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ABSTRACT

In this thesis, we proposed novel methods to analyze daily life activities of el-
derly people and quantifying data scarcity for modeling human behavior inside
nursing care facilities in order to improve the overall care system. We addressed the
existing challenges related to data collection, complex activity understanding and
activity recognition by introducing different computational approaches that recover
missing data and utilize spatial and temporal contexts of the data to achieve higher
recognition accuracy in various modalities. As well as, in this thesis, we proposed
a specific sample size determination method as a precursor to build more accurate
models of human behavior. These proposed methods will be immensely helpful for
the development of human activity recognition systems, mainly for elderly persons
and nursing care facilities to improve human behavior understanding in real-life
settings. The outline of the thesis is as follows:

In chapter 1 and 2, we briefly introduce the thesis work and literature review.
In chapter 3, we proposed a method which can improve activity recognition

while having missing data without any data recovery. It is not explored or solved
by others without any data imputation techniques. In our proposed approach, we
explicitly induce different percentages of missing data randomly in the raw sensor
data to train the model with missing data. Learning with missing data reinforces
the model to regulate missing data during the classification of various activities that
have missing data in the test module. This method can effectively improve the recog-
nition accuracy from 80.8% to 97.5% in a developed synthetic dataset. Afterwards,
we tested our approach with activities from two challenging benchmark datasets
with a combination of 21 features. We achieved a better result of handling different
levels of missing data in the dataset without any data imputation techniques.

In chapter 4, we introduce activity recognition using LoRaWAN that aim to sus-
tain connections among IoT devices over a long distance. We explored low-power
wide-area network (LPWAN) technology for sensing experiment to know the possi-
bility of using LoRaWAN protocol and network for activity recognition. As well as,
investigate the number of sensor nodes connected with a single gateway which have
an impact on the performance of sensors ultimate data sending capability in terms of
data loss. For human activity recognition, we have achieved recognition accuracy of
94.44% by Linear Discriminant Analysis (LDA), 84.72% by Random Forest (RnF) and
98.61% by K-Nearest Neighbor (KNN) from collected data. Later, in a real nursing
care setting experiment, 42 LoRaWAN sensors environmental sensors data is col-
lected to know the data loss ratio. We observe 5% data loss happened by the sensors
with a single gateway. In a simulated environment, we checked the activity recog-
nition performance with 5%, 30%, 50% and 80% data loss environment and have
found recognition accuracy of 81.94% LDA, 80.55% RnF and 91.66% by KNN while
5% data are lost. Through our proposed framework it can open a new opportunity
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to significantly increase the sensing range in nursing care center by LoRaWAN.
In chapter 5, we assess the daily life activity data obtained during the 4-months

experiments at a nursing care center. Through this work, we tried to know whether
the daily life nursing care activity data are dependent on subject (e.g., staff or target
resident), or date, and whether the obtained data are meaningful and informative
for activity understanding. We collected 38,076 activity labels, 46,803 record details,
and 2834 hours of sensor data during this experiment. From this data, we revealed
the varieties and dependency of activities and care details which can be a measure
of any healthcare outcome. These findings can be essential elements for activity
recognition, having many intra-class relationships among activities in nursing care
center.

In chapter 6, we explore to recognize different types of head and mouth related
activities of elderly people which can help to measure the health status. We propose
an activity recognition framework to collect head and mouth related behavioral ac-
tivities (e.g., head nodding, headshaking, eating and speaking) along with other
regular activities. We have found that the accuracy is 93.34% by SVM, 91.92% by
RnF, 91.64% by KNN, and 93.76% by CNN.

In chapter 7, we proposed a sample size determination method based on un-
certainty quantification (UQ) for a specific Inverse Reinforcement Learning (IRL)
model of human behavior. The main insight behind our method is that the probabil-
ity of model parameters given training data can be updated from prior to posterior
through Bayesian inference. For illustration, we provided an example with a spe-
cific hypothetical cost scenario and decision-making rule for MS (Multiple Sclerosis)
behavioral modeling, under which our method indicated 935 samples is optimal.

Chapter 8 offers a brief discussion of the thesis. In Chapter 9, we conclude the
thesis with conclusion and some future work issues.

This thesis contribution can help to create various tools to aid stakeholders, such
as domain experts and end users, in exploring human behavior understanding. This
work will become particularly important with the rise of behavior-aware user inter-
faces that automatically reason and act in response to people’s behaviors in almost
every aspect of their lives.



iv

ACKNOWLEDGEMENTS

I would like to take this opportunity to thank all those who have made this reward-
ing journey a meaningful experience. I wouldn’t have been able to complete my
doctorate without the support of so many people whom I want to thank now.

Firstly, I would like to thank my advisor Professor Sozo Inoue, for his uncondi-
tional support, mentorship and guidance to helped me stay on track, for directing
my research to exciting challenges and applications. He has been an inspiring super-
visor and has helped me grow as a researcher with his insightful suggestions, ideas
and feedback. Your countless discussion, encouragement, motivation and trust al-
ways motivated me to take all new challenges throughout this doctoral program.

I would like to thank my thesis committee members Professor Kenichi Asami,
Associate Professor Mitsunori Mizumachi and Professor Takeshi Ikenaga from Kyushu
Institute of Technology for their all feedback to improve this work.

I would like to extend a special thanks to Professor Atiqur Rahman Ahad, with
whom I first came to Japan for PhD research interview. I am indebted to him for
spending countless hours for guiding me into this profession, settling my life in
Japan and always being available with advice when I needed it most.

I would like to thank Assistant Professor Nikola Banovic, Electrical Engineer-
ing Computer Science and Director of Computational HCI Lab at the University
of Michigan, for his support and opportunities to me to work directly in his lab for
3-months and continuous support and guidance for last one and half year. You gave
me a new insight of my research. Also, I owe much to Assistant Professor Xun Huan
at University of Michigan. Two of your guidance helped me to get the strength and
courage to start work in a completely new direction into my research. Your valuable
input about algorithm and dataset used in this work in Chapter 7. I would like to
thank Wanggang Shen PhD candidate of University of Michigan for your all efforts
to share workload and run the algorithm in a high computational resource. Also,
like to thank Anindya Das Antar, Snehal Prabhudesai for being part of this research.
Thanks to Nel Escher and Divya Ramesh for your friendship while I was at Univer-
sity of Michigan, Ann Arbor.

I like to thanks Paula Lago a postdoctoral researcher in my lab, for being like a
sister to me in Japan. You guided me a lot for handling my professional and per-
sonal matters throughout this journey. Thanks to Paula Lago, Moe Matsuki, Nattaya
Mairittha and Tittaya Marittha for being my travel partner for UbiComp and many
international conferences where we joined together and enjoyed a lot. Your friend-
ship brought me happiness during my time at Kyushu Institute of Technology.



v

I would like to thank all of my collaborators who have contributed to this re-
search. I thank my lab mates over the years—Shingo Takeda, Shu Rin, Yusuke Doi,
Hiroki Goto, Nour Al Bogha, Shafiqul Islam, Sayeda Shamma Alia, Farina Faiz,
Shotaro Yoshinaga, Yusuke Nishimura, Haru Kaneko, Kohei Adachi, Brahim Be-
naissa, Defry Hamdhana, Muhammad Fikry and thanks to the members of the Sozo
Inoue Laboratory with whom I had valuable discussions at seminars and monthly
research presentation time.

I would like to thank the members of the nurse care facility of Sawayaka Club
Inc., the nursing staffs, the subjects, and their families for their cooperation in col-
lecting the data for this research in Chapter 4 and Chapter 5. I would like to thank
the students of Sozolab who voluntary work for this experiment.

I am grateful to some Japanese friends who supported me a lot during my life in
Japan. Specially, my Japanese local guardian Mr. Kenji Kurokawa and Mrs. Keiko
Matsuoka for their all support and help.

To my elder sisters Shahera Hossain and Shakila Parveen, to teach me to survive
a day by day.

To my special younger sister Tahia, you supported me a lot on the lonely days
of this program. My brother Minhaz and other sisters - Tani and Tabia. You all will
always be my little sisters and brother, how older you be.

Thanks to two little angles Rumaisa Fatima and Zubair Umar for giving me re-
newed energy to work at home during the last year of my doctoral program.

Last but not least, to my father and mother, for giving your life to educate me. I
owe both to you for your unconditional love. You sacrificed a lot so that I could lead
a better life.



vi

Publications of this Thesis

Journal Articles (Peer Reviewed):
1. Tahera Hossain, M.A.R. Ahad, Sozo Inoue, "A Method for Sensor-Based Ac-

tivity Recognition in Missing Data Scenario", Sensors, 20(14):3811, pp. 23 pages,
2020-07-08.

2. Sozo Inoue, Paula Lago, Tahera Hossain, Tittaya Mairittha, Nattaya Mairittha,
"Integrating Activity Recognition and Nursing Care Records: The System, Deploy-
ment, and a Verification Study", Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies (IMWUT), Vol. 3, No. 86, pp. 24 pages,
2019-09-09.

3. MAR Ahad, TT Ngo, AD Antar, M Ahmed, Tahera Hossain, D Muramatsu,
Y Makihara, Sozo Inoue, and Y Yagi, "Wearable Sensor-Based Gait Analysis for Age
and Gender Estimation", Sensors, 20(8):2424, pp. 24 pages, 2020-04-24.

Book Chapters:
1. Md Shafiqul Islam, Tahera Hossain, Md Atiqur Rahman Ahad and Sozo Inoue,

“Exploring Human Activities Using eSense Earable Device”, Activity and Behavior
Computing, pp. 17 pages, Smart Innovation, Systems and Technologies, Vol. 204,
Springer, 2021.

2. Haru Kaneko, Tahera Hossain, Sozo Inoue, “Estimation of Record Contents
for Automatic Generation of Care Records”, Activity and Behavior Computing, pp.
19 pages, Smart Innovation, Systems and Technologies, Vol. 204, Springer, 2021.

Conference/Workshop Proceedings:
1. Haru Kaneko, Tahera Hossain and Sozo Inoue, “Implementation of Care

Records Automatic Generation Function in a Care Record Application”, 11th Bien-
nial Conference of the Asia-Pacific Association for Medical Informatics (APAMI),
November 21, 2020, Japan.

2. Sayeda Shamma Alia, Paula Lago, Kohei Adachi, Tahera Hossain, Hiroki Goto,
Tsuyoshi Okita, Sozo Inoue “Summary of the 2nd Nurse Care Activity Recognition
Challenge Using Lab and Field Data”, 2nd Nurse Care Activity Recognition Chal-
lenge using Lab and Field, HASCA Workshop, (UbiComp’20), September 2020.

3. Md. Sadman Siraj, Md. Ahasan Atick Faisal, Omar Shahid, Farhan Fuad
Abir, Tahera Hossain, Sozo Inoue, M.A R. Ahad “UPIC: User and Position Inde-
pendent Classical Approach for Locomotion and Transportation Modes Recogni-
tion”, HASCA Workshop, Sussex-Huawei Locomotion (SHL) Challenge competi-
tion, (UbiComp’20), September 2020.

4. Tahera Hossain, Md Shafiqul Islam, Md Atiqur Rahman Ahad, Sozo Inoue,
"Human Activity Recognition using Earable Device", ACM Int’l Conf. Pervasive
and Ubiquitous Computing (Ubicomp’19), Poster, September 2019.



vii

5. M Ahmed, AD Antar, Tahera Hossain, S Inoue, MAR Ahad,"POIDEN: Posi-
tion and Orientation Independent Deep Ensemble Network for the Classification of
Locomotion and Transportation Modes", HASCA Workshop, Sussex-Huawei Loco-
motion (SHL) Challenge competition, (UbiComp’19), September 2019.

6. SS Saha, S Rahman, ZRR Haque, Tahera Hossain, S Inoue, MAR Ahad, "Posi-
tion Independent Activity Recognition Using Shallow Neural Architecture and Em-
pirical Modeling", Sussex-Huawei Locomotion (SHL) Challenge competition, ACM
Int’l Conf. Pervasive and Ubiquitous Computing UbiComp, (UbiComp’19), Septem-
ber 2019.

7. Thanh Trung Ngo, Md Atiqur Rahman Ahad, Anindya Das Antar, Masud
Ahmed, Daigo Muramatsu, Yasushi Makihara, Yasushi Yagi, Sozo Inoue, Tahera
Hossain, Yuichi Hattori, "OU-ISIR Wearable Sensor-based Gait Challenge: Age and
Gender", 12th IAPR Intl. Conf. on Biometrics (ICB), June 2019, Greece.

8. Tahera Hossain, Sozo Inoue, "A Comparative Study on Missing Data Handling
Using Machine Learning for Human Activity Recognition", Activity and Behavior
Computing (ABC), May 30 2019, USA.

9. Sozo Inoue, Tittaya Mairittha, Nattaya Mairittha, and Tahera Hossain, " In-
tegrating Activity Recognition and Nursing Care Records: the System, Experiment,
and the Dataset", Activity and Behavior Computing (ABC), May 30 2019, USA.

10. Tahera Hossain, Sozo Inoue, "Sensor-based Daily Activity Understanding in
Caregiving Center", Ph.D. Forum, 17th IEEE International Conference on Pervasive
Computing and Communications (PerCom), Kyoto, Japan. March 2019.

11. Tahera Hossain, “Activity Recognition and Wireless Sensor Network Opti-
mization”, Proceedings of the 2018 ACM International Joint Conference and 2018
International Symposium on Pervasive and Ubiquitous Computing and Wearable
Computers, Pages 1767-1770, Broadening Participation Workshop (BPW), Singapore,
(UbiComp’18), October 2018.

12. Tahera Hossain, Tahia Tazin, Md Atiqur Rahman Ahad, Sozo Inoue, "Activity
Recognition by Using LoRaWAN Sensor", ACM Int’l Conf. Pervasive and Ubiqui-
tous Computing (Ubicomp’18), Poster, October 2018, Singapore.

13. Tahera Hossain, Yusuke Doi, Tahia Tazin, Md Atiqur Rahman Ahad, Sozo
Inoue, "Study of LoRaWAN Technology for Activity Recognition", ACM Interna-
tional Joint Conference on Pervasive and Ubiquitous Computing and the 2018 Inter-
national Symposium on Wearable Computers (UbiComp-ISWC’18), Workshop on
Human Activity Sensing Corpus and Applications (HASCA), October 2018. Singa-
pore.

14. Swapnil Sayan Saha, Shafizur Rahman, Tahera Hossain, Sozo Inoue, Md
Atiqur Rahman Ahad, "Supervised and Neural Classifiers for Locomotion Analysis",
ACM International Joint Conference on Pervasive and Ubiquitous Computing and
the 2018 International Symposium on Wearable Computers (UbiComp-ISWC’18),
(Sussex-Huawei Locomotion (SHL) Challenge competition), Singapore, October 2018.



viii

15. Tahera Hossain, Hiroki Goto, Md Atiqur Rahman Ahad, Sozo Inoue, "A
Study on Sensor-based Activity Recognition Having Missing Data", 7th International
Conference on Informatics, Electronics Vision (ICIEV) and 2nd International Con-
ference on Imaging, Vision Pattern Recognition (icIVPR), Kitakyushu. Japan, June
2018.

16. K Khabir, M Siraj, M Habib, Tahera Hossain, and M Ahad, “A Study on DSR
Routing Protocol in Adhoc Network for Daily Activities of Elderly Living”, 7th Intl.
Conf. on Informatics, Electronics Vision, Japan, June 2018.

17. Tahera Hossain, Hiroki Goto, Sozo Inoue, "Improving Activity Recognition
for Missing Data", 9th EAI International Conference on Mobile Computing, Appli-
cations and Services (MobiCASE) Student Workshop, Osaka. Japan, March 2018.

18. H Goto, Tahera Hossain, and S Inoue, “Improving Accuracy for Missing
Sensor Data in Activity Recognition with Smartphones”, DICOMO2018 Symposium,
July 2018.



ix

Contents

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Publications of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

1 Introduction 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background and Motivation 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Real field activity recognition challenges . . . . . . . . . . . . . . . . . . 6

2.2.1 Missing Sensor Data . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Lack of strong technological infrastructure in nursing care . . . 7
2.2.3 Understanding real life complex activity with proper data an-

notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.4 Data Scarcity for Modeling Human Behavior . . . . . . . . . . . 10

2.3 Contributions of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 A Method for Sensor-Based Activity Recognition in Missing Data Scenario 15
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Proposed Activity Recognition Method . . . . . . . . . . . . . . . . . . 17

3.2.1 Induce Missing at Random Pattern . . . . . . . . . . . . . . . . . 18
3.2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.1 Results for the Simulated Data . . . . . . . . . . . . . . . . . . . 22
3.3.2 Results for the Benchmark Datasets . . . . . . . . . . . . . . . . 23
3.3.3 Effect of Different Window Sizes for Different Missing Rates . . 27

3.4 Analysis and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4.1 Analysis for Synthetic and Experimental Dataset . . . . . . . . . 29
3.4.2 Realistic Settings Data Analysis from Real Nursing Care Data . 32

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Activity Recognition Using LoRaWAN (Long Range Wide Area Network)
for Nursing Care 36
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36



x

4.2 LoRaWAN Sensing and Data Communication Overview . . . . . . . . 37
4.2.1 LoRaWAN Connection Components for Sensing . . . . . . . . . 37
4.2.2 LoRaWAN data communication . . . . . . . . . . . . . . . . . . 38
4.2.3 Indoor Experiment Setup . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Data Analysis and Experimental Results . . . . . . . . . . . . . . . . . . 40
4.3.1 Proposed Framework for Human Activity Recognition with

LoRaWAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.2 Experimental Result in Indoor Environment . . . . . . . . . . . 43

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Integrating Activity Recognition and Nursing Care Records 45
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 Requirements of Nursing Care Record Systems . . . . . . . . . . . . . . 46

5.2.1 Label Collection for Activity Recognition . . . . . . . . . . . . . 46
5.2.2 Integration Challenge of Nursing Care Record System and Ac-

tivity Label Collection . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2.3 Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3 Deployment in a care facility . . . . . . . . . . . . . . . . . . . . . . . . 49
5.3.1 Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.3.2 Activity Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.4 Data Analysis and Results . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.4.1 Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.4.2 Care Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6 Exploring Human Activities Using eSense Earables 57
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.2 Proposed Framework and System . . . . . . . . . . . . . . . . . . . . . 59
6.3 Experimental Result and Analysis . . . . . . . . . . . . . . . . . . . . . 62
6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7 A Bayesian Approach for Quantifying Data Scarcity when Modeling Hu-
man Behavior via Inverse Reinforcement Learning 68
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.2.1 Modeling Human Behavior with Markov Decision Process . . . 70
7.2.2 Estimating Model Parameters via MaxCausalEnt IRL Algorithm 71
7.2.3 Bayesian Inference for Quantifying Parameter Uncertainties . . 72
7.2.4 Quantifying Data Scarcity . . . . . . . . . . . . . . . . . . . . . . 72

7.3 Sample Size Determination for a Model of Multiple Sclerosis Patient
Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.3.1 States and Actions . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.3.2 Behavior Instances . . . . . . . . . . . . . . . . . . . . . . . . . . 75



xi

7.3.3 Estimating Initial State Probabilities . . . . . . . . . . . . . . . . 75
7.3.4 Estimating State Transition Probabilities . . . . . . . . . . . . . . 75
7.3.5 Estimating Action Probabilities . . . . . . . . . . . . . . . . . . . 76
7.3.6 Pre-hoc Experimental Design and Post-hoc Dataset Analysis . . . 76

7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.4.1 Pre-hoc Experiment Design . . . . . . . . . . . . . . . . . . . . . 77
7.4.2 Post-hoc Dataset Analysis . . . . . . . . . . . . . . . . . . . . . . 78

7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

8 Discussion 80

9 Conclusion and Future Work 84
9.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
9.2 Understanding Limitations and Challenges . . . . . . . . . . . . . . . . 85
9.3 Future Research Perspectives . . . . . . . . . . . . . . . . . . . . . . . . 86

Bibliography 88



xii

List of Figures

3.1 Illustration of activity recognition work flow considering missing data
pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Time-series data having three different signals: sine wave, sawtooth
wave, and square wave; (a) clean data sequence for training data; (b)
clean data sequence for testing purposes. . . . . . . . . . . . . . . . . . 23

3.3 Recognition results for the simulated data with different data loss
rates (from 10% to 80%). Traditional approach represents the results
when the training data were clean while the testing data had miss-
ing patterns. Proposed approach demonstrates the results when both
data had missing patterns. . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Data sequence of ’jogging’ and ’going up down stairs’ from two bench-
mark datasets that have different percentages of missing data. Miss-
ing rates are from 2% to 10%. Accelerometer data for x-, y-, and z-axes
are shown for each case. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5 Activity record count in HASC clean dataset. . . . . . . . . . . . . . . . 26
3.6 Activity record count in Single Chest clean dataset. . . . . . . . . . . . 27
3.7 Recognition results for clean data for both datasets (in %). . . . . . . . 28
3.8 Missing data analysis for activities of human activity sensing consor-

tium (HASC) dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.9 Missing data analysis for some activities of single chest dataset. . . . . 28
3.10 Evaluation of the HASC dataset for window size 1 s, 1.5 s, and 2 s.

