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In this study, with the aim of installing an object recog-
nition algorithm on the hardware device of a service
robot, we propose a Binarized Dual Stream VGG-16
(BDS-VGG16) network model to realize high-speed
computations and low power consumption. The BDS-
VGG16 model has improved in terms of the object
recognition accuracy by using not only RGB images
but also depth images. It achieved a 99.3% accu-
racy in tests using an RGB-D object dataset. We have
also confirmed that the proposed model can be in-
stalled in a field-programmable gate array (FPGA).
We have further installed BDS-VGG16 Tiny, a small
BDS-VGG16 model in XCZU9EG, a System on a Chip
with a CPU and a middle-scale FPGA on a single chip
that can be installed in robots. We have also inte-
grated the BDS-VGG16 Tiny with a robot operating
system. As a result, the BDS-VGG16 Tiny installed
in the XCZU9EG FPGA realizes approximately 1.9-
times more computations than the one installed in
the graphics processing unit (GPU) with a power effi-
ciency approximately 8-times lower than that installed
in the GPU.

Keywords: convolutional neural network, depth image,
dual stream, field programmable gate array, object recog-
nition

1. Introduction

In recent years, as the labor force has continuously de-
clined within an aging society with fewer children, ser-
vice robots have been drawing attention. A service robot
refers to a robot that supports human work by acting in the
same way as humans in environments such as households
and stores [1–6]. Such robots are expected to fulfill tasks
such as cleaning a child’s room or serving as a waiter in a
restaurant. To fulfill such tasks, the robot must be able to
recognize objects [2, 7], for which the object recognition
system is crucial.

In operating a service robot in actual environments, it
is necessary to be able to recognize objects with high ac-

curacy, high speed, and low power consumption. Failure
in recognizing objects could lead to a failure in fulfilling
the assigned task, and low-speed processing could lead to
a decline its service quality. A low power consumption is
also required for service robots because they are battery
driven.

Since AlexNet won the ImageNet Large Scale Visual
Recognition (ILSVRC) contest in 2012 [8], convolutional
neural networks (CNNs) [9] have become mainstream of
object recognition. For example, VGG-16 [10], a CNN
with a simple structure, achieved an 8.8% top-5 error rate
using the ImageNet 2014 Dataset [11], an object recogni-
tion dataset consisting of 1,000 categories.

Inputs to general CNNs, including VGG-16, are only
RGB images. On the other hand, many service robots can
capture not only RGB images but also depth images with
an RGB-D camera. A depth image refers to data with dis-
tance information from the camera to the object surface
contained in the pixels. Eitel et al. demonstrated that the
use of depth images in addition to RGB images in rec-
ognizing objects can improve their recognition accuracy
[12].

Based on the idea of Eitel et al., we proposed a VGG-
16 with a dual-stream structure, i.e., Dual Stream VGG-
16 (DS-VGG16) [13]. DS-VGG16 has an RGB stream
to learn RGB images and a depth stream to learn depth
images. DS-VGG16 achieved a 99.9% accuracy in tests
using an RGB-D Object Dataset [14]. By contrast, the
said network model with a large-scale structure has the
following problems: a large number of computations, a
high power consumption, and a long processing time.

Hardware acceleration is effective for improving the
object recognition speed. In general, a graphical process-
ing unit (GPU) is used to make a high-speed CNN, which
tends to consume a large amount of power, making it un-
suitable for service robots [3].

A field-programmable gate array (FPGA) provides an
alternative means allowing a GPU to make a high-speed
CNN. Nakahara et al. reported that CNNs installed in FP-
GAs have achieved a higher power efficiency than those
installed in a central processing unit (CPU) and a GPU
[15]. From the perspective of such high power efficiency
and low power consumption, it would be most suitable
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for a service robot to have a CNN installed in an FPGA
[3, 16–18].

In [19], a Binarized Neural Network (BNN) is pro-
posed as an effective means to install a deep neural net-
work (DNN) in hardware. Their proposed method can
replace multiplications with XNOR operations by binary-
quantizing the weight parameters and activation function
outputs at the time of forward propagation.

In the above-mentioned context, this study aims to real-
ize an object recognition system with high accuracy, high
speed, and low power consumption. In this paper, we pro-
pose a Binarized Dual Stream VGG-16 (BDS-VGG16)
[20, 21], a binary DS-VGG16, and a method to install it in
an FPGA. We also installed a BDS-VGG16 Tiny, a small
version of the proposed model in an FPGA and connected
it to the robot operating system (ROS), middleware for
robots [22]. In this study, we installed the proposed net-
work in an XCVU190[a], a large-scale FPGA, and in an
XCZU9EG[b], a system on a chip (SoC) with a CPU, as
well as a mid-scale FPGA integrated on a single chip to
enable its installation in a robot. We also verified the op-
erating speed and power efficiency of the system when
connected to a robot. In the experiments, BDS-VGG16
achieved a 99.3% accuracy in the evaluations using an
RGB-D Object Dataset, and was proved to be installable
in an XCVU190. We have further installed BDS-VGG16
Tiny in an XCZU9EG and found that it can operate at a
speed approximately 4.7-times higher than that installed
in a CPU and approximately 1.9-times higher than that in-
stalled in a GPU, and that its power efficiency is approx-
imately 20-times better than that installed in a CPU and
approximately 8-times better than that installed in a GPU.
Finally, we connected the BDS-VGG16 Tiny installed in
the XCZU9EG to an ROS to find that it can process in real
time.

