapt
the QoE measurement method, which is originally standard-
ized for end-point measurements, to in-network measure-
ments, we created a way to convert in-network measurement
results to application video parameters. Additionally, to fill
the time gap between the start of communication and the
QoE estimation, we employ a two-staged QoE estimation

mechanism in which we first obtain a roughly QoE value
based solely on the information collected at the start of a
newly arrived flow, and then precisely estimate QoE based
on careful long-duration measurements in the second stage.

The remainder of the paper is organized as follows.
Section II introduces works related to QoE based network
management and discusses the advantages of our proposal.
In Section III, we explain a standardized QoE calculation
method for video streaming and conduct a theoretical survey
for that model. Section IV introduces our proposed method in
detail, while evaluations are discussed in Section V. Finally,
Section VI concludes our study.

II. RELATED WORKS
QoE-driven networks have previously been the topic of
numerous papers [12]–[20]. For example, in the paper [12],
the authors studied a network-wide QoE-fairness method that
operates by dynamically allocating network resources for
heterogeneous applications. As a result, they improved the
quality of video streaming and file downloading by consider-
ing video buffering time and throughput. However, since that
method was specialized for cases involving coexisting video
and file download traffic, it did not result in a common metric
that would be applicable to any other applications. This is
an important consideration because using QoE directly as
a network management metric would eliminate the need to
change management policies to support each application.

Separately, papers [13]–[19] calculated QoE by parameters
obtained from the application layer. However, since appli-
cation layer information is often encrypted between end-
to-end hosts, the retrieval of information deeply relating
to application layer from in-network components such as
routers is inherently difficult. Accordingly, to calculate QoE
on in-network components, a way to estimate these appli-
cation parameters based on the available network parame-
ters is required. Additionally, even though other papers such
as [17]–[19] have introduced ways to measure application
parameters, they assume that each of the network components
directly collect and analyze video packets for the QoE score
calculations. In contrast, instead of directly measuring every
packet, our method uses SDN functionalities to collect statis-
tics for each application flow (flow level) in order to calculate
its QoE scores. Additionally, we propose a method for esti-
mating video properties that considers realistic deployment
conditions.

In the paper [20], the authors used a neural network to
estimate QoE scores for video flows. Their neural network
learned only network parameters, such as packet loss rates
(PLRs) and the length of burst losses, in the access point (AP),
and then allocated flow priorities based on the estimated
QoEs. However, they used subjective QoE test user responses
as the neural network labels even though subjective QoE
evaluations are highly dependent on individual perceptions.
In contrast, our method adopts an objective way to apply
ITU standardized QoE parameters, which means it does not
depend on individual perceptions.
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Moreover, most of the previous studies assumed that the
parameters needed for QoE calculations would be mea-
sured precisely. However, in realistic scenarios, errors often
occur in the in-network componentmeasurements. Therefore,
in this paper, we first investigate how measurement errors
occur through the experiments in a real environment, and
then identify the key parameters that significantly affect QoE
values.

III. QoE VIDEO STREAMING CALCULATION
The previously mentioned ITU-T G.1071 [7], which is a
major standard for use in video QoE calculations, is intended
to make it possible to calculate video QoEs using network
measurement results. Accordingly, while it would be ideal
to employ this QoE measurement standard in our work,
the G.1071 standard also requires both network parameters to
be obtained via measurements, and the application parameter
video settings to be collected by video images from the
application. These information also must be from 8-second
measurement. Furthermore, while the QoE score is normally
calculated using a combination of video and audio metrics,
we omit the audio data in our method and focus solely on the
videometric to simplify the QoE calculation model. Note that
QoE estimation results are judged on a range from 1 to 5.

TABLE 1. G.1071 target video settings.

G.1071 consists of two resolution categories: high- and
low-resolution (Table 1). Herein, we use high-resolution
video because there is now more demand for that category
than low-resolution video. The QoE calculation model is
denoted as shown below:

Qscore = 1.05+
3.85

100Q100

+(7.0× 10−6)Q100(Q100 − 60)

×(100− Q100) (1)

Q100 = 100− Qapp − Qnet (2)

Qapp = AeBP + C + (DeEP + F)+ G (3)

P =
106vbr
vrvfr

(4)

Qnet = H log(IJ + 1) (5)

J = vc1 exp{
vplvc2(vc3 − vc4)

vc4(vc5vbl + vc6)+ vpl
} − vc1 (6)

Qscore is the QoE score range from 1 to 5, and is calcu-
lated from Q100, which is QoE score range from 1 to 100,
via Eq. (1). In this study, we use Qscore as the QoE value.

The A ∼ I parameters are fixed and defined in G.1071. Only
B and E have negative values, while all others have positive
values. Additionally, the video bitrate vbr [bps], resolution
vr [pixel], frame rate vfr [fps], and packet loss concealment
(PLC) are pre-determined as the video setting parameters.
On the other hand, the PLR vpl [%] and the average number
of consecutive packet losses vbl, which is the average length
of the burst losses, are parameters that need to be measured
at the end hosts. Here, it should be noted that vc1 ∼ vc6
in the Eq. (6) have different values depending on the PLC
function chosen in the application settings. A PLC is an
error correction method for damaged video frames occurring
from packet losses with two functions: freezing (which only
ignores losses) and slicing (which tries to correct the losses).

