OPODIS’02, December 1113, 2002, Reims, France

LOAD BALANCE PROTOCOL OF CLUSTER ON GRID :
PERVASIVE MAXIMUM ALGORITHMIC PARALLELISM

Tsuyoshi Okita*

Abstract: Pervasive computing software helps to manage information and reduce the cemplexity of available computing resources
ina timely manner. On one hand, a grid is a resource whose information is changing anytime and anywhere, where the availability
of CPUs is only informed in run time when a cluster asks to the grid. On the other hand, a cluster is often implemented in a siatic
way, which assumes some particular parallel architecture and the number of CPUs. Even when a cluster can conswme maximum
available CPU resources, if a cluster is implemented asswming the number of CPUs, a cluster coudd not run using more than
this number of CPUs. Owr mechanism of load balance protocol of cluster provides a dynamic way of implemeniing a cluster that
can consume maxinum available CPU resources on run time. In order to do so, we propose two mechanisms: to provide yet
another (graphical) parallel language to describe clusters and 10 provide the protocols between a cluster on a grid. While many
parallel languages resolve parailel architectire dependencies in compile time, owr parallel language resolve parallel architecture
dependencies in run time. Our load balance protocol bases on this (graphical) parallet language and it provides implementation
of them.

Keywaords: Cluster, Paralle! System, Resource Allocation, Pervasive computing.

1 Introduction

Open Grid Services Architecture [Foster] is advocated in order to integrate services across distributed, heterogencous,
dynamic “virtual organizations” formed from disparate resources within a single enterprise and/or from external re-
source sharing and service provider rejationships. Grid service defines standard mechanisms for 1) creating, naming,
and discovering transient Grid service instances, 2) providing locatien transparency and multiple protocol bindings for
service instances, and 3) supporting integration with underlying native platform facilities. Grid Services concern with
specified interfaces and behaviors, such as creation (factory), global naming (GSH) and references (GSR), lifetime
management, registration and discovery, authorization, netification, and concurrency.

In such a pervasive computing environment of a grid, the number of available CPUs is changing anytime and
anywhere. Altheugh an application is often implemented statically and could not use maximum available resources, if
an application is implemented in an adaptable structure to this flexible available numbers of CPU, an application can
be run using maximum available resources.

Examples of dynamically adaptable applications are found in cluster computing and energy-efficient scheduling.
In cluster computing, Parallel DES {Grama99] observes idleness of CPUs and let migrate tasks between CPUs based on
dynamic scheduling atgorithms such as round-robin and FIFO manner. Demerit of this approach is that this approach
does not consider a structure of an application cven if it is available. A classical task migration in operating system,
such as pthread library [P@SIX1003.1b] {POSIX1003.13], is the same fold, where the load balance is often discussed
without any consideration of the structure of an applicatien, but systems as a whole. In an energy cfficient run-time
scheduling system {YangOJ}, a structure of an application is closely related Lo task migrations, where migration (or
scheduling) decision whether a task runs on DSP or CPU is made at run-time based on altributes of tasks, which are
energy consumption and exccution time in this case. Yang’s view is not from an application, but from a scheduler. He
docs not mention how to design a dynamically adaptable structure.

These examples show the necessity to provide general dynamically adaptable structure of an application for a given
number of CPU resources. There are two issues in order Lo achieve this: 1) how o describe an application (language is-
sue) and 2) how to implement it (protocol issuc). Parallel languages are often classified in two approaches [Kumar93):
implicit parallel approach and explicit parailel approach. In implicit approaches such as NESL [Blelloch90], the pro-
gram itself is sequential and a clever parallel compiler maps resources extracting implicit parallel structures from the
sequential program. In explicit approaches, there are mainly three paradigms: message-passing language paradigm,
data-parallel Janguage paradigm, and sharcd-data language paradigm. Among them, data-parallel language paradigm,

AP ane avaibable ina gikd

A CPUS e avaidable in A i
o - epe

Vol AL g 31V} wpuz SLT orut cruz oy crus
forki){) -
B A [A [_ .
Tehae] | — —
- fark()f o l H] I l [
(&35 B « [i K « n iille
Yelae [L)
&35 o
] A 1 K I
' - ~
t

o Gt
void ALY
furk(n
Hx:
e felsed o
ik i :
i ol il
} v I
“]
) bk in a i o)
I cmn cEul ooz s cpua
vl AL y §
R B ~l Al
-~ I w
] o
]
SR ¢ o it e idlc
oy v
A A

Figure 1: Paralle]l Architecture Dependent Implementation

such as C*, takes an approach not to describe parallel architecture dependent description in a program. But as a
compiier do mapping between virtual CPU to physical CPU, it is paraliel architecture dependent in compile time.