Missing percentage 2%, 5%, 7%, and 10% in two scenarios: (a) HASC
dataset for the traditional approach; (b) HASC dataset for the pro-
posed approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.11 Evaluation of the single chest dataset for window size 1 s, 1.5 s, and 2
s. Missing percentage 2%, 5%, 7%, and 10% in two scenarios: (a) single
Chest dataset for the traditional approach; (b) single chest dataset for
the proposed approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.12 Evaluation of HASC dataset for window size of 1 s, 1.5 s, and 2 s; and
missing percentage of 2%, 3%, 5%, 7%, 8%, and 10% in two scenar-
ios: (a) HASC dataset on traditional approach; (b) HASC dataset on
proposed approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.13 Nursing care dataset with 21 complex activity classes. . . . . . . . . . . 33



xiii

3.14 Demonstration of samples analysis from a real-life nursing care data
(x-axis is the timestamp difference for number of samples received in
millisecond vs. record count). . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 LoRaWAN connection components for data sensing. . . . . . . . . . . . 38
4.2 Flowchart of LoRaWAN cloud server data communication [106]. . . . 39
4.3 LoRaWAN setup in the facility center Japan. . . . . . . . . . . . . . . . 40
4.4 Activity Recognition Accuracy. . . . . . . . . . . . . . . . . . . . . . . . 42
4.5 Activity Recognition performance with different percentage of data

loss status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.6 Sensor data (a) receive; and (b) loss status. . . . . . . . . . . . . . . . . . 43
4.7 One-month data analysis from one LoRaWAN sensor. . . . . . . . . . . 44

5.1 Care record / activity recognition system configuration. . . . . . . . . 48
5.2 FonLog: Care record / activity label input application screen. . . . . . 49
5.3 Number of activities for each activity class recorded by caregivers/users. 52
5.4 Activity records by caregivers/users. In the abscissa,the numbers are

the ID of caregivers. For example, Caregiver8 has recorded the high-
est number of activities. . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.5 Activity records on the residents by the caregivers. Here, Excretion
and Food and medication activities are more prevalent. . . . . . . . . 54

5.6 Demonstration of activity records in different dates. . . . . . . . . . . . 54
5.7 Record details with different values . . . . . . . . . . . . . . . . . . . . 55
5.8 Measurement of Excretion assistance care records for residents. The

abscissa represents some residents with their IDs. . . . . . . . . . . . . 55

6.1 Overview of eSense device [86] . . . . . . . . . . . . . . . . . . . . . . . 59
6.2 GATT diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3 A general system architecture. . . . . . . . . . . . . . . . . . . . . . . . . 61
6.4 Overview of eSenseLog Android application. . . . . . . . . . . . . . . . 62
6.5 The proposed framework for this work. . . . . . . . . . . . . . . . . . . 62
6.6 Bar plot for Activities in the dataset . . . . . . . . . . . . . . . . . . . . . 63
6.7 Accuracies comparison obtained from accelerometer sensor data and

both accelerometer and gyroscope sensor data . . . . . . . . . . . . . . 64
6.8 Confusion matrix only head-mouth activities by RnF . . . . . . . . . . 65
6.9 Confusion matrix for SVM with regular activities . . . . . . . . . . . . . 65
6.10 Confusion matrix for CNN classifier with other regular activities . . . 66

7.1 KL divergence versus nd for pre-hoc experiment design. The blue dashed
line represents the mean of KL divergence curves (i.e., the EIG), the
light blue shadow represent the 95% confidence interval (±1.96 stan-
dard deviations), and the blue solid line is the logarithmic fit. . . . . . 77

7.2 Optimal dataset sample size versus the unit cost of information c (pre-
hoc). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78



xiv

7.3 KL divergence versus data number of synthetic data and true data
(comparison between pre-hoc design and post-hoc analysis). . . . . . . . 78



xv

List of Tables

3.1 Extracted features on the HASC and Single Chest datasets. . . . . . . . 20
3.2 Result analysis having 5% and 8% Missing data in both datasets. . . . 32

5.1 Activity classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7.1 State features that define the different situations the a participant can
be in. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.2 Action features representing different actions that participant can per-
form in each situation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75



1

Chapter 1

Introduction

1.1 Introduction

Automatic recognition of physical activities or human activity recognition (HAR)
has emerged as a key research area in mobile and ubiquitous computing [38, 42]. The
purpose of HAR is to understand people’s everyday behaviors through the study of
data collected from individuals and their neighboring living environments. HAR is
important for assisted living [39, 95], healthcare monitoring system [36], fall detec-
tion, and elderly support system [77, 158]. The advent of smartphones and wear-
ables has enabled a wide application spectrum for HAR including human-computer
interaction, fitness tracking, and transportation mode recognition [22, 80, 136, 58]
while Internet of Things (IoT) can be thought as of a large scale multi-modal sensing
system consisting of devices at the edge (e.g. embedded and wearable computing
devices, mobile computing) and also devices on the clouds. This ability to collect a
large amounts of human behavior traces data collected from several different sen-
sors on people’ personal, mobile, and wearable devices, as well as from smart en-
vironments, offers a new direction of data to study human behavior at large scale.
Vision-based approaches to action identification have been well established for more
than a decade, but improvement is not enough [43, 79]. Plenty of methods [11, 2] are
dealing different kinds of actions but little work has been done on elderly people’s
normal and critical activity detection for domain specific manner. Although HAR
systems based on video camera are common for various security applications, in
smart environments they pose numerous challenges related to privacy and space
limitations. As vision-based sensors (cameras) is regarded as exposing privacy so
users are more reluctant to their use inside home. That is why for this thesis we
concentrated on non-vision-based sensing.

In this regard, wearables open up new possibilities for the identification of differ-
ent forms of human behavior [4]. The wearable offers good scope for the assessment
of various forms of human activity without having any privacy issues. There are var-
ious types of sensors available in wearable devices. In particular, human movement
data can be obtained from an accelerometer and a gyroscope sensor. Such sensor are
worn on different parts of the body and provide 3-axis acceleration and orientation,
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respectively. Afterwards, machine learning algorithms can be used to detect differ-
ent types of human activities on these data [101]. It is easier to detect and identify
different human motions by accelerometer and gyroscope sensors. In this regard,
smartphones have a vital role to play in contributing to this area. Different sensors
are already installed on a smartphone, such as a three-axis acceleration sensor that
adjusts the data based on different movements, and an angular velocity sensor (also
known as a gyro sensor) that measures an object’s angle (posture), angular velocity,
or angular acceleration. There is a considerable amount of sensor data due to con-
tinuous monitoring and data collection that carries significant information for study.
Focusing these issues, researchers face a variety of problems related to proper data
processing, data annotation, misclassification, etc.

Though, the ever growing elderly population through world-wide [107] increases
the demand of care-giving center, assisted living center. The demand of working
staff at the healthcare center/nursing care center are also increasing to help and
support elderly person good health. Advancement of technology can help to mon-
itor patient activity in healthcare center where acting on patient behaviors could
improve their healthcare outcomes. In this regard, it is essential to improve domain
specific human activity understanding [94]. Existing human activity recognition sys-
tem mostly focus to recognize regular activity like walk, sit, run, stair up/down etc
. and data are collected in controlled laboratory environment [21]. In care-giving
center, it is aim to recognize daily activities such as taking bath, taking medicine,
cooking, taking food and toilet using, as these activities will provide an indication
of health status [71]. In conventional way, staff record patient information by using
handwriting recording system. Mobile application in smartphone [104] play a vi-
tal role here to make the recording system automated. It helps to get large amount
of annotated data from real world nursing care staffs. In nursing facilities, it is es-
sential to have patient activity data and care records data. Care records data have
details information of patient daily activities such as amount of food intake, medi-
cal assistance details, bathing method and different assistance demands which they
need from care staff. Care staff for doctor need these care records information of
patient to monitor their health condition or predict the need of future assistance for
a particular patient.

In this regard, recent research focuses on improving the accuracy of activity
recognition through feature selection [118, 12], improved segmentation of data or
the use of state-of-the-art learning algorithms [119, 81] in domain specific manners.
However, because of the stochastic nature of human actions, the accuracy of these
approaches remains unsuitable for real life applications. The lack of actual test data
and the complexity of moving information from one environment to another ow-
ing to the great heterogeneity between individuals. The need for large quantities of
labeled data and the selection of features that are highly dependent on the sensors
used make it difficult for the user to use these models in real-world settings.
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In this regard, this thesis main contribution is to address real life activity recog-
nition challenges and propose prospective solutions for those. We investigate that
there is huge difference among real life activity recognition [148] from real nursing
care data and activity recognition in controlled environment laboratory data [85, 94,
8]. Real-life activity recognition and assessment is not straightforward. Class imbal-
ances, overlapping activity and wrong timestamps are involved while data collected
in wild. Also, recognition of regular activity and complex activity from a real-life
situation is very challenging [98]. Because the development of context recognition
systems needed significant amount of labeled sensor data to train the models. Data
collection involves missing sensor data, poor network coverage in nursing care fa-
cility. As well as the nature of data in application specific domain is unknown. Fur-
thermore, it is also important to know the amount of data while modeling patient
behavior. These problem findings motivate the need for strategies that can improve
the activity recognition in nursing care domain. Thus, in this thesis, we address few
challenges from real life nursing care activity recognition and give proposal to solve
those.

1.2 Problem Definition

There are many challenges involved in real-life nursing care activity understanding.
In this thesis, we have addressed the existing following challenges related to data
collection, complex activity understanding and activity recognition by introducing
different computational approaches in various modalities for better activity under-
standing in nursing care domain.

• Problem 1. Sensor data is missing, while collected real field data for activity
recognition. Also, missing pattern is important to know to propose a method
for activity recognition improvement.

• Problem 2. No strong technological infrastructure and weak network cover-
age for data collection, it is needed to significantly increase the sensing range
in nursing care center for proper activity data collection.

• Problem 3. Important to know the nature of domain specific activity, in the
application of recognition of nursing activities, activity classes—the categories
of activities—are specified in a domain-specific manner. We need to now the
nature and dependencies of the nursing care activity for both caregivers/staffs
and residents/elderly people.

• Problem 4. Head and mouth related complex personal scale behavioral activ-
ities are important to measure for the full records of patients, understanding
and recognize intaking activities are also very important for nurse care of el-
derly people.
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• Problem 5. How much data to collect for modeling human behavior? – is an
important question to know for modeling patient behavior, while data collec-
tion is a significant burden to patients/elderly. With having a promising com-
putational model, it will be possible to predict current days symptoms and
future days symptoms for any critical patient. But it is important to know the
amount of samples needed (dataset size) for model designers.

1.3 Outline of the thesis

The rest of this thesis is organized in the following chapters:

• In Chapter 2, presents a detailed literature review and motivation of this thesis.
This include the different area and challenges in nursing care center which are
key issues to solve in real-life activity recognition field.

• In Chapter 3, we propose a novel method to improve activity recognition while
having missing data without any data recovery. For the missing data pattern,
we considered data to be missing in a random pattern, which is a realistic
missing pattern for sensor data collection.

• In Chapter 4, we proposed an activity recognition framework by exploiting
LoRaWAN (Long Range Wide Area Network) protocol for Nursing Care for
improving the sensing capacity with proper activity recognition.

• In chapter 5, we discuss and integrate activity recognition and nursing care
records to revealed the nature of nursing care activities from real-life data. We
tried to know the staff activities as well as elderly peoples activities from 4-
months real nursing care experiments.

• In chapter 6, we propose a framework to detect head and mouth related per-
sonal scale behavior activities which activities are difficult to detect with usual
wearable sensors with other regular activities.

• In chapter 7, we proposed a Bayesian approach for quantifying data scarcity
to modeling human Behavior via Inverse Reinforcement Learning. Our pro-
posed sample size determination method can be a decision making support
to model designers to estimate the number of samples (dataset size as part of
data collection) for modeling human behavior.

• Finally, in chapter 8, we conclude a brief discussion and overall findings and
contribution of this thesis with a conclusion remarks and suggestion for future
work.
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Chapter 2

Background and Motivation

2.1 Introduction

Activity recognition has been researched for a long time now, research and imple-
mentations have concentrated largely on the recognition of regular physical activity
while data are collected mostly in controlled laboratory environment. However, ac-
tivity recognition of daily activity and complex activity from a real-life scenario is of-
ten very difficult. Many wearable computing devices can now identify, count steps
and provide a general description of how involved we have been on a day when we
walk, bike or run. However, research in behavior aware applications domains such
as health care, nursing care, assisted living centers are not very mature [49]. One
of the main reason is that it is more complicated and difficult to evaluate. In health
care applications, complex activity recognition has concentrated on the recognition
of patient activities or activities at home [46, 97, 144] and noticed nurses and care-
givers. Recognition of nursing care activities (both nurses and residents) can have
many applications. Particularly for daily activities understanding in nursing domain
can be of great benefit for caregivers to checking compliance with care routines [74]
for a given patient, identification of risk activities that require special care, creation
of automated records to decrease documentation time [69], make decisions or di-
agnoses in emergency situations etc. Advancement of technologies can help track
patient behaviour in healthcare centers where patient behavior can enhance their
health outcomes. But human activities are complex and dynamic [110]. Activities
may be carried out simultaneously at various levels of granularity [108]. Also it is
complicated due to the lack of publicly accessible data [94, 9].

On the other hand, the difficulty of deploying learning-enabled HAR systems
in the wild (real life) involves coping with data from multiple noisy sensors with
varying sampling rates, misaligned timestamps and missing data. In addition, there
is no good technical infrastructure in the nursing care center and it could be in retired
areas with poor network coverage for data collection. Since the development of
context recognition systems required a large amount of labeled sensor data to train
the models so robust data collection system is important. Despite of this, sensor
data is difficult to interpret and annotate after data collection, making it difficult and
expensive to produce large training sets. It is also often necessary and crucial to
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know the appropriate amount of real field data to predict patient behavior precisely
while collecting patient data is a significant burden to patients.

One of the domains that can benefit immensely from activity recognition is the
nursing domain, but it has not been researched because of many challenges [83, 48].
Thus, our focus is on to addresses the real settings problem of nursing care centers
and proposed prospective solution for those. In these contest, in the following sec-
tions we will elaborately describe few challenges of real-life activity recognition in
nursing care centers.

2.2 Real field activity recognition challenges

2.2.1 Missing Sensor Data

Sensor data loss scenario is common issue in wireless sensor network while various
sensor data traverse from one source to another [61, 163]. Human activity recogni-
tion will not possible properly if we will not able to evaluate all sensors data prop-
erly. In the real-world scenario, assisted living facility centers have big challenges to
collect all sensor data properly. In certain cases, this missing data is often extreme,
which brings a major challenge to sensor data applications. However, conventional
methods of data estimation cannot be used directly in the wireless sensor network
and existing algorithms of estimation do not provide satisfactory accuracy or have
high complexity [150].

The missing value issue is prevalent in datasets [37, 120]. A significant amount
of raw data will be lost if the missing data is directly discarded, which will decrease
the quality and reliability of the results of the study and create a great loss of re-
sources [47]. Data loss or the presence of incomplete data can be happen for low-
battery power in sensors, longer distance between sensors and access points, failures
of sensors to send data properly, hardware failures, synchronization problem, signal
strength fading, packet collisions, weakness in Wi-Fi or network, environmental in-
terference, etc. [57, 88, 16, 162]. It has a greater impact on the quality of the collected
sensor data. Missing data are either removed, or missing values are replaced by
the last non-missing values; however, it may contain important information, espe-
cially for activity recognition. Nevertheless, it is not a wise idea to just remove the
missing content from the dataset. There are comparatively fewer works in the field
of activity recognition domain that unambiguously addressed the problem of miss-
ing data [149, 156, 134]. These missing values create significant difficulties for data
processing approaches such as classification, prediction and other machine learning
methods [67]. It is often not possible to deal with missing values, particularly when
the number of missing data is high.

In different areas of research, data interpolation techniques for missing data were
proposed in [78]. Saeed et al. [133] proposed an approach for handling missing sen-
sory features and realistic samples by adversarial autoencoder. They designed a
fully-connected classification network for missing modalities. On the other hand,
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Pedro et al. [51] instituted four algorithms for handling missing data. In their work,
they simulated various amounts of missing data. Note that the researchers mostly
focused on data imputation techniques to recover missing data. Data imputation
techniques are time-consuming for real settings.

During the identification of real settings sensor data loss pattern, it was ob-
served that sensor data missing pattern follows a random missing pattern [161, 88,
51]. The nature of missing data is extremely unpredictable. Missing patterns can
be distributed at any locations in the data. The distribution of missing regions is
purely random; therefore, we did not compare with any uniform random model
or clumped random model. Uniform random model follows some specific time
and specific missing amount. Here, ’uniform’ implies that the missing occurrence
is evenly spaced, whereas, ’random’ indicates random spacing, and ’clumped’ de-
codes that the missing data are distributed in clusters. These are not realistic random
models for sensor network’s missing pattern.

Based on our study, there is almost no prior work that considers a realistic miss-
ing pattern in a dataset, as well as examining any missing values without imputa-
tion. Earlier, the effect of missing data situations, when missing values correspond to
specific feature values, were studied. The impact of any possible good combinations
of features for handling missing data for activity recognition were explored [62].
The randomness was varied at different levels to study the recognition results. In
this thesis, we proposed a method to improve activity recognition performance hav-
ing missing data in the dataset [62]. To demonstrate the robustness of our approach,
initially, the method was evaluated on simulated data. After obtaining good results,
we explored the method on two difficult benchmark datasets. Usually, most of the
datasets were created using few subjects, , and not well adapted for real world appli-
cations. A project called "HASC Challenge" gathered a large-scale corpus of human
activity data to resolve the situation. More than 6,700 accelerometer data with 540
subjects were gathered through this project through the cooperation of 20 teams.
Hence, this dataset is indeed a difficult one to challenge [85]. On the other hand,
another dataset we considered is a combination with normal and complex activity
classes with varying class imbalance issue [30]. The nature of class-imbalance and
complex activities are also aligned with real-settings application. Hence, we consid-
ered these two benchmark datasets to evaluate our approach.

2.2.2 Lack of strong technological infrastructure in nursing care

Human activity recognition with low strength sensor is another daunting task due to
the lack of proper data collection in real life. There is no strong technological infras-
tructure in nursing care and they might be in retired places. One key limitation of
current wireless sensing technologies is the small sensing range. Although the com-
munication range of WiFi can be 20–50 meters indoors, its sensing range is only 3–6
meters due to the weak target-reflected signal used to sense target movement. Fur-
thermore, existing wireless sensing solutions require at least one of the transceivers
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to be close to the target, which may not be feasible in certain scenarios for nursing
care. LoRaWAN (Long Range Wide Area Network) is one of the major low-power
wide-area network (LPWAN) technologies that aim to sustain connections among
IoT devices over a long distance. Due to weak network coverage in nursing care.
LoRaWAN can open a new opportunities to significantly increase the sensing range
in nursing care center.

Machine-to-machine communication has progressed rapidly in healthcare set-
tings. IoT-themed applications in care-giving center need to improve for providing
smart care facilities in near future. However, IoT health care is not without its obsta-
cles. IoT applications have particular criteria such as long-range, low data rate, low
energy consumption and cost-effectiveness. Generally used short-range radio tech-
nologies (e.g., ZigBee, Bluetooth) are not suited to situations involving long-range
transmission. Therefore, IoT applications requirements have driven the emergence
of a new wireless communication technology: low-power wide-area network (LP-
WAN). LPWAN is increasingly gaining popularity in industrial and research com-
munities because of its low power, long range, and low-cost communication charac-
teristics [165]. It provides long-range communication up to 10–40 km in rural zones
and 1–5 km in urban zones [146, 111]. Therefore, these promising aspects of LPWAN
have prompted recent experimental studies on the performance of LPWAN in out-
door and indoor environments [14, 55]. In summary, LPWAN is highly suitable for
IoT applications in healthcare monitoring service. This technology open up exciting
new areas for data mining research and data mining applications.

However, the researches of LoRaWAN application is still limited. Recently, the
research community started to publish their work on LoRa technology. Many studies
have done about the indoor coverage of LoRaWAN [116, 139]. Regarding LoRaWAN
coverage the author [122] analyze the coverage of LoRaWAN in a sub-urban area. A
LoRaWAN scalability study is present in [18, 17]. Stable wireless sensor network
is necessary for better healthcare service. It is estimated that there will be 50 billion
connected devices by 2020. Therefore, the LPWAN technology can play a vital role
for healthcare monitoring service in future. LoRaWAN has some special criteria that
is LoRaWAN gateway is able to support up to 20,000 IoT devices. It can operate
successfully at ranges exceeding 15 km in sub-urban settings and more than 2 km in
dense urban environments.

Researchers have started proposing this new technology for human activity recog-
nition [61]. But the scalability of the LoRaWAN network with multiple end nodes
is a challenge to keep all nodes active at the same time. Packet loss and packet re-
ceive ratio is a crucial factor in healthcare services. In this thesis we used LoRaWAN
network to send various sensor data for human activity recognition in nursing care
domain. We explore LoRaWAN-based sensors to verify the activity recognition. In
single device data collection, we observe no packet loss happens. Packet loss hap-
pens when multiple devices are connected at the same time. We study the relation
between packet loss and accuracy in simulation environment. The objectives of our
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work is to verify the activity recognition by using LoRaWAN based network; to ex-
plore the relation between data loss and accuracy; and to estimate the data loss in
realistic nursing care indoors experiment with many sensors. The result provides
promising prospect for LoRaWAN sensor for improving healthcare monitoring ser-
vice. We proposed this framework for healthcare monitoring system for nursing care
data collection and activity recognition.

2.2.3 Understanding real life complex activity with proper data annota-
tion

There are limited research especially cases used at hospitals and nursing care facil-
ities [115, 15, 74]. There are many challenges in wearable sensors to explore it in
some real fields [5, 99]. For machine learning algorithms, data with a training la-
bel is required while collecting label data is costly. Sensor data is also difficult to
interpret. Sensor data collections are typically performed with several participants,
and the data obtained from different participants for the same task set may not be
of a similar nature. Therefore, the intra-class activity variations are prominent. In
addition, the data relating to two separate activities can be identical in nature, re-
sulting in inter-class variability. Class imbalance can occur if an activity is done for
a longer time. These are some important nature of activities which we need to know
for domain specific activity understanding. In controlled laboratory environment it
is comparatively easy to control these types of crucial factors but it is most difficult
in wild. On the other hand, it is difficult to choose the proper sensing modality and
location [135] of the sensing that is used to monitor complex activities.

Through commercial developed products it is possible now to identify general
summary of daily activities. It will give an overview of how involved we are on
a day. But domain-specific applications like healthcare/nursing activities research
are not mature yet. One of the main reason is domain specific human activities are
complex to understand with proper data annotation. Furthermore, the nature of the
domain specific activities is not clear. In the application of recognition of nursing
activities, activity classes—the categories of activities—are specified in a domain-
specific manner. Moreover, such activities have imbalance varieties, for example,
the number of occurrences between classes, start times per day and length. Also,
activities are performed based on the demand basis.

To resolve the above-mentioned challenges, it is important to evaluate or analyze
real field data that can be used by researchers to propose and compare the perfor-
mance of different methods [74, 71]. In this thesis, we suggest a framework that
combines activity records and activity label records that are routinely used by work-
ers in the nursing sector. While this can cause inaccuracy due to self-labelling, but it
is possible to increase the number of label collections by easy recording. We analyze
intra-class relationship of real life nursing care activity data which has important in-
formation to revealed the nature of real field data. Also, in this thesis, we introduce
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a new platform for eSense earables to recognize head and mouth related activities
alongside with some regular activities.

2.2.4 Data Scarcity for Modeling Human Behavior

After having a promising computational model, quality and amount of training data
is often the single most dominant factor that determines the performance of a ma-
chine learning model. Large amount of data play an important role for a machine
learning model to be computationally efficient. Once we have enough training data
then it can perform good. But exactly how much training data do you need? It
depends on many factors. Mostly, it depends on the task we are trying to perform
and the performance we want to achieve. Also, model complexity, input features we
have, the noise in the data are important factors. Optimum size of the training data
set is necessary to achieve high classification accuracy.

