
P a g e  | I Kyushu Institute of Technology  

  

 

Exploring the Influence of thin-film morphology and interfaces on 
the charge transport in organic electronic devices 

（有機電子デバイスの電荷輸送に対する薄膜形態と界面の影響の調査） 

 

DISSERTATION 

FOR THE DEGREE OF 

DOCTOR OF PHILOSOPHY 
 

NIKITA KUMARI 

Supervisor: SHYAM S. PANDEY 

 

 

Division of Green Electronics 

Graduate School of Life Sciences and Systems Engineering 

Kyushu Institute of Technology 

2020 

  



P a g e  | II Kyushu Institute of Technology  

 

 

 

 

 

Dedicated 

To 

The Almighty God 

 

 

 

 

 

 

 



P a g e  | III Kyushu Institute of Technology  

  



P a g e  | IV Kyushu Institute of Technology  

Abstract 

Semiconducting polymers (SCPs) have gained huge scientific interests owing to their excellent optical, 

electrical, and mechanical properties making them a potential candidate for the practical realization organic 

electronics. Overall performance of organic electronic devices (OEDs) is being controlled by the nature of 

the SCPs, their thin-film morphology, and related interfaces. Charge transport in SCPs thin-films is dictated 

by various phenomena like transport along π-conjugated backbone followed by intermolecular as well as 

inter-domain hopping. In the recent past, huge efforts have been directed to improve the crystallinity of SCP 

thin-films by chemical structure engineering, developing various thin-film fabrication techniques, imparting 

molecular orientation and post-processing of the thin films aiming towards enhancing the charge carrier 

transport. Existing issues of thin-film fabrications such as the use of toxic halogenated solvents, difficulty 

in multilayer film fabrication, and swift characterization of large area thin films are still the stumbling blocks 

towards the large area implementation of the OEDs.  

 

Chapter 1 introduces the concerns related to the present state-of-art in organic electronics, problems 

related to thin-film fabrication techniques for SCPs, the need for a comprehensive understanding of the 

SCP/dielectric, SCP/metal interfaces and their implication on the charge carrier transport. The theory of 

electrical conduction in SCPs, their charge carriers, energy band as well as charge carrier transport, with 

existing thin-film fabrication techniques has been discussed in detail followed by challenges currently being 

faced and justification for the aim of the present research work. 

 

In chapter 2, brief outline of the SCPs like P3HT, PBTTT, PQT, their thin-film processing adopting 

spin-coating, drop-casting, floating film transfer, and friction transfer techniques have been provided. 

Various techniques used for the characterization and analysis of the oriented thin films along with the 

fabrication and analysis of various organic electronic devices have been discussed in detail. 

 

3rd chapter deals with the development of a novel 2D-positional mapping technique for the swift 

microstructural characterization of the large area oriented thin-films aiming towards the fast optimization 

of experimental parameters. With this mapping technique, position-dependent polarized absorption spectra 

were measured at varying locations utilizing the aligned light source and multichannel photonic analyzer 

and XY motion-controlled mobile sample stage. The sample was scanned along multiple lines to probe 

changes in the absorption spectra leading to the swift analysis of the uniformity and microstructural 

distribution. The validity of results pertaining to the thin film uniformity and molecular orientation was 

successfully demonstrated using FTM fabricated thin films of PQT-C12 using the mapping system and 
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conventional spectrophotometer. At the same time, the usefulness of this method verified using thin films 

of PBTTT-C14 as conjugated polymer prepared by different methods such as spin coating, friction transfer 

method, and FTM having different thickness range and their uniformity.   

 

Chapter 4 deals with the investigation on the effect of the interface and the thin-film morphology 

on in-plane and out-of-plane charge transport. To analyze the effects on vertical charge transport, organic 

Schottky diodes (OSDs) were fabricated with varying metal/SCP interfaces and morphology utilizing 

different thin-film fabrication techniques. A new generalized model was proposed for the analysis of charge 

transport and extraction of the device parameters. In-plane charge transport was studied by fabricating 

organic field transistors (OFETs). In general, the thin film fabrication method using sheer forces, leads to 

face-on orientation of the macromolecules, which are although good for vertical devices but not suitable for 

the planer devices like OFETs.  Results of in-plane GIXD and out-of-plane XRD of as-cast and annealed 

films of friction transferred PBTTT on HMDS treated substrate revealed the almost complete 

transformations from the face-on to edge-on after annealing the thin-films at about 200 ℃, which was 

further verified by enhanced OFET mobility. Results on the temperature and interface dependent electrical 

and optical characterization of OFETs utilizing friction transferred PBTTT thin-films led to the proposal of 

a new carrier-transport mechanism to interpret the obtained experimental results. 

