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1.  INTRODUCTION

The Artificial Intelligence (AI) is widely used and has been existed 
over many decades. It uses the information originating from sen-
sors, images, languages and texts. Analyzing this information 
giving hypothesis leading to make decision [1]. AI can be viewed 
as a set that contains Machine Learning (ML) and Deep Learning 
(DL) [2]. DL is often categorized as supervised or unsupervised [3]. 
Autoencoders (AEs) are one of the DL methods which trained in an 
unsupervised fashion to automatically extract features of training 
data [4]. Moreover, anomaly detection is one of the most important 
applications of AEs [5]. One of the training methods that has been 
used for anomaly detection is a Convolutional Neural Network 
(CNN). CNN has been applied in various modern applications, 
and it is often implemented in image analysis [6], speech and face 
recognition [7] and autoencoders [8] with great success.

The aim of this study is to use CNN-autoencoder trained with three 
different color models; Hue Saturation Value (HSV), Red Green 
Blue (RGB) and our own model (TUV) to improve the detection 
accuracy especially the anomalous one.

2.  RESEARCH CONCEPT

The main concept focuses over using the autoencoder trained with 
reversed color models in order to detect the anomaly data.

2.1.  Autoencoder

Autoencoders are neural networks that aims to copy their inputs to 
their outputs. It is used to automatically extract features of train-
ing data. AEs are applied for object recognition systems that being 
used the anomaly detectors [5]. To improve a recognition accu-
racy, the anomaly detectors has the ability to remove anomalous 
objects before recognition process to reduce misrecognition. AEs 
are composed of three fully connected layers: input, hidden, and 
output layers. These layers are trained to reconstruct input data on 
the output layer as shown in Figure 1.

2.2.  Anomaly Detection

The idea in anomaly detection based on machine learning, is to 
model the normal behavior of data in the training period, and then 
try to fit the test data using the trained model. In case a large incon-
sistency is found between the fitted model and the trained model, 
the test data is regarded as anomalous.

When using autoencoders, which applies dimensionality reduction 
to the input data, for anomaly detection, we assume that the data 
contains variables that can be represented in lower dimensions. 
These variables are also assumed to be correlated with each other 
and would show significant difference between normal and anom-
alous samples [9].

There are two types of training data for autoencoder to detect 
anomaly images; labeled and unlabeled data. Based on the type of 
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Figure 2 | Block diagram of training method.

Figure 1 | Structure of autoencoder.

data, the anomaly detection algorithm differs. In case of labeled 
data, conditional distributions can distinguish between correct 
and anomalous data. Accordingly, the probability of the con-
ditional distribution determines whether the data is correct or 
anomalous. On the other hand, a generative model trained with 
correct data is used as a detector for unlabeled data. The inability 
of the model to generate a correct output for anomalous data is 
utilized to detect anomaly.

3.  METHODOLOGY

The autoencoder reconstruct the input to the output even if the 
input was an anomalous data, and the Mean Square Error (MSE) 
between input and output will be small in case of normal or an 
anomalous input, and the detection will be difficult especially 
for the anomalous one. Our goal is to maximize the difference 
of reconstruction error by reconstructing the anomaly classes 
reversely. Therefore, the MSE will be bigger and the anomaly 
detection will be easier as shown in Figure 2.

3.1.  Detection Algorithm

The first step of the algorithm is to convert the training dataset 
images from RGB color model to HSV [10] or TUV as shown in 
Figure 3a and 3b respectively. Using the Equations (1)–(3) for HSV 
color model, and Equations (4)–(6) for TUV color model.

Hue calculation (H):
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Saturation calculation (S):

	

S
C

C
C

=
=

¹

ì

í
ï

î
ï

0 0

0

,

,

max

max
max

D

�  

(2)

Value calculation (V):

	 V C= max �  (3)

where H, S, and V are the component of the HSV image,

R′ = R/255, G′ = G/255, B′ = B/255.

Cmax = max (R′, G′, B′), Cmin = min (R′, G′, B′), and Δ = Cmax − Cmin

	 T S H= ´ sin �  (4)

	 U S H= ´ cos �  (5)

	 V V= �  (6)

Notice in the case of HSV color model the value range for hue, sat-
uration and value are 0–179, 0–255 and 0–255 respectively.