This paper consists of six sections. The first section
describes the context of this study and its overview. The
second section presents studies related to service robots,
methods for preprocessing depth images, a CNN, and an
FPGA. The third section proposes a method for encoding
depth images, a BDS-VGG16 model, and its hardware ar-
chitecture. Section describes the experiments conducted
to measure the BDS-VGG16 object recognition accuracy
and the FPGA resource usage rate. The fifth section com-
pares the experimental results of BDS-VGG16 Tiny, a
miniaturized BDS-VGG16, a CPU, a GPU, and an FPGA
in terms of their processing speeds and power efficiencies.
Section 4 also evaluates the system in which the proposed
method is connected to an ROS. The sixth section con-
cludes this paper.

2. Related Studies

2.1. Service Robots

Service robots support human tasks in environments
such as households and stores. Figure 1 shows the
service robot “Exi@” developed by our team Hibikino-
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Fig. 1. Service robot “Exi@”

Fig. 2. Robot action flow

Musashi@Home [7]. Exi@ has a variety of sensors, actu-
ators, and computing devices installed. An RGB-D cam-
era, one of its installed sensors, can capture both RGB
and depth images. The computing device installed on the
robot is an FPGA.

Figure 2 shows a flowchart of the robot system. The
service robot operates according to the following proce-
dures. (1) Perception: Receive sensor data and recognize
its surrounding environment through processing such as
object recognition. (2) Decision: The robot decides the
actions it should take next on the environmental informa-
tion it has recognized. (3) Control: The robot acts by con-
trolling the actuator based on the actions it has chosen.

As we can see from the above-mentioned proce-
dures, perception processing is positioned upstream in
the robot’s action flow. Because it affects every action
of the robot, perception processing is crucially impor-
tant. Therefore, to realize a service robot, it is essential
to improve the accuracy and speed of its object recogni-
tion system. Because a service robot is battery-driven, we
also need to consider the power consumption of its object
recognition system.

2.2. ROS
ROS [22] is a middleware for robots. Middle-

ware, lying between the operating system and ap-
plications, provides the function of data communica-
tion/management/debagging. Above all, ROS has a large
number of users globally [c] and has been adopted by
many research institutes and businesses [23].

Because various types of algorithms required for the
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(a) RGB Image (b) Depth Image
(Adjusted the brightness for easy viewing)

Fig. 3. RGB and depth images

robot system operations are installed as ROS nodes, the
robot system operates using the coordinated actions of the
nodes. In previously proposed systems with high-speed
algorithms developed through their hardware, such algo-
rithms are also designed to act as nodes [3]. Robot sys-
tems designed in such a way have the following advan-
tages: No stoppage of any one of the algorithms will stop
the robot instantaneously, it is quite easy to transfer from
a conventionally used algorithm to a new algorithm, and
the algorithms have a high reusability.

In this study, we installed the proposed object recogni-
tion system as an ROS node and connected it to a robot
system with an ROS.

2.3. RGB and Depth Images
An RGB-D camera is installed on the service robot.

Figure 3 shows the (a) RGB image and (b) depth image
captured by the RGB-D camera. In the RGB image in
Figure 3 (a), a whiteboard, a round table, and shelves
are shown. The pixels of the depth image represent the
distances from the camera to the object surfaces. In Fig-
ure 3 (b), the whiteboard and round table, both positioned
close to the camera, are represented in black because their
distances from the camera are nearly zero. By contrast,
the shelves, positioned at a long distance from the cam-
era, are represented in white because their distances have
large values.

The features of an RGB image contain the appearance
information of an object such as the color and patterns.
The weak points of an RGB image include its direct sus-
ceptibility to the effects of the illumination conditions. By
contrast, as the features of the depth image, it contains
the shape information of an object: Its strong points are
its robustness to the illumination conditions, and its weak
points are its likelihood to contain some missing values
(noises), as shown in the black spots in Figure 3 (b).

2.4. How to Remove Noise from Depth Image
As described above, a depth image contains noise. A

depth sensor calculates the distance to an object on the re-
flected waves of the infrared ray and laser radiated to the
object surface, and thus it may fail to measure the distance
to an object owing to the effects of the surface material of
the object. In the event of a failure in the distance mea-
surements, such distance points constitute missing values

and appear as noise. Such noises are often represented in
the data as NaN or 0, and in the RGB-D object dataset, in
particular, which is stored as image files, noises are rep-
resented as 0. As a method for repairing such noises, Lai
et al. proposed the application of a recursive median filter
(RMF) to the pixels that contain noise [14].

