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Abstract

Thin piezoelectric bimorph cantilever is increasingly employed throughout the field of actuator and sensor applications in the mi-
croelectromechanical system (MEMS). Generally for finite element analysis of piezoelectric bimorph cantilever, three–dimensional
(3D) solid element can accurately take into account a linear or quadratic distribution of electric potential over the thickness for var-
ious electric configurations of the actuator and sensor applications. As the MEMS structures usually are quite thin and undergo
large deformations, shell elements are very well suited for the structural discretization. This paper is focused on the development of
a novel coupled algorithm to analyze the electromechanical coupling in a piezoelectric bimorph actuator and sensor using the shell
and solid elements to simulate the structural and electric fields, respectively. The electric force induced by the inverse piezoelectric
effect is transformed from the solid elements to the shell elements as an equivalent external force and moment, and the resultant
displacements are transformed from the shell elements to the solid elements to evaluate the direct piezoelectric effect. Two dif-
ferent approaches were developed to analyze the electric–structure interaction. In the first approach, for each block Gauss–Seidel
(BGS) iteration, multiple full Newton–Raphson (N–R) iterations are executed until the tolerance criteria are satisfied. In the second
approach, the BGS and N–R loops are unified into a single loop. A piezoelectric bimorph actuator and sensor were analyzed for
various electrical configurations to demonstrate the accuracy of the proposed method.

Keywords: Microelectromechanical Systems (MEMS), coupled algorithm, block Gauss–Seidel (BGS) method, piezoelectric
effect, electromechanical coupling, electric field–structure interaction, piezoelectric bimorph actuator and sensor.

1. Introduction

The piezoelectric effect has been used in numerous appli-
cations since its discovery by the Curie brothers [1]. This ef-
fect is basically the interaction between the electrical and me-
chanical states in a material. Piezoelectricity, which can be
subdivided into the direct and inverse piezoelectric effects, is
widely used in both sensors and actuators in MEMS. Designing
piezoelectricity-based MEMS sensors and actuators has been
an ongoing process over the last few decades. The past decade
has seen significant advances in the market growth of MEMS-
based piezoelectric products [2], and a wide array of piezoelec-
tric MEMS devices have been developed [3]. Generally, piezo-
electric MEMS devices consist of a thin flexible unimorph or
bimorph model. In particular, piezoelectric bimorphs [4] shown
in Fig. 1 have been incorporated in various actuator applica-
tions [5–7] and sensor applications [8, 9]. The piezoelectric
sensing effect can also be used for energy harvesting [10, 11].
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Recently, the flexible wings of insect-like micro air vehicles
[12, 13], which are robotic insects with flexible flapping wings
are actuated by a piezoelectric bimorph actuator. Recent ad-
vances in the mechanics of flapping flight systems have been
presented in Ref.[14].

Piezoelectric bimorph actuators and sensors generally con-
sist of two or three electrodes at the top, mid-surface (inter-
face between the two piezoelectric layers) and bottom surfaces
which are modeled using electric potential variables enabling to
apply an electric field or to obtain sensor signals, respectively.
These electrodes are conventionally made of the metal coating.
Generally, the nodes with the electric degree of freedom (DOF)
at the top, bottom and mid-surfaces of a piezoelectric bimorph
FE model are regarded as an electrode

In piezoelectric bimorph actuator function, typically an elec-
tric potential is applied between the top, interface and bottom
electrodes (see Fig. 1(a) and (b)). Thus, the loading is caused by
an applied electric potential across the thickness. This results
in a pure bending of the structure, where the electric potential
varies almost linearly in the thickness direction [15–17]. Usu-
ally two different electric configurations are used in the piezo-
electric actuator application [4, 18]. One is series connection
in which the piezoelectric bimorph layers are usually polarized
oppositely and the top electrode is applied a potential while the
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Fig. 1. Schematic of the electrical configurations of a piezoelectric bimorph cantilever FE model; a) bimorph actuator in a series configuration, b) bimorph actuator
in a parallel configuration, c) bimorph sensor in a closed circuit configuration, d) bimorph sensor in a active–sensory mode configuration, e) bimorph sensor in a
partial open circuit, f) bimorph sensor in a full open circuit. P refer to polarization.

bottom electrode is set to zero representing grounding, shown
in Fig. 1(a). The other is parallel connection in which the piezo-
electric layers are polarized parallel and both the top and bottom
electrodes are applied a potential while the interface electrode is
grounded, shown in Fig. 1(b). For the above mentioned electric
configurations, the actuator surface becomes equipotential elec-
trodes [19] wherein electric potentials have known prescribed
values. This leads to a nearly linear variation of the electric
potential across the thickness.

On the other hand, in piezoelectric sensor mode, when some
mechanical force is applied on to the piezoelectric continuum,
some electric voltage is induced in the piezoelectric material.
Commonly, four types of electric configurations are employed,
namely, closed circuit, closed and open circuit, partial open cir-
cuit, and full open circuit configuration. In the closed circuit
configuration, the electric potentials of both the top and bot-
tom electrodes are grounded (electric potentials have known
prescribed values at all the nodes of both the top and bottom
surfaces as shown in Fig. 1(c)). In the closed and open circuit
configuration, the bottom electrode is grounded while the top
electrode is open, this configuration is also known as active–
sensory mode connection [19] wherein the electric potentials
have known set values at the nodes of the bottom surface while
the electric potentials are unknown at the nodes of the top sur-
face as shown in Fig. 1(d). In the partial open circuit con-
nection, the piezoelectric surfaces are directly exposed to the
mechanical loading, but, to avoid unstable and floating elec-
tric potential distribution electrodes are deposited at the end of
the piezoelectric layers and connected to the ground as shown
in Fig. 1(e). In the full open circuit, the electrodes at the top
and bottom surface are open (potentials are unknown at all the
nodes of the top and bottom surfaces as shown in Fig. 1(f), a
typical case in many piezoelectric energy harvesting [10, 11].
Either series or parallel polarization can be used. In the work
of Benjeddou [20–22], Kogle & Bucalem [15, 23], Wang [16],
and Fernandes & Pouget [17], it is demonstrated that only a
quadratic variation of the electric potential over the thickness
can take into account the potential induced by the bending dom-

inant deformation in a piezoelectric bimorph sensor mode.
Zienkiewicz and Taylor [24] have classified interactions in a

coupled system into two classes. In class 1, the coupling occurs
on domain interfaces, and in class 2, it occurs through the con-
stitutive governing equations of the system. Electromechanical
coupling belongs to the latter class. There is a growing need for
numerical methods to analyze the electromechanical coupling
of the piezoelectric effect using finite element methods. In the
past few years, there have been considerable research efforts
toward the development of the finite element method (FEM) in
the numerical modeling and simulation of MEMS devices [25–
31]. A number of researchers have analyzed piezoelectric bi-
morph cantilever in MEMS devices using the FEM [5, 7, 9, 27].
It is imperative to develop a finite element formulation which
can take into account both actuator and sensor effect of a thin
layered piezoelectric bimorph. At the same time, FE formu-
lation must take into account almost a linear variation of the
electric potential across the thickness in a piezoelectric actuator
mode and a nearly quadratic variation of induced electric po-
tential across the thickness in a piezoelectric sensor made of a
thin layered piezoelectric bimorph.

The development of finite elements for the analysis of piezo-
electric systems was first presented by Allik and Hughes [32].
More details regarding piezoelectric finite elements, such as
piezoelectric solid, shell, plate, and beam elements, can be found
in the survey by Benjeddou [20]. This survey discusses a wide
range of studies in which different piezoelectric solid elements
have been used to analyze electromechanical coupling [6, 32–
41]. The electric potential is quadratic in a piezoelectric solid
element proposed in Refs. [33, 39–41] except [32, 34–38] for
which it is linear. Multi–layered linear solid elements over the
thickness direction can treat a quadratic variation of electric po-
tential across the thickness. The major advantages of using 3D
piezoelectric solid elements in the analysis of electromechan-
ical coupling are that they can correctly take into account the
electric charge distribution on both the top and bottom surfaces
and accurately represent the linear or quadratic variation of the
induced electric potential along the thickness direction. Most
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Fig. 2. Field decomposition of the structure–electric interaction using different
types of finite elements.

importantly, all the above discussed electric configurations of
both the actuator and sensor functions can be easily achieved
with the 3D solid elements. However, the piezoelectric solid
finite elements presented therein are inappropriate for the dis-
cretization of the structure in thin-layer MEMS actuators and
sensors [42–44]. The computing cost of using solid elements to
perform the structural analysis is larger.

Since MEMS piezoelectric composites are composed of thin
layers and undergo large deformations, shell elements are very
well suited for the structural discretization of these structures.
Shell elements yield more accurate results than solid elements
in terms of the dominant bending deformation. Furthermore,
the computing cost of using shell elements to perform the struc-
tural analysis of these composites is much less than that of using
solid elements. The finite element formulation of the shell el-
ements for the geometric nonlinear analysis of thin structures
is well established [45, 46]. Shear locking in the shell can be
eliminated by using the mixed interpolation of tensorial com-
ponents (MITC) approach [45–47]. However, modeling the
electric contribution in the discretization procedure is a chal-
lenging task when using the conventional formulations of shell
elements.