To date most approaches to scaling up machine learning to large data sets have
attempted to modify existing algorithms to deal with large datasets in a more com-
putationally efficient and effective manner. However, despite of being able to col-
lect massive amount of data about people, there are data samples were data will
be scarce. For example, medical domain where condition allows for collecting data
from only a few patients. There is still desire to use machine learning to model even
behaviors of those stakeholders. But it is not clear how much data we need to be
confident that the model is capturing the behaviors correctly.

Data scarcity means few data points when it is difficult to get data or the data is
small as compared to the amount needed. Data scarcity is the most obvious limita-
tion for a machine learning and deep learning model. There are no precise rules for
knowing how much data we need to support for building of a good model. If we
feed a model poorly, then it will only give us poor results. Theoretically, big amount
of training samples is always good for a model. There is no method to estimate exact
amount of training samples which will be good for a model. In real world scenario,
it is not always possible to have large amount of data. Specially in health care inter-
vention where we can able to collect data only from few patients. Advancement of
technology can help to monitor patient activity in healthcare center. This technology
can be used to recognition of patient activity record, nursing care activities, nursing
care work along with resident’s care [104]. Analysis of these care records data can
improve the support of the nursing facility center [70] and able to provide better life
to patient. It helps to evaluate elderly peoples day to day health status. For this pur-
pose, either sensor/video based system can help us to collect these type of patients
regular life data and clinicians will able to analyze those data for behavior predic-
tion. In this regard, it is always challenging to capture appropriate amount of real
field data to predict patient behavior.

Although large amounts of good quality training data will result in a good model,
collecting behavior instances is challenging. In this situation, if data is collected
without deliberation, it might result in two possible scenarios - under collection
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(enough data is not collected) and over collection (more than necessary data is col-
lected). In the first case, the model will not learn well if the data is scarce. Techniques
like data augmentation are used in such scenarios, however, they cannot replace ac-
tual data. Data Augmentation approaches [123] is done under the assumption that
more information can be extracted from the original dataset through augmentations.
These augmentations artificially inflate the training dataset size by either data warp-
ing or oversampling. Using data augmentation it is possible to artificially expand
the size of a training dataset by creating modified versions of training data in the
dataset. Having more training data can result in more skillful models, and the aug-
mentation techniques can create variations of the data that can improve the ability
of the models. The performance of deep learning neural networks often improves
with the amount of data available. Functional solutions such as dropout regular-
ization [143], batch normalization [75], transfer learning [157] [140], and pretraining
[45] have been developed for deep learning based analysis on smaller datasets. Con-
ventional data augmentation methods are mainly developed for image and video
analysis tasks. A key challenge for data augmentation is to generate new data that
maintains the correct label, which typically requires domain knowledge. However,
it is not obvious how to carry out label-preserving augmentation in some domains,
e.g., wearable sensor data. Moreover, using data augmentation we can enlarge the
training dataset size but there are no precise rules for knowing how much data we
need to support for building of a good model. If we collect much less data, in such
a case, one might have to go back into the field for more data collection. This poses
several challenges - the same representative patients might not be found, the field
might be far away, etc. On the other hand, collecting too much data would not re-
sult in a poor model, but rather waste precious resources like time. It might also be
cumbersome for patients if wearable sensors are used to collect data.

In this thesis, we address this data scarcity problem for modeling human behav-
ior. We propose a sample size determination method. Our approach can be use as
a tool to help decision-making for model designers to selecting optimum amount of
data when modeling patient behavior.

2.3 Contributions of the Thesis

One of the domains that can benefit immensely from activity recognition is the nurs-
ing domain. Domain specific activity recognition is till now limited because of many
challenges. Although activity recognition in laboratory settings and real life settings
has huge difference. To reduce this gap our focus is on to addresses the real set-
tings problem of nursing care centers and proposed prospective solution for those.
Therefore, we contribute to addressing a few real-life activity recognition challenges
in this thesis.

The main contributions of this thesis are:
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1. A Method for improving Sensor-Based Activity Recognition in Missing Data
Scenario

We propose a novel method to improve activity recognition while having miss-
ing data without any data recovery. For the missing data pattern, we consid-
ered data to be missing in a random pattern, which is a realistic missing pattern
for real field sensor data collection. In our proposed approach, we explicitly in-
duce different percentages of missing data randomly in the raw sensor data to
train the model with missing data. Learning with missing data reinforces the
model to regulate missing data during the classification of various activities
that have missing data in the test module [62]. This approach demonstrates the
plausibility of the machine learning model, as it can learn and predict from an
identical domain. We examined the method for different missing percentages,
varied window sizes, and diverse window sliding widths [63]. We examined
real settings nursing care dataset for evaluating missing pattern and missing
sample ratio. As such, our method can improve activity recognition in nursing
care data collected in wild in the presence of missing data. We explain this in
Chapter 3.

2. Proposed an activity recognition framework by exploiting LoRaWAN (Long
Range Wide Area Network) protocol for Nursing Care

We propose a framework for activity recognition by using LoRaWAN protocol
and network to send various sensor data. This work explores exciting new op-
portunities to significantly increase the sensing range with the introduction of
LoRaWAN for Nursing Care Center. After having a activity recognition frame-
work in laboratory settings experiment. We examined the performance of the
LoRaWAN in both laboratory environment and real nursing care environment.
In LoRaWAN technology, the amount of sensor nodes connected with a single
gateway have an impact on the performance of sensors ultimate data sending
capability in terms of data loss. We investigated this issue from real nursing
care data to check the feasibility of using LoRaWAN sensor for future health-
care monitoring center [64, 65]. We explain the proposed framework and re-
sults and findings in Chapter 4.

3. Integrating Activity Recognition and Nursing Care Records

In this thesis, we suggest a framework that combines activity records and ac-
tivity label records that are routinely used by workers in the nursing sector.
We have collected 4-months nursing care data from real nursing care center in
Japan. It has been shown that by using our system it can possible to increase
the number of label collections by easy recording. We analyze intra-class rela-
tionship of real life nursing care activity data which has important information
to revealed the nature of real life data. We investigated the dependency of ac-
tivities to staff users, target residents, and days. Using the obtained data, we
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revealed the nature of the data, including dependency of activities to several
factors, and the nature of timestamps of self-labeling.

We investigated "staff activity" for support service requirements as well as "el-
derly people activity" from this data. This work also help to examined elderly
people health status from the data and types of activities recorded by staff. In
nursing care facility, activity recognition is challenging because the nature of
activities is not clear. Hence, this thesis revealed the nature of real settings
activity data for nursing care center [71, 69]. We explain this in Chapter 5.

4. Exploring Human Activities Using eSense Earable We can measure nurse ac-
tivities, but patient’s are also very important to make complete records, there-
fore in this thesis we propose a framework using eSense earable to detect head
and mouth behavioral activities with good accuracy. We develop a smartphone
application for data collection from the eSense. Through eSense earables, we
performed experiments for seven activities. Four activities are related to head
and mouth (namely, eating, speaking, head shaking, and head nodding). Three
regular activities (i.e. walk, stay, and speaking while walking). Detecting these ac-
tivities accurately using only accelerometer and gyroscope sensors data quite
challenging. By using our propose framework [66], it will be possible to detect
complex head-mouth related behavioral activity along with regular activity in
nursing care center. Our proposed framework and results are explained in
Chapter 6.

5. A Bayesian approach for quantifying data scarcity when modeling human be-
havior via Inverse Reinforcement Learning (IRL)

After having a promising computation model, it is always important to know
the amount of data needed to train the model. It is necessary to have a well-
informed idea of how much data to collect for both resource conservation and
to obtain an accurate model parameter estimate. In the thesis, we proposed a
sample size determination approach based on uncertainty quantification (UQ)
for a specific Inverse Reinforcement Learning (IRL) model of human behavior.
Our approach can be use as a tool to help decision-making for model designers
to selecting optimum amount of data when modeling patient behavior. We
elaborately explained our approach in Chapter 7.

2.4 Summary

In order to solve problems in the field of real nursing care center, it is important to
address the challenges of real field nursing care center. There are several challenges
associated with data collection, noisy data, daily life complex activity understanding
from real field data as well as having a well-informed idea of how much data to
collect is imperative for both- conservation of resources as well as obtaining a well-
trained model. In this context, if a technology that can detect and understand the
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regular and complex activity of the nursing care center in advance by combining
unevenly distributed sensors and analyze and developed algorithm using advance
machine learning techniques, the impact will be extremely large.

In this chapter, we have summarized the related work on the issues studied in
this thesis and the main contribution. In the next chapters we will explain elabo-
rately about our proposal and findings.
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Chapter 3

A Method for Sensor-Based
Activity Recognition in Missing
Data Scenario

3.1 Introduction

Human activity recognition (HAR), using sensor-based systems, is one of the most
prominent fields of research1. One of the primary goals of HAR is to understand the
daily behaviors of people through the interpretation of information from different
sensors collected from people and their surrounding living environments. Sensor-
based human activity recognition has a significant impact on healthcare monitor-
ing, assisted-living, surveillance, entertainment, etc. [42]. One of the main reasons
for the exploration of HAR-related research is the increase in elderly population all
over the world [72]. The monitoring of elderly people’s daily activity becomes cru-
cial to improve their quality of life and to prevent any sudden accidents, such as
falls [148, 76]. Through advanced technology, it is possible to detect human body
movement. There are lots of works on video-based action or activity recognition [74,
3, 1, 6]; however, video-based methods have privacy concerns that deter many users
from video-based systems, and on the contrary, encourage users to adopt sensor-
based activity analysis. Apart from the privacy issue, video-based activity recogni-
tion has issues with occlusions, segmenting multiple people in the scenes, etc. [1,
3]. Many researchers explored sensor-based activity recognition techniques [160,
56]. In this scheme, wearable sensor data were collected from each individual. Af-
terward, through near-by access points, data were transmitted to servers. Usually,
various features are extracted from these time-series continuous data. Finally, ma-
chine learning approaches were explored for recognition of different activities [6].

Researchers are also conscious of real-time applications for hospitals and nursing
homes [104, 7]; however, data collection in a controlled-environment or in the wild
has challenges [69]. A real field study was introduced in [69] to facilitate nursing

1This Section is reproduced from the article Tahera Hossain, M.A.R. Ahad, Sozo Inoue, "A Method
for Sensor-Based Activity Recognition in Missing Data Scenario", Sensors, 20(14):3811, 2020-07-08. with
permission of the editor
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home activity logs and activity recognition. This experiment in nursing care facil-
ities introduce real life activity recognition challenges from field data. Data were
collected for four months from a nursing care center. The data included nursing care
records at nursing care facilities, and data from activity labels and sensors obtained
through smartphones. Evaluation of the data showed a lower recognition accuracy
in the real-life situation [69]; however, a controlled experiment using motion capture
and smartphone sensors have demonstrated that it is possible to recognize nursing
activities by means of motion sensing with higher accuracy [94]. One limitation for
the recognition of complex activities in the real field is the use of a single inertial
sensor in the phone. Moreover, recognition of regular activity and complex activ-
ity from a real-life situation is challenging. Along with these issues, data loss or
missing data are a crucial concern while collecting data in the wild. Usually, human
walking, jogging, running, sitting, standing, stair-up, stair-down, cooking activities,
sports activities, etc. are recognized from standard sensors without any corrupted or
missing data [74, 109]. There are more than 150 datasets for the sensor-based activity
arena [109]. Usually, these datasets obtain continuous data from the accelerometer
or other sensors, and as such, there is no issue of missing data [109].

In a real-life scenario, however, missing data are prevalent in any wireless sensor
networks or body-area wireless sensor networks [156]. Data are lost or the presence
of incomplete data can be due to various reasons. A few prominent reasons for data
missing are: distance within sensors and nearest access point, sensor malfunction,
lack of sufficient power in the battery, collision of data packets, transmission prob-
lems, dropped connections, troubles in sensor synchronization, corrupted readings,
weak Wi-Fi signal strength, limited network coverage, and so on [10, 50, 113, 156,
134, 132, 159]. Mobile devices have limited memory capacity and computational
ability that may cause data to be missed [124].

There are three categories or patterns of missing data. Usually, data can be
missed at any random order at any period (i.e., missing in random order (MAR)),
or data can be missed in a periodic manner (i.e., data not missing in a random or-
der), or the third pattern is the case where data are completely missed or lost, in any
random manner [156]. The latter pattern occurs mainly when the battery is off, or
when the system has technical problems. It can be predicted as data missing entirely.

The random missing pattern is more realistic because, in real nursing care or a
healthcare center, staff use wearable sensors (e.g., accelerometer and gyroscope) for
each individual. These sensors’ data are then transferred to near-by access points
and important data are sent to a server using a wireless sensor network. In some
cases, sensing, computing, and communications can be performed on a single chip,
which reduce the cost and facilitate the deployment in even larger numbers. Each
node can sense its local environment, perform necessary computations and process-
ing, and send the sensory data through multi-hop nodes. Due to these computa-
tional complexities, sensors data can be continuously received, and sometimes be
missed without following any patterns. In the real field, time-series sensor data are
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not continuously missed, or not missed by following a specific pattern, or not missed
having a rhythmic period.

During the missing pattern identification, distinguishing a complete missing pat-
tern is relatively easier; however, in real-life data collection, the most common miss-
ing pattern is missing at random. The random missing pattern is difficult to deci-
pher. Researchers have been engaged on various data imputation techniques, which
are not explored in our work [10, 88]. The main contributions of this research are
highlighted below: In this work, missing data were not recovered or reconstructed.
Instead, human activity recognition performance having missing data was explored
based on the most realistic scenario in wireless sensor network. Without exploring
any specific data imputation technique, through this approach, any overhead related
to data imputation processing time and storage can be reduced. We propose an ap-
proach where activity recognition accuracy can be enhanced while having missing
data in the dataset. Based on our study, there is no work considering the missing
at random pattern without data imputation for sensor-based activity recognition in
the manner that we consider in this work. Two challenging benchmark datasets
were explored to justify the approach.

For this study, we generated various random missing percentages (2%, 3%, 5%,
7%, 8%, and 10%) on two benchmark datasets. We unearthed different statistical
features from the time-series data for classification. To engulf the entire observation
of the dataset, an overlapping windowing technique was followed. In the original
dataset, there was no missing information. We refer to these data as ’clean data’. Af-
terward, we created different percentages of randomly-missing datasets for evalua-
tion. In the recognition process, we classified the action instances in three scenarios:

• When both training dataset and testing dataset were clean;

• When training dataset was clean but the testing dataset had missing data; and

• When both training and testing dataset had missing data.

In this paper, we explored two challenging benchmark datasets, the human activity
sensing consortium (HASC) dataset [85] and the Single Chest dataset [30] for the
experimental proofs.

3.2 Proposed Activity Recognition Method

Time series sensor data are required for sensor-based human activity recognition. In
usual cases, the missing data issue is not considered or generated while collecting
data from sensors. In this study, we addressed the missing data problem to evalu-
ate the sensor-based activity recognition performance in a clean data environment
and different percentages of missing environment. Our approach was not to recover
missing sensor data, but instead, we propose a method to increase recognition per-
formance while having different percentages of missing data by using a machine



Chapter 3. A Method for Sensor-Based Activity Recognition in Missing Data
Scenario

18

FIGURE 3.1: Illustration of activity recognition work flow considering
missing data pattern.

learning approach. The basic recognition process is shown in Figure 3.1. In this
block diagram, data are collected from different sensors for different actions. Later,
we extracted different statistical features from either uninterrupted or missing data
at random pattern. Afterward, for activity classification, we exploited different ma-
chine learning classifiers to classify activities. In the initial dataset, there were no
missing data; however, in our system, we amended the raw sensor data with differ-
ent percentages of random missing data.

3.2.1 Induce Missing at Random Pattern

In this section, we explore the recognition performance in multi-sensory networks.
A more realistic assumption is that missing patterns will follow the missing at ran-
dom (MAR) pattern, as many sensors try to send data in real-time. Another termi-
nology for MAR can be stated as missing conditionally at random. This missing
pattern depends on some random conditions. The missing data mechanism is an
important issue during the missing pattern selection. In a sensor network, missing
completely at random is a straightforward situation, as it can only happen when
some sensor nodes become faulty. Some replacements for the missing values can
be ’NA’, ’None’, ’NaN’, etc. In this work, the pattern we adopted was ’NA’, which
stands for data that are ’not available’ . Let D be the data from sensor, Do be the ob-
served or available data, and Dm be the data that are missing. Hence, the probability
that data are missing P(r) at random can be formalized as: P(rDo, Dm) = P(rDo).

To induce the missing at random pattern in the dataset, we generated a random
permutation of the sensor data with varying percentages and replaced those time-
series tuples by ’NA’ value. This was purely a missing at random pattern. This was
a normal distribution, and there was no specific pattern or location or clustering
of the missing values. Missing patterns can be distributed at any locations in the
data. The random patterns were located differently, and no specific routines were
followed; therefore, the distribution was purely missing at random. For creating
different random missing percentages, we induced 2%, 3%, 5%, 7%, 8%, and 10%
random missing data in an actual dataset. We separated each percentage of missing
dataset for evaluation.
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3.2.2 Methodology

A traditional machine learning model is trained and tested on the data, which has
the same input feature space and the same data distribution. If the data distribution
is different between train and test data, the performance of the model degrades [73].
In our approach, considering the realistic scenario, we induced missing values in
both training and testing modules. In that case, the model learns with the specific
percentage of missing input examples. The model initially learns the missing data
behavior from the training data and it often aids for generalization. In turn, it im-
proves the robustness of the model. So, while the model learns through having
missing examples, and even tests with also missing examples, this method results
in a model that will perform better when having missing data in both training and
testing modules.

Therefore, we studied the effect of missing environment in the feature values [63].
Consequently, in this work, we created a missing environment in raw sensor data.
We considered that missing data may occur during the period of raw sensor data
collection in a practical environment. Here, we first created a simulated dataset
to evaluate our approach of handling missing data. In the simulation dataset, we
evaluated the performances on a clean environment. Afterward, we observed the
performances in 10%, 20%, 30%, 40%, 50%, 60%, 70%, and 80% missing data on the
simulated dataset.

We tested our proposed approach on two challenging benchmark datasets. These
are covered in the following subsections. On the two benchmark datasets, we con-
sidered up to 10% missing data. If we chose more than 10% missing data, the recog-
nition performance degrades drastically. After inducing the missing data pattern,
we considered that the missing data were existent only in the test data module,
while the training data had no missing cases. We built up a model with good qual-
ity data, and tested with the random missing data. Afterward, in our approach, in
another setup, we added missing data in both training and testing sets. We stud-
ied the recognition performance – having missing data in the test module, as well
as having missing data in both modules. During feature computation, an overlap-
ping windowing approach was considered for data segmentation. The overlapping
windows assist in distinguishing the smooth changeover of the signal. It also plays a
significant role when the signal interval is not independent of the signals of the other
intervals. It helps to cover all data information at the margin of the windows. Over-
lapping windows can handle the transitions more precisely. Finally, we exploited
classifiers to recognize the classes smartly.

One of the most important parts of classification is to extract useful information
from the sensor signal. We not explored any feature extraction method, though there
are various feature extraction strategies for activity recognition. In this paper, we
specifically concentrated on statistical features on time-series data. We unearthed
several features. Table 3.1 depicts the 21 statistical features that are extracted from
the rudimentary signals to generate smart features. Our study suggests that this
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TABLE 3.1: Extracted features on the HASC and Single Chest
datasets.

1. Mean-X 2. Mean-Y 3. Mean-Z
4. Variance-X 5. Variance-Y 6. Variance-Z
7. Skewness-X 8. Skewness-Y 9. Skewness-Z
10. Kurtosis-X 11. Kurtosis-Y 12. Kurtosis-Z
13. Max-X 14. Max-Y 15. Max-Z
16. Min-X 17. Min-Y 18. Min-Z
19. Median-X 20. Median-Y 21. Median-Z

set can profoundly assist in distinguishing distinctive activities. For the selection of
important features, we considered [62], where we found that a combination of dif-
ferent features is useful in the extraction of useful information that has missing data.
The extracted statistical features were: mean, variance, skewness, kurtosis, maxi-
mum value, minimum value, and median absolute deviation (MAD) for the x-axis,
y-axis, and z-axis of the accelerometer data. The following paragraphs summarize
the features.

Mean and variance: Mean value summarizes the data attributes for the three axes
of accelerometer data. Variance is used to identify any sharp details of time series
data. Consider that X = x1, x2, x3, . . . , xn are the time series of accelerometer data.
So, the mean value is:

X̄ =
∑ xi

n
(3.1)

where, n is the number of training instances. The variance of any random variable
X is the expected value of the squared deviation from the mean of X : µ = E[X] and
variance is:

Var(X) = E[(X− µ)2]. (3.2)

Skewness: By skewness, we can measure the lack of the symmetry of the graph.
It computes the skewing rate or irregularity of the probability distribution of a ran-
dom variable about its mean value. For a balanced dataset, the skewness will be
equal to 0. Hence, for a normal distribution, we can have a skewness of 0. It can be
computed as, γ = E(X−X̄

σ2 )2, where X̄ is the mean and σ2 is the standard deviation.

Skewness =
n

(n− 1) (n− 2) ∑
(
Xi − X

)3

S3 (3.3)

Kurtosis: Kurtosis denotes the peak of a frequency distribution curve. The dis-
tribution of flatness is measured by Kurtosis. It can be defined as an average value
of the variation of the time series data. It measures whether the data are peaked or
flat relative to a normal distribution. It also estimates the tailedness of the proba-
bility distribution of a real-valued random variable and the degree of asymmetry
of the sensor signal distribution. The peakedness or kurtosis is given by, µ4 =

∑(x − x̄)k. f (x), where, all x̄ are summation of values and f (x) is the probability
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distribution function of x.

Kurtosis =

[
n (n + 1)

(n− 1) (n− 2) (n− 3) ∑
(
Xi − X

)4

S4

]
− 3 (n− 1)2

(n− 2) (n− 3)
(3.4)

Other features: Few other features have been extracted from the accelerometer
data. For a particular signal, maxima (Max) and minima (Min) stipulate the maxi-
mum and minimum values of that signal. Moreover, the median absolute deviation
(MAD) is computed as a feature. The median absolute deviation can be computed
by,

MAD = ∑
xi −M

n
, (3.5)

where n = number of samples, xi = ith sample value and M = median.
There are different classifiers and among them, we explored the support vector

machine (SVM) [138] and random forest (RnF) [27] methods. As sensor-based data
are not computationally-expensive, similar to the image or video data, we concluded
that SVM or RnF classifier can perform without much processing time. For SVM,
we exploited the radial basis function (RBF) as the kernel function. SVM is very
well-known for its strength in classifying many binary or multiclass scenarios in
computer vision, imaging, and other arenas. SVM has been employed in several
thousand good research so far.

