
OPODIS '02, Dcccm/Jcr I 1 - 1 .1, 2002, l<cim.,, fra11cc

LOAD BALANCE PROTOCOL OF CLUSTER ON G R ID :

PERVASIVE MAXIMUM ALGORITHMIC PARALLELISM

Tsuyoshi Okita•

---------· -------------"---��---------

Abstract: Pervasive comp111i11g srJ1ware helps lo manage i11lormmion and reduce !he complexity of available computing resources

in a limely 11w1111e1: On one hand, a grid is a resow·ce whose il\formation is clwnging a11yrime and anywhere, where !he availability

<!/' CPUs is only irifornred in nm rime 11,/11m a dusler asks to the grid. 011 rhe OIiier hand, a cluster is often i111ple111e111ed in a sta tic

way, which as.rnmes some pal'licu!or pamllel archiltc/1!/'e and 1he 111111 1/Jer of CPUs. Even when a cluster cw1 consume maximum

available CPU resources, if' a dus/er is imple111e11/ed os.rnming !he number of CPUs, a cluster could 1101 nm using more than

!his 11w11ber 4 CP Us. Our mechanism qf load balance pro/O('Of of cluster provides a dynamic.' way ol impleme11 1 ing a r:/us/er that

can cor1.mme maximum a vailable CPU re,1·owr:es 011 rnn lime. In 01der 10 do .w, we propose two mechanisms: 10 pro1,ide ye/

wwther (graphical) parallel language lo describe clusters and to prm,ide !he protocols l!e111 'een a cluster on a grid. While many

parallel languages resolve parallel arc/1 i1ec1ure dependencies in compile time, our para/Id language resolve parallel archilec/ure

dependencies in run time. Our load balance protocol bases on this (grophical) parallel language (111{/ ii provides impleme111atio11

of/hem.

Keywords : Cluslcr, P11rnllcl Syslcm, Resource A.lloc11 lion, Pervasive computing.

1 Introduction

Open Grid Serv ices Architecture [Foster! is advocated in order to integrate serv ices across d i stributed , heterogeneous ,
dynamic "virtual organizalions" formed from disparate resources wi thin a sing le enterprise and/or from external n>
source shari ng and service provider rel ationships . Grid service de.fines standard rnc-Clianisms for 1) creat i ng , naming,
and discovering transient Grid service instances, 2) providing location transparency and multi ple protocol b i ndi ngs for
service i nstances, and 3) support ing integration with undc.rlying native pl atform faci l i ties . Grid Serv ices concern with
speci fied in terfaces and behaviors, such as creation (factory) , global naming (GSH) and references (GSR), l i fetime
managemen t, reg i st rat ion and discovery, authori zation, noti flcation , and concurrency.

I n such a pervasive computi ng environment of a grid, the n umber of ava i lable CPUs is changing anytime and
anywhere. Al though an appl ication is of'len implemented stat ically and could not use maximum avai lable resources, i r
an app l i ca t ion i s implemented in an adaptable structure to this flexib le avai lable numbers of CPU, an appl ication can
be run using maxi mum avai lable resources .

Examples o r dyn amica l ly adaptable appl icat ions arc found in duster computing and energy-effic ient schedul ing .
In cluster computi ng, Paral lel DFS [Grama99] observes id leness or CPUs and let migrate tasks between CPUs based on
dynamic schedu l i ng algorithms such as round-robin and FIFO manner. Demerit o f' this approach i s that th is approach
docs nol consider a structure of an application even if i t is available. A classical task migration in operating system,
such as plhread l i brary [POSIX I 003 . 1 b] [POSIX l 003 . 1 3] , i s the same fo ld, where the load balance is o ften d iscussed
withoUL any consideration of the structure or an applicat ion, but systems as a whole , In an energy efficient ru n-l ime
sched u l i ng system ['YangO] J , a structure of an appl ication is closely related lo task mi grations, where migrat ion (or
schedu l i ng) decis ion whether a task runs on DSP or CPU is made at run-time based on altributcs of tasks, which arc
energy consumption and execution time in th i s case. Yang's view is not from an applicat ion, but from a scheduler. He
docs not mention how to design a dynamical l y adaptable struc ture.