Figure 4 shows the depth images of an apple as cap-
tured by the camera: (a) an unrepaired depth image
and (b) an RMF-applied depth image, in which the only
brightness has been adjusted for easier viewing. We can
see from image (b) that the noise appearing as black spots
in image (a) disappeared by applying the RMF. Now, we
normalize the images by linearly transforming them into a
value range of 0 to 255. Figure 4 (c) and (d) show the nor-
malized images of Figure (a) and (b), respectively. Fig-
ure 4 (e) and (f) show the histograms of Figure (c) and
(d), respectively. We can see from Figure 4 (f) that the
values are dispersed in the area between 0 and approxi-
mately 255, and from Figure 4 (e) that the noises con-
stitute outliers and that the values are concentrated in the
area between approximately 150 and 255, except for the
noise indicated by a 0, which seems to suggest that the
value range between approximately 150 and 255 is prac-
tically the only range we can use to represent the object
shape. In other words, removing noise from an image
seems to increase the value range of the normalized im-
age, which we can practically use.

2.5. Encoding Methods for Depth Images
To appropriately extract features from depth images,

several methods have been proposed to encode such im-
ages before the CNN learns them. The proposed encod-
ing methods expand a one-channel depth image to a three-
channel image. Figure 5 shows the depth images encoded
by these methods. These encoding methods have the fol-
lowing features

(a) Surface normal method: Bo et al. proposed a surface
normal method [24]. Figure 5 (a) shows an image
encoded using the surface normal method. The sur-
face normal method calculates the surface normal of
each pixel of a depth image and directly substitutes
the vector components x, y, and z in three channels.

(b) HHA Method: The horizontal disparity, height above
the ground, and angle (HHA) method is an encoding
approach proposed by Gupta et al. [25]. The HHA
method seeks a horizontal disparity, height above
ground, and angle toward the vertical direction and
stores them in three channels. Figure 5 (b) shows
a depth image encoded by the HHA method. The
HHA method, which combines environmental vari-
ables with depth imaging, should be suited to scene
images rather than images that only contain objects.

(c) ColorJET Method: The ColorJET method is the
method proposed by Eitel et al. [12]. It processes
in the following order: (1) linear transform (normal-
ize) a depth image such that its values reach the range
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Fig. 4. Comparison of unrepaired depth image with RMF-applied depth image

(a) Surface Normal (b) HHA (c) ColorJET

Fig. 5. Comparison of depth image encoding methods

of 0 to 255, and (2) map the normalized image on a
JET color map. In the above-mentioned processing,
a minimum value is allocated to blue, a median value
to green, and a maximum value to red. Figure 5 (c)
shows the image encoded using the ColorJet method.

In the dual-stream type network proposed by Eitel et
al., it is most appropriate to use the images encoded by
the ColorJET method rather than those encoded by the
surface normal method or the HHA method [12]. To im-
prove the performance of dual stream type network mod-
els, this study uses the ColorJET method to encode the
depth images.

2.6. Dual Stream Type Networks
2.6.1. Model Proposed by Eitel et al.

The model proposed by Eitel et al. uses both RGB
images and depth images to recognize objects [12]. The
model is composed of an RGB stream to learn RGB im-
ages, a depth stream to learn depth images, and a section
to integrate both stream outputs and function as a classi-
fier. Each stream, consisting of five convolutional layers,
has a CaffeNet-based structure [26]. Eitel et al. used the
ColorJET method as a preprocessing method for inputting
the depth images. Eitel et al. reported that the use of the
above-mentioned method has made their model more ac-
curate in comparison with those that use only RGB im-
ages.

2.6.2. Dual Stream VGG-16
Dual Stream VGG-16 (DS-VGG16) combines VGG-

16, a highly accurate object recognition CNN, with the
model proposed by Eitel et al. [13]. Figure 6 shows the
structure of DS-VGG16. This method achieves a 99.9%
accuracy in tests using the RGB-D Object Dataset pub-
lished by Washington University [14]. Similar to the
model proposed by Eitel et al., this model is composed
of (a) an RGB stream for RGB images, (b) a depth stream
for depth images, and (c) an integration section, in which
the outputs of both streams are integrated. Each stream
has a structure for VGG-16 instead of CaffeNet.

2.7. FPGA
The FPGA is a large-scale integration circuit reconfig-

urable by users, and is configured to allow building an
arbitrary digital circuit by place-and-routing a look-up ta-
ble, a flip flop, a digital signal processor, and random ac-
cess memory (RAM).

An FPGA, which can be efficiently installed to real-
ize the desired functions, can suppress wasteful energy
consumption as compared to a GPU, thus suppressing the
power consumption and heating. Another computation
source that can suppress the power consumption and heat-
ing as compared to a GPU is an application specific inte-
grated circuit (ASIC), which has a disadvantage in that,
once produced, cannot be modified, making it obsolete
for use in robot applications for which new algorithms
are applied every day. An FPGA, the circuit of which
is rewritable and more suitable for robot applications than
ASIC, is widely used as a robot computing device [3, 16–
18, 27, 28].