Apart from the SVM, the random forest classifier is another important classifier
that is also widely explored by the researchers. The RnF’s strength is its ability in
classifying multiclass scenarios with a regression algorithm [41]. The random forest
classifier has a set of basic classifiers of decision trees, which are produced in a ran-
dom manner according to the sampled data in training dataset [41]. These decision
trees are trained autonomously. In the test module, each class label is developed
based on the multiple classifiers’ prediction levels [126]. According to the study
in [126], the most inconsistency-tolerant classifier is the random forests; therefore, if
the missing rate is higher, it is supposed to perform reasonably better than a basic de-
cision tree, Bayesian network, logistic regression, K-means, and K-nearest neighbors
(KNN) algorithm [126]. For Random forest, we implemented R’s approach based
on the Breiman’s random forest algorithm. In the implementation, there were 500
trees. This number was set to a relatively high number so that every input row can
be predicted at least a few times.

3.3 Experimental Results

In this research work, we explored two benchmark datasets to evaluate the method:
these were the human activity sensing consortium (HASC) dataset [85], and the sin-
gle chest-mounted accelerometer (SCMA) dataset [30]. The HASC dataset comprises
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more than 6700 data, taken from the accelerometer. These were captured from 540
subjects. This is one of the few and largest datasets in terms of the number of sub-
jects that were engaged to collect accelerometer-based dataset [85]. Usually, most
of the datasets were created using 10 or 20 subjects, , and not well adapted for real
world applications. A project called "HASC Challenge" gathered a large-scale cor-
pus of human activity data to resolve the situation. More than 6,700 accelerometer
data with 540 subjects were gathered through this project through the cooperation
of 20 teams. Hence, this dataset is indeed a difficult one to challenge.

There are six activity classes – stay in a normal position, walking on the floor,
jogging, skipping action, walking up the stairs, and walking down the stairs. The
data were collected through two different modes:

• Segmented dataset: segmented data per activity per person; and

• Sequential dataset: several activities in a sequence by a person.

The latter mode (i.e., continuous and multiple activities) makes this dataset even
more challenging. Apart from the multiple activities in a sequence, the activities
were taken at a random order as well. Usually, each activity was taken for 10 s or
above for the sequential dataset. The segmented data were measured for 20 s and in
*.CSV format. Conventionally, the segmented dataset was considered as a training
module, whereas the sequential dataset was taken as a testing module. The sampling
frequency was 10 to 100 Hz; the age range of all young subjects was 21 to 32 years.
The leave-one-person-out cross-validation pattern was considered in our research.

On the other hand, the single chest-mounted accelerometer [30] dataset (single
chest dataset) was designed from 15 subjects who put the wearable accelerometers
on their chests. There are seven activity classes in this dataset – standing; walking
normally; working at a computer; standing-up, walking and going up or down stairs
(a combined and complex activity); walking up or down a staircase; talking while
standing; and walking and talking with someone. Though there is are relatively few
subjects in this dataset, the activities are complex and challenging when compared
to many other existing datasets. The sampling rate of each wearable accelerometer
sensor was 52 Hz. Similar to the HASC dataset, the data were stored in a *.CSV for-
mat. Before explaining our results, we present the missing data concept in relation
to our simulated dataset.

3.3.1 Results for the Simulated Data

In this simulated dataset, we introduced three patterns of signals or data – sine wave,
sawtooth wave, and square wave. There were 1200 data entries in the simulated
dataset for training and testing. Each data pattern contained 400 entries separately.
Initially, these are continuous time-series data, and later, we added some random
missing patterns to evaluate our method. This is done to justify or confirm the clas-
sification accuracy. At the beginning, we took continuous time-series data for the
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FIGURE 3.2: Time-series data having three different signals: sine
wave, sawtooth wave, and square wave; (a) clean data sequence for

training data; (b) clean data sequence for testing purposes.

three signals (Figure 3.2). The training data had three sequences (top image in Figure
3.2). The bottom image of Figure 3.2 has different five signals that were considered
as the testing data. Then, we added some missing signals randomly in the sequence
– both for training data and testing data. The added missing data were considered
from 10% to 80%. However, up to 60% missing data in this short sequence was
found to be reasonable. After that, the missing data rate was extremely high and
hence, the recognition result fell drastically. The recognition results were computed
for clean data as well as for different levels of missing data patterns (from 10% to
80%). These were accomplished when the training data were clean but the testing
data had missing data in a random order.

As mentioned above, we computed the recognition rate when the missing data
were present in both training and testing data. These results are demonstrated in
Figure 3.3. It is evident from these results that by using our proposed approach
when both training data and testing data have missing data patterns, the recognition
results are always enhancing. According to our study, we have found that when
there is no missing data, the recognition rate is 100% in this simulated data [62].
However, after adding missing data randomly in the sequences for testing data only,
as well as, for both training and testing data – we can have a better recognition rate
when both training and testing data have missing patterns randomly.

3.3.2 Results for the Benchmark Datasets

In this paper, missing datasets were augmented as per the following three conditions
on the two benchmark datasets (HASC dataset and the single chest dataset):
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FIGURE 3.3: Recognition results for the simulated data with different
data loss rates (from 10% to 80%). Traditional approach represents the
results when the training data were clean while the testing data had
missing patterns. Proposed approach demonstrates the results when

both data had missing patterns.

• Activity classification without any missing data;

• Activity classification with missing data in the testing part; and

• Activity classification with missing data in both training and testing parts.

To demonstrate the variations and data loss patterns, we depicted two different
actions and realistic missing patterns in Figure 3.4. In Figure 3.4, data sequences
of two activity classes from the two datasets were demonstrated. Among the two
datasets, the single chest dataset is an imbalance dataset in comparison to the rela-
tively fairly-balanced HASC dataset. This shows how missing data were distributed
among each activity class for different percentages of missing data. For missing data
classification, we considered the missing at random pattern, which is a more realis-
tic situation during real field data collection. We generated a random permutation
of the sensor data with varied percentages. In this scheme, there was no specific
patterns or locations or clustering. It is the sensible scenario while assembling sen-
sor data from multiple sensors; missing data may occur at random patterns, which
can be distributed at any location in the data. We embraced two activity classes:
‘jogging’ and ‘going up down stairs’ from two benchmark datasets to illustrate the
distributions of data missing in various percentages of missing data. Missing rates
were from 2% to 10%. Accelerometer data for x-, y-, and z-axes are shown for each
case. In the real dataset, it was not considerable to have missing data for more than
8% to 10% in the context of activity recognition.

Figure 3.5 and Figure 3.6 exhibit the activity counts of HASC and single chest
dataset. HASC dataset has regular activity classes, whereas, the single chest dataset
has two overlapping activities for each class. For example, the going up and down
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Jogging Going up down stairs 
2% missing data 

  
5% missing data 

  
7% missing data 

  
10% missing data 

  
 

FIGURE 3.4: Data sequence of ’jogging’ and ’going up down stairs’
from two benchmark datasets that have different percentages of miss-
ing data. Missing rates are from 2% to 10%. Accelerometer data for

x-, y-, and z-axes are shown for each case.
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FIGURE 3.5: Activity record count in HASC clean dataset.

stairs together comprise as one class; whereas, the standing up-walking and going-
up-down stairs combine as another class. We considered two datasets so that we can
evaluate activity recognition performance having missing data in straightforward
activity classes, as well as on several overlapping activity classes.

We have orchestrated different missing percentages of data randomly in these
datasets. Then, we have observed the performances of recognition results in the
following three environments:

• (Case-i) Clean data for both train and test module (Figure 3.7);

• (Case-ii) Clean train data and missing data in test module (Figure 3.8 and Fig-
ure 3.9); and

• (Case-iii) Missing data in both test and train modules (Figure 3.8 and Figure
3.9).

In Figure 3.7, we have demonstrated the recognition results for clean datasets
(Case-i) in two classifiers. Random Forest classifier has performed better recognition
results for both cases. In Figure 3.8 and Figure 3.9, we demonstrated the recognition
results for both datasets on different levels of missing data in two environments:
clean train data and missing data in test module (Case-ii); and missing data in both
test and train modules (Case-iii). We accomplished these to demonstrate whether
our simulated analyses have correlation with real datasets.

In Figure 3.8, the results are showing for HASC datasets, for both classifiers, in
two environments: having missing data rate from 2% to 10%. More missing data
produces lower recognition results, hence these are unacceptable. Hence, we have
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FIGURE 3.6: Activity record count in Single Chest clean dataset.

demonstrated the results up to 10% missing data rate. For the both classifiers, we
have found better recognition rates by using our proposed approach when the both
train and test datasets have missing information. In the similar fashion, Figure 3.9
demonstrates the approval of the above conclusions that our approach can produce
higher recognition results when the both train and test data have missing patterns.

3.3.3 Effect of Different Window Sizes for Different Missing Rates

Window size and window sliding widths have impacts on handling missing data
in the dataset. Figure 3.10a is the result of having missing data in the test module,
while train data was clean in HASC dataset. We have evaluated the results for the
window sizes 1 s, 1.5 s, and 2 s, having missing percentages of 2%, 5%, 7%, and 10%.
Results demonstrate that the window size of 2 s has less impact of missing informa-
tion rather than the window size of 1s. It is because of the fact that a larger window
size contains more information of a particular activity class. When any specific ac-
tivity class is affected more by the presence of missing data, it can handle missing
information with a larger window size. On the contrary, a smaller window size may
lead to a decrease in the accuracy of not having enough activity class information
in that particular window period. Figure 3.10b shows the result of our proposed
approach of having missing data in both train and test modules in window size 1 s,
1.5 s, and 2 s for the HASC dataset. It has shown that using the proposed approach
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FIGURE 3.8: Missing data analysis for activities of human activity
sensing consortium (HASC) dataset.
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FIGURE 3.9: Missing data analysis for some activities of single chest
dataset.
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FIGURE 3.10: Evaluation of the HASC dataset for window size 1 s, 1.5
s, and 2 s. Missing percentage 2%, 5%, 7%, and 10% in two scenarios:
(a) HASC dataset for the traditional approach; (b) HASC dataset for

the proposed approach.

of handling missing data in both train and test modules can increase recognition
performance. Figure 3.11 demonstrates the same evaluation for the Single Chest
dataset.

3.4 Analysis and Discussion

3.4.1 Analysis for Synthetic and Experimental Dataset

The simulated data demonstrated some evaluations based on mean and variance.
With simulated data, it shows recognition performance as 100%, when it has no
missing data in the dataset. Afterward, we evaluated the performance of our ap-
proach by adding different percentages of random missing data (from 10% to 80%)
in the simulated dataset. Regarding the missing data % variations in simulated data
and on benchmark datasets, we would like to mention that the simulated data is a
trivial dataset to test the model and to get feedback – based on which, we can work
further; therefore, we created a higher % of missing data. The patterns are simple in
the simulated dataset, therefore, we need to add more missing data. On the other
hand, for real-life situation in wireless sensor network, the missing data are not of a
higher rate. In reality, if more than 10% data are missing, for a sequence to decode
various activities, there is a huge chance that one or more activities can be com-
pletely ignored or missed. Usually, in WSN, missing data at random occur, which is
why we explored this strategy. Missing data for a large chunk of data means either
the sensor network has experienced a major technical flaw, or there was an error
in data transmission. Those issues can be handled by network administrators or
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FIGURE 3.11: Evaluation of the single chest dataset for window size
1 s, 1.5 s, and 2 s. Missing percentage 2%, 5%, 7%, and 10% in two
scenarios: (a) single Chest dataset for the traditional approach; (b)

single chest dataset for the proposed approach.

network-based data loss assessment mechanism. We ascertain that the current work
has successfully dealt with the missing data scenario in a realistic manner.

In our approach, we observed that when both modules have missing data, it
always demonstrated better performance compared to the cases of having missing
data in only during the testing time. With both HASC and single chest datasets, the
random forest classifier provided better recognition results than the support vec-
tor machine classifier for both datasets when data are fully clean. With the HASC
dataset, it is 89% and 87% with random forest and support vector machine classi-
fiers, respectively. When we have evaluated the same evaluation with the single
chest dataset, it achieved 94% and 80% by random forest and support vector ma-
chine classifiers, respectively. Evaluation with clean datasets depicted better perfor-
mances by the random forest classifier. Sensor-based data are not computationally-
expensive like image or video data; therefore, we considered that both classifiers can
perform without much processing time.

In the evaluation time with HASC dataset using the random forest classifier and
a combination of 21 features, we achieved a better result of handling different lev-
els of missing data in the dataset. When a dataset has 3% missing data in the test
module, we found that the accuracy is 86%. On the other hand, it improved the per-
formance to 88% when both modules have missing data. In the single chest dataset,
the performances of random forest and support vector machine had almost simi-
lar results during the handling of different percentages of missing data. With 3%
of missing data in the test module, it showed a 77% recognition accuracy, but when
both modules have missing data, it improved to 80%. The evaluation results demon-
strated consistently better performance when we trained the dataset with a missing
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FIGURE 3.12: Evaluation of HASC dataset for window size of 1 s, 1.5
s, and 2 s; and missing percentage of 2%, 3%, 5%, 7%, 8%, and 10% in
two scenarios: (a) HASC dataset on traditional approach; (b) HASC

dataset on proposed approach.

data environment, and then evaluated with missing data environment at the same
time. It has improved the performance compared to the only missing data in the test
dataset; however, this enhanced recognition result is not significant. In terms of ac-
curacy and having missing data, we identified that the HASC dataset’s performance
was superior, because the HASC dataset activity classes do not much vary that much
in terms of complexity compared to the single chest dataset.

We tested in different percentages of missing data levels. Table 3.2 represents
the comparative result analysis of 5% and 8% missing data in both datasets. We ob-
served that when we added even 5% missing data in the testing module, the recog-
nition rate became 83% by using RnF in HASC dataset, whereas it lowered to 69%
in the single chest dataset when only the test module had missing data. By using
the SVM classifier too, it was 82% in the HASC dataset, but 68% in the single chest
dataset: even the recognition performance in single chest dataset reduced to 60%,
when 8% random missing data were present in the test dataset. Performances al-
ways improved slightly when using our proposed method when both training and
testing modules had missing data in both datasets. On the other hand, for the HASC
dataset it was 73% when using RnF and SVM. We evaluated the performances with
different window sizes, both datasets performed well with a higher window size in
any missing percentages. We evaluated different missing percentages (e.g., 2%, 3%,
5%, 7%, 8%, and 10%) for different window sizes (i.e., 1 s, 1.5 s, and 2 s) – as demon-
strated in Figure 3.12. We observed that the window time of 2 s has performed well
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TABLE 3.2: Result analysis having 5% and 8% Missing data in both
datasets.

HASC Dataset
RnF

HASC Dataset
SVM

Single Chest Dataset
RnF

Single Chest Dataset
SVM

5% Missing
Data

8% Missing
Data

5% Missing
Data

8% Missing
Data

5% Missing
Data

8% Missing
Data

5% Missing
Data

8% Missing
Data

Traditional
Method

83% 73% 82% 73% 69% 60% 68% 58%

Proposed
Method

84% 77% 85% 77% 70% 62% 72% 60%

in any missing percentage situations. The performances improved for having miss-
ing data in both the testing and training modules. We can state that the amount of
data is an important issue to estimate the correct activity labels even having a miss-
ing data environment. Finally, we noticed that the fairly balanced HASC dataset can
handle missing data in a considerable manner, compared to the single chest dataset,
which is a more imbalanced dataset. We chose these two different, but genuinely
challenging, datasets to manifest the validity and robustness of our approach.

In our approach, the model learns with the specific percentage of missing input
examples, and their associated outputs also have different percentages of missing
data. In this way, the model initially learns the missing data behavior from the train-
ing data. In this study, we explicitly induced different percentages of missing data
randomly in the raw sensor data to train the model with missing data. Learning
with missing data reinforces the model to regulate missing data during the classifi-
cation of various activities while having missing data in the test module. However,
this method, under realistic circumstances (i.e., real data loss issues in sensor net-
work) where the distribution of the inputs are different between source and target
data, approximates the training and testing data distribution totally differently due
to random loss happened in training and testing in unknown pattern. Traditional
machine learning model is trained and tested on the data, which has same input fea-
ture space and same data distribution. If the data distribution is different between
train and test data, the performance of the model drops. This approach manifests
the plausibility of machine learning model, while it can learn and predict from the
identical domain.

3.4.2 Realistic Settings Data Analysis from Real Nursing Care Data

We demonstrated that the approach performs well on the synthetic data and ex-
perimental data. Note that sensor-based human activity recognition approaches are
still based on limited datasets, by 6 to 10 classes on average, accomplished by few
subjects only without any real-life challenging situations, let alone having missing
data. Activity recognition based on sensor data is the prominent research area in
the ubiquitous computing community. However, there are a very few examples of
real-world activity recognition at hospital and nursing homes. Therefore, it is really
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FIGURE 3.13: Nursing care dataset with 21 complex activity classes.

a daunting task to develop more realistic datasets as well as, explore various meth-
ods. However, this is the goal of the researchers to achieve. With this reality, we
explored our experiments on two really challenging datasets.

Nevertheless, we mention one of our datasets that is explored in a realistic set-
ting on a real-field nursing care dataset [71]. We present this information to show
that even in real-life, missing data in sensors are mostly random in nature, which we
have explored in this work. In the paper [71], we introduce a system to integrate ac-
tivity recognition into nursing care record system. The system exploits smartphones
to create nurse work and care records, and explores a cloud service to collect sensor
data for activity recognition in a real nursing care center for four months. During this
experiment, 38,076 activity labels, 2834 h of sensor data, and 46,803 care details were
collected. Figure 3.13 shows that this dataset contains 28 complex nursing care activ-
ity classes for regular nursing care support, which was challenging to collect, such as
vitals (checking), excretion, bathing/wiping, etc. To collect nursing care residents’
complex activity data, 27 people, including 23 caregivers and 4 nurses, conducted
this experiment in a real nursing care facility center. It required capturing continu-
ous sensor data by using mobile sensors to capture nursing activities; however, there
is still a challenge due to the missing samples.

To evaluate the missing pattern from this dataset, we depict Figure 3.14. Here,
the abscissa represents the delay or difference of timestamp for receiving samples
in millisecond, whereas, the ordinate denotes the record count. In the case of no
mission data in the dataset means 200 ms sampling rate for all data. In that case the
graph will be one spike in 200 ms sampling rate for all data. If there are no missing
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data and no variance in the delay then it becomes like one single spike for all data
received in 200 ms sampling rate. It is the ideal situation. If we consider the missing
value then there will be variance in the 200 ms sampling time but in this time there
is small variance in 200 ms sampling time and it is because of jitters. If we have large
variance in 200 ms sampling time, then this graph become wider at pick of 200 ms
timestamp. When we have one sample missing then it means next sampling time
will be 400 ms as 200 ms timestamp is the ideal case for data collection. We have
a sample at timestamp 200 ms (this is the absolute time), then 400 ms timestamp
as well as 600, 800, and 1000 ms (this carries missing samples information). If one
sample is missing at 200 ms timestamp then we can get a record count information
in 400 ms or if two samples are missing then we can get missing sample information
at the 600 ms timestamp.

Consider the analysis in Figure 3.14, which shows that at 200 ms, samples can
be picked, which also have around 1–5 ms. There is no large variance in the 200
ms time. The graph is like a spike graph for this case as all time difference are 200
ms and it is the top sampling timestamp during data collection. We have this kind
of small samples because we can see the some of the pick at the very small num-
ber/small difference (400, 600, and 800 ms). If we observe the 400 ms sampling data
amount then we can observe small number of missing samples and if we observe
600 ms sampling data amount then it means that continuously two succeeding sam-
ples are missed. Sometimes this missing pattern are random at any timestamp and
sometimes it is continuously missing in two succeeding samples. So, we can see
from realistic situation that randomly and continuous missing happens during any
consecutive timestamp in the practical application.

To count the missing ratio, we found that missing ration between 400 and 600
ms is 1.15% and missing ratio between 600 and 800 ms is 1.27%, while it is 0.54%
during 800 and 1000 ms sampling duration. It is not a large missing ratio in this
real application setting. The reason is that our entire networking system and battery
lives of sensors were properly checked and enriched with the best-possible manner,
so that no missing data can happen. However, in real-life, the causes of missing data
may happen and we can face more challenges. After this realistic dataset analysis
for missing pattern and missing sample ratio, we can ascertain that our proposed
approach can be applicable for realistic settings as well to improve activity recogni-
tion. If the missing pattern is random and the missing ratio is approximately 2%,
then using our proposed approach, we achieved enriched accuracy up to 88% (for
the HASC dataset) and 84% (for the single chest dataset) by using the RnF classifier,
and 86% and 80% for these datasets, respectively, by exploiting SVM classifier.

3.5 Summary

Human activity recognition is a very important research area. In this work, we ex-
plored the human activity recognition based on wearable sensors and we addressed
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FIGURE 3.14: Demonstration of samples analysis from a real-life
nursing care data (x-axis is the timestamp difference for number of

samples received in millisecond vs. record count).

a very important challenge, that is, the presence of missing data in the activity recog-
nition without data imputation. We rigorously studied the missing data issue in this
domain and proposed an approach to handle the missing data. In our method, we
explored different types of twenty-one statistical features that were computed for the
three axes of the accelerometer. The features are: minimum value, maximum value,
mean, median absolute deviation, variance, skewness, and kurtosis. These features
are fed into a smart classifier to recognize different activity classes. Explored classi-
fiers are random forest and support vector Machine. We created various scenarios
for experimentation, having various levels of missing data in a random manner, as
well as creating different window sizes with varying sliding widths in the time-
series data.

Initially, we developed three simulation data patterns with and without any
missing data. Based on the successful analysis, we then explored activities from
two very challenging benchmark datasets for our experiment. These are the HASC
dataset and the single chest dataset. Under various experiments of random miss-
ing data levels, we recognized activity classes. From our experimental analysis, we
can conclude that the recognition results improve by our proposed method when
missing data patterns are available in both training and testing modules without
recovering the raw data.
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Chapter 4

Activity Recognition Using
LoRaWAN (Long Range Wide Area
Network) for Nursing Care

4.1 Introduction

Sensors-based human activity recognition system can help to provide information
about an early indication of decline in health for healthcare service2. Wearable sen-
sors can be extremely useful in providing accurate and reliable information on peo-
ple’s activities and behaviors, thereby ensuring a safe and sound living environment
[160]. Machine-to-machine communication has progressed rapidly in healthcare set-
tings . IoT-themed applications in care-giving center need to improve for providing
smart care facilities in near future. But healthcare IoT is not without its obstacles.