From this model, we can see that the PLR has the largest
impact on the video QoE. Table 2 shows the relationship
between the PLR and QoE, as calculated by the model.
All of the parameters except the PLR are fixed to a standard
definition (SD) video with a bit rate of 2.5 Mbps, a frame rate
of 30 fps, slicing PLC with one slice/frame, and an average
number of consecutive packet losses of one. In this case, even
0.1% packet losses (two lost packets per second on the SD
video) have a significant impact on the QoE score. Therefore,
we can conclude that PLR is a key video QoE parameter.

TABLE 2. PLR impact on QoE.

FIGURE 1. Target network model.

IV. TWO-STAGED IN-NETWORK QoE ESTIMATION
To perform QoE estimations in an in-network fashion,
we assume the use of an SDN (OpenFlow)-enabled edge net-
work, i.e., a network positioned in between two end hosts who
communicate by video streaming, as shown in Figure 1. There
are two routes with different network characteristics. A single
OpenFlow Controller (OFC) collects statistical information
from any OpenFlow Switches (OFSes) located on either
route. It then uses that information to determine appropriate
transmission routes for each flow by directing flow entries
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towards the appropriate OFSes. On this network, we define
a flow by 5-tuple, which refers to a unit of video streaming
flow, and estimate the QoE score for each flow based on the
flow statistics collected by the OFC.

To apply the G.1071 standard to our QoE calculation
model, we essentially need to measure six parameters
observed at an end host: the PLR, the average number of con-
secutive packet losses, the video bitrate, the video resolution,
the frame rate, and the PLC. However, as a means of con-
tributing to network management, end-point measurements
are not a realistic technique for real Internet services. Accord-
ingly, we virtually convert statistical information acquired at
the OFC (in-network measurement results) to end-point mea-
surement results. Furthermore, the G.1071 QoE calculation
requires relatively long (eight-second) measurements, which
is unsuitable for network management operations that must
allocate network resources to every flow upon arrival. There-
fore, we divide the QoE estimation process into two stages.
In the first stage, a QoE score is promptly but roughly esti-
mated to select a temporary routing path for flow transmission
at the arrival time. Then, in the second path, a precise QoE
score for the ongoing flow is estimated. Since SDN-based
measurement errors occur in both stages, we employ error
correction techniques for each. These two stages, including
the details of several techniques mentioned above, will be
described below.

A. FIRST STAGE: EARLY QoE ESTIMATION
FOR NEW FLOW ARRIVAL
When a new video flow arrives at the SDN-enabled edge
network, its QoE must be measured as soon as possible so
appropriate network resources can be allocated. This means
we must make the initial new flow QoE estimate based
on limited information because detailed flow information is
not yet available. To calculate the QoE via Equation (1),
we must first acquire network parameters (i.e., the PLR and
the average number of packet losses) and application (video)
parameters (i.e., bitrate, resolution, frame rate, and PLC) on
the OFC. However, since most of these information types
require measurement results that are unavailable at the start of
a flow, this stage focuses on producing prompt but rough QoE
estimations that can be used to immediately start the flow on
an appropriate route. The second stage then gathers informa-
tion until a sufficient quantity is available for a precise QoE
estimation.

1) EARLY NETWORK PARAMETER ESTIMATION
Network parameters required for QoE include the PLR and
the average number of consecutive packet losses. However,
since it is impossible to obtain the PLR for a flow before it
starts, we begin by assuming that the PLR for all flows on the
same data link will be the same, and thus regularly measure
the PLR of existing traffic. Since these measurements take
place before a flow arrives, we can use the pre-measured
PLR for calculating the QoE of a newly arrived flow.

FIGURE 2. Example of the error correction using receiver surplus packets.

Additionally, since network conditions may be different
among routes, we measure the PLR for each route.

We regularly measure the PLRs of existing traffic using the
port statistics (PortStats) of each OFS, which are collected
from the OFC on a request basis. Since the PortStats include
the cumulative number of transmitted and received packets
on each network interface (not each flow) of a designated
OFS, the OFC obtains the number of transmitted and/or
received OFS packets by subtracting the number from two
consecutive PortStats acquired during a certain period (see
Figure 2 (i)). The OFC takes the difference of the number
of packets transmitted from one side of the OFS (sender-side
OFS) and the number of packets received at the other side of
OFS (receiver-side OFS) (see Figure 2 (ii)) — this difference
is treated as the number of lost packets — and then calculates
the PLR of one-hop (between directly connected sender- and
receiver-side OFSes) by dividing the number of lost packets
by the number of transmitted packets. After the PLRs of every
hop are calculated, the OFC calculates the end-to-end PLR,
which refers to the PLR between two OFSes accommodating
two end hosts, by multiplying the PLR of every hop on a
route.

