PRTccp: Priority-driven Real-Time Concurrent €onstraint Programming

Tsuyoshi Okita

1 PRT-UML Methodology

Component-based development of real-time systems, such as Real-Time CORBA, is one of the most vivid research arcas
in object-oriented system. Our research [Oki01] {Oki02] focuses on the necessary extension of UML to support such a real-
lime component development. Although current UML {UMLI14] includes partly the description of periodic task, this is less
efficient to describe reat-time constraints that are cross-cut similar to aspect oriented programming [Kicz97] because of their
end-to-end nature. Few efforts have been made for supporting this real-time component-based development other than UML
organization themselves.

We are proposing PRT-UMI. methodology for supporting real-time and parallel systems, based on orthogonal analysis (o
object-oriented systems. For the real-lime systems, we provide concurrency diagrams. Our aims are 1) (o describe real-time
constraints, and 2) to provide scheduling policy independent way, 3} to provide flexible simulation environment.

The figure 1 is a summary of a concurrency diagram. As real-time constraints are often crossing over objects, we introduce
a virtual thread to describe such an end-to-end real-time constraints. We make distinction between WCET (Worst Case
Execution Time) and real-time constraints. The feft part of the figure shows the notation of arrival and constraints pattern.
There are four arrival patterns: periodic, sporadic, aperiodic, and init vthread, while there arc five constraint patterns: 1)
classical deadline constraing, 2) firm quality imprecise constraint, 3) firm deadline imprecise constraint, 4) no constraint, and
5) temporal distance constraint. Verlical axis is a time axis and its length means duration.

* enca Falnedsier)

£ Heeon Vst il

Figure 1. Concurrency Diagram Notation Summary (Left) and Overview (Right)

2 Real-Time Formal Language and Cencurrent Constraint Programming

PRTcep is one of the precedence of cep (concurrent constraint programming) {Sar87]. Teep [BoerQ0] is a real-time
extension of this cep in order to describe a reactive system, where we claim that the Teep approach is not enough to describe

prierily-driven real-ime systems. Teep introduces the clock concept and non-determinisim 1o the concurrent constraint
programming in order to handle a real-lime system. Although teep is intended for real-lime system, to be precise, their
intention is not a priority-driven system bul a reactive systemn. In reactive systems, 1} there 35 an assumplion thal most of
the calculation is finished within one clock, 2) ask / tefl operation is finished within one clock, and 3} scheduling are always
the best answer. However, priority-driven system is different in (he following sense:) The calculation needs more than one
clock, 2) ask / teli operation needs no negligible clocks, and 3) scheduling is not the best but just optimal and is decided by
force by scheduling policy.

For the third one (scheduling policy), nexl figure 2 explaing the difference, H the state S1 is defined as the state transition
from the state SO in the case of hardware, it transits from the state 50 o S1 at time X=0. However, in the case of software that
has a scheduler, there is no guarantec that the largeted state is achieved. All the behaviors are controlled with the scheduler
in the operating system. All the processes are queued in the scheduler 10 ask for ils permission.

Figure 2. Timed automaton in hardware and (priotity-driven) software

3 PRTcep

PRTcep bhases on teep [Boer00] and introduces a problem solver and priority. The former is a similar approach by Gupla
enlarging cep in their *ask’ operation (o consume constraints. Original cep has no concern about sobving its constraint and the
computalion agents throw a constraint (o the global store and wait until it is solved. This problem solver signifies a scheduler
in a priority-driven system. The latter is the approach taken practically by real-time schedulability analysis [LiuQ0]. Although
real-time constraints are visible 1o human beings, priority-driven system uses priority instead of real-time constraints and this
conversion is vital (o caleulate using schedulability analysis,

A problem solver can aceess to the global store asynchronousty and if agent store constraints, in the next clock, a problem
solver knows that the constraint is increased. We introduce two types of constraint: T¢ (real-time constraints) and Sc¢ (8yn-
chronization constraints), where we assume that problem solving is assumed (o consume {ime. Non-determinism of problem
solving is shown by local choice. Sets of constraints have priority, where the entailment of constraint subjects to this, A
virtual thread tell to the global store that it has to resolve fegee Unit of computation and it has to be done within tend—to—end-
When a problem solver entails this constraint, teye. is decreased. Each Te has a global timer that is set at release time and it
timeouls when it reaches tend—to—end- 1he main hody of Sc is a shared variable between virtual threads. When the condition
of Scis satisfied, it is possible (o reduce a constraint of Te.

