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LOAD BALANCE PROTOCOL OF CLUSTER ON G R ID : 

PERVASIVE MAXIMUM ALGORITHMIC PARALLELISM 
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Abstract: Pervasive comp111i11g srJ1ware helps lo manage i11lormmion and reduce !he complexity of available computing resources 

in a limely 11w1111e1: On one hand, a grid is a resow·ce whose il\formation is clwnging a11yrime and anywhere, where !he availability 

<!/' CPUs is only irifornred in nm rime 11,/11m a dusler asks to the grid. 011 rhe OIiier hand, a cluster is often i111ple111e111ed in a sta tic 

way, which as.rnmes some pal'licu!or pamllel archiltc/1!/'e and 1he 111111 1/Jer of CPUs. Even when a cluster cw1 consume maximum 

available CPU resources, if' a dus/er is imple111e11/ed os.rnming !he number of CPUs, a cluster could 1101 nm using more than 

!his 11w11ber 4 CP Us. Our mechanism qf load balance pro/O('Of of cluster provides a dynamic.' way ol impleme11 1 ing a r:/us/er that

can cor1.mme maximum a vailable CPU re,1·owr:es 011 rnn lime. In 01der 10 do .w, we propose two mechanisms: 10 pro1,ide ye/

wwther (graphical) parallel language lo describe clusters and to prm,ide !he protocols l!e111 'een a cluster on a grid. While many

parallel languages resolve parallel arc/1 i1ec1ure dependencies in compile time, our para/Id language resolve parallel archilec/ure

dependencies in run time. Our load balance protocol bases on this (grophical) parallel language (111{/ ii provides impleme111atio11

of/hem.

Keywords :  Cluslcr, P11rnllcl Syslcm, Resource A.lloc11 lion, Pervasive computing. 

1 Introduction 

Open Grid Serv ices Architecture [Foster! is advocated in order to integrate serv ices across d i stributed , heterogeneous ,  
dynamic "virtual organizalions" formed from disparate resources wi thin a sing le enterprise and/or from external n> 
source shari ng and service provider rel ationships .  Grid service de.fines standard rnc-Clianisms for 1 ) creat i ng , naming, 
and discovering transient Grid service instances, 2) providing location transparency and multi ple protocol b i ndi ngs for 
service i nstances, and 3) support ing integration with undc.rlying native pl atform faci l i ties .  Grid Serv ices concern with 
speci fied in terfaces and behaviors, such as creation (factory) , global naming (GSH) and references (GSR), l i fetime 
managemen t, reg i st rat ion and discovery, authori zation, noti flcation ,  and concurrency. 

I n  such a pervasive computi ng environment of a grid, the n umber of ava i lable CPUs is changing anytime and 
anywhere. Al though an appl ication is of'len implemented stat ically and could not use maximum avai lable resources, i r
an app l i ca t ion i s  implemented in an adaptable structure to this flexib le avai lable numbers of CPU, an appl ication can 
be run using maxi mum avai lable resources . 

Examples o r  dyn amica l ly adaptable appl icat ions arc found in duster computing and energy-effic ient schedul ing . 
In cluster computi ng, Paral lel DFS [Grama99] observes id leness or CPUs and let migrate tasks between CPUs based on 
dynamic schedu l i ng algorithms such as round-robin and FIFO manner. Demerit o f' this approach i s  that th is  approach 
docs nol consider a structure of an application even if i t  is available. A classical task migration in operating system, 
such as plhread l i brary [POSIX I 003 . 1 b] [POSIX l 003 .  1 3] , i s  the same fo ld, where the load balance is o ften d iscussed 
withoUL any consideration of the structure or an applicat ion, but systems as a whole ,  In an energy efficient ru n-l ime 
sched u l i ng system ['YangO ] J , a structure of an appl ication is closely related lo task mi grations, where migrat ion (or 
schedu l i ng) decis ion whether a task runs on DSP or CPU is made at run-time based on altributcs of tasks, which arc 
energy consumption and execution time in th i s  case. Yang's view is  not from an applicat ion, but from a scheduler. He 
docs not mention how to design a dynamical l y adaptable struc ture. 

These examples show the necess i ty to provide general dynamical ly adaptable s tructure of an app l ication for a given 
number of CPU resomces . There arc two issues in order lo achieve thi s :  I ) how to describe an appl i cation ( language i s­
sue) and 2) how to implement it (protocol issue) . Paral le l  languages arc o fkn classi fied i n  two approaches JKumar93J : 
impl ic i t  para l lel approach and expl icit paral lel approach .  In impl ici t approaches such as NESL [B 1cl loch90] , the pro­
gram itself i s  sequenti al and a c lever parallel compi ler maps resources ex tracting impl i c i t  paral le l  struc tu res from the 
sequential program. In expl icit approaches, there arc mainly three paradigms : message-passing language paradigm, 
data-paral lel language paradigm, and sharc,d-dala language paradigm. Among them, data-paral lel l anguage paradigm, 
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Figure l: Parallel Architecture Dependent Implementation 

such as c•, tnkcs an approach not to describe parallel architecture dependent description in a program. But as a 
compiler do mapping between virtual CPU to physical CPU, it is parallel architecture dependent in compile time. 

