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Abstract—The purpose of this work is to develop a simultane-
ous visualization method of documents, words, and topics. The
task of the proposed method is to map a set of documents to a pair
of low-dimensional latent spaces corresponding to documents and
words, by which the relations between them are visualized. In
addition, the method also decomposes the mapping as the sum
of topics, so that the topic distributions are visualized on the
latent spaces. To achieve the task, we combined the tensor self-
organizing map and the non-negative matrix factorization. We
applied the method to NeurIPS data set, and the result shows
that the method enables us to understand the tripartite relation
between document, words and topics easily.

Index Terms—tensor self-organizing map, document analysis,
topic, non-negative matrix factorization

I. INTRODUCTION

Document visualization methods aim to map a set of doc-
uments to a low-dimensional, usually 2-dimensional space,
in which similar documents are arranged to be nearby [1].
Similarly, word visualization methods aim to map a set of
words to a low-dimensional space so that the similarities of
words are indicated [2].

While the present methods mainly aim to visualize either
documents or words, the purpose of this work is to develop
a simultaneous visualization method of both documents and
words, which enables us to make the cross-domain analysis
(namely, document and word domains) as well as the intra-
domain analysis. Thus, the proposed method does not only
aim to generate a pair of low dimensional representations
of documents and words, but also visualizes the relation
between them, for example, visualizing the words contained in
a document, and vice versa. Therefore such method is expected
to enhance the information retrieval ability a lot, allowing us
bidirectional data exploration.

Such cross-domain analysis can be further enhanced by
introducing the concept of topic, which categorizes both doc-
uments and words. Thus, instead of examining any combina-
tions of document and word pair exhaustively (which usually
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becomes too much to examine), we can see the rough picture
of their relations from the viewpoint of topics. Therefore, it is
expected that the visualization method using topics extends the
data exploration ability from bi-directional to tri-directional.

In summary, the tasks of the proposed method are as
follows. (i) From a bag-of-word document data, generating two
low-dimensional visualizations corresponding to documents
and words, which are referred to as ‘maps’ in this paper.
Thus, the first task of the method is to generate a document
map and a word map simultaneously, by which similarities of
documents/words are indicated. By using these maps, intra-
analysis can be executed. (ii) The second task of the method
is to visualize the mutual relation between documents and
words. Thus visualizing the regions of the words contained
in a particular documents, and vice versa. More simply, by
specifying a point in the document map, the corresponding
regions are indicated in the word map. Similarly, by specifying
a point in the word map, the corresponding regions are
indicated in the document map. (iii) The third task of the
method is to visualize the regions in the document/word maps
corresponding to each topic.

In order to achieve the above tasks, the proposed method
combines the tensor self-organization map (TSOM) [3] and
the non-negative matrix factorization (NMF) [4]. The TSOM
visualizes documents and words simultaneously, whereas the
NMF makes the topic decomposition of the maps obtained by
TSOM.

II. PROBLEM FORMULATION

Let D and W be the set of documents and words respec-
tively. For d € D and w € W, let uq € U, v,, € V be the
corresponding latent variables, representing the positional vec-
tors in the low dimensional spaces for visualization, namely,
the latent spaces U, V. Typically U/ and V are two dimensional
unit square spaces [0, 1]%, which are also used in this paper.

The input is the bag-of-words (BoW) data N = (ngy),
namely, the frequency of word w € W in document d € D.
In this work, we preprocessed BoW data by the tf-idf [5],
which is a non-negative index characterizing the importance



of the words in each document. Thus, x4,
the actual input.

= tf-idf(ngy,) is

When X = (x4, ) is given, our aim is to estimate the latent
variables U = (uq) and V = (v,,), so that X is decomposed
as

T
T Z (ug|t) ¥(vy|t), (1

where ¢ represents the topic, and @(ug4lt), ¥(vy|t) are the
smooth functions of uy4 and v,, with respect to topic .
Though the traditional tf-idf is employed in this paper, the
probabilistic approach is also possible. Let P(wl|d) is the
occurrence probability of word w in document d. In this case

(1) becomes
(3 ploal)

which is regarded as a topic model with the latent variables.

P(w|d) o< P(w) p(vy|ug) = (tluq), (2)

III. PROPOSED METHOD

To perform the above task, we employed the following
objective functions.

