
PRTccp: Priority-driven Real-Time Concurrent ionstraint Programming 

Tsuyoshi Okita 

1 PRT-UML Methodology 

Component-based development of real-lime systems, such as Real-Time CORBA, is one or the most vivid research areas 
in object-oriented system. Our research [OkiO ! ] IOki02] focuses on the necessary extension of UML lo support such a real-
time component developmenl. Although current UML [Ul'v!Ll 4] includes partly the description oJ' periodic task, this is less 
efficient to describe real-time conslrninls that arc cross-cut similar to aspect oriented programming [Kicz97] because or their 
end-to-end nature. Few efforts have been made for supporting this real-lime component-based development other than UML 
organization themselves. 

We are proposing PRT--UML methodology for supporting real-time and parallel systems, based on orthogonal analysis lo 
object-oriented systems. For the real-lime systems, we provide concurrency diagrams. Our aims arc I) to describe real-time 
constraints, and 2) to provide scheduling policy independent way, 3) lo provide flexible simulation environment. 

The figure I is a summary of a concurrency diagram. As real-time constraints arc often crossing over objects, we introduce 
a virtual thread lo describe such an end-lo-end real-time constraints. We make distinction between WCET (Worst Case 
Execution Time) and real-lime conslrainls. The left part of the figure shows the notation of arrival and constraints pattern. 
There arc four arrival patterns: periodic, sporadic, aperiodic, and init vthread, while there are five constraint pallerns: 1) 
classical deadline constraint, 2) firm quality imprecise constraint, 3) firm deadline imprecise constraint, 4) no const.rainl, and 
5) temporal distance constraint. Venical axis is a lime nxis and its length means duration.

Figure 1. Concurrency Diagram Notation Summary (Left) and Overview (Right) 

2 Real-Time Formal Language and Concurrent Constraint Programming 

PRTccp is one of the precedence of ccp (concurrent conslrninl programming) [Sar87]. Tccp [BoerOOJ is a real-time 
extension or this ccp in order lo describe a reactive system, where we claim that the Tccp approach is nol enough lo describe 



priorily-driven real-time systems. Tccp introduces the clock concept and nOJHleterminisim to the concurrent constraint 
programming in order lo handle a real-time system. Although tccp is intended for real-time system, to be precise, their 
intention is not a priority-driven system but a reactive syslern. In reactive systems, 1) there is an assumption that most or 
the calculation is finished within one clock, 2) ask/ tell operation is finished within one clock, and 3) scheduling arc always 
the best answer. 1-lowcvcr, priority-driven system is different in the following sense: l) The calculation needs more than one 
clock, 2) ask/ tell operation needs no negligible clocks, and 3) scheduling is not the best but just optimal and is decided by 
force by scheduling policy. 

For the third one (scheduling policy), next figure 2 explains the difference. If the state SI is defined as the state transition 
from the state SO in the case of hardware, it transits from the state SO to SJ at time X::::O. However, in the case or soft ware that 
has a scheduler, there is no guarantee that the targeted state is achieved. All the behaviors arc controlled with the scheduler 
in lhc operating system. All the processes arc queued in the scheduler to ask for its permission . 

. .. ,~, ... 

Figure 2. Timed automaton In hardware and (priority-driven) software 

3 PRTccp 

PR.Tccp bases on tccp ['BoerOO] and introduces a problem solver and priority. The former is a similar approach by Gupta 
enlarging ccp in their 'ask' operation to consume constraints. Original ccp has no concern about solving its constraint and the 
computation agents throw a constraint to the global store and wait until it is solved. This problem solver signifies a scheduler 
in a priority-driven system. The latter is the approach taken practically by real-time schcdulability analysis [_LiuOO]. Although 
real-tirne constraints arc visible to human beings, priority-driven system uses priority instead of real-time constraints and this 
conversion is vital to calculate using schcdulability analysis. 

A problem solver can access to the global store asynchronously and if agent store constraints, in the next clock, a problem 
solver knows that the constraint is increased. We introduce two types of constraint: Tc (real-time constraints) and Sc (syn
chronization constraints), where we assume that problem solving is assumed to consume time. Non-determinism or problem 
solving is shown by local choice. Sets of constraints have priority, where the entailment of constraint subjects to this. A 
vinual thread tell to the global store that it has to resolve tcxec unit of cornputation and it has to be done within tcnd-to--eml· 

When a problem solver entails this constraint, (:xec is decreased. Each Tc has a global timer that is set at release time and it 
timeouts when it reaches tend-to-end· The main body of Sc is a shared variable between virtual threads. When the condition 
of Sc is satisfied, it is possible lo reduce a constraint of Tc. 