Problems of these two approaches in our aim arc as follows. In explicit approaches, I) the structure made mapping 
to physical CPUs at compile time and 2) process operation, such as multi-tasking and micr(Hasking, docs not fit for 
dynamic decomposition of tasks. In implicit approaches, the technology Lo extract parallel structures from the scqucn­
lial program is still in difficulty, where to extract even the Cannon's algorithm is in difficully in matrix multiplication 

[Blclloch90J. Our language is in the middle of these two approaches, where we describe program in explicitly of 
its parallel structure of a program, but the mapping to physical CPUs arc delayed to its execution time (or run-time) 
and language interface is parallel architecture independent way. If we look our language in different perspectives, 
our language can be seen as mcta-parnllel language in the sense that il extracts only important parallel behavior of a 
program. Our language can be implemented using any three paradigms of explicit languages. 

As we takes the approach to describe explicitly in an application, there needs a protocol between a grid environment 
and fragments of an application. Our FlcxGrid provides basic parallel operations, such as decompose, merge, and 
permutation, which arc nol paraJJel architecture dependent. 

2 FlexGrid Overview 

In explicit parallel language with architecture dependency, the decomposition of tasks is represented by process cre­

ation, such as fork and spawn. The figure I shows the description of parallel architecture dependent implementation 
of an application. Even though we could know in advance that this application wi II run on different numbers of CPUs, 
we could not change the structure of an application. The right side of tile figure l shows when the CPU availability is 
more than implemented CPU numbers, say 4 CPUs. As each fragment is implemented using fixed numbers of CPU, 
each fragment could not nm more than this fixed numbers of CPU. Even they can use 4 CPUs, this application only 

uses l, 2, or 3 CPUs. 
However, as the resource availability of a grid is dynamic and unexpected in nature, an application would be 

appropriate to be made more flexible so as to make decision according to its resource availability in run time. The 

figure 2 shows our implementation or !his idea. In order to implcrnenL Lhis foaLure, architecture dependent operation, 
such as fork and spawn, is not appropriate and replaced by the decompose operation that is architecture independent, 
which is shown in the figure. This application is implemcn!cd using 4 maximum vinual CPUs. This application runs 

according lo the available numbers of CPUs. The figure shows consecutively J, 2, and 3 CPU cases of ils available 
CPU resource. When 3 CPUs nrc, available, this application runs on 3 CPUs. When 2 CPUs arc available, it nms 
on 2 CPUs. When one CPU is available, il runs on l CPU. In our approach, advantages arc load balance, while 
disadvantage is its overhead of communication protocol, which is presented in Ja1er. In grid computing, as we cannot 



Parallel Diagram 

Approach by our FlexGrid 

1
-
vnid /1( ... )1 
Staticl)EC(Br.DJ: 

--····- _!SyncMER(ll.C.D): 

CPUI CPLl2 Cl'UJ 

Cl'Ul CPU2 

A "j " 1---::i­
_d 
= 

CPUI 

A 

C 

I) 

Figure 2: Parallel Architecture Independent Implemcnlalion 

expect the available CPU resources, flexible structure of an application would expected to attain good load balance. 

3 Parallel Graphical Language 

Our (graphical) parallel language only focuses on the important behavior of parallel programming irrelevant to the 
underlying parallel architecture. For example, while fork/spawn operator always create another thread in compile 
time, decomposition operator in our language docs create another thread depending on the situation in run time. 

This (graphical) parallel language shown in the figure 3 is for designing the algorithm or an object that is possible 
to reside across CPUs. Parallel language provides I) task notation, 2) decomposition/ merge/ permutation notation. 
Task notation docs not only describe processes but also data structures, which enable the notation of data and process 
parallelism. 

This language bases on a task, which has three attributes: l) name, 2) data, and 3) process. Relationships between 
tasks are described using other operators, such as decomposition, merge, permuLation, and communication. A task 
could be hierarchically structured, which admits a task consists of several tasks. This notation would case the import/ 
export of the parallel structure that is already designed by somebody else. A task that has the decomposition operator 
has the possibility to spawn another task, although those paths will be considered not in compile time, but in run lime. 
This notation shows both of dala and control parallelism, where data parallelism is shown in the clements in vectors 
and matrices, while the control parallelism is shown in the processes in the task. For data parallelism, parallel language 
supports two data structures: a matrix and a vector. For control parallelism, parallel language provide the notation that 
one task could contain and decompose several small tasks in a stralificd manner. It is noted that an acyclic task graph 
is employed in a sense that it facilitates understanding of task execution flows and task dependencies. The demerit of 
this acyclic task graph is thaL it lacks description of data parallelism. 