The above procedure may cause measurement errors
because PortStats cannot be collected between two OFSes
at the exact same time (see Figure 2 (iii)). However, since
packet losses are the primary factor affecting video QoE,
we can try to correct the errors with an additional mechanism.
More specifically, since the OFC is set up to perform the
measurement for handling new flows at any time, we can
employ a simple error correction in the time domain. The
measurement errors are categorized for two cases: when the
number of received packets at the receiver-side OFS is larger
than the transmitted packets at the sender-side OFS (receiver
surplus), and when the number of transmitted packets at the
sender-side OFS is larger than the number of received packets
at the receiver-side OFS (sender surplus). The receiver sur-
plus, which is obviously a measurement error, often causes a
subsequent sender surplus error; while the sender surplus is
most likely to be caused by packet losses and measurement
errors.

As the first stage of the QoE estimation focuses on
promptness while allowing for a certain degree of reduced
preciseness. We only use this stage to correct receiver surplus
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measurement errors.More specifically, theOFC continuously
collects and holds receiver surplus packets when a sender
surplus occurs. These packets are held cumulatively because
a sender surplus not only occurs on an immediate subsequent
measurement. For example, in the case of Figure 2, a +1
receiver surplus occurs first (see Figure 2 (iv)) and the sender
surplus occurs later. Since we have one surplus packet that
can be used to correct a subsequent sender surplus at the
start of the sender surplus, (see Figure 2 (v)), it can be
used to correct measurement errors caused by the receiver
surplus.

Regarding another necessary parameter, the average num-
ber of consecutive packet losses, the OFC cannot recognize
consecutiveness because it only allows us to collect statistics.
Since, according to G.1071 model, the QoE’s worst scores
occur when the average number of consecutive packet losses
is one, we always use that value in this paper.

2) EARLY APPLICATION PARAMETERS ESTIMATION
It is difficult to discern application video settings properties
by in-network methods, and it is even more difficult when a
new video flow first arrives because there is no information
about the flow at all. That is why it is necessary to collect
any and all information as soon as possible before estimating
application parameters. To accomplish this, the OFC quickly
but tentatively, forwards a newly arriving flow onto the route
with the largest residual bandwidth and use statistics but
promptly switches the flow onto a more appropriate (better
QoE) route once it obtains sufficient information.

FIGURE 3. The number of video flow packets transmitted every
0.1 seconds.

Once on the tentative route, we measure the new flow
throughput because we already know its video bitrate must
relate to throughput. Figure 3 shows the number of transmit-
ted packets of a video flow plotted for every 0.1 seconds. Note
here that, in this experiment, we are only transmitting a single
video flow on a stable network, and that ‘‘Theoretical’’ refers
to the theoretical number of packets that can be transmitted
every 0.1 seconds in each video bitrate. As throughput at
the beginning is significantly different from the theoretical
value due to video buffering, we cannot use instantaneous
throughput for bitrate estimations. Instead, we use the number
of transmitted bytes for a set period. The correlation between
the number of transmitted bytes for 0.9 seconds and the
video bitrate shown in Figure 4 indicates that this time period

FIGURE 4. The correlation between the number of transmitted bytes for
0.9 seconds and video bitrate.

is sufficient to identify the video bitrate. The reason why
0.9 seconds was selected as the measurement period is that
it and the operational margin (0.1 seconds) are most suitable
for switching to the second stage of QoE estimation, which
requires the stable throughput behavior that starts around
one second after the flow begins. Therefore, to obtain the
video bitrate from the number of transmitted bytes, we use
the approximation line of Figure 4,

vbr = 8.7903b− 7.7067× 102 (7)

where vbr [kbps] is video bitrate and b [kbyte] is the number
of bytes transmitted at 0.9 seconds from the start of new video
flow.

For collecting b, we use the flow statistics (hereafter, Flow-
Stats) that any OFC can obtain on a request basis. In this pro-
cess, after the OFC forwards sends a new flow to a tentative
route, the OFCwaits 0.9 seconds, and then collects FlowStats
by specifying the new flow. Since the obtained FlowStats
include the cumulative number of packets and the cumulative
number of bytes handled by the OFS, we use that byte total
in Equation (7).

TABLE 3. Recommended video bitrates for resolution and frame rates.

Other parameters, video resolution and frame rate, are
converted from the video bitrate. We use YouTube recom-
mendations for the resolution, frame rate, and video bitrate
video settings, as shown in Table 3 [21]. We then modified
Table 3 and obtained Table 4 to define the video settings
boundaries, which are the mean of the video bitrate of each
setting and the maximum frame rate. As a result, we can
estimate the resolution and frame rate based on the video
bitrates shown in Table 4.

For the PLC application parameter, we use a fixed value
because it is impossible to acquire or estimate that value
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TABLE 4. Resolution and frame rate estimates based on video bitrates.

in-network without decoding the video data. Therefore,
we use one slice per frame as PLC, which results in a lower
QoE score than other PLC parameter types.