  

In chapter 5, efforts were directed towards the development of the large area and environmentally 

benign thin film fabrication and their improvisation followed by their utilization to fabricate OEDs like 

OSDs, OFETs, and organic memristors. Fabrication of large area and highly oriented thin films of PBTTT 

was demonstrated by improvised friction transfer technique. Improvisation of the friction transfer method 

was done utilizing very small of the hydrophobic solvent between the polymeric pellet and the substrate. 

This resulted in to not only the uniform large area thin films but also the change of molecular conformation 

from conventional face-on to edge-on leading to highly pronounced charge carrier mobility from 0.035 

cm2/Vs to 0.4 cm2/Vs.   Subsequent optical characterization of the thin film revealed a highly extended 

polymer backbone, which was evidenced from in-plane grazing-incidence X-ray diffraction pattern. Further 

facile in-plane charge transport was demonstrated by fabricating OFETs, which consequently shown 

significant enhancement in the charge carrier mobility. 

 

Finally, chapter 6 of this thesis presents the overall conclusion of the whole work summarizing the main 
results along with future scopes of the work and their perspectives. 
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 Chapter 1: Introduction 

 

1.1 Research Background  

Modern days and recent past have observed a huge advancement of technology and for them, the 

fast electronic devices in terms of carrier transport, sensing, transducing, etc. is an essential element. 

However, to fulfill the further desire for ultrafast technology, a lot of development is still required. 

Presently a significant amount of the research in this area is dedicated towards the fabrication of 

devices that are of low cost, light weight, power efficient, environmentally sustainable. Apart from 

these, the portable and wearable electronics also triggered significant research interest towards 

miniaturization and fabricating flexible devices, which is also an essential component in our lives. 

 

 

Figure 1.1 Comparative range of charge carrier mobility for various semiconducting materials. Reproduced 
with Permission,1 Copyright 2020 WILEY-VCH. 
 

For the last two centuries, immense scientific research and development interest have been 

focused on the advancement of various inorganic semiconducting materials, and largely silicon-

based material remained an optimal choice owing to its unique characteristics. However, facilities 

required for the production of high purity silicon (crystalline) wafer consists of many sophisticated, 
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expensive, complex, and energy consuming processes. Moreover, purifying the raw-material is 

also a challenging task in order to decrease the terminal cost. Besides, high-class clean room is 

inevitable for research and development or fabrication of the devices. The processing could be 

decreased, by minimizing the need for sophisticated facilities. Nevertheless, organic 

semiconductors, in which charge transport occurs through 𝜋𝜋-electron cloud, are more advantageous 

because of their low-cost handling as well as easy tuning of physical properties through chemical 

structure engineering. Although the transport characteristics of an organic electronic device (OED) 

cannot match with that of crystalline silicon-based devices especially the single crystal based, it is 

certainly not an essential requisite instead the aim of the development of the field of organic 

electronics is to complement the existing inorganic semiconductor based electronics.  

Though the electrical characteristics of amorphous-Si in terms of charge carrier mobility 

significantly lag behind singlecrystalline-Si (as described in Figure 1.1)1, presently amorphous Si 

is the key material for flexible electronic devices such as radio frequency identification tags, 

backplane circuitry in display technology, etc. So far the amorphous-Si based thin-films are 

deposited through chemical vapor deposition technique. In the meantime, umpteen amount of 

advancements have been recorded in the field of inorganic semiconductors1,2. However, 

irrespective of these developments, it is a long way to go to realize the low-cost, large scale flexible 

circuits with inorganic semiconductors, for instance, the fabrication processes needs to be 

decreased. In this regard, organic-inorganic hybrid devices can be a better alternative. For example, 

the overall cost can be reduced by mass fabrication of printed flexible organic based displays for 

which the high-speed carrier transport is not required; however, the speed of the device can still be 

retained by interfacing it with the inorganic semiconductor based high speed processors.   
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Table 1.1 Comparison chart for printed electronics versus Conventional Electronics 