2.8. Binarized Neural Network
A Binarized Neural Network (BNN) is a quantifica-

tion method effective for installing neural network hard-
ware, as proposed by Hubara et al. [19]. Whereas con-
ventional neural networks are installed using floating-
point numbers, such floating-point arithmetic requires
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Fig. 6. Structure of DS-VGG16

Table 1. Comparison between BNN and Conventional Neu-
ral Networks

BNN Neural Network
Weight Binary Number Floating Point

representation Wbi = Sign(Wi) Number
The sum of u = ∑n

i=1 xbiWbi +b u = ∑n
i=1 xiWi +b

neurons outputs Replaceable Required
of each layer with XNOR Multiplication
Activation Binary Number Floating Point Number
Function y = Sign(u) y = f (u)
Output

enormous hardware resources. To cope with the above-
mentioned problem, a BNN realizes a neural network with
fewer hardware resources than floating-point numbers by
binary-quantifying the floating-point numbers.

Table 1 shows the differences between the conven-
tional neural network and a BNN. In a BNN, the weight
parameters and activation function outputs at the time of
a forward propagation are made binary using values of 1
and -1. Hubara et al. concluded that a BNN has nearly the
same accuracy as a 32-bit neural network.

In realizing a BNN with hardware, the use of 1s and 0s
instead of 1s and -1s enables us to reduce the bit width of
variables as well as replace multiplications with XNOR
operations. Table 2 shows the multiplications using val-
ues of 1 and -1, which require two bits. On the other hand,
Table 3 shows the XNOR operations using 1s and 0s. Be-
cause Table 2 and 3 have the same structure in which the
-1s in Table 2 are replaced with 0s, we may regard a mul-
tiplication of 1×−1 in the network as an XNOR opera-
tion of 1s and 0s. By so doing, we can install a BNN with
values of 1 and -1 in use as XNOR operations of 1s and
0s in the circuit.

Table 2. Multiplication Table

Input A Input B Output
−1 −1 1
−1 1 −1

1 −1 −1
1 1 1

Table 3. XNOR truth table

Input A Input B Output
0 0 1
0 1 0
1 0 0
1 1 1

Only ColorJET Proposed

Noise

(a) (b)

Fig. 7. Comparison between (a) depth image applied with
ColorJET only and (b) depth image applied with RMF as
well

3. Proposed Method

3.1. Depth Image Preprocessing Method
This study uses the ColorJET method, which is report-

edly an effective method for preprocessing depth images.
One of the problems with the ColorJET method is that it is
susceptible to missing values (noises). Figure 7 (a) shows
a depth image as preprocessed by applying only the Col-
orJET method. In Figure 7 (a), where noise constitutes
outliers in the depth image, the value area is shifted to-
ward the minimum and maximum values on the JET color
map, and thus the image is represented in the same color
in most areas.

In this study, therefore, the application of the RMF
prior to the ColorJET method is proposed. Figure 7 (b)
shows a depth image as acquired by applying the pro-
posed method, where noise is removed in advance such
that we can allocate most of the value area of the JET
color map to objects and the background.

3.2. Binarized Dual Stream VGG-16
In this study, a BDS-VGG16 model is proposed. Fig-

ure 8 shows the model structure of the network. This
model is based on DS-VGG16. Table 4 shows the dif-
ferences between DS-VGG16 and BDS-VGG16. Both
DS-VGG16 and BDS-VGG16 consist of fully connected
layers to infer objects from the outputs of both the RGB
stream and depth stream. In the BDS-VGG16, its convo-
lutional layer and fully connected layer are made binary
by means of the BNN method, as shown in Table 4. To
stabilize the learning of the proposed network model, it
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also has a batch normalization layer inserted between the
convolutional layer and the fully connected layer [29].

3.3. Circuit Architecture
Figure 9 shows the units in the circuit architecture pro-

posed in this study and their operation flow. The circuit
architecture has an RGB stream to treat RGB images and
feature maps, and a depth stream to treat depth images and
feature maps. Each unit contains a binarized input layer,
binarized convolutional layer unit, binarized max pooling
layer unit, binarized fully connected layer unit, and bina-
rized final fully connected layer unit. To save on the cir-
cuit area, this circuit architecture uses the same binarized
convolutional layer unit for the computations of the con-
volutional layer by changing the inputs and weights each
time. In particular, the binarized input layer unit, bina-
rized convolutional layer unit, binarized fully connected
layer unit, and binarized final fully connected layer unit
contain a BN layer connected in the later stage of each
layer of the network model shown in Figure 8. Regard-
ing such BN layers, Yonekawa et al. reported that BN
layers can be realized in a BNN through simple additions
[30]. Therefore, we adopted their proposed method in our
proposed network model. Nakahara et al. improved the
circuit into a dual stream based on the architecture pro-
posed by Yonekawa et al. [30, 31].