3) ROUTE SELECTION BASED ON ESTIMATED QoE
After estimating all parameters, the OFC calculates the
expected QoE for each route, which is based on the estimated
QoE score obtained if the target flow follows those routes,
after which it switches the flow from the tentative route to the
route with the highest estimated QoE. This method allows us
to effectively use the time gap between the flow arrival and
when the QoE ismore precisely estimated by the second stage
procedure.

B. SECOND STAGE: PRECISE QoE ESTIMATION
FOR ONGOING FLOW
Since the OFC collects flow statistics for a longer period
in the second stage, information precision can be improved
significantly over that possible in the first stage. Since
the G.1071 standard requires eight-second measurements,
we adopted that time period for our measurements. This
can also help produce higher precision of video bitrate and
PLR estimates. Note that the average number of consecutive
packet losses, frame rate resolution, and PLC, are obtained in
the same manner in the first stage because they do not depend
on the measurement period.

In the second stage, we use the most recent recorded
eight seconds to obtain the throughput of each flow. More
specifically, once the first stage selects an initial transmission
route (i.e., one second after the flow starts), the OFC starts
collecting FlowStats from the OFSes accommodating both
end hosts at one-second intervals. In this throughput mea-
surement, we use the statistics obtained from the OFS that
is nearest to the host sending the video stream. Along with
a periodic collection of FlowStats, the OFS calculates the
average throughput for the latest eight seconds and then, after
reducing the amount of control headers, uses that value as the
video bitrate. This is because the video streaming throughput
converges around the video bitrate one second after a flow
starts, as can be seen in Figure 3.

The flow PLR is calculated using statistics obtained from
the OFSes accommodating both end hosts. The basic idea
is based on the same concept used by the first stage, which
is observing differences in the number of packets sent on
the sender-side OFS and received on the receiver-side OFS.
The differences are the measurement section. In the first

stage, we measure the PLR hop-by-hop to calculate candidate
routes. However, in the second stage, we only calculate the
PLR on a route if the flow is complete, whichmeans this stage
only uses statistics from neighboring (or directly connecting)
end host OFSes.

As with the first stage, measurement errors occur due to
the same reason. However, the measurement errors in this
stage occur in the FlowStats instead of the PortStats used in
the first stage. Since the second stage focuses on producing
a more precise QoE estimation, a more sophisticated packet
loss error correction mechanism is needed. In the following
subsection, we describe measurement error characteristics
and the measurement error correction method that uses those
characteristics.

1) MEASUREMENT ERROR CHARACTERISTICS
Since the differences between the number of sent and received
packets on the sender- and receiver-side OFSes are caused by
either packet losses or measurement errors, we need a method
to differentiate packet losses from measurement errors in
order to precisely calculate the PLR.

Since the OFC collects measurement statistics periodi-
cally, we assume that the error quantity per measurement
and error measurement recovery delays, which refer to the
time between an error occurrence and its compensation,
possess some similar tendencies. To investigate this point,
we conducted an experiment in which we transmitted a single
video flow using the settings in Table 5 for 1508 seconds on
a stable OpenFlow-controlled network. In this experiment,
there were two directly connected OFSes with connected end
hosts. We performed the same measurement with the second
stage and detected 243 measurement errors. Here, it should
be noted that no packet losses occurred in this experiment.

TABLE 5. Video settings of Section IV-B1.

Figure 5 shows the frequency and error quantity per mea-
surement trial results. Since measurement errors were classi-
fied into two types, sender and receiver surpluses, we analyze
them separately. In Figure 5, we can see that there is no bias
between the sender and receiver surpluses and that 96% of
measurement errors are within the quantity of one packet.
From this result, we can say that the maximum measurement
error quantity is one packet.

Figure 6 shows the result for measurement errors recovery
delays. Measurement errors result from the time gap in col-
lecting FlowStats from the two OFSes. Since both sender and
receiver surpluses are definitely due to measurement errors
in this experiment, we can measure delays until each surplus
has been compensated for. There are two recovery delay
types, sender surplus first and receiver surplus later, and vice
versa. Since we have already determined that the possibility
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FIGURE 5. Frequency and error quantity per measurement.

FIGURE 6. The frequency of the measurement error recovery time.

of causing sender and receiver surpluses is almost same
(see Figure 5), we can count both together. In Figure 6,
which shows a recovery delay and frequency histogram,
we can see that the shorter the time from the occurrence
of errors, the greater the frequency of recovery. Since 95%
of the measurement errors have been recovered within eight
seconds, we can conclude that any surpluses remaining for
eight or more seconds are packet losses. From these points,
we convert Figure 7 to a cumulative distribution and fit plots
with y = A

x+B + C (Figure 7). The approximate curve is

F(t) =


0 (t ≤ 0)
−2.45300
t+1.98451 + 1.23839 (0 < t < 8)
1 (8 ≤ t),

(8)

where t is the time from the occurrence of a measurement
error.