Only a few studies using piezoelectric shell elements [42,
48, 49] were reported in the survey by Benjeddou [20]. Some
recently developed piezoelectric shell elements [15, 22, 50–52]
have shown incompatible approximation spaces for the electri-
cal fields, particularly in bending-dominated problems, as dis-
cussed in previous reports [53, 54]. Many piezoelectric shell el-
ements are limited to actuator applications (see e.g.[55, 56]), so
that it can not be used to analyze piezoelectric sensor function.
Numerous piezoelectric shell element formulations [42, 52, 53,
57–59] assumes a linear variation of the electric potential over
the thickness, this limits the applicability of the elements to a
certain loading conditions only, because the induced electric
potential by the bending deformation is quadratic in piezoelec-
tric sensor mode. Some piezoelectric shell elements [15, 42, 53,
58–60] can be used to model both the actuator and sensor mode,
provided one or two equipotential electrodes in the piezoelec-
tric actuator and sensor surfaces. However, they are limited to
a certain electric configuration because they require the equipo-

tential electrodes at the top and bottom surfaces. Since the elec-
tric potential serves as unknowns in an active–sensory config-
uration, they are modeled with a linear variation of the elec-
tric potential through the thickness [53], which leads to quite a
wrong solution because the electromechanical coupling would
be partial and would neglect the induced potential in sensor
mode, as discussed in [20]. A few piezoelectric shell elements
in Refs. [15, 22, 50, 60] uses a quadratic variation of elec-
tric potential over the thickness in the multi–piezoelectric layer
structures for both the actuator and sensor analysis, provided
at least one equipotential electrode in the piezoelectric actua-
tor and sensor surfaces. In the formulations of Lammering &
Mesecke–Rischmann [50], the electrodes located at the lami-
nate interface are assumed to be grounded for both the actuator
and sensor modeling, therefore limiting to certain electric con-
figurations. The above-mentioned shortcomings of piezoelec-
tric shell elements related to the electrical field discretization
can be treated using the 3D solid elements.

In this study, the best features of solid and shell elements
were combined to analyze the electrical and mechanical fields
of the piezoelectric effect in thin-layer piezoelectric bimorph
actuators and sensors. Importantly, the monolithic constitutive
equations describing the piezoelectric effect were decomposed
into the electrical and structural fields, enabling the use of dif-
ferent elements to solve the different fields. Field decomposi-
tion [61] enables the use of solid elements for electrical analysis
and shell elements for structural analysis, as shown in Fig. 2.
Since the electric field is solved using solid elements, the in-
duced electric forces and the moment of these forces must be
transformed as externally applied forces acting on to the shell
elements to analyze the mechanical field. Conversely, because
the structural field is solved using shell elements, the displace-
ments obtained from the structural analysis of the shell ele-
ments must be transformed to the solid elements. Therefore,
this paper proposes a novel transformation method for the elec-
tric force, the moment of the electric force, and the displace-
ment transformation to exchange the variables between solid
and shell elements in the direct and inverse piezoelectric analy-
sis. In the present work, the BGS partitioned iterative coupling
scheme [27] was used to apply the two types of finite elements
(the solid elements for the electrical analysis and the shell ele-
ments for the structural analysis) in the developed transforma-
tion method. Two approaches of analyzing the dynamic and
static behavior of the piezoelectric continuum are proposed us-
ing our transformation method. In the first approach, a full N–R
iteration loop is executed inside the BGS loop; therefore, many
N–R iterations are executed in each BGS iteration. In contrast,
in the second approach, only one N–R iteration is executed in
each BGS iteration, i.e., the BGS iteration loop and the full N–
R iteration loop are unified in a single loop.

In summary, different from the previous methods, the pro-
posed method can model both the actuator and sensor effect in
a thin-layer piezoelectric bimorph beam for any electrical con-
figurations with a quadratic variation of the electric potential
across the thickness, a novel transformation method between
the solid and shell elements accurately takes into account the
electromechanical coupling for both the actuator and sensor
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mode, and the field decomposition allows users to reuse the
existing finite elements and its extensibility for multiphysics
problems. The stability and accuracy of the two approaches
are presented for a standard series-type and parallel type piezo-
electric bimorph actuator. A sensor function is demonstrated
for a piezoelectric bimorph with a closed circuit, combination
of open and closed circuit, partial open circuit, and full open
circuit configurations.

2. Coupled analysis method for the structure–electric inter-
action of piezoelectricity

2.1. Governing equations and finite element equations of the
piezoelectric effect

For the sake of simplicity, the linear piezoelectric effect is
assumed in this section. The electrostatic response of a piezo-
electric continuum is governed by the equation of mechanical
equilibrium and Maxwell’s equation for a quasistatic electric
field, which are respectively given as [62, 63]

σij,j + fi = ρüi, (1)
Di,i = 0, (2)

where σ is the stress tensor, f is the body force vector, ρ is the
mass density, ü is the acceleration vector, and D denotes the
electric displacement vector. The constitutive equations of the
linear piezoelectric effect can be written as

σij = Cijklεkl − ekijEk, (3)
Di = eiklεkl + εikEk, (4)

where ε is the strain tensor, C is the elastic tensor for constant
electric field, e is the piezoelectric tensor, ε is the dielectric ten-
sor for constant mechanical strains, and E denotes the electric
field vectors. The strain tensor εij and the electric field vector
Ei are respectively derived from the mechanical displacement
vector ui and the scalar electric potential φ as

εij =
1

2
(ui,j + uj,i), (5)

Ei = −φ,i. (6)

To solve Eqs.(1) and (6) describing the piezoelectric body Ω,
the following essential or natural mechanical and electrical bound-
ary conditions on the boundary Γ of the body are prescribed:

ui = ui
? on Γu and φ = φ

? on Γφ, (7)
σijnj = fi

? on Γσ and Dini = q? on Γq, (8)

where ui? and fi? are the prescribed mechanical displacement
and surface force components, respectively; φ? and q? are the
prescribed electric potential and surface charge, respectively; ni
is the outward unit normal vector. The piezoelectric constitutive
equations (Eqs.(3) and (4)) can be written in matrix form as

[
σ

D

]
=

[
C e
eT −ε

] [
ε

−E

]
. (9)
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The weak forms of the elastic and electric balance laws
Eqs.(1) and (2) are obtained using the method of weighted resid-
uals, as described in [32, 62]. The semidiscrete equations of
motion of linear piezoelectricity in the global coordinate sys-
tem can be derived using the variation principle with the stan-
dard procedure of the FEM as [62]

Muuü + Kuuu + Kuφφ = F, (10)

KT
uφu + Kφφφ = q, (11)

where Muu is the mass matrix, Kuu is the global mechani-
cal stiffness matrix of the structure, u is the global generalized
mechanical displacements, F is the global external mechanical
forces, φ represents the global electric potentials, q represents
the global external surface density charges of the piezoelectric
actuator, and a super-scripted T indicates the transpose of a ma-
trix. Furthermore, the global piezoelectric stiffness matrix Kuφ

and the global dielectric stiffness matrix Kφφ of the piezoelec-
tric continuum are obtained by summing the contribution from
each element. The extension of Eqs.(10) and (11) to the geo-
metric nonlinear case is described in Section 2.4.

2.2. Shell structure formulation for geometric nonlinear effect
The large deformation formulation to capture the geometric

nonlinear effects of the shell element is performed effectively
by the use of an incremental formulation (a total Lagrangian
formulation [64]) of the equations of motion. In Fig. 4, 0xi =
Cartesian coordinates at time 0; ei = the local Cartesian system
of orthogonal base vectors; ri = natural coordinates; gi = co-
variant base vector in natural coordinates; uki = the nodal point
incremental displacements at time t; tV k1 and tV k2 are the vector
normal’s to the director vector tV kn at each node at time t; and
αk and βk are the rotations of the director vector about tV k1 and
tV k2 . The director vector of the shell at time t + ∆t is updated
by the finite rotation tensor, as described in [45].
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In the total Lagrangian formulation we consider the princi-
ple of virtual work for the equilibrium at the configuration at
time t+ ∆t∫

0Ω

t+∆t
0σ̃ij δ

t+∆t
0ε̃ij d

0Ω = t+∆tW, (12)

where t+∆t
0σ̃ij are the contravariant components of the 2nd

Piola-Kirchhoff stress tensor at time t + ∆t but referred to the
configuration at time 0, t+∆t

0ε̃ij are the covariant components
of the Green-Lagrange strain tensor, and t+∆tW is the external
virtual work and includes the work due to external surface trac-
tion and body forces. t+∆t

0σ̃ij ,
t+∆t

0ε̃ij are incrementally de-
composed as described in [46, 65], and the tilde overbar denotes
values measured in the covariant system. Substituting the de-
composed stresses and strains into Eq.(12) gives the completely
linearized equation of motion in a total Lagrangian formulation
with convected coordinates [46],∫

0Ω
0C̃

ijkl
0ẽklδ0ẽijd

0Ω +

∫
0Ω

t
0σ̃
ijδ0η̃ijd

0Ω

= t+∆tW −
∫

0Ω

t
0σ̃
ijδ0ẽijd

0Ω,

(13)

where 0ẽij and 0η̃ij are linear and nonlinear strain increments
of the GreenLagrange strain, respectively.

The MITC4 element, originally developed by Dvorkin and
Bathe [46] is chosen in this work since it was widely used in
practical engineering analysis of plates and shells. The MITC
approach has a solid theoretical basis and also shown to be a
reliable way of eliminating the shear locking of thin shells. In
MITC approach, all strain components are evaluated in the stan-
dard manner [64], except for the transverse shear strains which
are constructed employing separate interpolations in-order to
eliminate shear and membrane locking. Here, assumed trans-
verse shear strain field is introduced with the covariant com-
ponents of the Green–Lagrangian strain tensor in the natural
coordinate system. Now the assumed transverse shear strains
ε̃ASα3 are interpolated using the following equation [23, 46, 66]:

ε̃ASα3 (r1, r2) =

Np∑
p=1

h̃α(r1, r2)ε̃DIα3 (rp1 , r
p
2), (14)

where h̃α(r1, r2) are the interpolation functions, and ε̃DIα3 (rp1 , r
p
2)

are the transverse shear strain components at points Pα(rp1 , r
p
2),

p = 1,...,Np, evaluated using the direct interpolations. Note that
Np is the number of interpolation points also known as tying
points [46].