Problems of these two approaches in our aim are as follows. In explicit approaches, 1} the structure made mapping
to physical CPUs at compile time and 2) process operation, such as multi-tasking and micro-tasking, docs not fit for
dynamic decomposition of tasks. In implicit approaches, the technology (0 extract parailel structures from the sequen-
tial program is still in difficulty, where to extract even the Cannon’s algorithm is in difficulty in matrix multiplication
[Blelloch90]. Our Janguage is in the middle of these two approaches, where we describe program in explicitly of
its parallel structure of a program, but the mapping te physical CPUs are delayed to its execution time (or run-time)
and language interface is paraliel architecture independent way. If we look our fanguage in different perspectives,
our language can be seen as meta-parallel Janguage in the sense that it extracts only important paralle] behavior of a
program. @ur language can be implemented using any three paradigms of explicit languages.

As we takes the approach to describe explicitly in an application, there needs a protocol between a grid environment
and {ragments of an application. Our FlexGrid provides basic paralle} operations, such as decompose, merge, and
permutation, which are net parallel architecture dependent.

2 TFlexGrid @verview

In explicit parallel language with architecture dependency, the decomposition of tasks is represented by process cre-
ation, such as fork and spawn. The figure | shows the description of parallel architecture dependent implementation
of an application. Even though we could know in advance that this application will run on different numbers of CPUs,
we could not change the structure of an application. The right side of the figure 1 shows when the CPU availability is
more than implemented CPU numbers, say 4 CPUs. As each fragmentis implemented using fixed numbers of CPU,
each fragment could not run more than this fixed numbers of CPU. Even they can use 4 CPUs, this application only
uses 1, 2, or 3 CPUs.

However, as the resource availability of a grid is dynamic and unexpected in nature, an application would be
appropriate to be made more flexible so as to make decision according 1o its resource availability in run time. The
figure 2 shows our implementation of this idea. In order to implement this feature, architecture dependent operation,
such as fork and spawn, ts not appropriate and replaced by the decompose operation that is architecture independent,
which is shown in the figure. This application is implemented using 4 maximum virtual CPUs. This application runs
according to the available numbers of CPUs. The figure shows consecutively 1, 2, and 3 CPU cases of its available
CPU resource. When 3 CPUs arc available, (his application runs on 3 CPUs. When 2 CPUs arc available, it runs
on 2 CPUs. When one CPU is available, it runs on 1 CPU. In our approach, advantages are load balance, while
disadvantage is its overhead of communication protocol, which is presented in Jater. In grid computing, as we cannol

<run ruz crul

A
I

CPUL cpue

Paralict Diagrum

crrn

A

B

Figure 2: Paraliel Architecture Independent Implementation
expect the available CPU rescurces, fexible structure of an application would expected 1o atain good load balance.

3 Parallel Graphical Language

Our (graphical) parallel language only focuses on the important behavior of parallel programming irrelevant (o the
underlying parallel architectare. For example, while fork/spawn operator always create another thread in compile
time, decomposition operator in our language docs create another thread depending on the situation in run time.

This (graphical) parallel language shown in the figure 3 is for designing the algorithm of an object that is possible
to reside across CPUs. Parallel language provides 1) task notation, 2) decomposilion / merge / permutation nofation,
Task notation does not only describe processes but also data structures, which enabie the notation of data and process
parallelism.