3.3.1. Binarized Input Layer Unit
Figure 10 shows the binarized input layer unit. The

unit performs the convolutional operations of the input
layer. In Figure 10, xc,ch and xd,ch denote the ROIs and
channel ordinal numbers as cut out of the input RGB im-
age and the depth image, respectively, and wc,ch and wd,ch
denote the weights and channel ordinal numbers of the
RGB stream and the depth stream, respectively. Here, CH
denotes the number of input channels and the number of
filters, which are fixed at 3. In addition, K denotes the
filter size, which is also fixed at 3. Finally, B denotes a
BN value, and fc and fd denote the output feature maps
corresponding to the ROIs in the current attention.

With the three input channels being integers of 0 to 255
and wc,ch and wd,ch being binary, this circuit can realize
multiplications of xc,ch ×wc,ch and xd,ch ×wd,ch with the
selector. The adder tree in the later stage seeks a total sum
of the multiplications of xc,ch×wc,ch and xd,ch×wd,ch. The
BN values are added at the end.

The ROI is input into this circuit by sliding it over the
input image. The circuit also operates as pipelining. The
above-mentioned operations are processed in parallel for
RGB images and depth images.

3.3.2. Binarized Convolutional Layer Unit
Figure 11 shows the binarized convolutional layer unit.

In Figure 11, fc,ch,n, and, fd,ch,n denote the ROIs in the nth
channel as cut out of the feature maps of the RGB stream
and the depth stream, respectively; in addition, wc,ch,n and
wd,ch,n denote the weights in the nth channel of the RGB

stream and the depth stream, respectively. In this circuit,
K is fixed at 3, and CH varies with the layers.

With the inputs to this unit fc,ch,n, and fd,ch,n being
both binary, they can be computed at the XNOR gate.
In this circuit, the multiplications of fc,ch,n ×wc,ch,n and
fd,ch,n ×wd,ch,n are conducted in parallel using as many
XNOR gates as the number of CHs in each stream.

The adder tree seeks the total sum of the multiplica-
tions of fc,ch,n ×wc,ch,n and fd,ch,n ×wd,ch,n. Whereas fea-
ture maps and weights are represented by 0s and 1s in this
circuit, a constant is added in the comparator to compare
them with the reference value of 0. In this circuit, a con-
stant and a BN value are added simultaneously.

The above-mentioned operations are processed in par-
allel for both RGB and depth images.

3.3.3. Binarized Max Pooling Layer Unit
Figure 12 shows the binarized max pooling layer unit.

In this circuit, K is fixed at 2, and ch denotes the channel
to be processed.

With the input values to this unit being 0s or 1s, max
pooling can be represented using an OR gate. The OR op-
erations are processed in parallel for both RGB and depth
images.

3.3.4. Binarized Fully Connected Layer Unit
Figure 13 shows the binarized fully connected layer

unit. In the circuit diagram, fc,n and fd,n denote the fea-
tures of the RGB and depth streams, respectively; wc,n and
wd,n denote their weights. Each stream has N features,
and n is an index for them.

As in other units, the RGB and depth streams are si-
multaneously processed in this unit.

3.3.5. Binarized Final Fully Connected Layer Unit
Figure 14 shows the binarized final fully connected

layer unit. This unit represents the integration section
(Figure 8 (c)), where the RGB stream and the depth
stream are integrated together. In Figure 14, input f de-
notes an integration of fc and fd , and y denotes the output
of the unit.

In this unit, outputs are not made binary and their com-
putation values are treated as class probabilities.

4. Experiments

4.1. Datasets setup
This study evaluates the recognition accuracies of net-

work models using the RGB-D Object Dataset [14]. Fig-
ure 15 shows a part of the dataset. This dataset contains
51 classes of objects, and household articles such as ap-
ples (Figure 15 (a) (b)), bananas (Figure 15 (c) (d)), and
coffee mugs (Figure 15 (e) (f)) were selected as objects.
The dataset consists of 207,920 pairs of data, each pair
of which consists of RGB images and their corresponding
depth images. Figure 15 (a), (c), and (e) shows examples
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Table 4. Differences between DS-VGG16 and BDS-VGG16

DS-VGG16 BDS-VGG16 Note
Convolutional Layer Binarized Convolutional Layer For reduction of weight memory size and the number of multipliers.
Max Pooling Layer Binarized Max Pooling Layer Not changed. This layer does not use weights and multipliers.

Fully Connected Layer Binarized Fully Connected Layer For reduction of weight memory size and the number of multipliers.
N/A Batch Normalization Layer For training stability, BN Layers are inserted.
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Unit
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Connected
Layer Unit
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Connected
Layer Unit
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RGB Stream
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Fig. 9. Operation flow of each unit of BDS-VGG16

of RGB images, and Figure 15 (b), (d), and (f) shows
examples of depth images. In this study, we randomly se-
lected 75% of the data pairs from each class to make them
learn the data and the remaining 25% of data pairs as test
data.

4.2. Evaluate Effectiveness of RMF in Preprocess-
ing Depth Images

Here, we evaluate the effectiveness of applying the
RMF and ColorJET methods to depth images for the net-
work learning. We verify the effectiveness by using only
the depth images in the RGB-D object dataset described
in Subsection 4.1. In the experiments, we provided two
binarized VGG-16s and had one of them learn the depth
images applied using only the ColorJET method, and had
the other one learn the depth images applied using both
the RMF and ColorJET methods to compare their post-
learning test accuracies.