These examples show the necess i ty to provide general dynamical ly adaptable s tructure of an app l ication for a given
number of CPU resomces . There arc two issues in order lo achieve thi s : I) how to describe an appl i cation (language i s­
sue) and 2) how to implement it (protocol issue) . Paral le l languages arc o fkn classi fied i n two approaches JKumar93J :
impl ic i t para l lel approach and expl icit paral lel approach . In impl ici t approaches such as NESL [B 1cl loch90] , the pro­
gram itself i s sequenti al and a c lever parallel compi ler maps resources ex tracting impl i c i t paral le l struc tu res from the
sequential program. In expl icit approaches, there arc mainly three paradigms : message-passing language paradigm,
data-paral lel language paradigm, and sharc,d-dala language paradigm. Among them, data-paral lel l anguage paradigm,

. �y1•1r� -1tn: ���i
_
l .. hk i•1.-a .1;,M

'

:\
?

ill II i ,,'[

t

u,� _;

1

r=-�r
�

- ---.:-·----- :'.::t:1
I
I
-- -- - --1' ,{ __ ::Er ___ �tl

11 (c V / _ '. ��- - --��::.��!
l •r�I)j

- --

}!(). In .. -1
\

!

;;_i
fl

I (' !no. •
,' -_-,/J_

,{" ········
•••••••'-••••••••�••--.mu••••

••.• 1 CJtLJis_��.,i[;!il,l,::in:.;rci,I

-! ;'"

i IJ!

L_JJ ___ _

C1'1.H Cl'U2 C"f'Ol O'IJJ

A [i·----J 1
II 1_·_ ,_·_

-_--_,_'_'
.
·_.c_· _;_-_._�- _-_1

. _
·_-_·_ 1!_c_ ·_,

.

-

_·'-'
.
-'-

-

_·, _:_,.1 _
_ _ -_ ---_ "'"""" _________ --! " I --•• --__ · ·-1--

ict!�

I'·"·I I I I
ij

Figure l: Parallel Architecture Dependent Implementation

such as c•, tnkcs an approach not to describe parallel architecture dependent description in a program. But as a
compiler do mapping between virtual CPU to physical CPU, it is parallel architecture dependent in compile time.

Problems of these two approaches in our aim arc as follows. In explicit approaches, I) the structure made mapping
to physical CPUs at compile time and 2) process operation, such as multi-tasking and micr(Hasking, docs not fit for
dynamic decomposition of tasks. In implicit approaches, the technology Lo extract parallel structures from the scqucn­
lial program is still in difficulty, where to extract even the Cannon's algorithm is in difficully in matrix multiplication

[Blclloch90J. Our language is in the middle of these two approaches, where we describe program in explicitly of
its parallel structure of a program, but the mapping to physical CPUs arc delayed to its execution time (or run-time)
and language interface is parallel architecture independent way. If we look our language in different perspectives,
our language can be seen as mcta-parnllel language in the sense that il extracts only important parallel behavior of a
program. Our language can be implemented using any three paradigms of explicit languages.

As we takes the approach to describe explicitly in an application, there needs a protocol between a grid environment
and fragments of an application. Our FlcxGrid provides basic parallel operations, such as decompose, merge, and
permutation, which arc nol paraJJel architecture dependent.

2 FlexGrid Overview

In explicit parallel language with architecture dependency, the decomposition of tasks is represented by process cre­

ation, such as fork and spawn. The figure I shows the description of parallel architecture dependent implementation
of an application. Even though we could know in advance that this application wi II run on different numbers of CPUs,
we could not change the structure of an application. The right side of tile figure l shows when the CPU availability is
more than implemented CPU numbers, say 4 CPUs. As each fragment is implemented using fixed numbers of CPU,
each fragment could not nm more than this fixed numbers of CPU. Even they can use 4 CPUs, this application only

uses l, 2, or 3 CPUs.
However, as the resource availability of a grid is dynamic and unexpected in nature, an application would be

appropriate to be made more flexible so as to make decision according to its resource availability in run time. The

figure 2 shows our implementation or !his idea. In order to implcrnenL Lhis foaLure, architecture dependent operation,
such as fork and spawn, is not appropriate and replaced by the decompose operation that is architecture independent,
which is shown in the figure. This application is implemcn!cd using 4 maximum vinual CPUs. This application runs

according lo the available numbers of CPUs. The figure shows consecutively J, 2, and 3 CPU cases of ils available
CPU resource. When 3 CPUs nrc, available, this application runs on 3 CPUs. When 2 CPUs arc available, it nms
on 2 CPUs. When one CPU is available, il runs on l CPU. In our approach, advantages arc load balance, while
disadvantage is its overhead of communication protocol, which is presented in Ja1er. In grid computing, as we cannot

Parallel Diagram

Approach by our FlexGrid

1
-
vnid /1(...)1
Staticl)EC(Br.DJ:

--····- _!SyncMER(ll.C.D):

CPUI CPLl2 Cl'UJ

Cl'Ul CPU2

A "j " 1---::i­
_d
=

CPUI

A

C

I)

Figure 2: Parallel Architecture Independent Implemcnlalion

expect the available CPU resources, flexible structure of an application would expected to attain good load balance.