The figure 4 shows the overall procedure using a parallel language. The outcome of this parallel language is 
lranslated into an acyclic task graph. Each process and data is mapped onto the underlying parallel platform as 
in the sequence chart in the right part. In our language, resource allocation is a task of CPU resource broker. In 
this process, as there arc varieties of possibilities in underlying parallel platforms, this resource mapping (stcp3) has 
various solutions and investigated by the CPU resource broker. 

The figure 7 shows five examples. In each five flgures, the lefl side is a llgure using our Parallel language, while 
the right side is a flgure using acyclic graph. The first example shows the static decomposition of one task [o four 
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Figure 3: (Graphical) Parallel Language Summary 

tasks, where a black lriangle shows that a merge operation is done soon after some task finishes its decomposed task 
(asynchoronous merge). The second example shows the hiearchical tasks. In this ca:,;c, a task contains three tasks. The 
third example shows a matrix multiplication by Cannon's algorithm. The fourth example shows an example of quick 
sort, where the two descriptions arc iteratively applied for the computation. The fifth example shows an example of 
parallel depth first search, where permutation operator is used for describing the order or search. 

4 CPU Resource Broker 

The Flex Grid is implemented as a CPU resource broker as in the figure 5. The functions of the dynamic task service 
manager arc 1) decomposition, 2) merge, and 3) permutation. 

The real task of'this dynamic task service manager is to schedule processes that utilize various resources in the grid. 
There arc two ways to schedule: global scheduler schedules or each CPU has scheduler. The right side of the figure 5 
shows the global scheduler approach. ln our implementation of CPU resource broker, it returns current available CPU 
resources and schedules in FIFO manners. 

'fable 1: Protocol Name 

'Type Protocol Name 

Decomposition DEC_static_req, DEC_static_ack, DEC_dynamicJ·cq, ·····-bEC_dynamic.11ck, 
DEC_cornplete.11ck, DEC_cornplctc_req 

Merge MERGE_syncrcq, MERGE_sync_ack, MERGE_dynamicJ·cq, 
MERGE_dymunic.11ck, MERGE_complcleJ·cq, MERGE_complctc.1,ck 

Communication COMM_sync . .rcq, COMM_sync_ack, COMM_sync_broadcasLreq, 
COMM_sync_broadcast_ack, COMM_a.syncJxoadcast_rcq, 
COMM_asyncJxoadcast_ack, COMM_alltoaJJ_broadcasL.rcq, 
COMM_alltoall_broadcast_ack 

Permutation PERM_gencraLreq, PERM_gcneral.ack, PERMJ)F_req, PERM_DF .. ack, 
PERM_BF_rcq, PERM_BF_ack 

-·-·-------------'--------"-------------------------·-·---------' 
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Figure 4: Parallel Language Overview 

5 Results 

We sirnulale a malrix rnulliplication of Cannon's algorithm [_Kumar93l. Our description or Cannon's algorithm of 4 x 
4 multiplication is depiclcd in the third example in the figure 7. This application is decomposed in 1) decomposition 
or tasks, 2) matrix shift operation, and 3) malrix A and B individual operation according to the Cannon's algorithm. 
In here, the problem is dynamically decomposed in four tasks depending on the times or shift in matrix A and matrix 
B. In each task, the row of matrix A is decomposed in four tasks which docs Jen shirt 0, left shifl 1, right shirt 2, and 
right shift 1 respectively. The column of matrix B is also decomposed in four tasks which docs left shift 0, lcf'l shifl I, 
right shift 2, and right shift I respectively. Results of four tasks in matrix A and four tasks in matrix B arc multiplied 
in corresponding clement. As there arc four tasks, lhosc four results arc merged back and added in corresponding 
clement. In this case, 4 x 4 rnalrix multiplication is written as the maximum parallelism 32. Ir we decompose further 
of the matrix A and rnalrix B, lhc maximum parallelism would be 128. 

The comparison is made bclwccn the one which uses our approach and the one which is written in a architecture 
dependent way. Major concerns arc as following. The boulcncck of our prolocol is the communication latency caused 
by the base infrastructure, such as message-passing of PYM 3.4 rrVM94] and MPl [MPI97]. Communication latency 
varies dynamically whether it is loosely-coupled systems or tightly-coupled systems. As is shown in the following 
resulls, if this communication lalcncy docs not become a small value, granularity of the decomposed task should be 
enlarged. Another small concern is following. Our experimcnls arc done on single CPU by practical reasons. We Ii mil 
by a scheduler not to spawn tasks more than the assumed CPU numbers. Our prolocol is described using Con SGJ 
lndigo2 which runs at 200 MHz. 