Summarizing the investigation of measurement errors,
we can find the following two characteristics.
• The quantity of measurement error is one packet.
• The recover delay follows the curve of Equation (8).

2) ERROR CORRECTION
Next, we present a measurement error correction method
for counting packet losses that is based on the measurement
error analysis results. Since two types of errors occur in our
measurements, we correct each error type via a different
method.

FIGURE 7. The cumulative distribution of the measurement error recovery
time.

First, we focus on sender surplus error correction. Sender
surplus errors come in two types (packet loss and measure-
ment error) but the type cannot be identified when the surplus
occurs. Nevertheless, we need to decide its type and obtain
the exact number of packet losses to calculate QoE at this
point. For this decision, the two characteristics identified in
the previous section can be useful. If the number of sender
surplus packets is two or more, we can treat that number
minus one as a packet loss although the remaining packet
might be still a measurement error. We then calculate the
possibility of measurement errors for the remaining packet
based on the fact that the expected value of the packet loss
gets larger with the passage of time (see. Figure 7). That is
why we calculate the packet loss fraction in relation to the
measurement error possibility (Eq. (8)), i.e., calculating F(t),
and adding the calculated value from F(t) to the number
of packet losses. When the time after surplus occurrence
exceeds eight seconds, it is handled as a 100% packet loss,
i.e., we add one packet to the packet loss number. On the other
hand, if the sender surplus is compensated for by the arrival
of another receiver surplus, we do not treat the sender surplus
as lost.

In the case of a receiver surplus, a measurement error can
be clearly identified because the number of received packets
on a receiver-side OFS must be equal to or less than the
number of sent packets on the sender-side OFS. This is why
we use the subsequent sender surplus to compensate for the
receiver surplus, even though the sender surplus used here
might still be due to packet losses. In such cases, the next
send-surplus caused by measurement error will be treated as
packet losses if they are not recovered within eight seconds.
Hence, although a short delay may occur, actual packet loss
can be detected.

V. EXPERIMENTAL EVALUATION
In this section, we evaluate the two-stage in-network QoE
estimation method in a real environment. To evaluate the
preciseness of estimated QoE, we compare with the true value
measured by the end hosts based on G.1071.
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A. EVALUATION FOR EARLY QoE ESTIMATION
ON THE FIRST STAGE
Since the aim of this experiment is to show the effectiveness
of the early QoE estimation, we began by comparing the
estimated QoEs with the true values obtained from the end
hosts, and then showed that the QoE-based route selection
successfully improved the QoE of all flows transmitted on
the SDN-enabled network. For these evaluations, we prepared
two scenarios with different purposes.

1) COMPARATIVE METHOD
We use a throughput-oriented route selection scheme [3] that
works on the same SDN-enabled network used this study
as a comparative method. This method avoids packet losses
for newly arriving flows by temporarily forwarding the flow
onto the route with the largest residual bandwidth because
its required throughput is unknown at arrival. After the
OFC measures the flow throughput by exploiting FlowStats,
the OFC redirects the flow to the route with the smallest, but
still sufficient, residual bandwidth. This throughput-oriented
mechanism is designed to ensure network resources are used
as efficiently as possible.

FIGURE 8. Environment for early estimation experiment.

2) EXPERIMENTAL SETTINGS
The experimental topology is shown in Figure 8. Regarding
OpenFlow, we used Trema as the OFC controller software
and installed Open vSwitch on each OFS. All devices were
connected via a 100 Mbps Ethernet. We placed a personal
computer (PC) running the Linux operating system (OS)
between OFS 1-2 and OFS 2-2 to generate 1% random packet
losses. Next, we defined the route fromOFS 1-1 toOFS 2-1 as
Route 1 and fromOFS 1-2 to OFS 2-2 as Route 2. In addition,
we prepared two background traffic flows, a 2 Mbps flow
through Route 1 and a 4Mbps flow through Route 2, to create
an imbalanced residual bandwidth situation between the two
routes. We then evaluated how the QoEs of all flows varied
when several flows, including video streaming flows, were
transmitted from the edge server to the client.

3) SCENARIO 1: EVALUATION IN CASE OF ONLY
VIDEO FLOW
In this scenario, we show how the proposed method improves
the QoE of the incoming video streaming flow. We also
evaluate the accuracy of the estimated PLR, video bitrate, and
QoE. To accomplish this, we transmitted a video flow from
the edge server (PC 1) to the client (PC 2) and then evaluated
the early QoE estimation and route selection results for the
first stage. In this experiment, two kinds of video (3,250 kbps
and 10,000 kbps) were transmitted, and the scenario was
repeated nine times.

TABLE 6. The true QoE value after the route selection in Scenario 1.