Definition ¥ (PRTeep) Assuming o given constraint system C the syntax of agents is given by the following grammar,

A u= stop | error | D, ask(c;) —+ A; | tell{e) | now cthen Aelse B A || B | 3xA 1 p{t) | A; B | A « priority |
ProblemSolver. cum=Sc| Te
where the ¢,c; are supposed to be finite constraints in C.

The operational model of PRTeep is described by a transition system where each transition step takes one time unif, where
there are three kinds of transition: 1) congruence, 2) unprioritized timed transition, and 3) prioritized timed transition.

Definition 2 (Prioritized Timed Transition) priority(Te1) < priority(Tie), (T & Tee) o priovity(Te), 2 (T &
T) o priovity{Te).

The next example shows how a rate-monotonic scheduler is described using PRTcep.

Example 1 (Rate-Monotonic Scheduler) /n a rate-monotonic scheduler, task of short period has a higher priority. Each
vthrecd has a static priovity. When all the constraints are solved, RMSystem stops.

RMSystem = V'Thread, ||V hreads... [V Thread, | RMScheduler;
VThread; (1'Ci) = (delay(Te); tell(Tei); ask({'T'ei) — stop) oc Priority;;

RMScheduler(Prioritscheduters Ten @ Ter... Tepm) =

(Priority,encauten < maz(Priorityy, Priority,, .., Prioritym) 2%

RM Scheduler(max(Priority, , Priority, ..., Prioritym), Ten @ Ter-..Tem);
[PRIORITIZED TRANSITION)

+

L . L S €1
(Priotilyschedutes == mae(Priority, , Priorily;, ..., Prioritym) -5 >

RM Scheduler(Priovityscheduters Ten ® Tep. Ten) ([TIMED TRANSITION)

Tei(Priority;, phase, endTond;, exeei, clepge;) =

(Priorityseneduter == Priovity;, exee; <> 0,clapse; <> endToEnd;) -
Tei(Prioritys, phases, endToEndi, execi — 1, elapses + 1); [DISPATCH)
+

(Priovilyschedvler <> Priority;, cxeci <> 0,clapse; <> 0) >
Tep (Priovity;, phaseq, end?olond;, cxeci, elapse; - 1);{NOG DISPATC U]

+
(elapsei == endToBnd;) — ervor; [TIMEOUT)
+

(eec; == 0) -3 stop; [JOB COMPLETE)

4 Conclusions

This paper presents real-time formal language PRTcep, which complements priority-driven concerns in Teep. Firsl, we
showed the necessity of fermal Janguage for priority-driven system compared (o reactive real-time system. Sccondly, we
showed the grammar of PRTcep. Thirdly, we showed a small example of scheduler.

References

[OkiO1] “Component-based Development of Embedded Software,” Okita, T., Master Thesis, Vrije Universiteit Brussels,
2001,

[OkiO2] “UML Extension for Real-Time Parallel Computation : Parallel and Concurrency Diagram,” Okita, T., 27th
IEEE/NASA Software Engincering Workshop, 2002 (submitted).

[Kicz97] “Aspect-Oriented Programming,” Kiczajes, G., Lamping, J., ct.al., ECOOP, 1997.
[Liu00] “Real-Time Systems,” Liu, J.S., Prentice Hall, 2000.

{Boer00] “A Timed Concurrent Constraint Language,” Boer, F.S., Gabbrielli, M, Mco, M.C., Information and Computation,
2000.

[Sar87] “Concurrent consiraint programming,” Saraswat, V.A., ACM Doctoral Dissertation Awards, MIT Press, 1993.

[UML14] “OMG Unified Modeling Language Specification”, Object Management Group, Version 1.4 beta R1, November,
2000.