2.3. Transformation method between solid and shell elements

In this work, the piezoelectric structure is discretized into a
finite number of shell elements to analyze the mechanical field
[45, 46] and solid elements to analyze the electrical field [33].
The electric forces induced by the inverse piezoelectric effect
in the solid elements must be transformed into forces and mo-
ments externally applied to the shell elements; similarly, the
mechanical displacements must be transformed from the shell
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elements to the solid elements to evaluate the inverse piezoelec-
tric effect, as shown in the Fig. 3. Therefore, a transformation
method to exchange the mechanical and the electrical variables
between the solid and shell elements is imperative.

2.3.1. Electric force and moment transformation from the solid
to the shell elements

The standard bimorph actuator shown in Fig. 5 consists of
a double layer of polyvinylidene difluoride (PVDF) piezoelec-
tric layers joined together over their long surfaces with oppos-
ing polarization (P). Fig. 6 shows the regular grid-type mesh
division of the bimorph actuator, and Fig. 7 shows the section
highlighted by thick black lines in Fig. 6, which consists of a
block of four solid elements and a shell element. The trans-
formation equation that transforms the electric forces from the
solid elements to the shell elements can be generally expressed
as

Fshell = eT eFsolid, (15)

where Fshell is the equivalent force vector at the shell elements,
eFsolid is the induced electric force vector in the solid elements,
eT is the transformation matrix, and the left-hand superscript
e stand for “electric.” As shown in Fig. 3, the induced electric
forces in the solid elements eFsolid are transformed as an equiv-
alent force vector Fshell on to the shell elements. The electric
forces induced in the solid elements by the inverse piezoelectric
effect are calculated as

eFsolid = Kuφφ. (16)

Eqs.(15) and (16) are the general expressions of electric forces
transformation from any type of solid elements to shell ele-
ments with regular and irregular meshes. The proposed method
is quite general; however, for the purpose of simplicity the fol-
lowing assumptions were made in this study.

1. The top and bottom layers of the bimorph actuator have
the same material properties and the same dimensions.

2. A shell midsurface (highlighted in red in Fig. 6) is placed
at the interface of the two piezoelectric layers, and a reg-
ular grid-type mesh was used to discretize the shell mid-
surface.
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Fig. 5. Piezoelectric bimorph cantilever.
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The equivalent externally applied forces at the shell node
are given as

Fk
shell =

Nr∑
nr=1

eFnr

solid +

Ns∑
ns=1

eFns

solid

2
, (17)

where nr = 1, . . . , Nr are the indices of the solid element
nodes that are located along the considered director vectors Vk

n

of the shell nodes in the regular grid mesh shown in Fig. 6, Nr
is the total number of these nodes, and eFnr

solid is the induced
nodal electric force vector at solid node nr, as shown in Fig. 7.
Similarly, ns = 1, . . . , Ns are the indices of the solid element
nodes that are located not along the considered director vector
of the shell nodes but directly adjacent to it (see Fig. 7), Ns is
the total number of these nodes, and eFns

solid is the induced nodal
electric force vector at solid node ns. The moment eMk

shell of
the electric forces about the shell nodes can be easily calculated
as

eMk
shell =

Nr∑
nr=1

(dnr × eFnr

solid) +

Ns∑
ns=1

(dns ×
eFns

solid

2
),

(18)

where dnr and dns are the position vectors of the solid element
nodes nr and ns, respectively, with respect to the shell mid-
surface nodes. The components of the matrix eT in Eq.(15)
are then obtained from the electric force vector Eq.(17) and the
moment of electric force vector Eq.(18).

Eqs.(17) and (18) correspond to the highlighted block of
four solid elements and one shell element shown in Fig. 7.
These equations should be summed for all other blocks in a
regular grid mesh such as that shown in Fig. 7. As shown in
Figures 6 and 7, the shell node k = 1, which is located in the
corner of the mesh, hasNr = 9 solid nodes lying along V1

n and
Ns = 10 solid nodes adjacent to V1

n contributing to the sum-
mations of the first and second terms in Eq.(17), respectively.
Similarly, the shell node k = 5, which is shared among four
neighboring shell elements in Fig. 6, has Nr = 9 and Ns = 20,
and the shell node k = 6, which is located at the junction of
two neighboring shell elements, has Nr = 9 and Ns = 15.

2.3.2. Displacement transformation from shell to solid elements
After the electric forces and the moment of the electric forces

have been transformed from the solid elements to the shell el-
ements using Eq.(15), the nodal displacements and rotations in
the shell can be evaluated in the global Cartesian coordinate
system. The equation that relates the displacements from the
shell elements to the solid elements can be generally expressed
as

usolid = uTushell, (19)

where uT is the displacement transformation matrix.
The displacements of a material point in a shell element at

time twith natural coordinates (ri) are evaluated from the nodal
point displacements of the shell elements using the interpola-
tion function [46] at time t as,

tui = hk(r1, r2)tuki +
r3

2
a hk(r1, r2)(tVk

ni − 0Vk
ni), (20)

where tuki is the shell nodal displacement vector at time t. The
displacements of a material point in a shell element with natural
coordinates at time t in Eq.(20) are mapped to the correspond-
ing solid element node at time t. The total number of material
points in the shell structure is equal to the total number of nodal
points in the solid elements used for the discretization of the
electric field. As shown in Fig. 7, there are 56 nodes in four
solid elements; therefore, 56 material points are considered in
the shell structure at the natural coordinate r3 of a material point
in a shell element, which corresponds to the Cartesian coordi-
nate x3 of the corresponding solid element nodal point. The
components of the matrix uT are obtained from the interpola-
tion function given in Eq.(20). As illustrated in Fig. 3, the resul-
tant displacements in the shell elements ushell are transformed
to the solid elements.

2.4. Piezoelectric nonlinear dynamic analysis
In this section, the linear finite element equations of the

piezoelectric effect given in Section 2.1 are extended to the ge-
ometric nonlinear case. Important earlier work on the evalua-
tion of the performance of coupled finite element algorithms for
the linear piezoelectric effect using the monolithic coupling and
partitioned iterative schemes can be found in [27]. The BGS
partitioned iterative coupling algorithm for the linear piezoelec-
tric effect from our previous study [27] is extended here to the
geometric nonlinear case. In the BGS coupling scheme, an up-
dated electric potential is used in every iteration to evaluate the
mechanical displacements. In this study, the BGS algorithm
was used to couple the electrical field variables in the solid ele-
ments and the mechanical field variables in the shell elements.

2.4.1. Nonlinear structure–electric coupling scheme in the piezo-
electric effect

The general expressions of the linearized coupled equations
for the nonlinear structure–electric interaction in the piezoelec-
tric effect are given as follows.
For the electrical field: The electrical field is solved as

t+∆tK
(b)
φφ

t+∆t
φ

(b) = t+∆tq − t+∆tK
(b)
φu

t+∆tu(b−1), (21)

where b indicates the current BGS iteration. The solution for the
electric potential t+∆tφ(b) in Eq.(21) in each iteration is derived
from the mechanical displacements t+∆tu(b−1) of the previous
iteration.

For the structure: The equation used in the TL formulation with
the full N–R iteration is
t+∆t

0K̂
(i−1)(b)
uu ∆u(i)(b) = ∆R −t+∆t K

(b)
uφ

t+∆t
φ

(b), (22)

where i indicates the full N–R iteration, ∆R is the out-of-
balance force vector, and ∆u(i)(b) is the incremental displace-
ment at each BGS and N–R iteration in a time step. The last
term on the right-hand side of Eq.(22) is the 3D electric force
vector. The effective stiffness matrix is defined as

t+∆t

0K̂
(i−1)(b)
uu =

1

β∆t2
M +

t+∆t

0K
(i−1)(b)
uu , (23)
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where
t+∆t

0K
(i−1)(b)
uu is the tangent stiffness matrix [45, 46] cor-

responding to the configuration at time t+ ∆t but measured in
the configuration at time 0 during N–R iteration i− 1 and BGS
iteration b. The out-of-balance force vector ∆R in Eq.(22) is
defined as

∆R =t+∆t R − M
{
a0(t+∆tu(i−1) − tu) − a1

tu̇ − a2
tü
}

−
t+∆t

0F
(i−1),

(24)

where t+∆tR is the vector of the externally applied nodal point
loads at time t + ∆t;

t+∆t

0F
(i−1) is the vector of the inter-

nal forces corresponding to the configuration at time t + ∆t
but measured in the configuration at time 0; and a0 = 1

β∆t2 ,
a1 = 1

β∆t , and a2 = ( 1
2β − 1) are the Newmark constants. The

displacement approximation is corrected by

t+∆tu(i)(b) = t+∆tu(i−1)(b) + ∆u(i)(b). (25)

In an incremental formulation based on the iterative meth-
ods (ex. Newton–Raphson iteration), efficient and realistic con-
vergence criteria should be used to terminate the nonlinear iter-
ations. Here, we compare the amount of work done by the out–
of–balance loads on the displacement increments during every
N–R iteration (i.e. the increment in internal energy) to the ini-
tial internal energy increment in–order to terminate the N–R
iterations [67]. Convergence is assumed to be reached when,
with etol a preassigned energy tolerance [64, 67],

∆u(i)(b)
(t+∆t

R − Mt+∆tü(i−1) −
t+∆t

0F
(i−1)

)
≤ etol

(
∆u(1)(b)

(t+∆t
R − Mtü − t

0F
))
.