Fr = h(ulug) h(v|ve) (Taw — f(u,v))? dudo
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such that o(ult),y(v|t) > 0, where h(:|-) is the kernel
function. In this work, Gaussian function is used as the kernel.
Note that (3) (4) are the objective functions of the TSOM and
the NMF respectively [3] [4]. Therefore, the objective function
Frp is optimized by TSOM, the Fy is optimized by NMF. If the
task is defined as (2), then the Euclidean distance is replaced
by KL-divergence, and the corresponding methods become the
TSOM for probability set [6] and the latent Dirichlet allocation
(LDA) [7].

The details of the proposed method are described as follows.
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Step 1: Latent variable estimation by TSOM

After the latent variables are initialized randomly, the map
f(u,v) and the latent variables {ug4},{v,} are estimated
alternately until they converge. f(u,v) is estimated as

ZZh ulug) h

where Hy(u) = >, h(u|uq) and Hy(v) =
the latent variables are estimated as

Ug = arg min/ (g1(v]d) — f(u,v))*do, (6)

f(u,v) =

‘Uw) Tdw, (5)

> w P(v]|vy). Then

Uy = arg min/ (g2(uw) — f(u,v))* du, @)

where

Z h(v|w) Tauw (8)

gmw:%v

g2 (ulw) =

Hl(u Zh uld) T 4w ©)

(5)—(7) are executed iteratively until Frr converges.

Step 2: Topic decomposition by NMF

After estimating the simultaneous mapping f(u,v) in Step
1, it is decomposed to topics by NMF. To apply NMF, the
latent space is discretized to K nodes, and the continuous
functions are transformed to matrices. Thus, (1) becomes X ~
®U . In this paper, we used the algorithm proposed by Lee
and Seung [4], as follows.

PV = 0 O (XT) 0 (T T)
U= U0 (XT0) 0 (T )

(10)
(1)

Here ® and © are the elementwise product/division of matri-
ces respectively.

IV. VISUALIZATION

The proposed method provides several exploring methods of
the obtained model. (i) The method provides two low dimen-
sional representations corresponding documents and words,
namely, the document map and the word map. These maps
can be used as the ordinary visualization using dimensionality
reduction. Thus, the documents which consist of similar words
are located nearer in the document map. Similarly, the words
map represents the similarities between words. (ii) For cross-
domain analysis, the conditional component plane (CCP) is
useful [3]. By selecting a point in the document map, say u,,
CCP displays f(v|u,) = f(up,v) on the word map as the
gray scale. Thus CCP visualizes the region of words, which
are contained in the documents at u, in the document map.
Similarly, by selecting a point in the word space v,, CCP
displays f(u|v,) = f(u,vp) on the document map as the gray
scale indicating the documents, containing the words at v,.
Therefore CCP is a powerful method of bi-directional search.
(iii)) The last visualization method is the topic component
plane (TCP), which visualizes both ¢(u|t) and v (v|t) in the
document and word maps. CCP is useful to see the property
of a specific point in the maps, whereas TCP is convenient to
overview the two maps at the same time. Since the number of
topics is usually more or less a dozen or so, TCP summarizes
the entire maps concisely.

V. RESULTS

The proposed method is applied to visualize the NeurIPS
dataset. In this work, we used 402 papers accepted in 2015,
and 250 representative keywords are used. The number of
topics was 10, determined by the reconstruction error of NMF.

The obtained word and document maps are shown in Fig. 1
with CCP gray scales. For example, the words related to the
bandit problem are located at point B in the word map, and
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Fig. 1. The word map and the document map generated from NerulPS dataset. The gray scale represents the conditional component plane (CCP). At the
conditioning point B in the word map, words related to bandit problem are located. The corresponding the region of the documents containing these words
(B’) is indicated by the gray scale in the document map. Similarly, the conditioning point A’ in the document map corresponds to the region around point
A in the word map.
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Fig. 2. The regions topics in the document and the word maps. 6 out of 10 topics are indicated.

the corresponding region of the documents containing these
words is shown in the document map as grayscale.

Fig. 2 shows the topic distributions in both word and
document maps. Though topics are overlapped to each other,
they softly divide the latent spaces. Mediated by topics, it is
easy to overview the relations between documents and words.

Fig. 3 and Fig. 4 are examples of TCP. The gray areas
in these figures indicate the regions of words and documents
related to the deep learning topic and the Bayesian inference

topic respectively. By combining CCP and TCP, users can
explore the documents and the words maps easily. This is the
advantage of the proposed method.
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