Table 5 shows the experimental results, from which we
can see that the network model that learned the dataset us-
ing the ColorJET method after the RMF achieved a better
learning accuracy than the model that learned the dataset
using only the ColorJET method. Applying both the RMF
and ColorJET methods to depth images is more effective
in improving the network learning accuracy than applying
the ColorJET method only.

Table 5. Test accuracies of ColorJET only method and
method using both RMF and ColorJET

Methods Depth
Only ColorJET 58.5%

RMF and ColorJET 61.5%

4.3. Experiments Evaluating Recognition Accuracy
of BDS-VGG16

We experimentally evaluated the recognition accuracy
of BDS-VGG16. During the experiments, we evaluated
the recognition accuracy using the learning data and test
data, as selected in Subsection 4.1. Randomly selected
learning data (90%) are used for the network learning, and
the remaining data (10%) are used as validation.

Table 6 shows the experimental results. We com-
pared them with the test accuracies of Eitel’s model [12],
Schwarz’s model [32], and DS-VGG16 [13] and found
that the accuracy of the proposed BDS-VGG16 remained
0.6% lower than that of DS-VGG16, which seems at-
tributable to the fact that the binary network as a whole
has narrowed the value areas of the units in the network
so much as to decline its expressive power. However,
the proposed network model achieved an accuracy 12.8%
higher than Binarized VGG-16, which seems attributable
to the effects of learning the depth images as well owing to
its dual stream structure. Its accuracy improved by 5.2%
compared to Eitel’s model and by 8.0% compared to the
Schwarz model. We can see from the above-mentioned
experimental results that the proposed BDS-VGG16 has a
higher accuracy than Eitel ’s or Schwarz ’s models.
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Table 6. Comparison of test accuracies between BDS-
VGG16 and other methods

RGB RGB-D
Eitel et al. (2015) [12] 92.1% 94.1%

Schwarz et al. (2015) [32] 84.1% 91.3%
Binarized VGG-16 86.5% –

DS-VGG16 (RMF + ColorJET) (2018) [13] – 99.9%
BDS-VGG16 (RMF + ColorJET) (Ours) – 99.3%

4.4. Evaluation of Circuit Resource Usage in In-
stalling FPGA

We evaluated the resources required by the circuit to in-
stall an FPGA based on the creation of its circuit architec-
ture. In this study, we created a circuit with a high-level
synthesis (HLS) using the Xilinx SDx 2018.3 [d]. The
target devices were an XCVU190 and XCZU9EG. The
XCVU190 is a relatively large FPGA, and the XCZU9EG
is an SoC incorporating a CPU as a processing system
(PS) and an FPGA as a programmable logic (PL), allow-
ing the chip to easily enable communication between the
FPGA and the robot through the CPU. It is also installed
in our service robot, which is under development [7].

Table 7 shows the circuit synthesis results, from which
we can see that the proposed circuit can be installed on an
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Table 7. FPGA Synthesis Results of BDS-VGG16

BDS-VGG16
XCVU190 XCZU9EG

Resource Usage Available Resource Usage Available
BRAM 2,589 ( 68.49%) 3,780 2,628 (288.16%) 912

FF 91,797 ( 4.27%) 2,148,480 159,111 ( 29.03%) 548,160
LUT 141,548 ( 13.18%) 1,074,240 176,556 ( 64.42%) 274,080
DSP 1 ( 0.06%) 1,800 0 ( 0%) 2,520

FPGA such as an XCVU190.

5. Installation of FPGA

We found that our proposed BDS-VGG16 was too large
for the FPGA of the XCZU9EG installed in a robot.
Therefore, we propose BDS-VGG16 Tiny, whose input
image size is smaller and whose channels are fewer than
those of a BDS-VGG16. We first checked the network
size to determine whether it could be installed on the
XCZU9EG. Next, we proposed a network and installed
it on an FPGA to evaluate its inference speed and power
efficiency, among other factors.

5.1. Check Installable Network Size on XCZU9EG
We checked the network size to determine whether it

could be installed on the XCZU9EG. We can see from
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Table 8. Summary of BRAM usage required by network

Number of Input Image Size
Channel 48×48 96×96 112×112 128×128 224×224

64 30.15% 34.98% 35.80% 36.90% 57.29%
128 53.84% 60.96% 65.57% 68.64% 102%
192 79.77% 89.42% 95.56% 99.73% N/A
256 102% N/A N/A N/A N/A

Table 7 that the resource shortage of BRAM makes it dif-
ficult to install the proposed network on the XCZU9EG.
The proposed method uses BRAM to store the weight pa-
rameters and input images. Therefore, in this subsection,
we check the BRAM resource to be consumed by varying
the input image size and the number of channels in the
middle layers.