IoT applications have specific requirements such as long range, low data rate,
low energy consumption, and cost-effectiveness. The broadly used short-range ra-
dio technologies (e.g., ZigBee, Bluetooth) are not adapted for scenarios that require
long range transmission. Therefore, IoT applications requirements have driven the
emergence of a new wireless communication technology: low power wide area net-
work (LPWAN). LPWAN is increasingly gaining popularity in industrial and re-
search communities because of its low power, long range, and low-cost communica-
tion characteristics. It provides long-range communication up to 10–40 km in rural
zones and 1–5 km in urban zones [31]. Therefore, these promising aspects of LP-
WAN have prompted recent experimental studies on the performance of LPWAN in
outdoor and indoor environments [54, 13]. In summary, LPWAN is highly suitable
for IoT applications in healthcare monitoring service. LoRa (Long Range) Sensor
which is called LoRaWAN is one of the promising technologies among LPWA tech-
nologies. These sensors open up exciting new areas for data mining research and
data mining applications. In this paper, we explore the use of one of these sensors,
in order to identify the human activity.

2This Section is reproduced from the article T. Hossain, T. Tazin, M.A.R. Ahad, and S. Inoue, "Ac-
tivity Recognition by Using LoRaWAN Sensor", ACM Int’l Conf. Pervasive and Ubiquitous Computing
(Ubicomp’18), 2018. with permission of the editor
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In order to address the activity recognition task by using LoRaWAN sensor ac-
celerometer data we used supervised machine learning. We first collected accelerom-
eter data from the users. We then aggregated this raw time series accelerometer data
instances, where each example is labeled with the activity that occurred while that
data was being collected. We then built predictive models for activity recognition
using four classification algorithms. Based on our study, no work has been done on
activity recognition using LoRaWAN sensor. Figure 1 describes the basics of activity
recognition from sensor data. The objectives of this paper are as follows: To explore
LPWA technology for sensing experiment; to use LoRaWAN Sensors for human ac-
tivity recognition; and to identify supervised classifier to achieve best recognition
performance.

IoT-themed applications in care-giving center need to improve for providing
smart care facilities in near future. However, IoT applications have specific re-
quirements such as long range, low data rate, low energy consumption, and cost-
effectiveness. It provides long-range communication up to 10-40 km in rural zones
and 1-5 km in urban zones [13, 54, 31, 44]. LoRa (Long Range) WAN (LoRaWAN) is
a very promising LPWA technology. In this paper, we explore the use of LoRaWAN
sensors in order to identify the human activity.

The scalability of the LoRaWAN network with multiple end nodes is a challenge
to keep all nodes active at the same time. Packet loss and packet receive ratio is a
crucial factor in healthcare services. In this study, we explore LoRaWAN sensors
to verify the activity recognition. In single device data collection, we observe no
packet loss happens. Packet loss happens when multiple devices are connected at
the same time. We study the relation between packet loss and accuracy in simulation
environment. The objectives of this work are:

• To verify the activity recognition by using LoRaWAN;

• To explore the relation between data loss and accuracy; and

• To estimate the data loss in realistic indoors experiment with many sensors.

4.2 LoRaWAN Sensing and Data Communication Overview

LoRaWAN networks are organized in a star-of-stars topology, in which gateway
nodes relay messages between end devices and a central network server. End de-
vices send data to gateways over a single wireless hop, and gateways are connected
to the network server through a non-LoRaWAN network (e.g., IP over cellular or
Ethernet).

4.2.1 LoRaWAN Connection Components for Sensing

First, we have to integrate three integrated parts (Ardunio Lucky Schield, LoRaWAN
and Ardunio Uno) for making a compact system. We used Arduino Uno for 3.3-volt
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FIGURE 4.1: LoRaWAN connection components for data sensing.

power source which supplies power to LoRaWAN device. By using Arduino Lucky
Shield, we can integrate accelerometer and many other sensors with LoRaWAN. Fig-
ure 4.1 shows each connection components for complete data sensing and sending
through any LoRa based communication system.

4.2.2 LoRaWAN data communication

For LoRaWAN data communication service, we choose SORACOM platform. Figure
4.2 shows the data collection process from LoRaWAN sensors, through LoRaWAN
Gateway. After preparation of the sensor setup, we prepare a program for continu-
ous sensing by using LoRa sensors. We write the program among LoRaWAN sensors
by using Arduino.

Our sensing system can sense specific sensor data and send those data to SORA-
COM cloud storage platform (Fig.4.2). We can collect sensing data from SORACOM
by using SORACOM Harvest service [106]. The gateway encodes the LoRaWAN
frame in base 64 and encapsulates it in a Java Script Object Notation (JSON) struc-
ture with other parameters such as the timestamp, specific sensor data, hardware
information, gateway information, received signal strength indicator (RSSI) value
and signal to noise ratio (SNR) value. Afterwards, we stored sensor data in the
Amazon AWS cloud server.

We collected accelerometer sensor data in the lab environment and environmen-
tal sensor data (temperature, humidity, light and PIR) in a nursing care center. Based
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FIGURE 4.2: Flowchart of LoRaWAN cloud server data communica-
tion [106].

on our study, we introduced LoRaWAN based sensor for human activity recognition
for the first time [64]. No work has been done on activity recognition by using Lo-
RaWAN Sensor. Our experimental result shows promising prospect for LoRaWAN
sensor for improving healthcare monitoring service. Based on our findings in the
lab experiment, we want to evaluate LoRaWAN sensor data communication per-
formance in a real nursing care field. In the lab study, it has been showed that Lo-
RaWAN sensor data sending ability is much more depending on number of connect-
ing node at the same time.

4.2.3 Indoor Experiment Setup

We collected every second accelerometer sensor data from LoRaWAN sensors in the
lab environment3. Afterwards, we introduce the setup environment of LoRaWAN
sensors in the care-giving facility center in Japan. The facility is a 6-floor building,
the first-floor part is the parking lot and the entrance, the second-floor part is the
administration office. There are 65 private rooms on the 2nd to 5th floors and res-
idents live. On each floor there is a shared space in the dining room, dining halls,
station, waste disposal room, waste laundry room, and there are bathrooms on the
2nd and 4th floors. Figure 4.3 shows a partial view of private rooms and public
space in the nursing care center with LoRaWAN setup. We setup 42 LoRaWAN sen-
sors in rooms and public areas. We sense temperature sensor data, light sensor data,
PIR sensor data and humidity sensor data in every 3-minute interval from the Lo-
RaWAN sensors. Figure 3 shows the setup image in the facility center. In our setup,

3This Section is reproduced from the article T. Hossain, Y. Doi, T. Tazin, M.A.R. Ahad, and S. Inoue„
"Study of LoRaWAN Technology for Activity Recognition", Workshop on Human Activity Sensing Corpus
and Applications (HASCA), ACM Int’l Conf. Pervasive and Ubiquitous Computing (Ubicomp’18),
2018. with permission of the editor
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FIGURE 4.3: LoRaWAN setup in the facility center Japan.

our LoRaWAN gateway was in 4th floor and we covered multiple floors LoRaWAN
setup in different places through that single gateway.

4.3 Data Analysis and Experimental Results

4.3.1 Proposed Framework for Human Activity Recognition with LoRaWAN

In this sub-section, we introduce the design of the LoRaWAN sensor data commu-
nication for continuous activity sensing and recognition by using LoRaWAN ac-
celerometer sensor data. Figure 4.1 shows the core parts of LoRaWAN sensors in
our experiment. First, we have to integrate three integrated parts of LoRaWAN de-
vices. We used Arduino Uno, for 3.3-volt power source which supplies power to
LoRaWAN device. By using Arduino Lucky Shield, we can integrate accelerome-
ter and many other sensors with LoRaWAN. Figure 4.2 shows the data collection
process from LoRaWAN sensors, through LoRaWAN Gateway. After preparation
of the sensor setup, we prepare a program for continuous sensing by using LoRa
sensors. We write the program among LoRaWAN sensors by using Arduino. We
collected every second accelerometer sensor data from LoRaWAN sensors and send
those data to SORACOM cloud storage platform (Fig. 4.2). We can collect sensing
data from SORACOM by using SORACOM Harvest service. After specific label data
collection, we analyze those data by using supervised machine learning approach.
In this approach, we collect data from sensors. We segment sensor data for test-
ing and training. Data can be extracted from sensors like an accelerometer. We use
windowing approach for feature calculation.

For feature value calculation, we use statistical features - mean, variance and
magnitude of data. By the mean value calculation, we summarize the data attributes;
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while variance can be used in identifying sharp details of time series data. For clas-
sification techniques, K-Nearest-Neighbours (KNN) and Linear Discriminant Anal-
ysis (LDA) have been exploited because they are well known supervised machine
learning approaches.

For the activity recognition experiment, we collect raw accelerometer data with
labels. The measurement time of the segmented data is 8 second. In this experi-
ment, we consider four activity classes: stay, stand, walk and run. For every activity,
data instances are collected for analysis. Accelerometer data is stored as a simple
comma-separated values format with time stamp and x, y, z-axis acceleration data
in the cloud server. We aggregate the time series data into different action labels
that summarize the user activity over a time interval. After we collected specific
label data for activity recognition, we analyze those data by using supervised ma-
chine learning approach. We segment sensor data for testing and training. After, we
train data to induce a predictive model for activity recognition. We considered cross-
validation approach while computing the feature vectors. Among the collected data,
80% data we used during training and 20% isolated data we keep for testing.

We exploited machine learning approaches to build a model and train the dataset
by calculating feature values with a particular time stamp data. For feature calcula-
tion, we use x, y, z-axis accelerometer sensor data and magnitude. By using a win-
dowing approach, we calculate the features for 80% overlapping data. For feature
value calculation, we use statistical features - mean, variance and magnitude of data.
By the mean value calculation, we summarize the data attributes; while variance can
be used in identifying sharp details of time series data. For classification techniques,
we explore the Linear Discriminant Analysis (LDA), Random Forest (RnF) and K-
Nearest Neighbor (KNN). Recognition accuracy is higher by using KNN compare to
other algorithm (Fig. 4.4). We achieve recognition accuracy 94.44% by LDA, 84.72%
by Random Forest and 98.61% by KNN. Then we impute data loss in our dataset
to find out the relation of data loss and accuracy. To evaluate packet loss/missing
data environment recognition performance, we simulate missing data environment
in our dataset.

We find that the overall recognition performance decreases when packet loss in-
creases. In (Fig. 4.4), we observe that recognition performance is higher by using
KNN (98.6%), when there is no packet loss. Recognition performance decreases with
5%, 30%, 50% and 80% packet loss situation gradually. In a simulated environment,
we checked the activity recognition performance with 5%, 30%, 50% and 80% data
loss environment and have found recognition accuracy of 81.94% LDA, 80.55% RnF
and 91.66% by KNN while 5% data are lost (Fig. 4.5). In our simulation environment,
we use random packet loss. Missing at random (MAR) is practically realistic in real
environment. However, it is a big challenge of LoRaWAN sensors, especially when
many sensors are active to transfer data to server at a time, some of them become
idle.
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FIGURE 4.4: Activity Recognition Accuracy.

FIGURE 4.5: Activity Recognition performance with different per-
centage of data loss status.
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FIGURE 4.6: Sensor data (a) receive; and (b) loss status.

4.3.2 Experimental Result in Indoor Environment

We introduce the setup environment of LoRaWAN sensors in the care-giving facil-
ity center in Japan. We setup 42 LoRaWAN sensors in rooms and public areas. We
sense environmental data in every 1-minute from the LoRaWAN sensors. In figure.
4.3 it shows the setup image in the facility center. We integrate 3 parts of LoRaWAN
device. We use Arduino Uno (for 3.3-volt power source to power the LoRaWAN de-
vice), Arduino Lucky Shield and LoRaWAN. Using a gateway, data communication
is done from end devices to the cloud server. After preparation of the sensor setup,
we prepare a program for continuous sensing by using LoRaWAN sensors. We can
collect sensing data by using SORACOM Harvest service. We analyze data from
cloud server.

From this data analyzing part, we find data receive and packet loss ratio from
24 LoRaWAN sensors for a day (Fig.4.6) . Out of the 42 sensors, 18 sensors become
idle during the data processing due to unknown reasons. We should get 1440 (1
day = 1x60x24 minute) data from 1 sensor due data collection in every 1-minute,
per day. We observe 5% data missing. Figure 4.7, represents 1-month data analysis
status from a sensor, where some sensors’ data-sending status become low due to
congestion of multiple sensors data at the same time. This issue can be explored in
future.
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FIGURE 4.7: One-month data analysis from one LoRaWAN sensor.

4.4 Summary

We are exploring this work for scalability analysis of LPWAN technology for real
sensing environment where data loss is a vital issue for healthcare monitoring sys-
tem. We explore the activity recognition by using LoRaWAN sensors. We evaluate
the recognition accuracy in data loss environment. From the indoor experiment, we
evaluate data loss pattern for 1-day. We observe that during 1-minute interval sens-
ing time, 5% data loss happens by the sensors with single gateway. To improve
activity recognition, we need to add smarter features for more classes. In future, by
adding second gateway, we will try to increase the number of nodes. It can increase
the number of packet receive ratio as well as improve activity recognition perfor-
mance with less data loss environment.
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Chapter 5

Integrating Activity Recognition
and Nursing Care Records

5.1 Introduction

In an aging society, the number of nursing care facilities increase, and there is an in-
creased demand for caregiver human resources. As well, it is important to improve
the efficiency of nursing care services using information technology.In the field of
ubiquitous computing, researches on human activity recognition technology using
mobile sensors such as smartphones have been conducted [29]. If this technology is
applied to recognition of nursing care activities, nursing care work and records can
be created automatically, improving the efficiency of such works. Also, by visualiz-
ing the record and looking back, it can also be used as a material for care improve-
ment.

In this work, we introduce a system to integrate activity recognition into nurs-
ing care record system. The system uses smartphones to create nurse work and care
records and cloud service to collect sensor data for activity recognition. We deployed
the system to a nursing care facility for 4 months, where they completely switched
from paper records to just using the system in the latter 2 months. The staff, includ-
ing staffs not familiar with smartphones before, has provided 38,076 activity labels,
2,834 hours of sensor data, and 46,803 care details. These were used as their official
care records, without losing the efficiency of their duty. Instead, they improved the
amount and speed of recording.

This work also summarizes the analysis of the collected data. We review the de-
pendency of activities to staff users, target residents, and days. We observed that the
activities are user and target dependent while not day dependent. We also observed
that the care details have a lot of information linked with activity records.
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5.2 Requirements of Nursing Care Record Systems

4In nursing care facilities, care records must be written for every patient everyday. A
care record states the type of care done (activity), and its care details such as amount
of food given or vital information. Nursing care records are used for care coordi-
nation, (i.e. what has already been done to the patient and what needs to be done
next?), workload planning (i.e. is the workload being equally distributed?), care
quality evaluation (are all care activities being done for all patients?), and more un-
avoidably, for insurance invoices. Documentation accounts for almost one third of
nurses workload [60]. Reducing the time spent in writing records can improve nurs-
ing home efficiency by allowing more time for patient care. It is said that technology
can reduce costs and improve efficiency in health care [35]. For example, digital
records can reduce documentation time.

However, introducing IT systems to nursing care facilities is not an easy task.
Firstly, unlike hospital records, there is no standard for nursing home care records.
Therefore, each facility records in different format and the system needs to adapt to
different needs and data requirements. Therefore, the data model needs to be flexible
and customizable at each facility. Secondly, the caregivers and nurses of nursing care
facilities are not familiar with IT, and a non-negligible number of the staff are senior
and have not use smartphones. Therefore, the system needs to be user-friendly for
such workers if we want to ask them to use the system. Thirdly, most of nursing
care facilities are not connected to the internet, or only the office is connected but
they do not cover whole area from room to room, because few elder residents use
the internet. Moreover, introducing many wearable or environmental sensors is not
realistic from the cost perspective or privacy concerns of residents. Only the use of
smartphones or wearable sensors on the caregivers are often allowed. We need easy
to install and offline-available system. As such, introducing IT system including
activity recognition functionality into nursing care facilities has various challenges.

5.2.1 Label Collection for Activity Recognition

Activity recognition, the automatic identification of what a user is doing based on
sensor data, is an active field of research in the ubiquitous computing community [29,
100, 102, 154, 152], but there are few examples of real world activity recognition. Ex-
isting studies on real life complex activities, mainly focus on home activities [92, 147,
96]. Examples of using activity recognition at hospitals or nursing homes [115, 15,
74] are limited. Sensors in nursing care facilities have been used for care coordina-
tion and planning [128, 142] or are focused on patient sensing [129].

For activity recognition systems aimed at physical activities recognition such as
walking or running, it is possible to create general models that are used as a starting

4This Section is reproduced from the article Sozo Inoue, Paula Lago, Tahera Hossain, Tittaya Mairit-
tha, Nattaya Mairittha, "Integrating Activity Recognition and Nursing Care Records: The System, Deploy-
ment, and a Verification Study", Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiqui-
tous Technologies (IMWUT), Vol. 3, No. 86, 2019-09-09 with permission of the editor
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model in the application. Such models can be trained with public data. However, in
the scenario of complex activities, like Assist excretion or Vital checking, public
data is not available. Moreover, the activity classes are different depending on the
users and the business where the application is installed. Therefore, labels must be
collected from on-site field.

However, collecting accurate labels (annotation) is crucially challenging. A first
method is to have the data labeled by third party observers. However, this can be
costly and time consuming[34, 74] and it requires the installation of cameras or ad-
ditional devices [131, 26] if not done in situ. The second method is self-labeling.
This can be done by creating diaries at the end of the day [151] or by asking the
user to create reports repeatedly throughout the day (Ecological Momentary Assess-
ment) [84, 145]. However, both methods have the risk of missing some of the activity
labels [33]. This can often miss the less regular and less frequent activities.

For this problem, we introduce an idea of integrating nursing care record system
and activity label collection. Nurse can record the activity labels by themselves as
well as inputting care records. Thanks to the integration, activity annotations for
each nurse can be obtained from the record system. Furthermore, by integrating
activity recognition and nursing care record system, we can also enhance the usage
of activity recognition, such as:

• recognizing the activities automatically from the sensors and suggesting staff to
record them automatically, or,

• by using the sequence of activities day by day, we can also build a prediction
model to predict the near future, such as tomorrow’s care activities for residents,
by which staff can prepare for unexpected events of the residents.

5.2.2 Integration Challenge of Nursing Care Record System and Activity
Label Collection

While integrating nursing care records and activity label collection is attractive, it
introduces some challenges. The first challenge is the accuracy of timestamps. To
be accepted by users, an activity recognition system should not be obtrusive [100].
However, in general, care records do not require the timestamps to be precise, such
as seconds granularity, but activity labels do. The staff may input the activity labels
in a different time than the actual activity, and input them in advance or afterwards.
If it happens, challenges of doing activity recognition with inaccurate timestamps
as addressed in [148] arise. We may need some techniques to modify or extend the
label time durations.

The second challenge is the overlapping between activity labels. To adapt flexible
usage of the system, the system should record multiple activities at the same time,
because staff may do different type of activities at a time, or the same type of activity
to different target residents depending on their business or the type of activities.
Moreover, if we modify or extend the label durations mentioned above, the overlap
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FIGURE 5.1: Care record / activity recognition system configuration.

may happen more frequently. We should be aware of such overlaps, and the activity
recognition should handle such overlaps.

The third challenge is the sample imbalances among activity classes[74]. Most
of the activities are relatively short compared with the duty time of a day. It makes
the samples imbalance among activity classes. Many machine learning algorithms,
such as Support Vector Machine, are affected by class imbalances. Moreover, some
accuracy metrics such as precision output lower values when imbalance exists. We
should use a valid approach for machine learning using imbalanced classes.

Overall, integrating nursing care record system and activity label collection has
various challenges, such as flexible data model, user-friendliness for non-IT-familiar
users, usage in poor IT infrastructure, self-label collection without much burden,
accurate timestamps of labels, overlaps between activities, and class imbalances. We
need intensive effort for such application-oriented activity recognition research.

5.2.3 Data Model

Our data model is flexible based on the different requirements of each nursing care
facility. Therefore, we designed the data model so that one can retrieve a template
form when she/he selects a type of activity, and each activity can be targeted to
either of single or multiple residents. The following are the main entities of the data
model:

• Activity class: These are predefined but customizable, activity types, which
can be used for the classes for activity recognition. Moreover, each activity
class is associated with a template for record details introduced in the follow-
ing, thereby a staff can get forms for input from an activity class.

• Activity: It resemblances activity instances for each staff. They can be also
used as labels for activity recognition after being associated with sensor data.
Each activity has information of the subject staff, an activity class, start and
finish times, and one or more target residents.
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FIGURE 5.2: FonLog: Care record / activity label input application
screen.

• Care detail: Each activity can have multiple care details. Care details record
has various information for target residents such as vital check values and care
records. A care detail can be either single choice, multiple choice, integer, num-
ber, short text, and long text.

Through these steps, the recorded information can have flexible structure, such
that different activities have different input forms, and one activity has multiple tar-
gets. This data structure is shared by the smartphone application and cloud server.
The developed Android smartphone application called FonLog, has a function that
when a staff inputs any care record during work, these are relayed to the server on
the cloud together with the sensor data in the smartphone (Figure 5.2).

5.3 Deployment in a care facility

Between March and June 2018, we conducted a verification experiment on nursing
care records and activity recognition with prior consent of staff and residents at a
nursing care facility.

In the experiment, we verify the usability, feasibility, and efficiency of the system.
Moreover, we aimed at constructing a dataset for activity recognition described in
the following section.

Nursing care records are usually recorded by handwriting at the target facility,
but in the experiment, in the first two months in March and April, this system is also
used in parallel in the usual way to keep handwritten recording, and in the latter
half of May and June, the stability of this system also improved, so we asked the
record of this system to stop recording the handwritten record.

The facility is a 6 floor building the first floor part is the parking lot and the
entrance, the second floor part is the administration office. There are 65 private
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rooms on the 2nd to 5th floors and residents live. On each floor there is a shared
space in the dining room, dining halls, station, waste disposal room, waste laundry
room, and there are bathrooms on the 2nd and 4th floors. We got the agreement of
27 people including 23 caregivers and 4 nurses and conducted experiments.

During the experiment, the staff carried the smartphone during the working
hours and had them carried in an arbitrary position such as a pocket. Also, we
asked them to record activity labels and care details using nursing care records.

5.3.1 Equipment

We used smartphones Priori 3 LTE from Plus One Marketing. As there were no
network facilities such as wireless LAN in the facility, we set up mobile data routers
and mobile routers that can be Wi-Fi base stations on each floor. Although it was
not possible to cover all the areas, sensor data is stored on the smartphone even if
it is not connected to the network, so that no data is lost by this. However, in order
to increase the number of simultaneous connections with the smartphone and the
bandwidth at the vicinity of the second floor where the smartphone is put at the end
of the day, a dedicated wireless router was installed under the mobile router.