Secondly, the anomalous data is reversed as a result of the next step 
as shown in Figure 4, using the following Equations (7)–(9),

	 R Rr = -1 ¢ �  (7)

	 G Gr = -1 ¢ �  (8)

	 B Br = -1 ¢ �  (9)

Consequently, the AE is trained using the new training dataset based 
on CNN. The proposed training patterns for AE are as follows:  
(1) the first case the autoencoder is trained by class 0 as normal and 
other classes as anomalous, (2) the second case the classes 0 and 1 
will be normal and other classes are reversed. Consequently, the 
number of normal classes will increase for each next case. Finally 
the autoencoder will be trained with all classes as normal for the 
last case. Final step of the algorithm is to evaluate the performance 

Figure 3 | Converting training dataset images, (a) RGB to HSV, (b) HSV 
to TUV.

a b
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Figure 5 | Structure of convolutional neural network autoencoder.

Figure 4 | Inversing the anomalous image.

of the AE using an inference dataset. Figure 5 illustrates the struc-
ture of CNN-autoencoder. As shown in the figure, the input image 
with size 32 × 32 × 3 is firstly convoluted in the first layer by a  
5 × 5 filter.

Consequently, the image dimensions are reduced through a pool-
ing layer from size 5 × 5 × 32 × 3 to size 16 × 16 × 32. Next, another 
convolution layer is applied followed by a pooling layer to change 
the size of the image from 5 × 5 × 16 × 32 to 8 × 8 × 16. Finally, 
the encoding process is finalized with a fully connected layer  
with the output size of 1 × 262144 (1024 × 256). In order to decode 
the image, the reverse of the previous process is applied and finally 
a reconstructed image with the same dimensions as the input image 
is the same as the output.

3.2.  Cifar-10 Dataset

The CIFAR-10 dataset is a set of images that can be used to teach 
a computer how to recognize objects, it contains RGB images with 
32 × 32 pixels’ size. It has 10 classes and each class contains a dif-
ferent type of images. The dataset divides into a 50,000 images 
training set and 10,000 images testing set. Each set has an equal 
distribution of elements from each one of the 10 classes [11], as 
shown in Table 1.

3.3. � Evaluation of Performance  
for Autoencoder

For significance validation, both F- and Z-test were conducted.  
The Z-score value can be calculated based on the following  
formula (10) [12]:
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where ( , )x x1 2  are the average of the input and output pixels values 
respectively, (s1, s2) are the standard deviation for the input and 
output values respectively, (n1, n2) are the sample size of the input 
and output respectively.

A p-value is used in hypothesis testing to help accepting or reject 
the null hypothesis. It is evidence against a null hypothesis. The 
smaller the p-value, the stronger the evidence that you should reject 
the null hypothesis.

The used hypothesizes are; if p-value >0.05, then there is no sig-
nificant difference between the input and reconstructed image (i.e. 
considered as Normal).

If p-value <0.05, then there is significant difference between the 
input and reconstructed image (i.e. considered as Anomaly).

4.  RESULTS AND DISCUSSION

4.1.  Training and Testing Loss

The difference between the test data input images and the recon-
structed images were calculated in each epoch. The relationship 
between the testing loss and the epochs is shown in Figure 6. It is worth 
mentioning that the value of the test loss is almost similar or close to 
train loss value and this indicates to a good reconstruction process.

Table 1 | The number of images depending on training and testing 
patterns

Normal 
labels

The number of images 
depending on training 

patterns

The number of images 
depending on test patterns

Normal Anomalous Normal Anomalous

0 5000 45,000 1000 9000
0 and 1 10,000 40,000 2000 8000
0–2 15,000 35,000 3000 7000
0–3 20,000 30,000 4000 6000
0–4 25,000 25,000 5000 5000
0–5 30,000 20,000 6000 4000
0–6 35,000 15,000 7000 3000
0–7 40,000 10,000 8000 2000
0–8 45,000 5000 9000 1000
0–9 50,000 0 10,000 0
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Table 2 | p-value for class 0 as normal and classes 1–9 as anomalous 
hypothesis for HSV, RGB and TUV