3 Parallel Graphical Language

Our (graphical) parallel language only focuses on the important behavior of parallel programming irrelevant to the
underlying parallel architecture. For example, while fork/spawn operator always create another thread in compile
time, decomposition operator in our language docs create another thread depending on the situation in run time.

This (graphical) parallel language shown in the figure 3 is for designing the algorithm or an object that is possible
to reside across CPUs. Parallel language provides I) task notation, 2) decomposition/ merge/ permutation notation.
Task notation docs not only describe processes but also data structures, which enable the notation of data and process
parallelism.

This language bases on a task, which has three attributes: l) name, 2) data, and 3) process. Relationships between
tasks are described using other operators, such as decomposition, merge, permuLation, and communication. A task
could be hierarchically structured, which admits a task consists of several tasks. This notation would case the import/
export of the parallel structure that is already designed by somebody else. A task that has the decomposition operator
has the possibility to spawn another task, although those paths will be considered not in compile time, but in run lime.
This notation shows both of dala and control parallelism, where data parallelism is shown in the clements in vectors
and matrices, while the control parallelism is shown in the processes in the task. For data parallelism, parallel language
supports two data structures: a matrix and a vector. For control parallelism, parallel language provide the notation that
one task could contain and decompose several small tasks in a stralificd manner. It is noted that an acyclic task graph
is employed in a sense that it facilitates understanding of task execution flows and task dependencies. The demerit of
this acyclic task graph is thaL it lacks description of data parallelism.

The figure 4 shows the overall procedure using a parallel language. The outcome of this parallel language is
lranslated into an acyclic task graph. Each process and data is mapped onto the underlying parallel platform as
in the sequence chart in the right part. In our language, resource allocation is a task of CPU resource broker. In
this process, as there arc varieties of possibilities in underlying parallel platforms, this resource mapping (stcp3) has
various solutions and investigated by the CPU resource broker.

The figure 7 shows five examples. In each five flgures, the lefl side is a llgure using our Parallel language, while
the right side is a flgure using acyclic graph. The first example shows the static decomposition of one task [o four

<1,11a

nrntnx

sian

cml

~l~k,rnmr ·-·

,l«la

pmcc.,.,
--~-~

Or<kr nl cxeculi""

sl'1tie (11-111y)derumpo"1iun
•­I.ii----
0-

dy,,,,rni,(n-"')·),kn""P"''\'"" ~~·-

S)'!lC merge
:CCC :c ::zi .
~ -· ---,;\.

Dcp1hF11.s11'emrnllll1<m !ZJ-,,-,. --

Merge

C.,inmuni<"al,,n,

Pe,mu1a1irn,

ll,ea,til,l~'.~'.~~.'.'::°.~'.'" '"''~:Ji'j,c;--_···----------L-----··--

Figure 3: (Graphical) Parallel Language Summary

tasks, where a black lriangle shows that a merge operation is done soon after some task finishes its decomposed task
(asynchoronous merge). The second example shows the hiearchical tasks. In this ca:,;c, a task contains three tasks. The
third example shows a matrix multiplication by Cannon's algorithm. The fourth example shows an example of quick
sort, where the two descriptions arc iteratively applied for the computation. The fifth example shows an example of
parallel depth first search, where permutation operator is used for describing the order or search.

4 CPU Resource Broker

The Flex Grid is implemented as a CPU resource broker as in the figure 5. The functions of the dynamic task service
manager arc 1) decomposition, 2) merge, and 3) permutation.

The real task of'this dynamic task service manager is to schedule processes that utilize various resources in the grid.
There arc two ways to schedule: global scheduler schedules or each CPU has scheduler. The right side of the figure 5
shows the global scheduler approach. ln our implementation of CPU resource broker, it returns current available CPU
resources and schedules in FIFO manners.