5.3.2 Activity Classes

We predefined 28 activity classes after discussions with the staffs and manual doc-
uments such as nursing care facilities care records. The activity labels collected are
shown in Table 5.1.

TABLE 5.1: Activity classes

Activities of direct care
1: Vital, 2: Meal / medication, 3: Oral care, 4: Excretion,

5: Bathing / wiping, 6: Treatment, 7: Morning gathering /
exercises, 8: Rehabilitation / recreation, 9: Morning care,
10: Daytime user response, 11: Night care, 12: Nighttime user
response, 13: Family / guest response, 14: Outing response,
19: Get up assistance, 20: Change dressing assistance, 21:
Washing assistance, 27: Emergency response such as accident
Activities of residence cleaning
15: Linen exchange, 16: Cleaning,23: Preparation and

checking of goods, 24: Organization of medications
Documentation/Communication activities
17: Handwriting recording, 18: Delegating / meeting, 22:

Doctor visit correspondence, 25: Family / doctor contact
Other activities
26: Break, 28: Special remarks / notes

From the table, we can see that there are categories of direct care activities such as
Vital (checking), Excretion, and Bathing/wiping, maintenance such as Preparation
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and checking of goods and Organization of medications, communication between
others such as Family/guest response, Delegating/meeting, and Doctor visit

correspondence.
As mentioned in Section 5.2.3, care detail types are defined for each activity

classes. Some care details types are numeric such as food intake, water intake,
some are single choice such as the places of care support on the body, and some
are text such as special remarks. We also found that there are several common care
detail types throughout different activity classes such as excretion assistance in
activities of Night care and Excretion, and Special remarks / notes were de-
fined in most of the activity classes as well as defined as an independent activity
class. These are defined by the staff manager according to their usage scenario, and
such mixture implies that some activities have similar motions inside, and some may
done in parallel by one caregiver, which leads to challenges for activity recognition.

In the next section, we dig in to the detail of the data we obtained. In our exten-
sive dataset, we have many variability and these are realistic dataset. Therefore, to
extract important relationship and information from these data, we need to decipher
intra-connectivity among various activities based on caregivers/users point of view,
residents point of view, date and time wise activity performance as well as time sav-
ings by the care record system. In the following section, we are going to give a brief
overview of this dataset on this aspect.

5.4 Data Analysis and Results

As a result of the experiment, from the latter 2 month when the system was fully
used, we collected 38,076 activity labels, 46,803 record details, and 2,834 hours of
sensor data.

In this section, we assess the data obtained during the experience. First, we
overview the activity labels and care details, and see the varieties and dependency
of activities and care details.

In the following sub-sections, we overview the data from the view points of –

• whether the data are dependent on subject (e.g., staff or target resident), or
date, and

• whether the obtained data are meaningful and informative for activity under-
standing

for both of activities and care details.

5.4.1 Activities

In this subsection, we explore activity classes by depicting several illustrations. In
Figure 5.3, there are records of activity classes where the abscissa presents the activ-
ity classes and the ordinate shows the records of each class by the caregivers/users.
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FIGURE 5.3: Number of activities for each activity class recorded by
caregivers/users.

We can notice that some classes have higher number of records than other classes.
Among them, Excretion, Nighttime user response, and Daytime user response

classes have much higher records compare to other classes. One of the main reasons
for these discrepancies among classes is that some classes are required on-demand
basis, hence, the number of records of those classes are relatively less in number.
For example, Washing assistance, Linen exchange, etc. have very few activity in-
stances. Other activities are mostly done by regular routine. The activity records are
also dependent on different caregivers’ input. Therefore, we can understand that
some caregivers have the higher number of activity-records compared to others.

In Figure 5.4, we analyze the activity records by different caregivers. Here, we
decipher to realize whether these records are dependent on caregivers’ input. In
this figure, the abscissa has the ID of each caregiver. Therefore, we can under-
stand that caregiver8 has the highest number of activity-records, e.g., Nighttime
user response has the higher records than Excretion and so on. It implies that
these two activities are more dominant than most of the other activities, as recorded
by the caregivers. We also need to evaluate the inter-relationships among various
activities, so that the activities and their patterns can be well-understood.

On the other hand, Figure 5.5 demonstrates the activity records on the residents,
by the caregivers. In this figure, the horizontal axis shows the ID for the residents,
and the vertical axis depicts the number of records. We can notice that among the res-
idents, four of them have significantly large number of records. It has been observed
that data records are mostly varied from one resident to another. Some residents has
more activity records, whether, others have few number of activities. It implies that
these four residents performed more activities than others. Apart from this finding,
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FIGURE 5.4: Activity records by caregivers/users. In the abscissa,the
numbers are the ID of caregivers. For example, Caregiver8 has

recorded the highest number of activities.

it is also evident that Excretion and Food and medication are two most widely ex-
plored activities for the residents. From the activity records by caregivers (as shown
in Figure 5.3), we can get the direct relationship of higher instances of activities, e.g.,
Excretion.

To demonstrate any temporal relationship on various activities, we produce Fig-
ure 5.6. We can observe various activities in different dates. From Figure 5.6, we can
say that this dataset is not date-dependent. Hence, there is no temporal relationship
among activities. In another note, we find differences in terms of day-time activities
and night-time activities. These day/night activities are varied in different periods
by different patients. From these analyses, we can estimate the activity level of a res-
ident and his/her corresponding health status. If someone has more night-activities,
it implies that s/he has more health problems. It requires more staff-calls, therefore,
more records on a day by a single resident. These findings can be crucial elements
for healthcare study related to activity recognition.

5.4.2 Care Details

For each activity classes, different types of care records are recorded. Under these
care records, there are different values for each care record.

In Figure 5.7, we have summarized some specific care records. We find that
some care records are associated with multiple activity classes. For example, the
Excretion assistance care records are associated with Night care and Excretion

classes. Sometimes, the care record values are recorded as assistance types, or as
amount of value, or location of body, etc. The care record values are dependent
on care record types. In Figure 5.7, we have sorted a few kind of care records
and their associated values. For example, Excretion activity class has care record
type Excretion assistance, Excretion method, Voided volume, and Defecation
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excretion Food and medication Bathing-it cleaned Go out support Transference Meeting
Family and visitors correspondence treatment Dressing assistance Handwritten record
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FIGURE 5.5: Activity records on the residents by the caregivers. Here,
Excretion and Food and medication activities are more prevalent.
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FIGURE 5.6: Demonstration of activity records in different dates.

amount. Under Excretion assistance, values are recorded by the following differ-
ent values: all assistance, some assistance, and voice over induction. Similarly, for
Voided volume care record, values are stored as – medium weight, a large amount,
no selection, and small quantity. When the care record is Food intake, then values
are amount of food intake by a resident.

From these care records and values, we can estimate several interesting informa-
tion on the activity performances of the residents. In this line, in Figure 5.8, we have
counted a specific care record of some residents. From this analysis, we can observe
that residents with IDs – 36,35,92,31 and 29 require more Excretion assistance

support. This demonstrates a clear connectivity between the Figure 5.5 and 5.8. In
both images, resident with IDs: 29, 31, 35, 36, and 92 have more records and activi-
ties. In the similar fashion, we can also analyze a resident’s meal assistance, bathing
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FIGURE 5.7: Record details with different values
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FIGURE 5.8: Measurement of Excretion assistance care records for
residents. The abscissa represents some residents with their IDs.

assistance, taking medicine assistance and other assistance. These cues are detri-
mental to predict resident’s other activities associated in regular basis. From this
care record data, we can find out essential support requirements and their other ac-
tivity performance in any nursing care facility.

These findings can be essential elements for activity recognition, having many
intra-class relationships and sub-divisions among activities. We need to decipher
more intra-connectivity among various activities.
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5.5 Summary

From this data, we revealed the varieties, nature and dependency of activities and
care details which can be a measure of any healthcare outcome. We analyze intra-
class relationship of real life nursing care activity data which has important infor-
mation to revealed the nature of real life data. We investigated the dependency of
activities to staff users, target residents, and days. Using the obtained data, we re-
vealed the nature of the data, including dependency of activities to several factors,
and the nature of timestamps of self-labeling. We investigated "staff activity" for
support service requirements as well as "elderly people activity" from this data. This
work also help to examined elderly people health status from the data and types of
activities recorded by staff.
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Chapter 6

Exploring Human Activities Using
eSense Earables

6.1 Introduction

In the healthcare monitoring center, it is important to detect the behavioral activi-
ties of elderly people related to head and mouth5. It is quite difficult to detect some
kind of mouth-related activities like speaking, eating, laughing, etc. through regular
wearable devices. These activities have an impact to measure the well-being of a
person and socialization ability. In assisted living and healthcare centers, caregivers
also need to record and manage activities of elderly people like the amount of food
intake, swallowing ability, etc. These are measurement criteria for good health for
elderly people. Taking this into consideration, in this paper we mainly focus on
detecting head- and mouth-related activities with some other regular physical activ-
ities using eSense device. It can be used for monitoring and analyzing personal scale
activities [86, 66]. eSense is a new device from Nokia Bell Lab, UK [86]. We acknowl-
edge them for providing the devices to explore in various applications and methods.
In this paper, hence, we explored as in the paper. eSense is a very light-weight, wire-
less device. It performs all required functionalities of earbud like listening to music,
receiving phone calls, etc. Besides it contains accelerometer and gyroscope sensors
which enables it to track head and mouth related activities drinking, eating, shak-
ing, speaking, etc. These types of activities cannot be detected using smartphone
sensors. eSense device can detect minute head and neck movements that have po-
tential applications in clinical medicine related to head and neck injury. Besides,
with the help of conversational activity monitoring capabilities of this device, so-
cial interactions can be detected. As a result, it will help to treat different types of
mental health conditions. In a nutshell, eSense has potential usability in the areas of
computational social science, healthcare, and well-being.

eSense is a multi-modal device. It has a 6-axis inertial measurement unit (IMU)
with Bluetooth unit. Using eSense devices, it is possible to collect real-time data

5This Section is reproduced from the article Tahera Hossain, Md Shafiqul Islam, Md Atiqur Rah-
man Ahad, Sozo Inoue, "Human Activity Recognition using Earable Device", Proceedings of the ACM
International Conference. Pervasive and Ubiquitous Computing (Ubicomp’19), September 2019.
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– audio, motion, and proximity. From eSense we can collect three-axis accelerom-
eter and gyroscope data to detect various human activities. It is also possible to
collect audio data from eSense which can be impactful to distinguish some similar
pattern of mouth movement. There are various types of popular machine learning
methods for sensor data exploration. Feature selection has a significant impact on
several machine learning approaches for measuring accuracy [155]. For deep learn-
ing methods like Convolutional Neural Network (CNN), manual feature extraction
is not required [85]. CNN can learn to identify complex patterns. In this paper, our
goal is to detect head- and mouth-related human activities with other regular activ-
ity through eSense. We explored both traditional machine learning approaches and
CNN to classify selected activities.

For detecting human activities different types of sensor data (accelerometer, gy-
roscope, etc.) are collected from the smartphone, smartwatch, Inertial Measurement
Unit (IMU), etc. These devices are placed in different body parts i.e., wrist, leg, waist
for detecting activities like walking, sitting, running, etc. From these devices head
and mouth-related activities i.e., eating, nodding, drinking, shaking, etc. cannot be
detected properly. eSense helps to detect such activities. It is an earbud that contains
an accelerometer, gyroscope sensors. From these sensor data such head and mouth-
related activities can be detected. So initially we have taken the challenge to detect
some of the useful gesture types like speaking, head shaking, nodding, eating, walk-
ing, etc. Besides we have developed our own Android application "eSenseLog" to
connect the smartphone to eSense device to fetch accelerometer, gyroscope, and au-
dio data. We also presented a relative comparison of various models’ performance
for detecting head and mouth-related activities from the only accelerometer and
both accelerometer, gyroscope data. There are other activities like measuring VO2
max, monitoring heart rate, chewing, swallowing, etc. These activities are important
in nursing care. In the future, we will detect these activities. Our current work will
play a vital role in detecting such activities.

The objectives of this paper are as follows: collecting accelerometer and gyro-
scope data from eSense device through Bluetooth and mobile application; detecting
head- and mouth-related human activities alongside some other regular activities;
using traditional machine learning and deep learning classifiers to detect activities
and compare performances6. We compare the result performance among machine
learning technique and deep learning technique as well as we evaluate the result
while having only accelerometer sensor data and having accelerometer and gyro-
scope sensor data together. Having both sensors’ data demonstrate significantly
higher recognition results (e.g., for Linear Discriminant Analysis (LDA): 4%, for
Support Vector Machine (SVM): 6%, for Random Forest (RnF): 3.5%, and for Con-
volutional Neural Network (CNN): 3%).

6This Section is reproduced from the article Md Shafiqul Islam, Tahera Hossain, Md Atiqur Rahman
Ahad and Sozo Inoue, "Exploring Human Activities Using eSense Earable Device", Activity and Behavior
Computing, Smart Innovation, Systems and Technologies, Vol. 204, Springer, 2021.
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6.2 Proposed Framework and System

The eSense device can be used to track head- and mouth-related activities like nod-
ding, eating, swallowing, speaking, etc. It can be used for detecting other activities
like walking, staying, etc. There are accelerometer and gyroscope sensors in eSense
device. So these sensors data can be used to recognize human activities. Besides the
audio data from eSense device can be used to track other activities like gossiping,
laughing, etc. After connecting the eSense device to a mobile device, sensor data can
be collected. The eSense device is regarded as a peripheral device and the mobile is
regarded as a host device after establishing the connection between the mobile and
the eSense device. Through an Android application, the sensor data and audio data
are collected. Our developed Android application continuously maintains a connec-
tion with eSense device and helps to collect data from the device. In this section, we
present our developed Android application, system architecture, and framework.

FIGURE 6.1: Overview of eSense device [86]

In Fig. 6.1, an overview of eSense device is presented. Advanced Audio Distribu-
tion Profile (A2DP) is used in the firmware of eSense device. A2DP is used for mono
channel recording and high-definition audio streaming [86]. A thin middleware is
used in eSense to support application development in Android and iOS platforms.
The Node.js middleware allows developers to connect eSense devices with desktop
applications, configure and ingest sensory data in real-time.

The size of both eSense device and standard wireless earbud is equal and it con-
tains a battery, electronics, etc. The eSense device contains a custom-designed PCB
(Printed Circuit Board) whose size is 15 x 15 x 3 mm [86]. The eSense device has
System-on-Chip (SoC), an Inertial Measurement Unit (IMU). The IMU contains a
three-axis gyroscope and accelerometer. It also contains a two-state button; a cir-
cular LED, a digital motion processor, and battery-charging circuitry. The eSense
device is powered by a 40-mAh LiPo battery. The weight is each earbud is 20g and
the size is 18 x 20 x 20 mm. There is no flash memory in eSense device.
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The right earbud does not have a Bluetooth Low Energy (BLE) interface. On the
other hand, the left earbud has a BLE interface that can be used to configure various
aspects of the IMU sensor and collect accelerometer and gyroscope data. By default,
It transmits periodic BLE advertisement packets. The interval is between 625ms and
750ms. The advertisement packets contain the Complete List of 16-bit Service Class
UUIDs (Universally Unique Identifier). All the standard UUIDs are used in eSense
[8] device.

eSense is a Bluetooth Low Energy (BLE) device. It is based on a specification
called “General ATTribute profile” (GATT). The specifications to send and receive
attributes between a server and a client are defined by GATT. Attributes are short
pieces of data. In this case, eSense is the client and the connected host device (mobile)
is the server. The Attribute Protocol (ATT) is used as the base to build GATT on top
of ATT. GATT consists of “characteristics”, “services”, “profiles”, “descriptors”. A
profile consists of one or more services.

FIGURE 6.2: GATT diagram.

In Fig. 6.2, the GATT diagram is explained. Each service consists of one or more
characteristics that encapsulate data. In eSense, there are such services that provide
accelerometer, gyroscope data. A characteristic has a single value and 0-n descrip-
tors. The descriptors describe the characteristic’s value. For example, a descrip-
tor might specify a unit of measure which is specific to the characteristic’s value, a
human- readable description, etc. It is similar to a class. When the connection gets
established between a Bluetooth Low Energy (BLE) device to a host device like a
smartphone, then the Generic Attribute Profile (GATT) is used. This general specifi-
cation is used for sending and receiving ‘attributes’ over a BLE link. Attributes are
short pieces of information.

In Fig. 6.3, an overall system architecture is explained. It is for the BLE de-
vice and a host device. The eSense has accelerometer and gyroscope sensors. Each
sensor (accelerometer or gyroscope) sends some characteristic data. This data con-
tains a single value and 0-n descriptors. The descriptor describes the characteristic’s



Chapter 6. Exploring Human Activities Using eSense Earables 61

FIGURE 6.3: A general system architecture.

value. Each GATT profile contains one or more services. The service has some char-
acteristics. A Universally Unique Identifier (UUID) is used to identify each attribute
uniquely. The UUID has a string ID which size is 128-bit.

The host device (for example, a mobile phone) scans for nearby devices to con-
nect. There are some callback methods, which are used in the application. These
callback methods are used in different scenarios. After establishing the connection
between mobile and eSense device, onConnectionStateChanged() method is called.
The onCharacteristicChanged() callback method is responsible when data is sent from
the eSense device to a mobile device. The whole process runs in service to make
it runnable in the background. Inside the application, different types of callback
methods and normal methods are used for establishing a connection, sending and
receiving data.

We have developed an Android application named ‘eSenseLog’ for collecting
audio and sensor data from the eSense device (6.4 demonstrates a screenshot of it).
There are several features of this application. A user can connect eSense device with
mobile phone by clicking the ’Connect’ button as shown at the top-left corner of Fig.
6.4. If the device gets connected, its name and connected status will be shown.

In Fig. 6.4, the overview of our developed eSenseLog application is presented.
After connecting the device, if someone wants to collect any activity data, he needs
to click an activity button from the list of activity buttons. There is a toggle ‘start’ and
‘stop’ button icon. After selecting the activity, if a user clicks ‘start’ toggle button,
the data collection will be started. The elapsed time will be shown under the toggle
button. If the user clicks the toggle button again, data collection will be stopped and
saved in the mobile storage. The sensor data will be saved as ‘*.csv’ format and the
audio data will be saved as ‘*.3gpp’ format. In the app, there is an activity history
list from where the user can easily track the collected activities and their durations.

In Fig. 6.5 our proposed framework is shown. The audio and sensor data from
the accelerometer and gyroscope will be collected simultaneously. These data are
saved in the mobile phone’s internal storage. However, if there is not enough space
and if any external storage (e.g., a microSD card) is available then the data will be
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FIGURE 6.4: Overview of eSenseLog Android application.

saved in external storage. When the data collection is finished, a user can fetch the
data from the mobile device and then apply any machine learning algorithm on the
collected data for recognizing activities.

6.3 Experimental Result and Analysis

We performed experiments for seven activities. Four activities are related to head
and mouth (namely, eating, speaking, headshaking, and head nodding). Three reg-
ular activities (i.e., walk, stay, and speaking while walking). These activities are

FIGURE 6.5: The proposed framework for this work.
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detected from eSense device’s accelerometer and gyroscope data. Each activity was
performed for 3 minutes. One-person data collection time was 21 minutes for all
activities in total. We have collected these activities data from 6 persons (having age
range from 25 to 35 years, 4 males and 2 females). There are around 105881 records
for these seven activities. The sampling rate was 50Hz while the data was collected
from 3-axial accelerometer and gyroscope sensors of the eSense device.

FIGURE 6.6: Bar plot for Activities in the dataset

In Fig. 6.6, the activity count from the collected data is represented. We collected
data from multiple persons to split train and test data. Based on different users,
we separated training and test data with different trials. These are not continuous
classes. K-fold cross-validation technique was used to separate train and test data.
We split the training dataset into k-folds based on the completely separate person
data for training and a different person for testing. During the training procedure,
we use first kth folds for model training and holdout another fold to use in testing.
We use this k-fold splitting technique because in our dataset there are 6 persons’
data and we want to isolate test and train data in different persons with different
trials. We have used all person’s data for training and testing. Normally training a
model needs lots of data. We have used 1 person out cross-validation. We did not
use only one person’s data for training and then testing on the rest of the person’s
data. Rather, we used 5 persons’ data for training and 1 person’s data for testing.

We did not use any kind of feature selection techniques. We have calculated the
magnitude value of raw accelerometer and gyroscope data for extracting features.
Some of the extracted time-domain statistical features are maximum value, mini-
mum value, mean, standard deviation, etc. We used a sliding window approach
with 50% overlap. We used several traditional machine-learning algorithms, i.e.,
Random Forest (RnF), Linear Discriminant Analysis (LDA), Support Vector Machine
(SVM) with radial basis function kernel, K-Nearest Neighbor (KNN). For the deep
learning model, we used 1D CNN. For 1D CNN model we did not ex- tract any fea-
tures as CNN automatically extract features. Among the four traditional machine-
learning methods, KNN achieved the highest accuracy of 92.43% when we used only
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accelerometer sensor data. On the other hand, SVM performs better while we used
both accelerometer and gyroscope sensor data together for evaluation.

FIGURE 6.7: Accuracies comparison obtained from accelerometer
sensor data and both accelerometer and gyroscope sensor data

In Fig. 6.7, the performance comparison among different classifiers is explained.
Afterward, we used 1D CNN model. CNN model achieved the highest accuracy
(93.76%) among all other classifiers, with the combined accelerometer and gyroscope
data. In the CNN model, 2 convolutional layers were used. Each convolutional layer
has 64 feature maps and the kernel size is 1x3. A max-pooling layer is used after the
second convolutional layer. The pool size of the max-pooling layer is 1x2. Then two
fully connected (dense) layers are used after the max-pooling layer. Finally, a soft-
max layer is employed. In this model, we used ReLu activation function and Adam
optimizer. These are very well-established methods for optimization and activation.
In this model, there is no need to extract hand-crafted features from the sensors’
data, because the CNN model can do it as per the model.

The comparison of accuracy from different classifiers by using accelerometer
sensor data, as well as, by using both accelerometer and gyroscope sensor data
are demonstrated in Fig. 7. On the other hand, with accelerometer-only data, the
achieved recognition results are 76.75% by LDA, 87.39% by SVM, 88.23% by RnF,
92.43% by KNN, and 90.55% by CNN. We can notice from these achieved results
in five classifiers that when we exploit both sensors’ data, the results are superior
to using accelerometer-only sensor data. Only one exception is the case with KNN.
Using KNN classifier, the results are slightly better with accelerometer-only data.
However, the other four cases, having both sensors’ data demonstrate significantly
higher recognition results (e.g., for LDA: 4%, for SVM: 6%, for RnF: 3.5%, and for
CNN: 3%). Hence, we can conclude that both sensors are more suitable for better
recognition results in this case.