Table 6 shows the true QoE value after the first stage
route selection. When the comparative method is used, even
though a newly arriving flow is first transmitted on Route 1,
which has the largest residual bandwidth, video flow is later
switched to Route 2 to utilize the maximum available residual
bandwidth on that route. However, after switching, the video
flow QoE drops drastically to around 1.3 because of Route
2 packet losses. In contrast, in our proposedmethod, the video
flow is continuously transmitted on Route 1, even after the
route selection based on estimated QoE. Hence, the median
and maximum values of QoE are around 4.3, which is good
quality. However, the minimum QoE value is around 1.3.
This is because PLR measurement errors, which cannot be
corrected in Section IV-A1, degrade the estimated QoE. As a
result, switching the video flows to Route 2 causes packet
losses and degrades the QoE.

TABLE 7. Estimated and true PLR value in Route 1.

To investigate the PLR estimation, Tables 7 shows the
estimated and true PLR values in Route 1. Although no packet
losses occur, the estimated PLR in the maximum value case is
overestimated by 1%more than the true value, whichmeans it
degrades the QoE score. This gap, which was caused by fail-
ing to correct the errors introduced in Section IV-A1, occurs
because the first stage of the proposed method only corrects
receiver surplus measurement errors. However, the problem
is resolved by the detailed QoE estimation for the ongoing
flow.

Next, focusing on the video bitrate shown in Table 8 and 9,
we can see that the estimated video bitrate for 3,250-kbps
video is almost the same as the true value, while it is lower
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TABLE 8. Estimated and true value of video bitrate in Route 1.

TABLE 9. The estimated and true value of QoE in Route 1.

than the true value for a 10,000-kbps video. This is because
the number of bytes measured in the OFC is limited due
to its processing delay. However, the difference between the
true value and median/maximum estimated QoE score is only
around 0.3, which is almost the same as the true value because
the video bitrate has less impact on the QoE.

These results demonstrate that the first stage of the pro-
posed method can improve video QoE by switching to a
more appropriate route based on the estimatedQoE.Although
there are cases in which the estimated accuracy declines, this
does not present a problem because the second stage of the
proposed method can accurately estimate QoE and modify
the flow route based on the corrected results.

4) SCENARIO 2: EVALUATION IN CASE OF MULTIPLE FLOWS
In this scenario, we demonstrate the effectiveness of the first
stage of our proposed method in case of multiple new flow
arrivals and using the estimated QoE for route selection.
For this evaluation, we transmit three flows in the order
of Video 1, Video 2, and the File Transfer (FT) flows at
5-second intervals. The bitrate of both Video 1 and 2 is set
to 2,500 kbps while the FT is a simple TCP file transfer.
Since we assume that OFC can precisely estimate QoE of
FT based on throughput, we use the true value of the QoE
calculated following the method described in [22] for FT
route selection. Although we repeated this experiment nine
times, we will limit our discussion to the median of the
obtained experimental values.

Figure 9 shows time-series results for the true QoE value
when the comparative method is used. Although a newly
arriving video flow is first transmitted on Route 1, which has
the largest residual bandwidth, the flow is then switched to
Route 2 based on the throughput-oriented mechanism. As a
result, the Video 1 QoE is high at the flow arrival time but
drops drastically after route selection due to packet losses on
Route 2. For Video 2, since the comparative method performs
the same flow management as used with Video 1, the flow
QoE declines. Finally, for the FT, the comparative method
initially selects Route 1 but does not change the route because
the FT cannot be transmitted on Route 2 without packet
losses. As a result, the FT could maintain high QoE but both
video flows could not when the comparative method was
used.

FIGURE 9. Scenario 2 QoE transition using the comparative method.

FIGURE 10. Scenario 2 QoE transitions using the proposed method.

Figure 10 shows the time-series results for the true QoE
value when the proposed method is used. Here, it can be
seen that Video 1 is first transmitted on Route 1, as with the
comparative method, but is kept on the same route because
the estimated Route 1 QoE is determined to be the best. Upon
arrival, Video 2 is first transmitted on Route 2 because that
route has the largest residual bandwidth at that time. Thus,
the Video 2 QoE is low at arrival, but since the proposed
method switches Video 2 to Route 1 in accordance with its
QoE estimate, the QoE clearly improves one second after the
flow starts. Finally, the FT is first transmitted on Route 2,
which has the largest residual bandwidth and does not change
routes because the FT’s QoE is not affected by the few losses
that occur. Hence, the FT QoE remains around 3.5. Taken
together, these results show that the proposed method can
keep the QoEs of every flow at an excellent level. We also
note that our first stage QoE estimation is useful for QoE-
based route selection and can improve QoEs for multiple new
flow arrivals.

However, the proposed method still faces limitations. For
example, it does not consider that the QoE of existing flows
may drop due to the transmission of a new flow. Moreover,
unlike the comparative method, the proposed method does
not prepare a route with large residual bandwidth, which
means that the possibility of bandwidth scarcity at flow
arrivals is somewhat higher than that of the comparative
method.
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B. EVALUATION FOR PRECISE QoE ESTIMATION
ON THE SECOND STAGE
This experiment will show the effectiveness of QoE esti-
mations for ongoing flows during the second stage. More
specifically, we will compare our proposed method using
not only the true value but also the Section IV-A1 error
correction of the comparative method. For this evaluation,
we prepared three experimental scenarios with different eval-
uation purposes.