'fable 1: Protocol Name

'Type Protocol Name

Decomposition DEC_static_req, DEC_static_ack, DEC_dynamicJ·cq, ·····-bEC_dynamic.11ck,
DEC_cornplete.11ck, DEC_cornplctc_req

Merge MERGE_syncrcq, MERGE_sync_ack, MERGE_dynamicJ·cq,
MERGE_dymunic.11ck, MERGE_complcleJ·cq, MERGE_complctc.1,ck

Communication COMM_sync . .rcq, COMM_sync_ack, COMM_sync_broadcasLreq,
COMM_sync_broadcast_ack, COMM_a.syncJxoadcast_rcq,
COMM_asyncJxoadcast_ack, COMM_alltoaJJ_broadcasL.rcq,
COMM_alltoall_broadcast_ack

Permutation PERM_gencraLreq, PERM_gcneral.ack, PERMJ)F_req, PERM_DF .. ack,
PERM_BF_rcq, PERM_BF_ack

-·-·-------------'--------"-------------------------·-·---------'

Parallel Language (Slcpl) A(:ydicTa,k G1aph (S1q12)
Rtt)lllCC Allnca1io1_1 h~ .• ~'.~.:C.\OlllCC hrokcr(Si!p3)

I

~t
i i

• Rm1 (Slcp4)

• Run (Slcp4)

Figure 4: Parallel Language Overview

5 Results

We sirnulale a malrix rnulliplication of Cannon's algorithm [_Kumar93l. Our description or Cannon's algorithm of 4 x
4 multiplication is depiclcd in the third example in the figure 7. This application is decomposed in 1) decomposition
or tasks, 2) matrix shift operation, and 3) malrix A and B individual operation according to the Cannon's algorithm.
In here, the problem is dynamically decomposed in four tasks depending on the times or shift in matrix A and matrix
B. In each task, the row of matrix A is decomposed in four tasks which docs Jen shirt 0, left shifl 1, right shirt 2, and
right shift 1 respectively. The column of matrix B is also decomposed in four tasks which docs left shift 0, lcf'l shifl I,
right shift 2, and right shift I respectively. Results of four tasks in matrix A and four tasks in matrix B arc multiplied
in corresponding clement. As there arc four tasks, lhosc four results arc merged back and added in corresponding
clement. In this case, 4 x 4 rnalrix multiplication is written as the maximum parallelism 32. Ir we decompose further
of the matrix A and rnalrix B, lhc maximum parallelism would be 128.

The comparison is made bclwccn the one which uses our approach and the one which is written in a architecture
dependent way. Major concerns arc as following. The boulcncck of our prolocol is the communication latency caused
by the base infrastructure, such as message-passing of PYM 3.4 rrVM94] and MPl [MPI97]. Communication latency
varies dynamically whether it is loosely-coupled systems or tightly-coupled systems. As is shown in the following
resulls, if this communication lalcncy docs not become a small value, granularity of the decomposed task should be
enlarged. Another small concern is following. Our experimcnls arc done on single CPU by practical reasons. We Ii mil
by a scheduler not to spawn tasks more than the assumed CPU numbers. Our prolocol is described using Con SGJ
lndigo2 which runs at 200 MHz.

The le-rt side of graph 6 shows the curve or parallel archilecture indepcndcnl implemcnlalion (our approach) and
dependent implemcntalion. In our implementation, graphs arc shown in two lines in the bottom part and the middle
part. The bouom line indicated by the case l assumes the communication latency or the infrastructure is zero. The
middle line indicated by the case 2 assumes the communication latency or the infraslructure is 1 ms. In both cases,
protocol overhead increases between the 2n- 1 and 2n. In the parallel architecture dependent implementation, if the
numbers of CPU arc less than the assumed CPU number in its implemcnlation, the overhead is only synchronizalion
overhead. If the numbers of CPU arc more lhan the assumed CPU number, the additional allocated CPUs arc all in
idle, which let increase the idle time. It is noted that although lhis graph is depicted using a continuous value, we
rncasured discrete values or CPU numbers. The right side or graph 6 shows the execution time in various available
CPUs, where lhc effect of the increase of CPU resources is radically decayed.

Dl:M irn1i, r,·q
nJj(" ,L,1lll' �{I.

Figure 5: CPU Resource Broker

[191 [�I � 1 IIC II led 11) 2 'i(1 l" ('] /,

Figure 6: Result or Protocol Overhead (left) and Execution Time or Our Approach or Matrix Multiplication (right)