Classes
Color model type

HSV RGB TUV

0 0.5819 0.2013 0.2941
1 0.0057 0.0298 0.0012
2 0.0000 0.0100 0.0084
3 0.0076 0.0008 0.0142
4 0.0000 0.0222 0.0010
5 0.0005 0.0182 0.0109
6 0.0053 0.0322 0.0103
7 0.0213 0.0178 0.0478
8 0.0166 0.0424 0.0000
9 0.0267 0.0323 0.0377

4.2.  Z-test

The p-value of each color model was calculated at zero mean value 
for each class and the results were shown in Tables 2–4 for the three 
cases; in the first one only class 0 is normal while the rest are anom-
aly, in the second case classes 0–7 are normal and other classes are 
anomaly, and in the last one all classes are normal. From Table 2, 
it is clear that HSV in class 0 is better than RGB and TUV as the 
p-value is 0.5819 which is larger than 0.2013 and 0.2941. This is 
because in the normal class the difference between input and output 
image should be small as proven by p-value result. In contrast, most 
of p-values of anomaly classes in RGB and TUV are bigger than 
in HSV which denotes the HSV detects the anomaly classes more 
effectively than other color models. Similarly, Tables 3 and 4 show 
that, generally, HSV in all classes is better than RGB and TUV as 
the detection in HSV is more achievable than other models. 

4.3.  F-test

An anomaly detection performance is usually evaluating by  
using the F-test using the recall and precision as shown in 
Equation (11) [14]. Accomplishing high recall and high precision 

is not easy at the same time because the recall and precision goals 
are often conflicting.
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where Precision = True positives/(True positives + False positives), 
and Recall = True positives/(True positives + False positives).

Figure 7 shows the F-test against the threshold for HSV, RGB and 
TUV respectively. The first mean point in comparing with the pre-
vious work is the horizontal range for the F-test. This range in the 
proposed method was small, therefore, the correct threshold for the 
detection could be defined easily. The second point is that F-value 
in the previous work was bigger in case of RGB than the value in 
our proposed method and that indicates increasing in the accuracy. 
In proposed method, the F-test for HSV color model is better than 
other models.

Table 5 represents the comparison between our results and the 
previous results, the proposed CNN-autoencoder has been trained 
with three different color models HSV, RGB and TUV, whereas the 
stacked autoencoder trained with one color model which is RGB. 
Besides, the reconstruction quality results using the proposed 
CNN-autoencoder for the same color model (RGB) were better 
than the reconstruction results using the stacked autoencoder in 
spite of using the same dataset for the evaluation process.

Table 3 | p-value for classes 0–7 as normal and classes 8 and 9 as 
anomalous hypothesis for HSV, RGB and TUV

Classes
Color model type

HSV RGB TUV

0 0.9473 0.7742 0.1296
1 0.7223 0.1920 0.6506
2 0.9847 0.1795 0.3149
3 0.0760 0.6836 0.1061
4 0.4545 0.1688 0.5228
5 0.5675 0.9366 0.1699
6 0.0882 0.4278 0.8637
7 0.4240 0.2964 0.2785
8 0.0041 0.0000 0.0000
9 0.0012 0.0003 0.0000

Table 4 | p-value for classes 0–9 as normal hypothesis for HSV, RGB  
and TUV color models

Classes
Color model type

HSV RGB TUV

0 0.4440 0.1899 0.1262
1 0.8405 0.6838 0.1086
2 0.6534 0.7221 0.0653
3 0.7256 0.8480 0.0853
4 0.3155 0.1685 0.0645
5 0.5290 0.1529 0.0792
6 0.8100 0.5489 0.0635
7 0.1732 0.4731 0.4457
8 0.5756 0.3557 0.2570
9 0.8039 0.8849 0.0792

Figure 6 | Training and testing loss against epochs for HSV color model, 
(a) training loss, (b) testing loss.
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b
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5.  CONCLUSION

This research investigates the anomaly detection using CNN-
autoencoder trained with three different color models. The trained 
AE has reconstructed the correct input normally, whereas the 
anomalous input has been reconstructed reversely. The results at 
200 epochs training show that HSV color model has been more 
effective in anomaly detection rather than other models based on 
Z- and F-test analyses.
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