1) EXPERIMENTAL SETTINGS
Since we only estimate the QoEs of ongoing flows in the sec-
ond stage, we an experimental topology with a single route,
as shown in Figure 11. The other settings used are the
same as those used in Section V-A2. In this experiment,
video streaming is transmitted from the edge server to the
client. The video was made using the H.264 codec with
SD (720 x 480), 30 fps, and 2.5 Mbps CBR of video bitrate.

FIGURE 11. Experiment environment for detailed estimation.

2) SCENARIO 1: NO PACKET LOSS
In this scenario, we compared the preciseness of the proposed
estimation without packet losses. Figure 12 shows the PLR
results and the accumulated values of receiver surplus packets
of the comparative method, and Figure 13 shows the QoE
time-series results. In Figure 12, it can be seen that the PLR
of the comparative method is between 17 and 24 seconds
larger than the true values. This is because the OFC treats
the measurement error as packet losses because there are no
accumulated surplus packets and the sender surplus occurs at
17 seconds. In addition, since the estimated QoEs are calcu-
lated by using the data for the latest eight seconds, the esti-
matedQoE of the comparativemethod is significantly smaller
than the true value for eight seconds (Figure 13). Although the
estimated QoE of the comparative method after 25 seconds
is almost the same as the true value, the receiver surplus
that is actually the recovered sender surplus at 17 seconds
is added to the receiver surplus packets (at 19 seconds of
Figure 12), and used to correct other errors (at 23, 56, and
58 seconds of Figure 12). Therefore, if packet losses occur
after 19 seconds, they will be modified by mistake, which
exacerbates the difference between the true value and the
estimated QoE of the comparative method.

On the other hand, although measurement errors occur at
17 and 23 seconds in the results obtained with the proposed
method, the difference between the estimated QoE and the

FIGURE 12. PLR results and the receiver surplus packets of the
comparative method in a no packet loss environment.

FIGURE 13. QoE in a no packet loss environment.

true value is smaller than that between the true value and the
comparative method (Figure 12 and 13). This is because the
proposed method updates the PLR every second by exploit-
ing the cumulative distribution function (Section IV-B1,
Figure 7). In addition, the period at which the measurement
error affects the QoE is shorter than the comparative method
because the PLR is updated to zero when the measurement
error recovers, as seen at the 18- and 23-second marks of
Figure 12. As a result, the proposed method has better estima-
tion preciseness than the comparative method in a no packet
loss environment.

3) SCENARIO 2: 0.1% PACKET LOSS
At a preset PLR of 0.1%, Figure 14 shows the PLR result
and the accumulated values of receiver surplus packets when
using the comparative method, while Figure 15 shows the
time-series QoE results. These figures show that the packet
loss is incorrectly modified using the receiver surplus packets
and that the estimated PLR is 0% at from nine to 17 seconds
and from 29 to 33 seconds. Thus, the estimated QoE of the
comparative method is larger than the true value because
there is an insufficient distinction between packet losses and
measurement errors.

In the proposed method, we exploit the cumulative distri-
bution function to distinguish between packet losses andmea-
surement errors. The difference with the true value decreases
over time (from nine to 13 seconds as shown in Figure 14).
At from nine to 17 seconds and from 29 to 33 seconds, where
the packet loss is modified by mistake in the comparative
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FIGURE 14. PLR result and the receiver surplus packets of the
comparative method at 0.1% packet losses.

FIGURE 15. QoE results at 0.1% packet loss.

method, the estimated PLR of the proposed method has a
difference of less than 0.13% from the true value and the QoE
difference is less than 0.5. This indicates that the proposed
method has a good level of accuracy. On the other hand, even
though the true value of the PLR temporarily becomes to
0% at 18, 29, 38, and 52 seconds in Figure 14, the proposed
method does not follow that trend because it takes a short time
(at most eight seconds) to determine whether it is encounter-
ing a packet loss or a measurement error. While this means
that the proposed method cannot find a temporary recover of
the network condition in a short period, we can still say that
the proposed method not only has good estimation perfor-
mance but also provides a high level of stability because using
network control to recover the temporal network condition
may lead to worse consequences.

4) SCENARIO 3: 1% PACKET LOSS
At 1% packet loss, Figure 16 shows the PLR result and
receiver surplus packets of the comparative method, while
Figure 17 shows the QoE time-series results. Note that we
only compared the proposed method with the true value
because a receiver surplus does not occur due to numerous
packet losses and the comparative method does not work
at all.

Since the proposed method requires a little time to deter-
mine one packet as a packet loss, the estimated PLR is slightly
smaller than the true value. This means that the estimated
QoE is larger than the true value, but the difference is at most
0.05. From the Scenario 2 and Scenario 3 results, we can see

FIGURE 16. PLR results in 1% packet loss environment.

FIGURE 17. QoE results in 1% packet loss environment.