In Fig. 6.8, we observe that only head- and mouth-related activity perform better
results with the eSense. In this case, major miss-classification occurred among ‘Eat-
ing’ and ‘Speaking’ classes as these classes have closely similar patterns of muscle
movement of the mouth.
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FIGURE 6.8: Confusion matrix only head-mouth activities by RnF

FIGURE 6.9: Confusion matrix for SVM with regular activities

From Fig. 6.9, it is found that if regular activity classes (i.e., ‘Walk’, ‘Stay’ and
‘Speak with Walk’) are added with the previous four head- and mouth-related activ-
ity classes, then the performance of the classifiers drops. From the confusion matrix,
we noticed that the ’Speaking’ class is confused with ‘Eating’ class ‘Eating’ class is
mostly confused with ‘Stay’ class (Fig.6.9). Both ‘Eating’ and ‘Stay’ actions need less
movement and these activities can be performed simultaneously. So there is a good
chance of getting confused with each other for these activities. Besides, ’Eating’ and
’Speaking’ activities require the mouth’s movement. Therefore, these 2 activities
have similar patterns. Moreover, ‘Speaking’ activity data was recorded in the sit-
ting state (no movement) for this study. This is the main reason for the confusion
between activities. Sometimes, ‘Head shake’, ‘Nodding’ activities also get confused
with ‘Stay’ class. The reason is, these activities were also performed while sitting on
a chair (Fig. 6.10).
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FIGURE 6.10: Confusion matrix for CNN classifier with other regular
activities

From Fig.6.10 it is seen that the recognition results for the head and mouth related
activities are better than the regular activities (i.e., ‘Walk’, ‘Stay’ and ‘Speak with
Walk’).

6.4 Summary

Wearables sensors are used to recognize activities of daily life. Accelerometer and
gyroscope sensors are mostly used for this purpose. There are several types of be-
havioral activities (i.e., nodding, drinking, eating, shaking, etc.) which are related
to head and mouth. Detecting these activities accurately using only accelerometer
and gyroscope sensors data quite challenging. Also, the sensor position plays a vital
role to collect proper data for the head- and mouth-related behavioral activities. In
this regard, an earable device like ‘eSense’ can play a vital role to detect head- and
mouth-related activities. In this paper, we used several machine-learning methods to
evaluate the performance of detecting head- and mouth-related activities as well as
other regular activities from sensor data of eSense device. We compared the recogni-
tion performance of several classifiers using only accelerometer data and using both
accelerometer and gyroscope sensor data. We used both traditional and deep learn-
ing methods for classification. We used Random Forest, Support Vector Machine,
Linear Discriminant Analysis, K-Nearest Neighbor, and 1D Convolutional Neural
Network. Having both accelerometer and gyroscope data, Convolutional Neural
Network achieves the best accuracy (93.76%) among all classifiers, which is slightly
better than Support Vector Machine accuracy (93.34%) among many machine learn-
ing classifiers. Our results demonstrate that using both accelerometer and gyro-
scope significantly improves recognition performance. However, there exist some
misclassifications among different activities that require body movement and which
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don’t require any kind of body movement. Also, head- and mouth-related activi-
ties demonstrate slightly better results than normal activities. Therefore, using our
proposed framework, it will be easier for collecting head- and mouth-related activ-
ity data. Any machine-learning model can be applied to this data to detect head-
and mouth-related activities. It will create a new scope in research and applications
using earable device.
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Chapter 7

A Bayesian Approach for
Quantifying Data Scarcity when
Modeling Human Behavior via
Inverse Reinforcement Learning

7.1 Introduction

Computational behavioral models formalize complex human actions and contexts in
which the behaviour is located. Computational modeling methods [112] allow such
models to be explored by simulating situations in which individuals find themselves
and predicting the actions they take in those situations. This facilitates the under-
standing of complex human activities and their environments through domain ex-
perts and researchers.

Inverse Reinforcement Learning (IRL) [117] has emerged as a viable alternative
computational modeling approach for capturing, exploring, and predicting human
behaviors [19, 20, 167]. For modeling human behavior, IRL leverage previously col-
lected behavioral data to estimate reward function (e.g., preference that individuals
have for various situations and actions) that could have led to this behavior. The
reward function, rather than the policy, is the most succinct, robust, and transferable
definition of the task, since it quantifies how good or bad certain actions are [117].
As well as a list of weights describing how important each behavior is [164]. IRL
does probability of action given states based on the value of that action in that state
and what the value of being that state. And all value is actually about the future that
what more people can accomplish. In human behavior, what people are going to do
next is depend on what they can able to accumulate not based on what they have
done. That is the promising aspect of using IRL for modeling human behavior.

After having a promising computational model quality and amount of training
data is often the single most dominant factor that determines the performance of
a model. Although large quantities of high quality training data would almost al-
ways result in an accurate human behavior IRL model, it may be difficult to collect
behavior cases to estimate parameters of such models. Failure to collect adequate
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data (under collection) would eventually lead to high model parameter uncertainty.
More than required data (over collection) puts an unnecessary burden on the partic-
ipants and wastes scarce resources and time. Therefore, it is important for both the
conservation of resources and the accurate estimation of model parameters to have
a well-informed idea of how much data to collect.

We look for quantitatively approach to know the amount of data to collect by
using the concept of uncertainty quantification (UQ) [52]. The uncertainty of model
parameters and how the uncertainty varies with different dataset sizes could be cal-
culated by UQ. Increasing the number of data samples could reduces the uncertainty
of model parameters. To obtain an accurate estimation of behavior model parame-
ters, we present a UQ-based approach for estimating how much behavior data to
collect. We do this for a particular IRL algorithm, MaxCausalEnt [166], which has
been used to model human behaviors [19, 20] as a Markov Decision Process (MDP)
[125]. We address the issue of epistemic uncertainty (i.e., model parameter uncer-
tainty for lack of training data). Our purpose is not to determine and announce the
optimum number of data points for any particular application query. Our approach
helps model designers to make an informed decision about the trade-off between
the resources needed to collect a variety of data points and uncertainty of model
parameters that will cause from that data size.

We recast our SSD [105] problem as a Bayesian experimental [32, 114, 68] simulation-
based design. The key idea behind our approach is that it is possible to update the
probability of model parameters given training data from from prior to posterior
through Bayesian inference [23, 24, 87, 141, 153]. We hypothesize that the probabil-
ity density function (PDF) of the posterior will be narrower (on average) than that
of the prior. We use Kullback-Leibler (KL) divergence [82] to quantify the shrinkage
of posterior against prior. It will continue to increase as the dataset size increases.
This shrinkage can then be investigated by the model designers to decide whether
to add further behavior instances. We demonstrate the applicability of our method
in to two separate situations: 1) pre-hoc experiment design—before data collection,
using simulated data generated from prior distributions and the IRL model to es-
timate the number of required behavior instances to collect, and 2) post-hoc dataset
analysis—with real behavior instances data collected with real people, to decide if
the existing dataset size is acceptable. We used a real-life example of Multiple Scle-
rosis (MS) patient behavior data for modeling behaviors, a chronic central nervous
system autoimmune disease [59].

In our pre-hoc experiment design, we generate synthetic datasets based on the pa-
rameter priors with different underlying true model parameters and dataset sizes.
Then using Markov chain Monte Carlo (MCMC) [53, 28], draw samples from the
posterior distributions and calculate the difference between the prior and the pos-
terior using KL divergence for each synthetic dataset. Afterwards, we show how
the expected KL divergence among synthetic datasets changes as the dataset size in-
creases. We present a function to find the optimum size of the dataset by optimizing
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the estimated utility to collect a certain amount of data and comparing it with the
cost of collecting data. For the post-hoc analysis, we repeat our experiment with a
current MS dataset [91, 89, 90], with its underlying true model parameters, to obtain
the KL divergence curve and compare it with the pre-hoc curve.

Overall, our approach serves as a decision-making support tool, but does not
say how a decision should be made. For illustration, we presented an example of
a particular hypothetical cost scenario and decision-making rule for MS behavioral
modeling in our pre-hoc design, in which our approach indicated 935 samples is
optimal. The same method is then applied to the collected MS dataset to verify our
sample size determination approach. Our findings show that the predicted KL di-
vergence of the synthetic dataset in the pre-hoc experimental design has a similar
pattern to that of the MS dataset in the post-hoc dataset study. Therefore, the conclu-
sion about the appropriate size of the dataset that we draw can then be applied to
the MS dataset at the pre-hoc stage and recommends data collection with 228 more
data samples.

Our research helps model designers to conduct a more in-depth, principled anal-
ysis of data set size effects on IRL model parameters. It enables the determination of
sample size, one of the hallmarks of scientific science, as a precursor for developing
more accurate models of human behavior.

7.2 Method

Based on principles of uncertainty quantification (UQ), we implement a Bayesian
method to quantify the effects of dataset size (i.e., number of data samples collected)
on parameter estimation for a particular human behavior model based on IRLs [19].
We apply our method to a particular human behavior model [19] that uses the Max-
CausalEnt algorithm [166] to estimate parameters of the model from data from be-
havior instances. We begin by explaining the IRL model’s classical construction,
followed by a presentation of the Bayesian framework [87, 141, 153].

7.2.1 Modeling Human Behavior with Markov Decision Process

Markov Decision Processes (MDP) can represent a decision process following a graph-
ical structure of states, actions, rewards and stochastic transition between states, this
can be helpful to model different context and the preference of action people have
for different actions in different situations. Following [19], we formalize purposeful
behaviors as a Markov Decision Process (MDP) [125], represented by a tuple:

MMDP =
{
S , A, R(s, a), P0(s), P(a | s), P(s′ | s, a)

}
. (7.1)

Here s ∈ S is the state from a finite state space representing different situations that
a human participant (i.e., agent) can be in, and a ∈ A is the action from a finite action
space that the participant can take. The reward function R(s, a) defines the reward
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that the participant incurs when performing an action a while in the state s. The
reward function therefore reflects the preference of the participant to be in different
situations and to take different actions in those situations.

The initial state probability P0(s) captures the probability that a state initiates a
behavior instance. The conditional probability of actions given states P(a | s) repre-
sents the probability that the participant will choose to perform a particular action
a in a particular state s. The action-dependent transitional probability P(s′ | s, a)
designates the probability of transition into the next state s′ after the participant per-
forms action a in state s. The transitional probability thus captures how the actions
that participants choose in various situations influence their surroundings.

7.2.2 Estimating Model Parameters via MaxCausalEnt IRL Algorithm

In an IRL problem setting, P0(s), P(s′ | s, a), P(a | s), and R(s, a) are all unknown,
and the goal is to estimate them from an available dataset of observed behavior
instances, where each behavior instance sample is defined as a sequence of state and
action pairs over time:{(

s(i)1 , a(i)1

)
,
(

s(i)2 , a(i)2

)
, . . . ,

(
s(i)T , a(i)T

)}
, where i = 1, . . . , nd denotes the ith se-

quence sample of length T in the dataset for a total of nd samples.
Following the framework introduced in [19], P0(s) and P(s′ | s, a) can be esti-

mated by constructing two separate Bayesian networks [25] from the dataset sam-
ples. Furthermore, we can define a linear parametric reward function:

R(s, a) = θTFs,a, (7.2)

where Fs,a is a general feature vector and θ is a vector of unknown weight parame-
ters representing the strength of preferences for individual features.

MaxCausalEnt IRL algorithm [166] then estimates the parameter θ of the reward
function R(s, a). MaxCausalEnt IRL algorithm solves the optimization problem us-
ing the Stochastic Gradient Descent (SGD) [25] over the reward function param-
eter θ. At each gradient step, it iteratively computes action-based value function
Qsoft

θ (s, a) that represents the expected value of performing a specific action a in a
specific state s, and state-based value function Vsoft

θ (s) that represents the expected
value of being in a specific state s:

Qsoft
θ (st, at) = ∑

st+1

P(st+1 | st, at)Vsoft
θ (st+1) (7.3)

Vsoft
θ (st) = softmax

at
{Qsoft

θ (st, at), c}+ θTFst,at (7.4)

where softmaxx{ f (x), c} := 1
c ln ∑x ec f (x) and c is a hyperparameter. These two

value functions are then used to compute the policy via following equation:

P(at | st) =
1

Z(st)
ec(Qsoft

θ (st,at) − Vsoft
θ (st)), (7.5)
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where Z(st) = ∑
b∈A

ec(Qsoft
θ (st,b)−Vsoft

θ (st)) ensures the overall expression is a proper

probability mass function. The SGD algorithm uses the stochastic policy P(at | st)

in a forward pass to update the estimated expected feature counts EP(s,a) [Fs,a], and
updates the parameter θ using the following equation until convergence:

∆θ = EP(s,a) [Fs,a]−EP̃(s,a) [Fs,a] . (7.6)

Overall in the MaxCausalEnt IRL algorithm [166], the dataset, and the the num-
ber of sequence samples nd in the dataset, affects the estimation of P0(s), P(s′ | s, a),
and EP̃(s,a) [Fs,a]. While MaxCausalEnt IRL provides an efficient method for esti-
mating θ, it produces a single point estimate only and does not offer a measure of
uncertainty or confidence surrounding the estimated value due to nd.

7.2.3 Bayesian Inference for Quantifying Parameter Uncertainties

Bayesian inference [141, 153] is a framework that uses probability and statistical for-
malism to rigorously measure uncertainty. It is a natural mechanism for integrating
sparse, noisy, and incomplete data from various sources. The Bayesian inference
for the IRL problem is referred to as the Bayesian IRL (BIRL), initially proposed by
[127]. Under the Bayesian framework, we treat θ as a (continuous) random vector
with an associated probability density function (PDF). Given a dataset with nd be-
havior instances (sequence samples) D =

{(
s(i)t , a(i)t

)}
, t = 1, . . . , T, i = 1, . . . , nd,

the uncertainty of our unknown model parameter θ is updated via Bayes’ rule

p(θ |D) =
P(D | θ)p(θ)

P(D)
, (7.7)

where p(θ |D) is the posterior PDF1, p(θ) is the prior PDF, P(D | θ) is the likelihood
function (i.e., the probability density of having observed the state and action trajec-
tories in D if the true feature weights were θ), and P(D) is the Bayesian evidence (a
normalization constant). For a Bayesian inference problem, we generally have the
ability to evaluate the prior and likelihood PDFs. Usually the model designer or a
domain expert would select the prior, which represents their knowledge or belief
about θ before having seen any data. The likelihood can be directly derived using
the Markovian structure of the MDP model with the assumption of independence
among different behavior instances [127].

7.2.4 Quantifying Data Scarcity

Following the Bayesian framework that we introduced in the previous section, we
quantify data scarcity based on the extent of uncertainty reduction we achieve in
learning θ. Specifically, we employ the Kullback-Leibler (KL) divergence [93] from

1We use lower case p(·) for PDF of a continuous random variable or vector, and upper case P(·) for
probability mass function of a discrete random variable or vector.
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the prior to the posterior:

DKL(p(θ |D) || p(θ)) =
∫

Θ
p(θ |D) ln

[
p(θ |D)

p(θ)

]
dθ. (7.8)

The KL divergence is non-negative, and equals zero if and only if p(θ |D) = p(θ).
We need to take the expectation over all possible realizations of D, to arrive at the
final expected KL divergence (or expected information gain (EIG)), where we explicitly
show the dependence on nd. In general, the KL divergence has no closed-form and
must be approximated numerically. We adopt a Monte Carlo estimator [130] using
posterior samples generated from the aforementioned MCMC algorithm:

EIG(nd) ≈
1

LM

L

∑
j=1

M

∑
k=1

[
ln p(θ(j,k) |D(j))− ln p(θ(j,k))

]
, (7.9)

where L and M are the Monte Carlo sample sizes in this estimator. Intuitively,
one may expect EIG to increase as more data becomes available (larger nd), but the
additional benefit from each new sample may diminish as the overall dataset grows.
Finding the critical point where the rate of benefit is no longer worthwhile can be
used to guide the decision-making of sample size determination.

7.3 Sample Size Determination for a Model of Multiple Scle-
rosis Patient Behavior

We demonstrate our method for evaluating the sample size determination of a be-
havioral model of multiple sclerosis people (MS) [168]. People with MS suffer phys-
ical disability and constant pain, tiredness, depressed mood, and cognitive difficul-
ties. Symptoms are linked to various negative effects, including unemployment,
disability, social impairment, dissatisfaction with life, interference with everyday
activities, worsening in general mental and physical health, and loss of group inte-
gration. Thus, approaches that address the most significant or impactful symptoms,
such as pain and fatigue, may enhance people’s health outcomes and their quality
of life. Such a model of behavior is of great interest to clinicians to test the hypoth-
esis that the everyday living behaviors of participants that we can feel, remember,
and capture can predict their discomfort, exhaustion, and overall well-being. Our
aim is therefore to provide guidance to model designers in determining how many
samples (i.e., how many behavioral instances of individuals with MS) to collect for
modeling people’s behavior. We then illustrate the effects of dataset size under two
scenarios:

• pre-hoc experiment design, conducted in the planning stage before any data
collected, to guide the estimation of how many samples to collect; and
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• post-hoc dataset analysis, performed when data is already collected, to deter-
mine if there are sufficient samples in the current dataset and whether more
data is needed.

To model behaviors of people with MS, we follow the modeling approach from
[19] and use the MDP framework described in Section 7.2. For this investigation, we
have consulted a domain specialist from our institute who is a Physical Medicine
and Rehabilitation Research Non-Clinical Psychologist specialized in MS. Here we
explain how we model various aspects of the actions of people with MS, and in the
following sections we provide information about how we estimate the parameters
of the model in both pre-hoc experiment design and post-hoc dataset analysis.

7.3.1 States and Actions

Here, we explicate our state space S and action space A by defining state and ac-
tion features (Tables 7.1 and 7.2). These features in turn define feature vectors Fs,a.
State features (Table 7.1) identify the demographics of participants (gender and age),
contextual details, such as the time of day (wake, morning, afternoon, evening and
bed), self-reported symptoms and health measures (i.e., momentary evaluation of
pain and fatigue at each time of day, self-reported positive effects and well-being
(PAW) [137]). Action features (Table 7.2) reflect the participant’s objective measure
of activity strength and frequency (e.g. as calculated by the ActiGraph watch) and
whether or not the participant has completed a momentary evaluation of their symp-
toms and their PAW (i.e. end-of-day functional outcome) at each time of the day.

Feature Description

Gender
Gender of the patient
{Male, Female}

Age
Age of the patient
{Younger than 30, Between 30 to 60, 60 and Older}

Current Daytime
Interval

Time of the day
{Wake, Morning, Afternoon, Evening, Bed}

Current Pain
Current interval pain score
{Low, Medium, High, Not Recorded}

Current Fatigue
Current interval fatigue score
{Low, Medium, High, Not Recorded}

Last Activity Bouts Last interval activity bouts based on average activity bouts per 15s from an ActiGraph watch
{Low, Medium, High, Not Recorded}

Last Activity Pace Last interval pace (determines whether last activity was performed with/without breaks)
{Low, Medium, High, Not Recorded}

End-of-Day Positive
Affect and Well-being

Positive impact on bed interval signifies how much
positive impact (sense of well-being, feeling hopeful and satisfying, cheerful, etc.)
the patient had on that particular day (recorded at bedtime only)
{None (Not Applicable), Moderate, Mild, Normal, Not Recorded}

TABLE 7.1: State features that define the different situations the a par-
ticipant can be in.
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Feature Description

Current Activity Bouts Current interval activity bouts based on average activity bouts per 15s from an ActiGraph watch
{Low, Medium, High, Not Recorded}

Current Activity Pace Current interval pace (determines whether current activity was performed with/without breaks)
{Low, Medium, High, Not Recorded}

Record Next Pain
Status of next state pain
{Recorded, Not Recorded}

Record Next Fatigue
Status of next state fatigue
{Recorded, Not Recorded}

Record Next Positive
Affect and Well-being

Status of next state positive affect and well-being
{Not Applicable, Recorded, Not Recorded}

TABLE 7.2: Action features representing different actions that partic-
ipant can perform in each situation.

7.3.2 Behavior Instances

We define a behavior instance as a sequence of state and actions that captures sit-
uations that a particular participant found themselves in and the actions they per-
formed in those situations each day. Thus, we treat each participant’s day as one
sample one of nd samples. Because each behavior instance reflects behaviors of a sin-
gle participant, Gender and Age variables remain the same throughout a behavior
instance.

7.3.3 Estimating Initial State Probabilities

Each participant’s behavior instance starts with an initial state s with probability
P0(s) and Current_Daytime_Interval = Wake. We construct a Bayesian network
[25] to estimate initial state probabilities P0(s). We consider 6 features defining each
state: age, gender, pain level, fatigue level, last activity bout, and last pace. Age and
Gender both influence Pain and Fatigue, which are mutually independent, as are
Age and Gender. On the other hand, we can observe that LastAcbout and LastPace
only influence level of Fatigue and they (LastAcbout and LastPace) are mutually
independent. Thus, we compute the initial state probability as follows:

P0(s) = P(Age, Gender, Pain, Fatigue, LastAcbout, LastPace)

= P(Pain|Age, Gender)× P(Fatigue|Age, Gender, LastAcbout, LastPace)

× P(Age)× P(Gender)× P(LastAcbout)× P(LastPace). (7.10)

where s ∈ S0 and S0 represents all possible initial states.

7.3.4 Estimating State Transition Probabilities

Each state transition is driven by the action that the participant performs and changes
in participants’ symptoms irrespective of their actions, as influenced by their demo-
graphics, time of day, and previously reported symptoms and healthcare outcomes.
To capture the probability of these transitions, we built another Bayesian network to
estimate state transition probabilities P(s′ | s, a). Here, we used all of the features
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from current state s and action a to estimate the joint probability of pain, fatigue,
and positive affect and well-being in state s′, which corresponds to the probabil-
ity of next state s′. This is because all of the other state features are deterministic:
DaytimeInterval transitions are fixed, Age and Gender stay the same at each transi-
tion, and value of LastActivityBouts in s′ is the same as in action a.

7.3.5 Estimating Action Probabilities

In this model, the participants decide on their next action based on a reward function
R(s, a) (Equation 7.2), which represents the preference that people with MS have for
certain situations (e.g., specific pain and fatigue levels) and performing certain ac-
tions in those situations. Given the model parameters θ, we use the MaxCausalEnt
IRL algorithm [166] (Equation 7.5) to estimate the conditional probability of partici-
pants’ actions given their current situation P(a | s). This stochastic policy captures
the probability of each participant action according to their preference for various
features of states and actions.