Table 8 shows the BRAM usages required by the net-
work. N/A indicates that no tests have been conducted.
We can see from Table 8 that the network model with an
input image with a pixel resolution of 128×128 and 192
channels achieves the highest BRAM usage and that the
largest-scale network can be installed on the XCZU9EG
as the target FPGA.
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5.2. Proposed BDS-VGG16 Tiny
In this study, we propose BDS-VGG16 Tiny based

on the results shown in Table 8. Figure 16 shows the
proposed network model. The said network has been
changed in terms of the following points from BDS-
VGG16: (1) the input image size has been changed to
a resolution of 128× 128, and the data size has become
one-quarter the original size, (2) the number of channels
has been changed to 192 in all convolutional layers ex-
cept for the input layer, and (3) as Nakahara et al. have
reported, replacing the average pooling layers with fully
connected layers except for the final layer in the BNN will
produce nearly the same effect [31]. We replaced the bi-
narized fully connected layers prior to the final layer with
binarized average pooling layers.

Figure 17 shows the binarized average pooling layer
unit to be used in BDS-VGG16 Tiny. In these circuits,
average pooling is realized using the adder tree and the
selector. The kernel size K has a pixel resolution of 8×8,
and the number of channels in the input feature map is 1.

Finally, we propose the circuit configurations for in-
stalling an FPGA in BDS-VGG16 Tiny. Figure 18 shows
the operation flows of the units used to realize BDS-
VGG16 Tiny.

5.3. High-Level Synthesis Results
We conducted a high-level synthesis of the pro-

posed BDS-VGG16 Tiny with an Xilinx SDx 2018.3 for
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Table 9. Synthesis Results

BDS-VGG16 tiny
XCZU9EG

Resource Usage Available
BRAM 909.50 ( 99.73%) 912

FF 51,449 ( 9.39%) 548,160
LUT 76,195 ( 27.80%) 274,080
DSP 1 ( 0.04%) 2,520

XCZU9EG as the target device. Table 9 shows the syn-
thesis results, from which we can see that the proposed
model can be installed in an XCZU9EG.

5.4. Evaluation Experiments on Recognition Accu-
racy of BDS-VGG16 Tiny

We applied BDS-VGG16 Tiny to learn the images and
compared its recognition accuracy with those of other bi-
nary networks. We conducted the experiments using the
dataset set up, as described in Subsection 4.1, in the same
way as indicated in Subsection 4.3. Table 10 shows the
experimental results, from which we can see that the ac-
curacy of BDS-VGG16 Tiny has declined by 8.1% com-
pared to that of BDS-VGG16, which seems attributable to
the changes in the input image size and in the number of
channels. However, the recognition accuracy of the pro-
posed network model has improved by 4.7% compared to
that of the binary VGG-16.

5.5. Comparison of Performance of BDS-VGG16
Tiny with other Computing Devices

We compared the inference speed and efficiency of
BDS-VGG16 Tiny when installed in other computing de-
vices. First, we installed BDS-VGG16 Tiny in the other
computing devices (embedded CPU, CPU, and GPU) and

Table 10. Comparison of accuracies among BDS-VGG16
Tiny and other binary methods

RGB RGB-D
Binarized VGG-16 86.5% –

BDS-VGG16 (RMF + ColorJET) (Ours) – 99.3%
BDS-VGG16 tiny (RMF+ColorJET) (Ours) – 91.2%

Table 11. Specifications of laptop PC used in experiments

CPU Intel Core i7-7850HK
Memory 32GB

GPU NVIDIA GeForce GTX 1080 8GB
OS Ubuntu16.04

Language Python 3.5
Framework Chainer 1.17.1

measured their inference speeds and power consump-
tion. In measuring the inference speeds and power con-
sumption, we used an ARM Cortex-A53 incorporated
in XCZU9EG as an embedded CPU. We used a laptop
PC with the specifications shown in Table 11 to mea-
sure the inference speeds and power consumptions of the
CPU and GPU. In measuring the inference speeds, we
seek the average time of inferring single data 100 times
with BDS-VGG16 Tiny installed in the FPGA, embedded
CPU, CPU, and GPU. A single dataset contains RGB im-
ages and depth images already applied with the RMF and
ColorJET methods. The inference speed measurements
of BDS-VGG 16 Tiny installed in the FPGA include the
communication time between the PS and PL, and those
of BDS-VGG16 Tiny installed in the GPU include the
time require to transfer data to the GPU memory. We
measured the power consumption of BDS-VGG16 Tiny
installed in the FPGA and in the embedded CPU by con-
necting a voltmeter and an ammeter between the FPGA
board and the AC adaptor. In measuring the power con-
sumption of BDS-VGG16 Tiny installed in the CPU and
GPU, we connected a wattmeter between the AC adaptor
and electric outlet of the PC.