FIGURE 18. Measurement error recovery time frequency in the case
of 64 Mbps.

that the proposed method provides good performance even in
a packet loss environment.

C. DISCUSSION
We used several variables with fixed values in Equation (1)
and found that some of those had a relatively large impact on
the QoE score. Although the largest factor affecting the QoE
score is the PLR, the average number of consecutive packet
losses is the second most influential factor. When we mea-
sured this parameter in the network, we could further improve
our estimated QoE scores. One potential future improvement
might be a collaboration between wireless and conventional
network technologies. In that scenario, as the wireless tech-
nologymonitors frame-level losses, the networkmay produce
better QoE estimates with lower measurement results if the
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FIGURE 19. Measurement error recovery time frequency in the case
of 24 Mbps.

FIGURE 20. Measurement error recovery time frequency in the case
of 12 Mbps.

wireless and conventional network measurements could be
synchronized. However, the fact that those network types run
on a different time granularity is likely to be an obstacle to
applying this solution.

As the second stage measurement errors characteristics
discussed in Section IV-B1 may change depending on the
environment, we investigated the environmental adaptability
of those characteristics. Figure 18, 19 and 20 shows the quan-
tity of measurement errors in the cases of 64, 24 and 12Mbps
of video flow. Here, we can see that larger video bitrates
result in larger quantities of measurement errors. In the case
of transmitting a video with a large bitrate, the quantity of
measurement error is not one packet, so the second stage error
correction cannot be used. To extend that error correction
for a larger bitrate, a method for differentiating packet losses
from measurement errors based on resolution is necessary,
which means it will be important to find a way to identify the
resolution.

As the time gap of FlowStats collection timing is one
millisecond at most on a stable control plane of an OpenFlow
network, the theoretical maximum measurement error quan-
tity per millisecond can be theoretically calculated as follows:

emax = vbr/0.008s, (9)

where emax [packet] is the maximum quantity of the mea-
surement error per millisecond, vbr [bps] is the video bitrate,
and s [byte] is packet size. Note that we assume a 1500-byte
packet size. In the case of vbr = 12, pmax became one packet,

which means the measurement error quantity is one packet
in less than 12 Mbps, which is the recent streaming video
recommended resolution for 1080p on YouTube and has thus
been adopted in our proposed method.

VI. CONCLUSION
In this paper, we focused on QoE measurements from the
viewpoint of network resource management. Although QoE
score measurements of all transmitting flows by network
components in an edge network are essential to achieving
efficient QoE-driven network resource management, the fol-
lowing four problems must be addressed. First, in-network
components cannot directly measure QoE because it is nor-
mally measured at an end-host. Second, some application
parameters needed for QoE measurement such as video
image information cannot be collected by in-network com-
ponents. Third, since the QoE calculation standardized by
ITU requires relatively long-duration measurements, quick
network resource management is difficult. Fourth, video QoE
scores suffer significantly even from a few measurement
errors.

To address these problems, we estimated QoE inside a
network by exploiting a two-stage method. The first stage
is an early QoE estimation for new arrival flows. In this
stage, we focus on a prompt but rough QoE estimate that is
used to forward the flow onto an appropriate route as soon
as possible. We could correct measurement errors promptly
by correcting only the sender surplus which is found easily.
To estimate the application parameters early, we exploited
the difference between the number of transmitted bytes for
0.9 seconds in order to avoid video buffering. The second
stage is a more precise QoE estimation for the ongoing
flow that is produced by using stable and reliable statistics
observed for a longer period. By exploiting the measurement
error characteristics, we dynamically updated the estimated
QoE once each second.

We then conducted experiments to evaluate each of the two
stages. The results of those experiments showed that the first
stage had sufficient accuracy to perform initial route selection
and that it could maintain a high QoE. In the second stage,
we showed that our proposed method could estimate QoEs
precisely with/without packet losses.

Since our study treats video applications following ITU-T
G.1071 standard only, other video standards and applications
need to be considered. If other video standards require other
parameters except for PLR to calculate their QoE, a measure-
ment way and its error correction in terms of these parameters
should be considered. On the other hand, our study has a
potential to be adapted for other applications employing PLR
because it can precisely correct PLR error. We will tackle
applying the specific model and evaluation for other video
standards and their applications.

In this study, single OFC estimates QoE for all transmitting
flows on an edge network. Hence, although we assume that
our method performs on the edge network with a relatively
small scale, scalability issue will be raised when the number
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of transmitting flows and hosts is increased. We will work
on evaluation of the number of flows and devices that can be
accommodated and extending scalability.

The next step of this study will be flow control based on
the estimated QoE. If we switch a flow onto a different route
where various flows already coexist, the QoEs of the existing
flows on that route may be degraded. Therefore, we need to
develop a new flow control (resource management) method
that can consider the QoE score of not only a specific flow
but also all the transmitting flows in the entire edge network.
To solve this problem, we will attempt to apply machine
learning (ML) to flow control because it is believed that ML
might be able to select an appropriate route that can further
improve long-term as well as short-term QoEs.
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