7.3.6 Pre-hoc Experimental Design and Post-hoc Dataset Analysis

To demonstrate and validate our method, we used an existing MS dataset [91, 89]
containing 749 behavior instances collected from a total of 107 participants with MS.
We split this dataset into two subsets to illustrate pre-hoc experimental design and
post-hoc dataset analysis: 1) pre-collected dataset with 6 participants resulting in 42
behavior instances (i.e., samples), and 2) post-collected dataset with 101 participants,
or 707 samples. To avoid any statistical contamination (i.e., ’cheating’) between pre-
hoc experimental design and post-hoc dataset analysis, we kept these two subsets
strictly apart.

We performed pre-hoc experimental design for determining the sample size for
the main data collection using only the 42 pre-collected samples (and without using
or seeing any of the 707 post-collected samples). We then mimicked the main data
collection using the remaining 707 samples and conducted a post-hoc dataset analysis
to update the model uncertainty and provide guidance on whether additional data
samples are needed.

7.4 Results

The results of the pre-hoc experiment design and the post-hoc dataset analysis for
the MS dataset are discussed. We compute the expected information gain of model
parameters as a function of dataset sample size (EIG(nd)). We then illustrate how an
optimal sample size can be determined from an example decision-making rule.
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7.4.1 Pre-hoc Experiment Design

Here, we estimate how many samples to collect for different costs of data collection.
We computed EIG(nd) using the Monte Carlo estimator in Equation 7.9, with L = 60
and M = 92, 000 (92 MCMC chains in parallel, each with 1,000 samples). Figures 7.1a
shows the mean of KL divergence curves (EIG(nd)) and their 95% confidence inter-
vals (i.e., ±1.96 standard deviations). The figure offers a quantitative summary of
the tradeoff between information gain and number of data samples. We observe a
sharp initial increase of the EIG followed by a gradual flattening of the curve—a
“kneebend”-like transition—which is consistent with our intuition of diminishing
return as the total dataset size grows. Furthermore, the EIG curve appears logarith-
mic. Fitting EIG to a logarithmic function, we obtain ÊIG(nd) = 9.35 ln(nd) + 31.51
and appears to provide excellent agreement with the computed points (Figure 7.1b);
this fitted function can then be used to guide future interpolation and extrapolation
studies.
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FIGURE 7.1: KL divergence versus nd for pre-hoc experiment design.
The blue dashed line represents the mean of KL divergence curves
(i.e., the EIG), the light blue shadow represent the 95% confidence
interval (±1.96 standard deviations), and the blue solid line is the

logarithmic fit.

Next, we present an example of how this EIG curve can be used to evaluate the
size of the sample in the pre-hoc experiment design. We emphasize that the methods
set out in Section 7.2 are a general decision-making process, not a decision-making
mechanism. To determine the optimum dataset sample size, we demonstrate a par-
ticular example to compute the optimal dataset sample size n∗d that maximizes an
utility composed of a simple weighted sum between EIG and cost of data acquisi-
tion [103]:

n∗d = arg max
nd

{EIG(nd)− c · nd} (7.11)

where c denotes the ratio of unit cost for collecting one behavior instance to one nat
of information gain [40] (e.g., in units of [$/nat]). Put another way, c is the unit cost
of information: how much you need to pay for information learned from the data
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in the experiment? Figure 7.2 shows the optimal sample size n∗d versus c using the
fitted ÊIG. As expected, n∗d decreases as c increases, and appears linear on a log-log
plot. For example, if c = 0.01 [$/nat] for our MS problem setting, then the optimal
sample size would be n∗d = 935.
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FIGURE 7.2: Optimal dataset sample size versus the unit cost of in-
formation c (pre-hoc).

7.4.2 Post-hoc Dataset Analysis

Here, our goal is two fold: 1) to validate our pre-hoc experimental design, and 2) to
estimate if an existing dataset contains enough samples for different costs of addi-
tional data collection. Computing for post-hoc dataset analysis, Figure 7.3 shows the
actual information gain in purple based on the 707 post-collected data instances col-
lected in real life. The uncertainty in Figure 7.3 is due to shuffling the order of data
points (e.g., for nd = 50 there are many different ways to choose 50 from the total
of 707) and randomness from MCMC sampling. Indeed, in Figure 7.3, both curves
share the same trend, the post-hoc curve (in pink) has lower uncertainty compared
to the pre-hoc curve (in blue), and a pre-hoc decision based on the its pre-hoc curve is
very representative of the actual dataset collected afterwards.
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FIGURE 7.3: KL divergence versus data number of synthetic data and
true data (comparison between pre-hoc design and post-hoc analysis).
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7.5 Discussion

The results in the previous section serve as a diagnostic tool for sample size deter-
mination. In particular, the results of pre-hoc allow one to determine how many new
samples to be collected, and the results of post-hoc provide an evaluation of whether
the current dataset is sufficient. In our demonstration, post-hoc also acted as a con-
firmation of the overall process, where the real knowledge gain pattern is captured
within the pre-hoc EIG. These tools are especially useful when the cost of data is ex-
pensive, when careful decision-making about how much data to collect can lead to
substantial resource savings, as well as the alleviation of potentially undue pressures
on participants to undertake the data collection process.

We reiterate that our framework and methodology offers support for decision-
making, but do not make decisions on the collection of sample sizes. A decision
includes many additional considerations, such as the basic objectives of the model
and the use of data, the monetary cost and scheduling of experiments, the impor-
tance of information and expertise, the implications and threats, the regulatory and
policy criteria, and even the degree of risk-aversion of the decision-maker. It is ex-
ceedingly difficult and beyond the scope of our work to integrate these components
systematically and comprehensively, as sought in the study of decision-making the-
ory (e.g., [23, 121]).

Instead, we provide a certain example where if a decision-maker come up with
the information of how much each data costs and how much they are willing to pay
for one unit of information gained from the data, then our framework can return the
optimum number of data samples n∗d. The methods that we provide are therefore the
starting point for a potentially complicated decision-making process by providing a
quantitative evaluation of the information quality provided by the data.
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Chapter 8

Discussion

In this thesis, it is a step towards addressing the grand challenges of establishing
practical foundation for work in nursing domain which will open the possibilities
and scopes to explore and understand human activities and behavior by using tech-
nology to support their life. The work on exploring and understanding complex and
regular human activity has direct implications on study of intelligibility of technol-
ogy for well-being and healthcare domain. In this regard, it is essential to under-
stand the unique nature of human activities as the information extracted from raw
activity data has been shown to be crucial to functional and behavioral health mon-
itoring. Data mining and machine learning methods have proved to be successful
in extracting information and finding, inferring activity from data. Activities related
to fitness are common among young adults. And it also helps them to keep track of
their fitness on a regular basis. The activities that every individual does on a regular
basis are functional activities such as preparing food, talking with others, washing hands,
brushing teeth, wearing coats, shoes, answering the door, writing a check, taking medicine
etc. The inference and assessment of such functional and behavioral activities helps
to decipher personal health and well-being.

Thus the overall contribution of this thesis is to introducing different computa-
tional approaches in various modalities for better functional and behavioral activi-
ties understanding in nursing care domain by addressing the challenges related to
data collection, complex activity understanding and behavior modeling. Through
this thesis, we targeted a few problems and challenges related to better activity un-
derstanding in nursing care domain. This thesis introduce various methods and
frameworks for improving domain specific activity understanding specially for nurs-
ing care domain. The proposal and framework from this thesis will contribute better
understanding of daily life activity in nursing care center. Also, the proposed sample
size determination method in this thesis will contribute as a decision making sup-
port for model designers to better understanding the optimum amount of dataset
size for better modeling the patient behavior. Hence, the summary contribution of
this thesis are:

Method for improving Sensor-Based Activity Recognition in Missing Data
Scenario.
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In this thesis, our proposed method for improving sensor-based activity recog-
nition in missing data scenario will be helpful to improve activity recogni-
tion while having missing data without any data recovery. We examined the
method for different missing percentages, varied window sizes, and diverse
window sliding widths. Learning with missing data reinforces our model to
regulate missing data during the classification of various activities that have
missing data in the test module. This approach demonstrates the plausibility
of the machine learning model, as it can learn and predict from an identical
domain. For the missing data pattern, we considered data to be missing in a
random pattern, which is a realistic missing pattern for sensor data collection.

For evaluating our method’s acceptability, we developed a synthetic dataset
to empirically evaluate the performance and show that the method can ef-
fectively improve the recognition accuracy from 80.8% to 97.5%. Based on
the successful analysis, we then explored activities from two very challeng-
ing benchmark datasets for our experiment. These are the HASC dataset and
the single chest dataset. Under various experiments of random missing data
levels, we recognized activity classes. From our experimental analysis, we can
conclude that the recognition results improve by our proposed method when
missing data patterns are available in both training and testing modules with-
out recovering the raw data.

Proposed an activity recognition framework by exploiting LoRaWAN (Long
Range Wide Area Network) protocol for Nursing Care

We propose a framework for activity recognition by using LoRaWAN proto-
col and network to send various sensor data. This work explores exciting new
opportunities to significantly increase the sensing range with the introduction
of LoRaWAN for Nursing Care Center. After having a activity recognition
framework in laboratory settings experiment. We examined the performance
of the LoRaWAN in both laboratory environment and real nursing care envi-
ronment. We evaluate LoRaWAN accelerometer sensors data for human ac-
tivity recognition by using our proposed framework. We explore the Linear
Discriminant Analysis (LDA), Random Forest (RnF) and K-Nearest Neighbor
(KNN) for classification. We achieve recognition accuracy of 94.44% by LDA,
84.72% by RnF and 98.61% by KNN.

In LoRaWAN technology, the amount of sensor nodes connected with a single
gateway have an impact on the performance of sensors ultimate data sending
capability in terms of data loss. We investigated this issue from real nursing
care data to check the feasibility of using LoRaWAN sensor for future health-
care monitoring center. In a real nursing care we did 4-month experiment to
collect sensor data. During this experiment, 42 LoRaWAN sensors environ-
mental sensors data is collected to know the data loss ratio. We observe 5%
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data loss happened by the sensors with a single gateway. In a simulated envi-
ronment, we checked the activity recognition performance with 5%, 30%, 50%
and 80% data loss environment and have found recognition accuracy of 81.94%
LDA, 80.55% RnF and 91.66% by KNN while 5% data are lost. Through our
proposed framework it can open a new opportunity to significantly increase
the sensing range in nursing care center by LoRaWAN.

Revealed the nature of nursing care activities from real-life data

In this thesis, we suggest a framework that combines activity records and ac-
tivity label records that are routinely used by workers in the nursing sector.
In nursing care or any domain specific, activity recognition is challenging be-
cause the nature of activities is not clear. Hence, this thesis revealed the nature
of real settings activity data for nursing care domain. We have collected 4-
months nursing care data from real nursing care center in Japan. It has been
shown that by using our system it can possible to increase the number of label
collections by easy recording. We have collected 38,076 activity labels, 46,803
record details, and 2834 hours of sensor data during this experiment.

From this data, we revealed the varieties, nature and dependency of activities
and care details which can be a measure of any healthcare outcome. We an-
alyze intra-class relationship of real life nursing care activity data which has
important information to revealed the nature of real life data. We investigated
the dependency of activities to staff users, target residents, and days. Using
the obtained data, we revealed the nature of the data, including dependency
of activities to several factors, and the nature of timestamps of self-labeling.
We investigated "staff activity" for support service requirements as well as "el-
derly people activity" from this data. This work also help to examined elderly
people health status from the data and types of activities recorded by staff.

Propose a framework to detect head and mouth related personal scale behav-
ior activities which activities are difficult to detect with usual wearable sen-
sors with other regular activities

We can measure nurse activities, but patient’s are also very important to make
complete records, therefore in this thesis we propose a framework using eS-
ense earable to detect head and mouth behavioral activities with good accu-
racy. We develop a smartphone application for data collection from the eSense.
Through eSense earables, we performed experiments for seven activities. Four
activities are related to head and mouth (namely, eating, speaking, headshaking,
and head nodding). Three regular activities (i.e. walk, stay, and speaking while
walking). We have found that the accuracy 93.34% by SVM, 91.92% by RnF,
91.64% by KNN, and 93.76% by CNN. Detecting these activities accurately us-
ing only accelerometer and gyroscope sensors data quite challenging. By using
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our propose framework, it will be possible to detect complex head-mouth re-
lated behavioral activity along with regular activity in nursing care center.

A Bayesian approach for quantifying data scarcity when modeling human be-
havior via Inverse Reinforcement Learning (IRL)

We proposed a Bayesian approach for quantifying data scarcity to modeling
human Behavior via Inverse Reinforcement Learning. Our proposed sample
size determination method can be a decision making support to model design-
ers to estimate the number of samples (dataset size as part of data collection)
for modeling human behavior. After having a promising computation model,
it is always important to know the amount of data needed to train the model. It
is necessary to have a well-informed idea of how much data to collect for both
resource conservation and to obtain an accurate model parameter estimate. In
the thesis, we proposed a sample size determination approach based on uncer-
tainty quantification (UQ) for a specific Inverse Reinforcement Learning (IRL)
model of human behavior.

The main insight behind our method is that the probability of model parame-
ters given training data can be updated from prior to posterior through Bayesian
inference. For illustration, we provided an example with a specific hypotheti-
cal cost scenario and decision-making rule for MS (Multiple Sclerosis) behav-
ioral modeling, under which our method indicated 935 samples is optimal.
Our approach can be use as a tool to help decision-making for model design-
ers to selecting optimum amount of data when modeling patient behavior.

In future technology will help people to be productive, comfortable, healthy, and
safe. Thus human-data supported interfaces will create technology that will auto-
matically reason and explain common user behaviors, infer their priorities, predict
future user behaviour, and even will able to coach users to strengthen their behav-
iors. The user interface of medical informatics helps physicians understand patient
data, identify chronic problems, and find the right care that is tailored to the patient
based on the patient’s behaviours in almost every aspect of their lives.
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Chapter 9

Conclusion and Future Work

9.1 Conclusion

The nursing domain is one of the domains that can benefit greatly from daily life
human activity understanding research. Though daily life human activity under-
standing in the real field is immensely challenging due to various levels of granu-
larity of human action and data collection from wild. Therefore, we contribute to
addressing a few real-life activity recognition challenges in this thesis. The thesis
aims to incorporate various computational methods, addressing the problems re-
lated to data collection, complex activity understanding and behavioral modeling.
We focus on activity recognition by introducing different computational approaches
that recover missing data and utilize spatial and temporal contexts of the data to
achieve higher recognition accuracy in various modalities. In this thesis we pro-
posed a method to improve activity recognition while having missing data without
any data recovery. We considered data to be missing in a random pattern, which
is a realistic missing pattern for sensor data collection. We developed a synthetic
dataset to empirically evaluate the performance and show that the method can ef-
fectively improve the recognition accuracy from 80.8% to 97.5%. Afterward, we
tested our approach with activities from two challenging benchmark datasets: the
human activity sensing consortium (HASC) dataset and single chest-mounted ac-
celerometer dataset. This approach can be a rudimentary step so that, based on
any realistic model, we can explore human activity recognition in genuine nurs-
ing home or healthcare facilities, where missing data are more prevalent. Later, we
propose a framework for activity recognition by using LoRaWAN protocol and net-
work to send various sensor data. After having a activity recognition framework
in laboratory settings experiment. We examined the performance of the LoRaWAN
in both laboratory environment and real nursing care environment. This work ex-
plores exciting new opportunities to significantly increase the sensing range with the
introduction of LoRaWAN for Nursing Care Center. Afterwards, in this thesis, we
suggest a framework that combines activity records and activity label records that
are routinely used by workers in the nursing sector. In nursing care facility, activity
recognition is challenging because the nature of activities is not clear. We analyze
intra-class relationship of real life nursing care activity data which has important
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information to revealed the nature of real life data and will be helpful for any ap-
plication settings in nursing care domain. We have found that in real-life settings,
some activities are more dominant than most of the other activities, as recorded by
the caregivers. Also some activities are most widely explored activities for the res-
idents based on the demand basis. We can estimate the activity level of a resident
and his/her corresponding health status from this data. These cues are detrimen-
tal to predict resident’s other activities associated in regular basis. From this care
record data, we can find out essential support requirements and their other activity
performance in any nursing care facility. Later, we proposed a framework to detect
head and mouth related complex personal scale behavioral activities (like speaking,
eating, head movement etc.) Detecting these activities accurately using smartphone
sensors data is quite challenging. In our evaluation, we have used both machine
learning and deep learning models to evaluate the results. Having both accelerom-
eter and gyroscope data, Convolutional Neural Network achieves the best accuracy
(93.76%) among all classifiers, which is slightly better than Support Vector Machine
accuracy (93.34%) among many machine learning classifiers. By using our propose
framework, it will be possible to detect complex head-mouth related behavioral ac-
tivity along with regular activity in nursing care center. Finally, in this thesis, we pro-
posed a sample size determination method based on uncertainty quantification(UQ)
for a specific Inverse Reinforcement Learning(IRL) model of human behavior where
computational behavioral models formalize complex human actions. The main in-
sight behind our method is that the probability of model parameters given train-
ing data can be updated from prior to posterior through Bayesian inference. For
illustration, we provided an example with a specific hypothetical cost scenario and
decision-making rule for MS (Multiple Sclerosis) behavioral modeling, under which
our method indicated 935 samples is optimal.

This thesis contribution can help to create various tools to aid stakeholders, such
as domain experts and end users, in exploring human behavior understanding. In
this regard it is important to understand existing challenges for well-defined envi-
ronments to perform specialized tasks. Future work should explore various meth-
ods to direct stakeholders to use a mixed-initiative learning approach to apply their
understanding of the complexities of the world.

9.2 Understanding Limitations and Challenges

To understanding daily life functional and behavioral activities, there are few work
of actually conducting research on complicated activities understanding at work
sites. Since it may interrupt nurses or caregivers’ daily duties. So it is difficult to
progress domain specific daily complex activity understanding research in a vast
way. While in the laboratory experimental area, we can set up pre-defined activity
groups and properly set up measuring instruments such as video cameras or sen-
sors. A controlled experiment using motion capture and mobile sensors showed that
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nursing behaviors can be identified with high accuracy by motion sensing. However,
in real life, it is difficult to manage all these parameters in the right way. Patients also
do not want to wear sensors for behavioral data collection all day long. Video-based
systems may be an option, but privacy concerns have also been a major concern for
researchers over the last decade. In spite of the fact that privacy and security issues
are removed, the wearable Sensors also present a range of distinctive obstacles, such
as collecting activity labels, intra-class variability, timestamps are not accurate, class
imbalance, intra-class dependency, sensing devices, sensor device positioning. It is
also difficult to find the exact beginning and ending point of the activity episode,
given that the sensors typically have a higher sampling frequency. Thus, evaluating
the recognition of real-life activity is not straightforward. Timestamp extension can
be improved by considering real activity average duration. There is also a method
for representing time extension probabilities and optimizing the probability of label
timestamps with the EM algorithm [148]. However, because these approaches use
repeated optimization calculations not only for training but also for testing, training
before convergence is not realistic. Moreover, how long extensions we can give for
initial value for optimization is not clear [148]. It’s still an open issue how to find
right timestamps for self-labels. For the development of this domain specific activ-
ity understanding research, public data sets for the community are necessary. Data
is required for evaluating the proposals for learning and testing in future.

9.3 Future Research Perspectives

Given the growth in the world’s elderly population, smart nursing care center or
assisted living center are a demand of much-needed solution. There are many chal-
lenges, to monitor and help elderly people by using technology in a smart nursing
care center. This thesis is a contribution to improve few challenges in care system re-
lated to data collection, complex activity understanding and activity recognition by
introducing different computational approaches that recover missing data and uti-
lize spatial and temporal contexts of the data to achieve higher recognition accuracy
in various modalities. There are still some problems in making smart nursing care
center a reality for the elderly people. One key future research direction is studying
the effect of the location of the sensor as elderly people do not want to wear sensors
for behavioral data collection all day long. It is necessary to develop and imple-
ment custom sensors for this domain, and studying the best features in this specific
domain.

In the future to directly extend the missing data analysis, it is required to explore
for more features to enhance the recognition results of missing data at random order;
however, modeling of the realistic nature of missing data under all major circum-
stances can be explored by network-based researchers. This can be a rudimentary
step so that, based on any realistic model, we can explore human activity recogni-
tion in genuine nursing home or healthcare facilities, where missing data are more
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prevalent. The impact of missing data for each class wise is necessary to investigate.
As well as smarter datasets are required having realistic missing data from various
sensors and there explorations.

Other challenges related to the extension of this work refer to continue LoRaWAN
technology in healthcare domain. It has has promising prospect due to its long
range, low data rate communication and low power communication. If we can use
this technology for human behavior analysis from accelerometer and environmen-
tal sensors data then it will be promising prospect for healthcare settings. We have
found the considerably good recognition performance for activity sensing data. Real
nursing care center evaluation time it has been observed that some sensors got idle
and sensor data loss is high. We used single gateway which located in different floor
then sensors location. It has impact on RSSI( Received Signal Strength Indicator)
value and SNR (Signal-to-noise ratio) value. It is necessary to evaluate signal qual-
ity evaluation from different location and distance from data receiver gateway with
the LoRaWAN technology. In future, it is necessary to extend performance evalua-
tion experiment. In that case, density of the gateway should consider as a primary
metric for data evaluation performance. Also, maximum connected node capacity
per gateway is another important factor for data handling capacity for performance
evaluation of LoRaWAN based system.

Also, in our propose framework to detect head and mouth related personal scale
behavior activities, we observed some misclassifications among different activities
that require body movement and which don’t require any kind of body movement.
Also, head- and mouth-related activities demonstrate slightly better results than
normal activities. Therefore, using our proposed framework, it will be easier for
collecting head- and mouth-related activity data. Any machine-learning model can
be applied to this data to detect head- and mouth-related activities. It will create a
new scope in research and applications using earable device. Using our proposed
system, we also collected audio data. In the future, researchers can use audio data to
reduce misclassification related to ‘Speaking’ and ‘Eating’ activities, which have some
similar patterns due to the muscle’s movement in the face. Also increase the num-
ber of activities including complicated activities will be impactful for real nursing
care/healthcare centers.

Another key future research direction for evaluating and conduct the sample size
determination experiments in various domains which may reveal insights for other
domain requirement. It can provide perspectives on how various domain-specific
factors influence the design of their respective data collection studies. Such work
could lead to the development of benchmark datasets using IRL across domains for
modeling human behavior.
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