This language bases on a task, which has three attributes: 1) name, 2) data, and 3) process. Relationships between
lasks are described using other operators, such as decomposilion, merge, permutation, and communication. A task
could be hierarchically structured, which admits a task consists of several tagks. This notation would case the import /
export of the parailel structure that is already designed by somebedy else. A task that has the decomposition operator
has the possibility 10 spawn another task, although those paths will be considered not in compile time, but in run time.
This notation shows both of data and contrel parallelism, where data parallelism is shown in the elements in vectors
and matrices, while the control paralielism is shown in the processes in the task. For data parallelism, paralled language
supports two data structures: a malrix and a vector. For control parallelism, paraliel language provide the notation that
one task could contain and decompose several small tasks in a stratified manner. 1t is noted that an acyclic task graph
is employed in a sense that it facilitates understanding of task execution flows and task dependencies. The demerit of
this acyclic task graph is that it lacks description of data paralielism.

The figure 4 shows the overall procedure using a parallel language. The outcome of this parallel language is
ranslated into an acyclic task graph. Fach process and data is mapped onto the underlying paraliel platform as
in the sequence chart in the right parl. In our language, resource allocation is a lask of CPU resource broker. In
this process, as there are varieties of possibitilies in underlying parallel platforms, this resource mapping (sicp3) has
various solutions and investigated by the CPU resource broker,

The figure 7 shows five examples. In cach five ligures, (he left side is a figure using our Parallel language, while
the right side is a figure using acyclic graph. The first example shows the static decomposition of one {ask (o four

tusk task nane. statie deconipasition .
data slatic tn-ary)decompasition [2 Recompasition
process dynanic decomposition [:]

dynaemic{n-arydecompaosition —

SYHC mCERe

RHIEY

veoror CCTTETTTTS

syne (n-aryhuetge

Merge

HSYNC NCTEC

i

{=imesh)y wsYNe {n-ary Inerge

SYne communication
st (@ Sy G it
sy commuanication

end Feced Communicarion

syne broadeast

Order al execution — asyne broadeast

all-to-all broudeast

pertulation
Penmutatiog
DepthFirsiPermutution

BreadthFirstPernutation

Figure 3: (Graphical) Parallel Language Summary

Lasks, where a black triangle shows that 2 merge operation is done soon after some task finishes its decomposed task
(asynchoronous merge). The second example shows the hicarchical Ltasks. In this case, a task contains three tasks. The
third example shows a matrix. multiplication by Cannoa’s algorithm, The fourth example shows an example of quick
sort, where the two deseriptions are iteratively applied for the computation. The fifth example shows an example of
paralle] depth first search, where permutation operator is used for describing the order of seasch.

4 CPU Resource Broker

The FlexGrid is implemented as a CPU resource broker as in the figure 3. The functions of the dynamic task service
manager are 1) decompeosition, 2) merge, and 3) permutation.

The real task of this dynamic task service manager is to schedule processes that utilize various resources in the grid.
There are two ways 1o scheduie: plobal scheduler schedules or each CPU has scheduler. The right side of the figure §
shows the global scheduler approach. {n our implementation of CPU resource broker, it returns current available CPU
resources and schedules in FIFQ manners.

Table 1: Protocol Name

| Type | Protocol Name

Decomposition DEC static.reg, DEC _static_ack, DEC_dynamic req, DEC dynarmic.ack,
DEC. complete.ack, DEC_complete_reg

Merge MERGE _sync_req, MERGE_syne_ack, MERGE dynamic.req,
MERGE _dynamic_ack, MERGE _complete_reg, MERGE complete_ack

Communication COMM _sync.req, COMM _sync _ack, COMM._syne. broadcast_req,
COMML_sync_broadcast_ack, COMM _async.broadeast_req,
COMM _asyne_broadcast _ack, COMM _alltoal}_broadeast.req,
COMM _alitoall_broadcast_ack

Permutation PERM _peneral req, PERM ._general. ack, PERM DT req, PERM.DF ack,
PERM _BF req, PERM.BF.ack

Resourge Allaeaion by CPU resource broker(Siep)
i Fegamarihan H

Pariliel L"ff‘_ﬂ“_“ﬂ-_“_fs!flﬂ:t . Acyehic Task Graph (S1ep2)

e Re

|
]
|
|
i

~ Run (Stepd)

It KA 42ty

e YOS R
o> o

<o Run (Stepd)