6 Camparison to Other Parallel Languages

This (graphical) parallel language is in between of explicit approaches nnd implicit approaches, which is only fo­
cuses on particular parallel behaviors, such as decomposition, merge, communication, and permutation. However,
Lhis language only has those primitives related lo parallel behaviors and lacks major language primitives, such as ar­
gument clcclarations, control sequences (for/if/while, etc), etc. In this sense, this language docs not supcrcede other
parallel languages and need to be implemented on other parallel languages. In this sense, this language is rather a
modeling language (or specification language) as is only focuses on particular parallel behaviors which is architecture

independent.
Merits of this approach arc i<>llowing: I) e!Tcctivc for a dynamically (nm-time) schedulable cluster application

as it clarifies parallel behavior (examples arc a cluster on a grid, energy-aware scheduling, etc), 2) effective for a
specification language for parallel systems as is only focused on particular parallel behaviors, 3) no waste of pre­

vious legacies of other parallel languages as this language can be implemented on other parallel languages, and 4)
(compared lo implicit approaches) no need for clever compiler because algorithmic parallelism is already written by
a programmer. For the first item, explicit approach uses fork/spawn lo invoke parallel execution, which is architecture
dependent. Jn order to do a dynamically schedulable structure, it needs some intermediate structure which would be
similar to our parallel language. Data parallel language has no architecture dependencies, but as it describes too much
detail for a dynamically schcdulablc structure, it also needs some intermediate structure for lessening complexity or
programmers. For the second item, explicit and implicit parallel language describes too much detail.

Demerits arc .I) overhead if an application docs not need a dynamically (nm-time) schcdulablc structure, 2) over-

J. Stat,ic De,composition Example
,•-·•"•••; ,,
,, .. ". I

Tt
,,LI ,,
'""""ii

2. I !icrarchical Task Ex:i}11plc
. .- ...• ,,,.~-

5. Parallel Depth First Search Example

Figure 7: Five Examples using (Graphical) Parallel Language

head depending on the communication infrastructure, 3) not effective for describing details of an application, and 4)
execution time which is not always optimal.

7 Conclusion

This paper presents two basic mechanisms: the language how to describe a cluster on a grid and the load balance
protocol to implement this language. The aim of this paper is to propose a mechanism which could achieve pervasive
maximum algorilhmic parallelism on a given numbers of CPUs which is only known at run-time.

Firstly, proposed (graphical) parallel language provides the way to describe a parallel program. Our parallel lan­
guage is in between explicit parallel language approach and implicit parallel language approach. In order to remove
architcclurc dependencies from explicit parallel language approaches, important parallel behaviors such as dccornpo­
sition / merge / permutation arc focused as the primitive or our language. Using this parallel language, maximum
algorithmic parallelism is achieved explicitly written in a program. This language can be used from flne-grain par­
allel algorithm, such as Cannon algorithm, Fox algorithm, sort algorithm, and parallel DFS, Lo coarse-grain parallel
algorithm.

Secondly, the load balance protocol is presented. This protocol is an honest irnplemcntation of our parallel lan­
guage.

Thirdly, we measure the effect of our approach using a simple example. Our protocol replies on the underlying
network infrastructure. If the underlying'··infrastructurc provides light communication overhead, our load balance
protocol can overcome when the numbers of CPUs increases more than the assumed numbers of CPUs. While the
underlying infrastructure provides communication overhead such as 1 ms in one way communication, we have to
enlarge a granularity of a decomposed fragment of an application so as to confirm this communication overhead.

References

[Blclloch90] Blclloch, G., "Ncsl: A Nested Data-Parallel Language," Technical Report CMU-CS-92-103, CMU,
1990.

[Fostcrl Foster, I., Nick, J.M., Tueckc, S., "The Physiology of the Grid: An Open Grid Services Architecture for
Distributed Systems Integration," http://www.globus.org.

[Grama99] Orama, A .Y., Kumar, V., "State of the Art in Parallel Search Techniques for Discrete Optimization Prob­
lems," IEEE Transactions on Knowledge and Data Engineering, Volume I 1, Number 1, January/February 1999.

[Kumar93J Kumar, V., ct al., "Introduction to Parnllcl Computing: Design and Analysis or Algorithms," November,
1993.

[MPI97] Message Passing Interface Fonnn, "MPI-2: Extensions to the Message-Passing Interface," July, 1997.

[POSIXI003.13] "IEEE Standard 1003.13, POSIX Real-Time Profiles; also ISO/IEC standard 9945-1 (1996)".

[POSIX I 003.1 b] "IEEE, Portable Operating System Intcrface(POSIX)-Pat'!l: System A pplication Program Interface
(AP!).", 1990.

[PVM94] Geist, A., ct. al ,"PYM: Parallel Virtual Machine, A Users' Guide and Tutorial for Networked Parallel
Computing", MIT Press, 1994.

[YangOl l Yang, P., ct.al, "Energy-Aware Runtime Scheduling for Embedded-Multiprocessor SOCs," IEEE Design &
Test of Computers, Scptcmbcr-Octorbcr, 2001.