(26)

The approximation of the accelerations and velocities in
the Newmark time integration is applied as described by Bathe
[64]. This paper proposes the following two approaches, de-
scribed in Fig. 8, for the nonlinear dynamic analysis of the
structure–electric interaction in a piezoelectric actuator:

1. Approach 1: BGS iteration with the N–R loop
In a BGS iteration, full N–R equilibrium iterations are
evaluated until the energy tolerance is satisfied [67], and
several BGS iterations are executed in each time step un-
til the preassigned relative tolerance criteria is satisfied
for displacements and potentials [63]. Eqs.(21) and (25)
correspond to Approach 1. The analysis flow of this ap-
proach is illustrated in Fig. 8 with the blue note.

2. Approach 2: Unified BGS iteration and N–R loop
Here, the BGS and N–R loops are unified into single
loop, therefore, we call this approach as unified BGS it-
eration and N–R loop. In this approach, mathematically
the number of BGS iterations and N–R iterations are the
same. Note that the iterations in the nonlinear analysis
are also called as nonlinear iterations, therefore, we use
the term nonlinear iterations to indicate the BGS or N–
R iterations in this approach. The analysis flow of uni-
fied BGS iteration and N–R loop approach is illustrated

in Fig. 8 with the red note. For this approach, Eq.(25) is
modified as

t+∆tu(b) = t+∆tu(b−1) + ∆u(b). (27)

2.4.2. Nonlinear structure–electric coupling scheme using the
proposed transformation method

The model for the nonlinear structure–electric interaction
described in the previous section is quite general. Here, the
proposed transformation method presented in Section 2.3 is ap-
plied to the general nonlinear piezoelectric equations given in
Section 2.4.1.
Electrical field analyzed in the solid elements: The electrical
field in the solid elements is solved using Eq.(21) as

t+∆tK
(b)
φφ

t+∆t
φ

(b)
solid =t+∆t q − t+∆tK

(b)
φu
t+∆tu

(b−1)
solid . (28)

The displacements t+∆tu
(b−1)
solid in the solid elements are ob-

tained using the relation given in Eq.(19). Substituting Eq.(19)
into Eq.(28) yields the electric potential in the solid elements as

t+∆tK
(b)
φφ

t+∆t
φ

(b)
solid = t+∆tq − t+∆tK

(b)
φu

uT t+∆tu
(b−1)
shell .

(29)

The matrices t+∆tK
(b)
φφ

, t+∆tK
(b)
uφ

, and t+∆tK
(b)
φu are eval-

uated from the solid elements at each BGS iteration in every
time step t+ ∆t.
Structural field analyzed in the shell elements: The incremental
displacements in the shell elements are obtained using Eq.(22)
as

t+∆t

0K̂
(i−1)(b)
uu ∆u

(i)(b)
shell = ∆R −t+∆t F

(i−1)(b)
shell . (30)

Substituting the transformation equation given in Eq.(15) into
Eq.(30) yields

t+∆t

0K̂
(i−1)(b)
uu ∆u

(i)(b)
shell = ∆R − eT t+∆tF

(i−1)(b)
solid , (31)

where ∆u
(i)(b)
shell is the incremental displacement in the shell ele-

ment. The tangent stiffness matrix
t+∆t

0K
(i−1)(b)
uu is calculated

in the shell elements.
The displacement approximation in the shell elements is

corrected using

t+∆tu
(i)(b)
shell = t+∆tu

(i−1)(b)
shell + ∆u

(i)(b)
shell . (32)

Eqs.(30) and (32) yield the structure in the shell elements from
the electric forces and moments transformed onto the shell el-
ements, which are considered as externally applied equivalent
forces, as described in Section 2.3.1.

Table 1: Material properties of PVDF used in the analysis of a piezoelectric
bimorph [7] (the absolute permitivity ε0 = 8.854 pF/m).

Young’s modulus (GPa) Ep 2.0
Density (kg/m3) ρp 1800
Poisson’s ratio υp 0.29
Piezoelectric stress constant (C/m2) e31 0.046
Piezoelectric strain constant (pC/N) d31 23.0
Electromechanical coupling factor k31 0.12
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Initialize: 0u, 0u̇, 0ü and 0φ

Input ∆t, and calculate Newmark’s constants

Compute
M, t0K

(b)
uu , tK(b)

uφ
, tKT(b)

uφ
,tK(b)

φφ
, t0F, tq

t+∆tK
(b)
φφ

t+∆tφ(b) =t+∆t q − t+∆tKT(b)

uφ

t+∆tu(b−1)

Compute electrical force vector: t+∆tK
(b)
uφ

t+∆tφ(b)

Apply force transformation method (Section 2.3.1)

Compute tangent stiffness matrix: t+∆t
0K

(i−1)(b)
uu

t+∆t

0K̂
(i−1)(b)
uu ∆u(i)(b) = ∆R −t+∆t K

(b)
uφ

t+∆tφ(b)

t+∆tu(i)(b) = t+∆tu(i−1)(b) + ∆u(i)(b)

Calculate new accelerations and velocities

Check for N-R iteration convergence

Apply displacement transformation method (Section 2.3.2)

Check BGS iteration convergence

b = b+1

i=i+1 (Approach 1)
*Without i loop

(Approach 2)
i=1

t = t+ ∆t

Not converged

Not converged

Fig. 8. Nonlinear dynamic piezoelectric analysis: Approaches 1 and 2.
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u
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φ
+
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(a) Bimorph actuator in series

P contract
expand

u
3

φ
+

+
–

(b) Bimorph actuator in parallel

Fig. 9. Piezoelectric bimorph actuators subjected to external voltages .

3. Piezoelectric bimorph actuator: Results and discussions

3.1. Problem setup

The piezoelectric bimorph actuator shown in Fig. 5 con-
sists of two piezoelectric layers joined together over their long
surfaces. The beam has a length of L = 100 mm along x-
axis, a width of w = 1 mm along y-axis, and a thickness of
tp = 0.5 mm along z-axis. The beam is fixed at x = 0. As
shown in Fig. 9, two electrical loading cases are analyzed:

1. Series connection: Two layers of PVDF polarized along
opposite transverse directions, see Fig. 9(a), uniform po-
tential is applied on the top electrode with the bottom
electrode being earthed.

2. Parallel connection: Two layers of PVDF polarized along
same transverse directions, see Fig. 9(b), uniform poten-
tial applied on the top and bottom electrodes with the in-
terface electrode being grounded.

For the electric configuration presented in Fig. 9, it is observed
that under the potential load, the top and bottom layers of the
piezoelectric bimorph actuator undergoes, respectively, contrac-
tion and expansion, and producing a pure bending in the upward
direction.
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(a) 3D solid elements for the electrical analysis.

(b) Shell elements for the structural analysis.

Fig. 10. Finite element mesh. Plane abcd is imposed fixed boundary conditions
for the structural analysis (t = 2tp = 1mm, L = 100mm, and w = 1 mm).

3.2. Numerical setup
The meshes used for the electrical and structural analyses

are shown in Fig. 10. The mesh for the electric analysis Fig. 10(a)
consists of 20-node hexahedral elements with the numbers of
the nodes and elements totaling 1343 and 160, respectively. The
mesh for the structural analysis Fig. 10(b) consists of MITC4
shell elements [45, 47] with the numbers of nodes and elements
totaling 82 and 40, respectively. In Fig. 10(a), the length of
each solid element is 2.5 mm, the width of each solid element
is 1mm, and the thickness of each solid element is 0.25mm.
Therefore, the solid element aspect ratio is 10. The shell ele-
ments shown in Fig. 10(b) are positioned at the interface of the
two piezoelectric layers discretized using 3D solid elements for
electrical analysis as shown in Fig. 10(a). There are 40 shell
elements in the x-direction; this number is consistent with the
number of solid elements along the x-direction.

3.3. Static analysis of actuator function
3.3.1. Theoretical solution

The static deflection in thickness direction (z-direction) along
length of the bimorph actuator (x-direction) is given as [18]

u3(x) =
3x2

4tp
d31E3, (33)

where d31 is the piezoelectric strain constant, E3 = φ/2tp is an
applied electric field for a series-type electrical connection and
E3 = φ/tp for a parallel-type electrical connection and tp is the
thickness of each piezoelectric layers. Substituting the actuator
dimensions and the material properties of the PVDF given in
Table 1 into Eq.(33) with x = L for φ = 1 V across the thick-
ness yields a static tip deflection of u3(L) = 0.3450 µm for
a series-type electrical connection and u3(L) = 0.690 µm for
a parallel-type electrical connection. The equivalent bending
moment which is defined as the moment that can produce the
same deflection in a piezoelectric bimorph actuator as an ap-
plied electric field, can be obtained as [4]

Meq =
wt2Ep

4
d31E3, (34)

where t = 2tp is the total thickness of the bimorph. For an ap-
plied voltage of φ = 1 V with E3 = φ/2tp across the thickness
yields

Meq = 1.1500 × 10−8 Nm.

The first bending resonance ω(1)
r for a piezoelectric bimorph

actuator is given as [18]

ω(1)
r =

1.8752

L2

√
EpI

ρpA
, (35)

where I is the second moment of area and A is the cross-sectional
area. From Eq.(35), the resonance frequency for the first bend-
ing mode was obtained as 107.0 rad/s.

3.3.2. Numerical analysis
Here we will demonstrate the convergence properties, so-

lution accuracy, and which approach is competitive from the
viewpoint of the computational cost.

a) Convergence properties for approaches 1 and 2:
Fig. 11(a) shows the convergence results for Approach 1, in
which the first BGS iteration required three N–R iterations to
satisfy the preassigned energy tolerance of etol = 1.0 × 10−12

and subsequent BGS iterations required two N–R iteration to
satisfy this condition. Fig. 11(b) shows the relative error of
the numerically obtained tip deflection using Approach 1 with
respect to the theoretical solution given by Eq.(33). At BGS
iteration 4, the tip deflection converged to within the set relative
tolerance value of χ = 1 × 10−5 in this approach. Totally nine
nonlinear N–R iterations are necessary to obtain the converged
solution.