The le-rt side of graph 6 shows the curve or parallel archilecture indepcndcnl implemcnlalion (our approach) and 
dependent implemcntalion. In our implementation, graphs arc shown in two lines in the bottom part and the middle 
part. The bouom line indicated by the case l assumes the communication latency or the infrastructure is zero. The 
middle line indicated by the case 2 assumes the communication latency or the infraslructure is 1 ms. In both cases, 
protocol overhead increases between the 2n- 1 and 2n. In the parallel architecture dependent implementation, if the 
numbers of CPU arc less than the assumed CPU number in its implemcnlation, the overhead is only synchronizalion 
overhead. If the numbers of CPU arc more lhan the assumed CPU number, the additional allocated CPUs arc all in 
idle, which let increase the idle time. It is noted that although lhis graph is depicted using a continuous value, we 
rncasured discrete values or CPU numbers. The right side or graph 6 shows the execution time in various available 
CPUs, where lhc effect of the increase of CPU resources is radically decayed. 
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Figure 6: Result or Protocol Overhead (left) and Execution Time or Our Approach or Matrix Multiplication (right) 

6 Camparison to Other Parallel Languages 

This (graphical) parallel language is in between of explicit approaches nnd implicit approaches, which is only fo­
cuses on particular parallel behaviors, such as decomposition, merge, communication, and permutation. However, 
Lhis language only has those primitives related lo parallel behaviors and lacks major language primitives, such as ar­
gument clcclarations, control sequences (for/if/while, etc), etc. In this sense, this language docs not supcrcede other 
parallel languages and need to be implemented on other parallel languages. In this sense, this language is rather a 
modeling language (or specification language) as is only focuses on particular parallel behaviors which is architecture 

independent. 
Merits of this approach arc i<>llowing: I) e!Tcctivc for a dynamically (nm-time) schedulable cluster application 

as it clarifies parallel behavior (examples arc a cluster on a grid, energy-aware scheduling, etc), 2) effective for a 
specification language for parallel systems as is only focused on particular parallel behaviors, 3) no waste of pre­

vious legacies of other parallel languages as this language can be implemented on other parallel languages, and 4) 
(compared lo implicit approaches) no need for clever compiler because algorithmic parallelism is already written by 
a programmer. For the first item, explicit approach uses fork/spawn lo invoke parallel execution, which is architecture 
dependent. Jn order to do a dynamically schedulable structure, it needs some intermediate structure which would be 
similar to our parallel language. Data parallel language has no architecture dependencies, but as it describes too much 
detail for a dynamically schcdulablc structure, it also needs some intermediate structure for lessening complexity or 
programmers. For the second item, explicit and implicit parallel language describes too much detail. 

Demerits arc .I) overhead if an application docs not need a dynamically (nm-time) schcdulablc structure, 2) over-
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Figure 7: Five Examples using (Graphical) Parallel Language 

head depending on the communication infrastructure, 3) not effective for describing details of an application, and 4) 
execution time which is not always optimal. 

7 Conclusion 

This paper presents two basic mechanisms: the language how to describe a cluster on a grid and the load balance 
protocol to implement this language. The aim of this paper is to propose a mechanism which could achieve pervasive 
maximum algorilhmic parallelism on a given numbers of CPUs which is only known at run-time. 

Firstly, proposed (graphical) parallel language provides the way to describe a parallel program. Our parallel lan­
guage is in between explicit parallel language approach and implicit parallel language approach. In order to remove 
architcclurc dependencies from explicit parallel language approaches, important parallel behaviors such as dccornpo­
sition / merge / permutation arc focused as the primitive or our language. Using this parallel language, maximum 
algorithmic parallelism is achieved explicitly written in a program. This language can be used from flne-grain par­
allel algorithm, such as Cannon algorithm, Fox algorithm, sort algorithm, and parallel DFS, Lo coarse-grain parallel 
algorithm. 

Secondly, the load balance protocol is presented. This protocol is an honest irnplemcntation of our parallel lan­
guage. 



Thirdly, we measure the effect of our approach using a simple example. Our protocol replies on the underlying 
network infrastructure. If the underlying'··infrastructurc provides light communication overhead, our load balance 
protocol can overcome when the numbers of CPUs increases more than the assumed numbers of CPUs. While the 
underlying infrastructure provides communication overhead such as 1 ms in one way communication, we have to 
enlarge a granularity of a decomposed fragment of an application so as to confirm this communication overhead. 
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