Figure 4: Parallel Language Overview

5 Results

We simulale a malrix multipiication of Cannon’s algorithm [Kumar93]. Our description of Cannon’s algorithm of 4 x
4 multiplication is depicted in the third example in the figure 7. This application is decomposed in 1) decomposition
of tasks, 2} maltrix shift operation, and 3) matrix A and B individual operation according (o the Cannon’s algorithm,
In here, the problem is dynamically decomposed in four tasks depending on the times of shift in matrix A and matrix
B. In each task, the row of matrix A is decomposed in four tasks which does left shift O, left shift 1, right shifi 2, and
right shift 1 respectively. The column of matrix B is alse decomposed in four tasks which does left shift 0, left shift 1,
right shift 2, and right shift 1 respectively. Results of four tasks in matrix A and four tasks in matix B are multiplied
in corresponding element. As there are four tasks, those four results are merged back and added in corresponding
element. In this case, 4 x 4 malrix multiplication is wrilten as the maximum parallelism 32, If we decompose further
of the matrix A and matrix B, the maximum parallelism would be 128,

The comparison is made belween the one which uses our approach and the one which is wrilten in a architectare
dependent way. Major coneerns are as foliowing, The bottleneck of owr protocol is the communication latency caused
by the base infrastructure, such as message-passing of PYM 3.4 [PVM94] and MPI [MPI197]. Communication fatency
varies dynamically whether it is loosely-coupled systems or tightly-coupled systems. As is shown in the following
results, if this communication latency does not become a small value, granularity of the decompoesed task should be
enlarged. Another small concern is following, Our experiments are done on single CPU by practical reasons. We limit
by & scheduler net 10 spawn tasks more than the assumed CPU numbers. Our protocol is deseribed using C on SGI
Indigo2 which runs at 200 MHz.

The left side of graph 6 shows the curve of paraile] architecture independent implementation (our approach) and
dependent implementation. In our implementation, graphs arc shown in two lines in the bottom part and the middle
parl. The bottom fine indicated by the case I assumes the communication latency of the infrastructure is zero. The
middle line indicated by the case 2 assumes the communication tatency of the infrastructure is 1 ms. In both cases,
prolecol overhead increases between the 271 and 27, In the parallel architecture dependent implementation, if the
numbers of CPU are less (than the assumed CPU number in its implementation, the overhead is only synchronization
overhead. If the numbers of CPU are more than the assumed CPU number, the additional allocated CPUs arc all in
idle, which let increase the idle time. It is noled that although this graph is depicled using a continuous value, we
measured diserele values of CPU numbers, The right side of graph 6 shows the execution time in various available
CPUs, where (he effect of the increase of CPU resources is radically decayed.

Scheduler e cer Ul

DIM i rey Al
i K DEC static_aek PO resource Yint
chient client
TESOUTCE request
resouree
. 0t L D
availability
inquiry B
rd
broker
- "
1 MISKGE complcss 100 Jgm—"""T

(t(ﬁll]])illillg resource

Figure 5: CPU Resource Broker

Neaplesnented i ¢ PO
Denplenented In 2 or 3 (P
- . Tmpletenel in d-7 CPLIs
2 Implemcnted in 818 ChLs
- limpleainied in 16-3¢ CPus

A Tanplemented i 32-63 CiM s

Tmpleanented in 64-127 Cif0s "

linplesnented in 128255 CPUS

x

Excention Time

o] Tploimented in 256 CPT
g M s o O S S —

Avilahle ammbers af CPUE ¢ Availble nutibees of CPU

!

Cae t
Figure 6: Result of Protocol Overhead (left)y and Execution Time of Qur Approach of Matrix Multiplicatien (right)

6 Camparisen te Other Parallel Languages

This (graphical)} parailel language is in between of explicil appreaches and implicit approaches, which is only fo-
cuses on particular parallel behaviors, such as decomposition, merge, communication, and permutation. However,
this language only has those primitives related to paralie] behaviors and lacks major language primitives, such as ar-
gument declarations, control sequences (for/if/while, etc), etc. In this sense, this language does not supercede other
parallel languages and need to be implemented on other parallel fanguages. In this sense, this language is rather a
modeling Janguage (or specification language) as is only focuses on particular paraliel behaviors which is architecture
independent.