Fig. 12 shows the iteration convergence proprieties of Ap-
proach 2. Since the BGS and N–R loops are unified in this
approach, we call the horizontal axis in Fig. 12 as nonlinear it-
eration. As shown here, the increment in internal energy and
relative error in tip deflection are on the same vertical axis for
each nonlinear iterations along the horizontal axis. By the fifth
nonlinear iterations, the set energy tolerance condition, as well
as the relative tolerance, was satisfied to perform static analysis
of the numerical problem in Fig. 9(a).

b) Solution accuracy:
The static deflections obtained using Approaches 1 and 2, the
theoretical solution using Eq.(33), and the deflection at the nodes
obtained by Tseng [6] and Wang et al. [7] are listed in Table 2
for a series and parallel connection. These cases are all un-
der the condition of a unit input voltage. Tseng [6] modeled
the piezoelectric continuum using solid hexahedral elements,
which are too thick for the simulation of thin-layered MEMS
devices. Wang et al. [7] used a piezoelectric plate element and
applied the Guyan reduction method to condense the electric
potential vectors. The results obtained from both of the pro-
posed approaches show close agreement with the theory, and
the accuracy of the present finite element solution is higher than
that of the solutions obtained by Tseng [6] and Wang et al. [7].
The displacement of both the series and parallel actuator con-
figurations are accurately predicted by the present model.
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Table 2: Deflection of the piezoelectric PVDF bimorph actuator connected in series and parallel connection (for a unit applied voltage)

Location
along the
length(mm)

Deflection (µm)
Series connection Parallel connection

Theory[18] Tseng[6] Wang[7]
Present

Theory[18]
Present

Approach 1 Approach 2 Approach 1 Approach 2
20 0.01380 0.01500 0.01390 0.01379 0.01378 0.0276 0.02746 0.02768
40 0.05520 0.05690 0.05470 0.05519 0.05511 0.1104 0.11040 0.11108
60 0.12420 0.13710 0.11350 0.12419 0.12413 0.2484 0.24880 0.24947
80 0.22080 0.23510 0.21980 0.22078 0.22079 0.4416 0.44268 0.44297

100 0.34500 0.35980 0.34160 0.34505 0.34510 0.6900 0.69200 0.69200
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(b) BGS iteration convergence of the tip deflection.

Fig. 11. Iteration convergence analysis for the static case: Approach 1.

c) Demonstration of geometric nonlinear effect:
Fig. 13 shows the tip deflection of the bimorph actuator in series
analyzed under various applied voltages. The purpose of this
analysis is to demonstrate the superiority of the present non-
linear shell–solid method over our previous linear structure–
electric field for the piezoelectric actuator analysis using purely
solid [27] and linear theoretical solution [18]. From the cur-
rent literature review, there are no nonlinear theoretical solu-
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Fig. 12. Iteration convergence analysis for the static case: Approach 2.
.

tions for the deflection of the piezoelectric bimorph actuator.
Therefore, blocking force Fb [4] corresponding to the induced
electric forces for an applied voltage φ in a bimorph actuator
is externally applied on to the nonlinear pure shell [45] to per-
form the structural analysis and the displacement obtained in
the nonlinear pure shell is compared with the proposed shell–
solid combination. The blocking force can be obtained as [4],

Fb =
3wt2Ep

8L
d31E3. (36)

As shown in Fig. 13, the tip deflection at various voltage ana-
lyzed with linear solid–solid coincides with the linear theory.
Also, at lower input bias voltages, in the elastic region, the
deflections analyzed using present nonlinear shell–solid coin-
cides with linear theory and linear solid–solid. However, at
higher voltages, the proposed method shows the large deforma-
tion due to geometric nonlinear effect. The solution obtained
with the pure shell using the blocking force corresponding to
the respective input bias voltage is very close to that of the pro-
posed method. This indicates that the proposed method accu-
rately take into account the geometric nonlinear effect in a thin
plate–like piezoelectric bimorph.
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Fig. 13. Tip deflection of bimorph actuator in series at various input voltages.

d) Computational efficiency of shell–solid over solid–solid:
To demonstrate the computational efficiency and the solution
accuracy to analysis thin plate–like flexible piezoelectric bi-
morph, dimensional parametric study for various length to thick-
ness ratio (L/t) consists of different mesh divisions are pre-
sented in Fig. 14. For every L/t ratio, four mesh divisions with
different structural and electrical degrees of freedoms (dof’s)
are shown. The thickness t = 1mm in L/t = 300, 200, and
100. The comparison of the structural dof’s versus the relative
error in tip deflection of the series connected piezoelectric bi-
morph actuator at bias voltage φ = 1V is made between the
proposed nonlinear shell–solid and linear solid–solid.

As shown in Fig. 14, for very thin flexible piezoelectric bi-
morph actuator (L/t = 300), the nonlinear shell–solid method
outperforms the linear solid–solid in terms of solution accuracy
and structure dof’s. Also, for each L/t ratio with mesh density
indicated by magenta color, the solution accuracy is very close
between the shell–solid and solid–solid. However, the struc-
tural dof’s required by the solid–solid to achieve solution close
to the shell–solid is very high. This indicates that the compu-
tational cost to analyze the structure is very high in solid–solid
than that of shell–solid. It is shown that with the same in–plane
division, the structural dof’s of pure solid–solid is larger than
that of the shell–solid. Therefore, proposed shell–solid is more
computationally efficient. Among approaches 1 & 2, the BGS
iteration with the N–R loop (Approach 1) requires nine non-
linear iterations to achieve convergence, on the other hand, the
unified BGS iteration and N–R loop (Approach 2) require five
nonlinear iterations to satisfy the convergence criteria. There-
fore, the computation cost in the first approach is slightly higher
than the second approach.

e) Electric potential across the thickness of the actuator:
The variation of the electric potential in the solid across the
thickness direction for a series and parallel connection are pre-
sented in Fig. 15. The results confirm clearly that for a piezo-
electric actuator mode, the variation of the electric potential
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Solid–Solid

Shell–Solid

Number of nodes Structure dof’s
Solid–Solid Shell–Solid Solid–Solid Shell–Solid

Solid
(Structure)

Shell
(Structure) Solid Shell

• 428 12 1284 60
• 803 22 2409 110
• 1553 42 4659 210
• 3053 82 9159 410

Fig. 14. Solution accuracy versus structure dof’s. Dotted lines indicates L/t
ratio of bimorph cantilever for solid–solid mesh and solid lines indicates L/t
ratio of bimorph cantilever for shell–solid mesh. Green, red, black, and ma-
genta color dots indicates mesh densities and structure dof’s.

varies almost linearly in the thickness direction, as previously
discussed in [15, 16, 60]. Kogli & Bucalem in [15, 60] solved
a piezoelectric bimorph actuator with a quadratic variation of
electric potential over the thickness for a parallel electric con-
figuration, their results clearly show that the electric potential
varies almost linearly, because of the three equipotential elec-
trodes at the top, bottom, and interface.

3.3.3. Validation of electric force and moment transformation
The purpose of this section is to validate the transformation

of the electric forces and moments from the solid to the shell
elements. The numerical problem described in Fig. 9(a) in the
case with a unit static input voltage was considered. First, both
the structure and electric field were solved using the solid el-
ements to evaluate both the nodal displacements and the elec-
tric potential under the BGS coupling scheme [27]. Next, the
electric force vector in the solid elements was calculated us-
ing Eq.(16). Then, the electric forces and moments were ap-
plied externally to the shell elements using the proposed force
and moment transformation method described in Section 2.3.1
to obtain the mechanical displacements of the shell elements
from the displacement interpolation function [46]. Finally, the
displacements of the solid elements due to the piezoelectric ef-
fect were compared with the displacements of the shell obtained
from the transformed electric forces and moments.

Fig. 16 shows the static deflection obtained by solving both
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(a) A series connection piezoelectric bimorph actuator.
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(b) A parallel connection piezoelectric bimorph actuator.

Fig. 15. Variation of the electric potential across the thickness in a piezoelectric
bimorph actuator.

the electrical and mechanical fields using the solid elements
[27] and the static deflection obtained in the shell elements
from the electric forces and moments applied externally to the
shell elements. These results demonstrate very good agree-
ment among the static deflection from the piezoelectric effect
obtained using the solid–solid element analysis, the shell ele-
ments for the structural analysis, and the theory Eq.(33) [18].
This indicates that the induced electric force and the moment
of the electric forces are accurately transformed from the solid
elements to the shell elements using the proposed method.

The motional restrictions along the joined surfaces of the
two piezoelectric layers creates forces and moments that result
in the pure bending of the piezoelectric bimorph actuator. The
total moment of the electric forces in the solid elements due to
the piezoelectric effect obtained using the BGS algorithm [27]
is Meq = 1.1506 × 10−8 Nm. The relative error of the numer-
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Fig. 16. Static deflection of the bimorph actuator.

ical solution with respect to the theoretical solution is 0.052%.
The deflection of the bimorph solved using piezoelectric solid
elements [27] and that solved using shell elements show good
agreement, demonstrating the accurate transformation of the
forces and moments.

3.4. Dynamic analysis of bimorph actuator

3.4.1. AC response
The bimorph actuator shown in Fig. 9 was examined under

AC input voltages with φ = φ0sinωφt, where ωφ and φ0 are the
frequency and amplitude of the input voltage, respectively. The
values of β and γ for the Newmark integration were selected
as β = 0.25 and γ = 0.5. The time increment was set to
∆t = (1/50)(2π/ωφ) for input frequencies much smaller or
larger than the resonance frequency and ∆t = (1/200)(2π/ωφ)
for input frequencies near resonance to obtain the converged
vibration amplitudes [27]. A finer time resolution was used near
resonance because the deflection is very sensitive to changes in
the frequency near resonance.