Definition 1 (PRTccp) Assuming a given constraint system C the syntax <4°age11/s is given by the following grammw; 
A ::= stop I error I E;:o1 ask(c,) -+ A, I tell(c) I now c then A else B I A II B I 3x A I p(t) I A; B I A ex priority I 

ProblemSolver. c ::= Sc I Tc. 
where the c,ci are supposed to be finite constraints in C. 

The operational model or PR.Tccp is described by a transition system where each transition step takes one time unit, where 
there arc three kinds of transition: I) congruence, 2) unprioritizecl timed transition, and 3) prioritized timed transition. 

Definition 2 (Prioritized Timed 'lhnsilion) priority(Tc1) < p1·iority(T,2), (Tc1 Ell T,2) ex priority(Tc1), ''+ (Tc1 Ell 
T,2 ) ex priority(T,2 ). 

The next example shows how a rate-monotonic scheduler is described using PR.Tccp. 

Example 1 (Rate-Monotonic Scheduler) /11 a rate-monotonic schedule,; task of short period has a higher priority. Each 
vthread has a static priority. When all the constraints are solved, RM,5ystem stops. 

2 



4 Conclusions 

B.MSystem = VThrca<l1 IIVThrca(h ... llVThrca.dn llHMSchc<lulcr; 
VThrcrul; (TC;) = (dclay(Tc;); icll(Tc;); ask('l'c;) ---+ stop) e< Priority;; 

HMSchcdv.lc1·(Priorit11.c1,cdu /e ,·, Tc,.© Tc-1 ... Tcm ) =

(Priority,c1,cr1uler < max(Priority,., Priorit111, ... , Priorilym) .Ye..\ 

HM Schcdv.lcr(max(Priol'itun , Priorit111, ... , Priol'itym), Tc,. EB Tei ,, Tc,,.. ); 
[PJUOJUTJ ZED THANSJTJONJ 
+ 

(Priority.c1,e.i,,1,,,. == max(Priorit71,,, Priority/, ... , Prioritym) -�'-1-; 
llM Schcdv.lc1·(Priorit11,c1,c,i.d c,·, Tc,. ED Tei ... Tc,,.); [TIM ED TRAN SJTJON] 

Tc; (Prioril711, phase,, endToEnd;, exec;, clap11e,) =
(Priority • .,1,0,1,,1 0 ,. == 1-'riorily;,cxec; <> O,clapsc, <> cmlToEnd,) -; 
Tc; (Priorit11,, phase;, cndToEnd,, ei=cc; - 1, elapse; + 1); [DJS P ATC II] 

+ 

(Priority • .,1, 0,1,,/ c,· <> Priority;, exec; <> O, elapse; <> 0) ---+ 
Tc; (PrioriiJJi, phase,, endToEnd;, exec;, elapse; + J ); [NO DI SP ATC II] 

+ 

(elapse; == <mdToEnd,·)--+ <irror; [TIMEOUT] 
+ 

(exec;== 0) ·-> stop; [JOB GOMPl,ETE] 

This paper prescnls rcal�limc formal language PRTccp, which complements priority-driven concerns in Tccp. First, we 
showed the necessity of formal language for priority�drivcn system compared to reactive real-time system. Secondly, we 
showed the grammar of PRTccp. Thirdly, we showed a small example or scheduler. 

References 

I_OkiOl] "Component-based Development or Embedded Software," Okita, T., Master Thesis, Vrije Univcrsitcit Brussc.ls, 
2001. 

10ki02] "UML Exlcnsion for Real-Time Parallel Compulation Parallel and Concurrency Diagram," Okita, T., 27th 

IEEE/NASA Software Engineering Workshop, 2002 (submitted). 

['Kicz97] "Aspect-Oriented Programming," Kiczales, G., Lamping, J., ct.al., ECOOP, 1997. 

!LiuOO"] "Real-Time Syslcms," Liu, J.S., Prentice Hall, 2000.

!BocrOO] "A Timed Concurrent Constraint Language," Boer, F.S., Gabbriclli, M, Meo, M.C., Information and Computation,
2000. 

1Sar87j " Concurrent conslraint programming," Saraswat, V.A., ACM Doctoral Dissertation Awards, MJT Press, 1993. 

I_UML14] "OMG Uniflcd Modeling Language Specificalion", Object Management Group, Version 1.4 beta RI, November, 
2000. 

3 