Merits of this approach are following: 1) effective for a dynamically (run-time) schedulable cluster application
as it clarifies parallel behavior {(examples arc a cluster en a grid, energy-aware scheduling, etc), 2) effective for a
specification language for parallel systems as is only focused on particular paraliel behaviors, 3) ne waste of pre-
vious legacies of other parallel languages as this language can be implemented on other parallel languages, and 4)
(compared to implicit approaches) ne need for clever compiler because algorithmic paralielism is already written by
a programmer. For the first item, explicit approach uses fork/spawn to invoke parallel execution, which is architecture
dependent. In order to do a dynamically schedulable structure, it needs some intermediate structure which would be
stmilar to our paraliel language. Data paralle} fanguage has no architecture dependencies, but as it describes (oo much
detail for a dynamically schedulable structure, it also needs some intermediate structure for lessening complexity of
programmers. For the second item, explicit and implicit paralte] language describes too much detail.

Demerils are 1) overhicad if an application does not need a dynamically (run-time) schedulable structure, 2) over-

Figure 7: Five Examples using (Graphical) Parallel Language

head depending on the communication infrastructure, 3) not effective for describing details of an application, and 4)
execulion time which is not always optimal,

7 Conclusion

This paper presents iwo basic mechanisms: (he language how to describe a cluster on a grid and the lead balance
protocol to impiement this language. The aim of this paper is 1o propose a mechanism which could achieve pervasive
maxinum algorithmic parallelism on a given numbers of CPUs which is only known at run-time.

Firstly, proposed (graphical) parallel language provides the way to deseribe a parallel program. Qur paratlel lan-
guage is in between explicit parallel language approach and implicit parallel language approach. In order (o remove
architecture dependencies from explicit parallel language approaches, important parallel behaviors such as decompo-
sition / merge / permutation are focused as the primitive of our language. Using this paraliel language, maximum
algorithmic parallelism is achieved explicitly written in a program. This language can be used from fine-grain paz-
allel algorithm, such as Cannon algorithm, Fox algerithm, sort algorithm, and parallel DFS, o coarse-grain paralle]
algorithm,

Sccondly, the load balance protocol is presented. This projocol is an honest implementation of our paratlel lan-

guage.

Thirdly, we measure the effect of our approach using a simple exampie. Our protocol replics on the underlying
network infrastructuse. If the underlying“infrastructure provides light communication overhead, our load balance
protocol can overcome when the numbers of CPUs increases more than the assumed numbers of CPUs. While the
underlying infrastructure provides communication overbead such as Ims in one way communication, we have o
enlarge a granularity of a decomposed fragment of an application so as (o confirin this communication overhead.

References

[Blelloch90] Bielloch, G., “Nesl: A Nested Data-Parallel Language,” Technical Report CMU-CS-92-103, CMU,
1990.

[Foster] Foster, L., Nick, J.M., Tuecke, S., “The Physiology of the Grid: An Open Grid Services Architecture for
Distributed Systems Integration,” hup://www.globus.org.

[Grama99] Grama, A.Y., Kumar, V., “State of the Art in Parallel Scarch Techniques for Discrete Optimization Prob-
lems,” IEEE Transactions on Knowledge and Data Engineering, Volume 11, Number 1, January/February 1999.

[Kumar93] Kumar, V., et al., “Introduction 1o Parallel Computing: Design and Analysis of Algorithms,” November,
1993.

[MP197] Message Passing Interface Forum, “MPI-2: Extensions to the Message-Passing Interface,” July, 1997,
[POSIX1003.13] “IEEE Standard 1003.13, POSIX Real-Time Profiles; also ISO/IEC standard 9945-1 (1996)™.

[POSIX1003.1b] “IEEE, Portable Operating System Interface(POSIX)~Parti: System Application Program Interface
(API).”, 1990.

[PVM94] Geist, A., et. al ,“PVM: Paralle] Virtual Machine, A Users’ Guide and Tutorial for Networked Parallel
Computing”, MIT Press, 1994.

[Yang0]] Yang, P, etal, "Energy-Aware Runtime Scheduling for Embedded-Multiprocessor SOCs,” 1EEE Design &
Test of Computers, September-Octorber, 200 1.