Fig. 17 show the iteration convergence properties of the
BGS and full N–R iterations in the dynamic analysis using Ap-
proach 1 for a bias voltage of φ = 1 V at a frequency of
ωφ = 106 rad/s and a time increment of ∆t = 3.0 × 10−4

s. Figures 17(a)–c) shows the increment in internal energy dur-
ing each N–R iteration at every BGS iteration. According to
Fig. 17(a), in the first BGS iteration at every time step, three
or four N–R iterations were executed before the preassigned
energy tolerance criterion was satisfied. Similarly, in the sec-
ond and third BGS iterations, only one N–R iteration was re-
quired to reach convergence, as shown in Fig. 17(b) and (c),
respectively. The relative error of the tip deflection at every
BGS iteration is shown in Figures 17(d)–f). The BGS iteration
convergence is obtained based on the relative error between the
previous and the current iteration solution in the dynamics anal-
ysis. As shown in Fig. 17(d) and (e), the tip deflection did not
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Fig. 17. Dynamic analysis iteration convergence properties: Approach 1. The energy tolerance and tip deflection relative error is plotted against the time at every
BGS iterations.

converge to the preassigned relative tolerance value in first and
second BGS iterations; in contrast, the relative error of the tip
deflection satisfied the tolerance criteria at every time step in
the third BGS iteration, as shown in Fig. 17(f).

Next, the vibration characteristics of the tip of the piezo-
electric bimorph actuator in response to input AC signals with
different frequencies and an amplitude of φ = 1 V obtained
using Approach 1 are depicted in Fig. 18. The peak displace-
ments of the AC responses to the input signals with the different
frequencies are summarized in Fig. 19. The point of maximum
deflection at the tip of the bimorph actuator indicates when the
frequency of the input voltage is equal to the resonance fre-
quency of the actuator.

The responses of the actuator at input voltage frequencies of
ωφ = 107.0, 107.1, and 107.2 rad/s, which are close to the struc-
tural resonance frequency, had large amplitudes [29], as shown
in Fig. 19; however, for input voltage frequencies much larger
or smaller than the structural resonance frequency, the peak am-

plitudes of the responses were approximately equivalent to the
tip deflection under a static force [29], as shown in Fig. 18(a)
and (d). The response in Fig. 18(c) achieved the largest peak
amplitude among the different input frequencies, indicating res-
onance was achieved at this frequency. Fig. 19 reveals that the
simulation results yielded a maximum peak deflection ampli-
tude at an input voltage frequency of ωφ = 106.90 rad/s. The
resonance of the piezoelectric bimorph actuator actually occurs
at a driving input voltage frequency very close to the theoretical
frequency of ω(1)

r = 107.0 rad/s. Therefore, the numerical and
theoretical solutions are in good agreement with each other.

The AC response was then simulated using Approach 2.
Fig. 20(a) shows the vibration characteristics at an input voltage
frequency much smaller than the structural resonance frequency
of the bimorph actuator. There is an instability in the solution
when one BGS iteration is performed in each time step; how-
ever, there is no such instability when two or more BGS itera-
tions are used in each time step. The instability appears for the
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(d) ωφ = 180.0 rad/s.

Fig. 18. AC response of a bimorph actuator in a series connection at different frequencies simulated using Approach 1.

103 104 105 106 107 108 109 110

0

100

200

300

400

500

Input Voltage frequency (rad/sec)

R
es

p
o
n
se

 a
m

p
li

tu
d
e 

(µ
m

)

Theory : ω
r

(1)

=106.99 rad/s

Approach 1

ω = 106.90 rad/s

Fig. 19. Frequency response curve of a bimorph actuator calculated using Approach 1.
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Fig. 20. AC response of a bimorph actuator in a series connection at different frequencies simulated using Approach 2.
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Fig. 21. Dynamic analysis iteration convergence properties: Approach 2.

unified algorithm for input frequencies far away from the reso-
nance if only one nonlinear iteration is used. The source of this
instability is the unconverged nonlinear solution. The residual
of the nonlinear equation will be increased in the time steps,
and nonlinear iterations more than two reduces such residual in
the numerical solution. Also note that, when the input voltage
frequency is close to the structural resonance frequency, an in-
stability arises when one or two BGS iterations are used in each
time step, as shown in Fig. 20(b). The reason for the instability
that arises when the input voltage frequency is much smaller
than the resonance frequency and one BGS iteration is used is
delineated in Fig. 21. The relative error of the tip deflection ap-
proaches infinity when one BGS iteration is used in this case, as
shown in Fig. 21(a). This is because the energy tolerance in the
nonlinear N–R iteration is not satisfied when only one BGS iter-
ation is applied, as shown in Fig. 21(b). From this assessment,

it is apparent that executing three or four nonlinear iterations in
every time step would yield a converged solution without any
instability when Approach 2 is used. If both the energy toler-
ance and relative tolerance are introduced then we obtain stable
solution, as shown in the results. Since this approach requires
less number of nonlinear iterations than the first approach, it
is computationally efficient than the first approach. The vibra-
tion amplitudes at various AC input voltages are approximately
equal to those obtained using Approach 1. The same level of
accuracy was achieved in both approaches.

3.4.2. Step response of a piezoelectric bimorph actuator
The vibration characteristics of the piezoelectric bimorph

actuators driven by a step voltage φ = 1 V obtained using Ap-
proach 1 are presented here. Newmark [68] presented a numeri-
cal damping scheme in which β = 0.25(γ+0.5)2 with γ > 0.5;
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on the basis of this method, a step input voltage with the New-
mark parameters of γ = 0.6 and β = 0.3025 was used to ob-
tain steady-state equilibrium after a long time interval. These
parameters were adopted because when a bimorph actuator is
actuated with numerically positive damping with a step input
bias voltage, the steady-state response of the tip deflection is
equal to the theoretical solution for the static deflection. The
time increment ∆t was chosen as 1.0 × 10−3 s.

Fig. 22 shows the step response of the numerical problem in
Fig. 9. The steady-state tip deflection was obtained as 0.3452 µm,
whereas the theoretical static tip deflection obtained from Eq.(33)
is u3(L) = 0.3450 µm. Thus, the relative error of the tip de-
flection is 0.057%. The exact value of the natural period of
vibration ( Tn = 1/fr ) for this problem is 0.0587 s, where the
natural frequency fr is obtained using Eq.(35). The obtained
natural period using the numerical analysis is 0.0585 s. The
natural period of vibration showed good agreement between the
numerical and theoretical solution. Highly accurate solutions
were obtained using the proposed coupled algorithm. Approach
2 yielded similar results.

4. A piezoelectric bimorph sensor mode

4.1. Problem setup

Many piezoelectric shell formulation in Refs. [55, 56] are
limited to only actuator function, so they can not solve sensor
problems. In this section, the sensor response of a piezoelectric
bimorph cantilever shown in Fig. 23 is obtained for a transverse
load F at the free end of the shell structure, as shown in Fig. 23
(a). The nodes with the electric degree of freedom (DOF) at the
top, bottom, and mid–surfaces of a piezoelectric bimorph FE
model are regarded as an electrode. Four electrical configura-
tions are analyzed:

1. Closed circuit configuration (active mode): The nodes at
the top and bottom surfaces are set to zero electric poten-
tial, as shown in Fig. 23(b).

2. Closed and open circuit configuration (active–sensory mode):
The nodes at the top surface are in an open circuit con-
dition while the bottom surface is earthed, as shown in
Fig. 23(c). Some piezoelectric shell formulations in Refs.
[15, 42, 53, 58–60] can be used to model both the actuator
and sensor function of piezoelectric bimorph, provided
one or two equipotential electrodes (ex. active mode).
Since the electric potential serves as unknowns in an active–
sensory configuration, they are modeled with a linear vari-
ation of the electric potential through the thickness [53],
which leads to quite a wrong solution because the elec-
tromechanical coupling would be partial and would ne-
glect the induced potential in sensor mode, as discussed
in [20]. On the other hand, the proposed method can take
into account the quadratic variation of electric potential
in active–sensory configuration.

3. Partial open circuit configuration: In this configuration, a
node at the top and bottom surface near the fixed end are
grounded while other nodes are in open circuit configu-
ration, as shown in Fig. 23(d).
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Fig. 22. Response of a bimorph actuator to a step input voltage.

4. Full open circuit configuration (sensory mode): Both the
top and bottom surfaces are in an open circuit condition,
as shown in Fig. 23(e). In energy harvesting application,
open surfaces at the bottom and top are general [10, 11].

From the formulation viewpoint, the piezoelectric shell pro-
posed in [53] cannot solve active sensory configuration (Fig. 23(c)),
partial open circuit configuration (Fig. 23(d)), and full open
circuit configuration (Fig. 23(e)), because, in the piezoelectric
shell, the potential at the mid–plane nodes is unknown, both top
and bottom surface electrode potential must be prescribed to de-
termine quadratic variation. This makes the usage of the piezo-
electric shell very difficult in the piezoelectric bimorph sensor
analysis. Using our proposed method, the quadratic variation in
active sensory configuration, partial open circuit configuration,
and full open circuit configuration can be achieved.

The piezoelectric bimorph beam shown in Fig. 23 has a
length of L = 250 mm, a width of w = 20 mm, and a thick-
ness of each layer tp = 2.5 mm. The piezoelectric layers are
polarized in the same direction along the thickness. All the me-
chanical DOF are fixed at x = 0. The mesh for the structural
analysis consists of MITC4 shell elements with the numbers
of nodes and elements totaling 22 and 10, respectively. The
mesh for the electric analysis consists of 20-node hexahedral
elements with the numbers of the nodes and elements totaling
353 and 40, respectively.