Table 12 shows the measurement results. “Frame” in
Table 12 refers to processing an RGB image as well as
a depth image. We can see from Table 12 that the infer-
ence speed of BDS-VGG16 Tiny installed in the FPGA is
approximately 117-times faster than that installed in the
embedded CPU, approximately 4.7-times faster than that
installed in the CPU, and approximately 1.9-times faster
than that installed in the GPU. The efficiency of BDS-
VGG16 Tiny installed in the FPGA is approximately 114-
times higher than that installed in an embedded CPU,
approximately 20-times higher than that installed in the
CPU, and about 8-times higher than that installed in the
GPU. We can tell from the above-mentioned measure-
ment results that BDS-VGG16 Tiny installed in the FPGA
is superior in terms of both speed and efficiency to those
installed in the CPU and GPU.

5.6. ROS Installation
In this study, we built an object recognition system by

connecting BDS-VGG16 Tiny installed in an FPGA to an
ROS.

5.6.1. System Structure
Figure 19 shows the system structure. Each program

was installed as a node in the ROS, where the nodes co-
ordinate their operations by publishing and subscribing
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Table 12. Comparison of recognition speeds and power efficiency

ZCU 102 LaptopPC (AlienWare)
This Research (ZCU102) Embedded-CPU Idling CPU GPU Idling

XCZU9EG (ARM Cortex-A53) (Core i7-7850HK) (Nvidia GTX 1080)
Inference Speed [msec/Frame] 12.5 1,456.9 N/A 58.8 23.3 N/A

(FPS) (80.0) (0.69) (17.0) (42.9)
Power Consumption [W] 21.3 20.7 20.5 89.2 92.4 32

Efficiency [FPS/W] 3.756 0.033 N/A 0.191 0.464 N/A
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Fig. 18. Operation flows of units of BDS-VGG16 Tiny

data, called topics. The operation flow of the system is as
follows: (1) An Intel RealSense (RGB-D camera) [e] is
used to photograph the objects. (2) The realsense driver
node receives the RGB images and depth images from
the RealSense and publishes them as respective topics.
(3) The crop imgs node subscribes the RGB images and
depth images and trims and publishes them. (4) The recur-
sive median filter node subscribes the depth images, re-
moves their noises with the RMF, and publishes noiseless

depth images. (5) The pre pro node subscribes the RGB
images and depth images, resizes both of them, and pub-
lishes both images after applying ColorJET to the depth
images. (6) The inference hw node subscribes both im-
ages and sends them to the FPGA through socket com-
munications. (7) The PS unit installed in the PS of the
FPGA receives the RGB images and depth images and
sends them to the PL installed in BDS-VGG16 Tiny. (8)
BDS-VGG16 Tiny installed in the PL of the FPGA infers
the object classes from their RGB and depth images. (9)
The PS unit installed in the PS of the FPGA receives the
inference results and transmits them to the inference hw
node through socket communications. Finally, (10) the
inference hw node publishes the inference results.

5.6.2. System Evaluation Experiments
We experimentally verified that the system operates in

real time. During the experiments, we checked the sys-
tem’s operation period by measuring the output cycle of
the Results Topic when RealSense operates at a specified
30 [fps]. To check whether RealSense operates at 30 [fps],
we checked the operation period of the realsense driver
node by measuring the output cycle of the original RGB
Image Topic as well. We measured the output cycle 10
times in a row to determine its average and dispersion.
We used a laptop PC having the specifications shown in
Table 11 as the operating environment for the ROS.

The experimental results show that the output cycle of
the Results Topic is 24.321 [fps] on average and 1.1851×
10−2[fps2] in terms of dispersion when the output cycle of
the original RGB image topic is 29.912 [fps] on average
and 1.4609× 10−4[fps2] in terms of dispersion. We can
see from the above-mentioned experimental results that
the proposed system can conduct processing operations
in real time.
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6. Conclusion

In this study, we proposed Binarized Dual Stream
VGG-16 (BDS-VGG16), which is a hardware-oriented
object recognition model. We succeeded in installing it in
an FPGA by reducing the memory where the weight pa-
rameters are stored, and by replacing multiplications with
XNOR operations by making the weights and activation
function outputs binary by referring to a BNN. The pro-
posed BDS-VGG is inferior in terms of object recognition
accuracy by only 0.6% in comparison to a conventional
DS-VGG16.

We have further proposed BDS-VGG16 Tiny, a small
BDS-VGG16 model, and installed it in an XZCU9EG, an
SoC with a CPU, and a middle-scale FPGA on a single
chip, allowing it to be installed in a service robot. As the
results indicate, the processing speed was approximately
117-times higher than that of the embedded CPU, approx-
imately 4.7-times higher than that of the CPU, and ap-
proximately 1.9-times higher than that of the GPU. It also
achieved a power efficiency of approximately 114-times
higher than that of the embedded CPU, approximately 20-
times higher than that of the CPU, and approximately 8-
times higher than that of the GPU. In addition, the pro-
posed system installed in an ROS was proven to be capa-
ble of real-time processing.

The issues to be addressed in the future include pre-
processing the depth images at a much higher speed by
installing the proposed system in an FPGA, and propos-
ing a new network capable of detecting objects as well
by combining the proposed system with You Only Look
Once [33] and a single-shot multibox detector [34].
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