4.2. Static analysis of sensor function
The displacement of the tip due to a transverse load F at the

free end of the shell structure produces a voltage in the 3D solid
of the bimorph cantilever beam. For the rectangular bimorph
cantilever sensor connected in parallel [69, 70] we have

V =
3

16
g31Ep

t2

L2
δ, (37)

where V is the generated electric voltage, g31 is the piezoelec-
tric voltage coefficients, and δ is maximum tip deflection due to
pure mechanical transverse loading F at the tip. Piezoelectric
voltage constant g31 for a PVDF material is 0.216 Vm/N.

17

prakasha
下線

prakasha
下線

prakasha
下線



Fig. 23. Piezoelectric bimorph cantilever sensor configuration:
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(a) Closed circuit configuration
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(b) Active–sensory mode configuration
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(c) Partial open circuit configuration
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(d) Full open circuit configuration

Fig. 24. Distribution of potential over the thickness of the bimorph cantilever for sensor model under F = 1× 10−3 N.

The maximum tip deflection δ for an applied tip load F is
obtained using,

δ =
FL3

3EpI
. (38)

Taking tip load F = 1 × 10−3 N, the numerical results of
the distribution of induced electrical potential over the thick-
ness at x = 0, y = 0 are presented in Fig. 24. It is appar-
ent from Fig. 24 that the induced electrical potential obtained

with the FE analysis varies, almost quadratically over the thick-
ness. It is easily understood that the potential in the upper and
lower surfaces is zero for closed circuit electric configuration,
as shown in Fig. 24(a). Similarly, there exists a potential on the
top surface while it is zero on the bottom surface for active–
sensory mode configuration, as shown in Fig. 24(b). The theo-
retical solution has a value V = 0.8647V for applied tip load
F = 1 × 10−3 N while the numerical solution using proposed
method is V = 0.8471V, shown in Fig. 24(b). The numerical
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solutions agree well with the theory. The induced electric po-
tential for the partial open circuit and full open circuit sensor
configuration is shown in Figures 24(c) and 24(d). As shown
in Fig. 24(d), it is clear that for the full open circuit configura-
tion, the induced electric potential on both the top and bottom
surface is same and has a value V = 3.2484 volts for applied
tip load F = 1 × 10−3 N. As presented here, the 3D solid el-
ements in sensor mode can model the electric field under any
electric boundary conditions with almost a quadratic variation
of the induced electric potential over the thickness.

Fig. 25 shows the maximum induced electric potential in
the solid elements for an active–sensory circuit configuration
versus applied tip load at the shell elements compared with the
theoretical solution, and solid–solid [27]. The solution obtained
with the proposed method is in good agreement with the the-
ory and linear solid–solid in the elastic region. The proposed
shell–solid method shows nonlinear behavior which can not be
analyzed using theory.

5. Conclusions

A new finite element scheme for the simulation of the piezo-
electric interaction between the structure and electrical fields
was developed using a combination of both solid and shell el-
ements for the finite element model. The field decomposition
employed in this method enables the use of different elements
to solve the different fields. A novel method of exchanging
the electric force, the moment of the electric force, and the
displacement between the electrical field in the solid elements
and the mechanical field in the shell elements was developed.
The proposed method can be used to analyze both the actua-
tor and sensor function in a thin-layered piezoelectric bimorph
cantilever of various electric configurations with both the lin-
ear and quadratic variations of the electric potential across the
thickness direction.

The geometric nonlinear structure-electric interaction of the
piezoelectric effect was analyzed by applying two approaches.
In the first approach (i.e. BGS iteration with the N–R loop), the
N-R iteration loop is executed in every BGS iteration until the
convergence criteria are satisfied. In the second approach (i.e.
unified approach), the BGS iteration and N–R iteration loops
are unified to single loop. From the viewpoint of computational
cost, the second approach is computationally efficient. Both the
approaches show the same level of accuracy.

The proposed coupling scheme is well suited for use in
the general–purpose FEA of the thin piezoelectric bimorph in
MEMS. It was shown that using a combination of solid and
shell elements to solve the electrical and structural fields, re-
spectively, with the proposed method of transforming the force,
moment, and displacement between the two fields allows for
the very accurate simulation of the general electromechanical
coupling or both the actuation and the sensing that occurs in the
piezoelectric effect. The proposed method accurately takes into
account the geometric nonlinear effect in both the actuator and
sensor mode.
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Fig. 25. Maximum induced electric potential v/s applied tip load for active–
sensory configuration of piezoelectric bimorph cantilever connected in parallel.

Acknowledgments

This research was supported by JSPS KAKENHI Grant Num-
ber 26390133, 17H02830 and 16K05043. We would like to
thank Mr. Yu Sayama for his contribution in developing the
solid elements analysis programs.

References

[1] J.Curie, P. Curie, Development via compression of electric polarization in
hemihedral crystals with inclined faces, Bull Soc Minral 1880 :90–93.

[2] K. Uchino, Piezoelectric actuators/ ultrasonic motors – their develop-
ments and markets, Proc of 1994 IEEE Int Symp Appl Ferroelectr 1995;
319–324.

[3] C.B. Eom, S. Trolier-McKinstry, Thin-film piezoelectric mems, Mater
Res Soc Bull 2012; 37 (11) :1007–1017.

[4] Q.M. Wang, L.E. Cross, Performance analysis of piezoelectric cantilever
bending actuator, Ferroelectrics 1998; 215 (1) :187–213.

[5] H.S. Tzou, Development of a light-weight robot end-effector using poly-
meric piezoelectric bimorph, Proc IEEE Int Conf Robot Autom 1989; 3
:1704–1709.

[6] C.I. Tseng, Electromechanical dynamics of a coupled piezoelec-
tric/mechanical systems applied to vibration control and distributed sens-
ing, Ph.D Dissertation, Univ. of Kentucky, Lexington, Ky. July, 1989;.

[7] Z. Wang, S. Chen, W. Han, The static shape control for intelligent struc-
tures, Finite Elem Anal Des 1997; 26 (4) :303–314.

[8] C. Lee, T. Itoh, T. Suga, Micromachined piezoelectric force sensors based
on pzt thin films, IEEE Trans Ultrasonics, Ferroelect Freq Control, 1996;
43 :553–559.

[9] T. Shibata, K. Unno, E. Makino, S. Shimada, Fabrication and character-
ization of diamond afm probe integrated with pzt thin film sensor and
actuator, Sens Actuators A: Phys 2004; 114 (2–3) :398–405.

[10] A. Erturk, D.J. Inman, An experimental validated bimorph cantilever
model for piezoelectric energy harvesting from base excitation, Smart
Mater.Struct 2009; 18 :025009, 15 pages.

[11] Y. Tanaka, T. Oko. H. Mutsuda, A.A. Popov, R. Patel, S.M. William,
Forced vibration experiments on flexible piezoelectric devices operating
in air and water environments, Int J Appl Electrom 2014; 45 :573–580.

[12] R.J. Wood, B. Finio, M. Karpelson, K. Ma, N.O. Perez-Arancibia, P.S.
Sreetharan, H. Tanaka H, J.P Whitney, Progress on pico air vehicles, Int
J Robot Res 2012; 31 (11) :1292–1302.

19

prakasha
下線

prakasha
下線

prakasha
下線

prakasha
下線



[13] D. Ishihara, N. Ohira, M. Takagi, T. Horie, Fluid-structure interaction
design of insect-like micro flapping wing, Proc of the VII Int Conf Com-
putational Methods for Coupled Problems In Science and Engineering
(Coupled Problems 2017), Greece :870–875.

[14] D. Ishihara, T. Horie, M. Denda, A two dimensional computational study
on fluid-structure interaction cause of wing pitch changes in dipteran flap-
ping flight, J Exp Biol 2009; 212 :1–10.

[15] M. Kogli, M.L. Bucalem, Analysis of smart laminates using piezoelectric
mitc plate and shell elements, Comput Struct 2005; 83 (15–16) :1153–
1163.

[16] S.Y. Wang, A finite element model for the static and dynamic analysis of
a piezoelectric, Int J Solids Struct 2003; 41 (15) :4075–4095.

[17] A. Fernandes, J. Pouget, Analytical and numerical approaches to piezo-
electric bimorph, Int J Solids Struct 2003; 40 :4331–4352.

[18] J.G. Smits, A. Ballato, Dynamic admittance matrix of piezoelectric can-
tilever bimorphs, J Microelectromech Syst 1994; 3 (3) :105 – 112.

[19] S. Kapuria, P. Hangedorn, Unified efficient layerwise theory for smart
beams with segmented extensio/shear mode, piezoelectric actuators and
sensors, J Mech Mater Struct 2007; 2 (7) :1267–1298.

[20] A. Benjeddou, Advances in piezoelectric finite element modeling of adap-
tive structural elements:a survey, Comput Struct 2000; 76 (1–3) :347–363.

[21] A. Benjeddou, J. Deu, S. Letombe, Free vibrations of simply–supported
piezoelectric adaptive plates:an exact sandwich formulation, Thin–Walled
Struct 2002; 40 :573–593.

[22] W. Zouari, B. Zineb, A. Benjeddou, A fsdt-mitc piezoelectric shell finite
element with ferroelectric non-linearity, J Intell Material Syst Struct 2009;
20 (17) :2055–2075.

[23] M. Kogli, M.L. Bucalem, A family of piezoelectric mitc plate elements,
Comput Struct 2005; 83 :1277–1297.

[24] O.Z. Zienkiewicz, R.L. Taylor, The finite element method, fifth edition,
volume 1 : The basis, Butterworth-Heinemann 2000.

[25] D. Ishihara, T. Horie, T. Niho, T. Baba, Hierarchal decomposition for the
structure-fluid-electrostatic interaction in a microelectromechanical sys-
tem, Comput Model Eng Sci 2015; 108 (6) :429–452.

[26] P.C. Ramegowda, D. Ishihara, T. Niho, T. Horie, A finite element ap-
proach for a coupled numerical simulation of fluid -structure-electric in-
teraction in mems, Proc of the VII Int Conf Computational Methods for
Coupled Problems In Science and Engineering (Coupled Problems 2017),
Greece :999–1007.

[27] P.C. Ramegowda, D. Ishihara, T. Niho, T. Horie, Performance evaluation
of numerical finite element coupled algorithms for structure-electric in-
teraction analysis of mems piezoelectric actuator, International Journal of
Computational Methods 2018; 15 (3) :1850106, 28 pages.

[28] P.C. Ramegowda, D. Ishihara, R. Takata, T. Niho, T. Horie, Fluid–
structure and electric interaction analysis of piezoelectric flap in a channel
using a strongly coupled fem scheme, Proc of the 6th European Confer-
ence on Computational Mechanics (Solids, Structures and Coupled Prob-
lems), Glasgow, 2018 :382–393.

[29] F. Shi, P. Ramesh, S. Mukherjee, Dynamic analysis of micro electro me-
chanical systems, Int J Numer Meth Engng 1996; 39 (24) :4119–4139.

[30] V. Rochus, D.J. Rixen, J.C. Golivnal, Non-conforming element for accu-
rate modelling of mems, Finite Elem Anal Des 2007; 43 :749–756.

[31] V. Rochus, C. Geuzaine, A primal/dual approach for the accurate evalu-
ation of the electromechanical coupling in mems, Finite Elem Anal Des
2012; 49 :19–27.

[32] H. Allik, T.J.R. Hughes, Finite element method for piezoelectric vibra-
tion, Int J Numer Meth Engngng 1970; 2 :151–157.

[33] H. Allik, M.W. Kenneth, T.H. John, Vibrational response of sonar trans-
ducer using piezoelectric finite elements, J Acoust Soc Am 1974; 56
:1782–91.

[34] H.S. Tzou, C.I. Tseng, Distributed piezoelectric sensor/actuator design
for dynamic measurement/control of distributed parameter systems:a
piezoelectric finite element approach, J Sound Vibr 1990; 138 (1) :17–
34.

[35] H.S. Tzou, C.I. Tseng, H. Bahrami, A piezoelectric hexahedron finite
element applied to design a smart continua, Finite Elem Anal Des, 16:
(1994) 27–42.

[36] L.C. Chin, V.V. Varadan, V.K. Naradan, Hybrid finite element formulation
for periodic piezoelectric arrays subjected to fluid loading, Int J Numer
Meth Engng 1994; 37 (1) :2987–3003.

[37] K. Ghandi, N.W. Hagood, Nonlinear finite element modeing of phase

transitions in electro-mechanically coupled material, Smart Struct Mater:
SPIE 1996; 2715 :121–140.

[38] K. Ghandi, N.W. Hagood, A hybrid finite element modelfor phase tran-
sition in nonlinear electro-mechanically coupled material, Smart Struct
Mater: SPIE 1997; 3039 :97–112.

[39] S.K. Ha, C. Keilers, F.K. Chang, Finite element analysis of compos-
ite structures containing distributed piezoelectric sensors and actuators,
AIAA J 1992; 30 :772–780.

[40] R. MacNeal, R. Harder, A proposed standard set of problems to test finite
element accuracy, Finite Elem Anal Des 1985; 1 :3–20.

[41] I.S. KoKo, I.R. Orisamolu, M.J. Smith, U.O. Alepan, Finite ele-
ment based design tool for smart composite structures, Smart Struct
Mater:SPIE 1997; 3039 :125–134.

[42] R. Lammering, The appllicaton of a finite shell element for compos-
ites containing piezoelectric polymer in vibration control, Comput Struct
1991; 41 (5) :1101 – 1109.

[43] T.A. Quentin, D.J. Brian, L.L. Howell, Geometrically non-linear analysis
of thin-film compliant mems via shell and solid elements, Finite Elem
Anal Des 2012; 49 :70–77.

[44] W.S. Hwang, H.C. Park, Finite element modeling of piezoelectric sensors
and actuators, AIAA J 2013; 31 (5) :930–9937.

[45] H. Noguchi, T. Hisada, Sensitivity analysis in post buckling problems of
shell structures, Comput Struct 1993; 47 (4-5) :699–710.

[46] E.N. Dvorkin, K.J. Bathe, A continuum mechanics based four-node shell
element for general nonlinear analysis, Eng Comput 1984; 1 (1) :77–88.

[47] K.J. Bathe, E.N. Dvorkin, A formulation of general shell elements-the
use of mixed interpolation of tensorial components, Int J Numer Meth
Engngng 1986; 22 (3) :697–722.

[48] V.V. Varadan, L.C. Chin, V.K. Naradan, Finite element modeling of flex-
tensional electroacoustic transducers, Smart Mater Struct 1993; 2 (4)
:201–207.

[49] N. Guo, P. Cawley, D. Hitchings, The finite element analysis of the vi-
bration characteristics of piezoelectric discs, J Sound Vibr 1992; 159 (1)
:115–138.

[50] R. Lammering, R.S. Mesecke, Multi-field variational formulations and
related finite elements for piezoelectric shells, Smart Mater Struct 2003;
12 (12) :904–913.

[51] V.D. Varelis, D.A. Saravanos, Coupled mechanics and finite element for
non-linear laminated piezoelectric shallow shells undergoing large dis-
placements and rotations, Int J Numer Meth Engng 2006; 66 (8) :1211–
1233.

[52] R. Zemk, R. Rolfes, M. Rose, J. Tessmer, High-performance four-node
shell element with piezoelectric coupling for the analysis of smart lami-
nated structures, Int J Numer Meth Engng 2007; 70 (8) :934–961.

[53] D. Lenger, S. Klinkel, W. Wagner, An advanced finite element formu-
lation for piezoelectric shell structures, Int J Numer Meth Engng 2013;
95 (11) :901– 927.

[54] X. Wang, Y. Wang, On non-linear behaviour of spherical shallow shells
bonded with piezoelectric actuators by the differential quadrature element
method (dqem), Int J Numer Meth Engng 2002; 53 (6) :1477–1490.

[55] R. Iozzi, P. Gaudenzi, Effective shear deformable shell elements for adap-
tive laminate structures, J Intell Mater Syst Struct 2001; 12 (6) :415–422.

[56] A. Zallo, P. Gaudenzi, Finite element models for laminated shells with
actuation capability, Comput Struct 2003; 81 :1059– 1069.

[57] X. G. Tan, L. Vu-Quoc, Optimal solid shell element for large deformable
composite structures with piezoelectric layers and active vibration con-
trol, Int J Numer Meth Engng 2005; 64 :1981–2013.

[58] V. Balamurugan, S. Narayanan, Shell finite element for smart piezoelec-
tric composite plate/shell structures and its application to the study of
active vibration control, Finite Elem Anal Des 2001; 37 :713–738.

[59] D.A. Saravanos, Mixed laminate theory and finite element for smart
piezoelectric composite shell structures, AIAA J 1997; 35 (8) :1327–
1333.

[60] M. Kogli, M.L. Bucalem, Locking free piezoelectric shell elements.
in bathe kj editor, Computational Fluid and Solid Mechanics. Elsevier
2003; (15–16) :392–395.

[61] C.A. Felippa, K.C. Park, C. Farhat, Partitioned analysis of coupled me-
chanical system, Comput Meth Appl Mech and Engng 2001; 190 :3247–
3270.

[62] J. Fish, W. Chen, Modeling and simulation of piezocomposites, Comput
Meth Appl Mech and Engng 2003; 192 (28–30) :3211 – 3232.

20



[63] P. Gaudenzi, K.J. Bathe, An iterative finite element procedure for the anal-
ysis of piezoelectric continua, J Intell Mater Syst and Struct 1995; 6 (2)
:226–273.

[64] K.J. Bathe, Finite element procedures 2006, Prentice-Hall,.
[65] K.J.Bathe, E.Ramm, E.L.Wilson, Finite element formulation for large de-

formation dynamics analysis, Int J Numer Meth Engngng 1975 9 (2) 353–
386.

[66] M.L. Bucalem, K.J. Bathe, Finite element analysis of shell structures,
Arch Comput Meth Eng, 4: (1997) ,3–61.

[67] K.J. Bathe, A.P. Cimento, Some practical procedures for the solution of
nonlinear finite element equations, Comput Meth Appl Mech and Engng
1980; 22 (1) :59–85.

[68] N.M. Newmark, A method of computation for structural dynamics, Proc
Am Soc Civil Eng J Eng Mech Div 1959; 85 (3) :67–94.

[69] C.P. Germano, Flexural mode piezoelectric transducers, IEEE Trans Au-
dio Elecroacoustics 1971; 19 :6–12.

[70] P. Kielzynski, W. Pajewski, M. Szalewski, Piezoelectric sensors for inves-
tigations of microstructures, Sens Actuators A: Phys 1998; 65 :13–18.

21


	Introduction
	Coupled analysis method for the structure–electric interaction of piezoelectricity
	Governing equations and finite element equations of the piezoelectric effect
	Shell structure formulation for geometric nonlinear effect
	Transformation method between solid and shell elements
	Electric force and moment transformation from the solid to the shell elements
	Displacement transformation from shell to solid elements

	Piezoelectric nonlinear dynamic analysis
	Nonlinear structure–electric coupling scheme in the piezoelectric effect
	Nonlinear structure–electric coupling scheme using the proposed transformation method


	 Piezoelectric bimorph actuator: Results and discussions
	Problem setup
	Numerical setup
	Static analysis of actuator function
	Theoretical solution
	Numerical analysis
	Validation of electric force and moment transformation

	Dynamic analysis of bimorph actuator
	AC response
	Step response of a piezoelectric bimorph actuator


	A piezoelectric bimorph sensor mode
	Problem setup
	Static analysis of sensor function

	Conclusions