Printed Electronics Conventional Electronics 
Less expensive High manufacturing costs 
Simple process  Complex process 

Compatible with flexible substrate Compatible with rigid substrates 
Large area fabrication is feasible Commonly wafer scale fabrication  

Small integration density Extremely high integration density 
High switching times Switching times very small 

 

Regarding above discussed challenges, the organic semiconducting materials primarily 

semiconducting polymers (SPs) have many advantageous properties that can be exploited to 

producing cost-efficient portable and wearable electronic devices (Table 1.1). These can be more 

understandable by analyzing by the scientific and developments demonstrated/achieved in the field 

of organic electronics and polymer science, to match with the electrical performance amorphous-

Si based applications3. Mainly the organic semiconductors are more preferable in comparison to 

amorphous-Si due to the following reasons: i) their synthesis can be conducted in ambient 

conditions, ii) according to desired applications their optoelectronic properties can be varied by 

simple chemical structural modifications, iii) their thin-films can be fabricated using many cost-

efficient solution processes, iii) the devices can be fabricated under ambient conditions, etc.4 As 

discussed the hybrid organic-inorganic device can be more cost-efficient without compromising 

the electrical performance in comparison to only inorganic semiconductor based electronic devices. 

Therefore, it can be stated that the actual aim of the development of the organic semiconductor 

based devices is not at all to match the electrical characteristics of the singlecrystalline-Si based 

devices, instead they can be a suitable candidate to substitute the applications of amorphous-Si. 

Apart from this the unique, as well as tunable optoelectronic properties of the organic 

semiconducting materials, can also be utilized in much more worthwhile applications5,6. Some 

recent applications of organic semiconductors based typical electronic devices are shown in Figure 

1.2. 
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Figure 1.2 Digital image of some organic electronic devices (a) the foldable FlexPai smartphone/tablet7; 
(b) flexible organic solar cell8; (c) wearable smartphones9; (d) Flexible TV (source: FlexEnable)10.  

 

Especially amongst organic semiconductors, SPs offer many benefits compared to small molecular 

organic semiconductors and some key advantages are their better solution processability and 

flexibility. Further, due to their quasi-one-dimensional nature transport properties of conjugated 

polymer based devices stringently depends on their average molecular weight as well as molecular 

structure, the thin-film morphology, the interfacial properties, and also the device structure. There 

are various reports which presented the comparative studies on these aspects11–14. The role of 

crystallinity and backbone orientation as well as its conformation in the polymer thin film is crucial 

for charge transport. In this thesis work, efforts were given to study their effect on the planer and 

vertical charge transport. Further, a new film fabrication technique was also developed to overcome 

the challenges in the existing orientation techniques. Furthermore, fabrication of organic electronic 

devices in layer-by-layer coating of solution processed polymer thin films was also demonstrated. 

Hence by considering all the sections of this thesis work it focuses on the environmentally 

sustainable fabrication of cost-efficient compact organic electronic devices which can address 

many existing challenges towards next-generation printed organic electronic devices. 

(a) (b)

(c) (d)
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1.2 Charge Transport in Semiconducting Polymers 
Polymers can be defined as a substance having a molecular structure which mainly consists of a 

large number of repeat units, called monomers, bonded together. Generally, the carbon atoms 

joining the monomers are hybridized in sp3 structure and connected through four σ-bonds with 

adjacent atoms. However, these σ-bonds do not offer any electrical conductivity to the polymers. 

Such polymers are insulators and widely used as dielectric materials in electronic devices and many 

other insulating or packaging applications. On the other hand, adjoining carbon atoms in 

semiconducting conjugated polymers’ backbone are sp2 hybridized having one π-bond. The 

alternate arrangement of single and double bonds across the conjugated polymers’ backbone leads 

to the overlapping of pz orbitals get overlapped and shared electrons are delocalized in order to 

lower their overall energy and increase. Moreover, lone pairs may also be part of the delocalized 

electron system. This is also termed as delocalized electron cloud which possesses high density of 

states and is responsible for charge transport. The chemical structures of some typical conjugated 

polymers are shown in Figure 1.3.  

 
Figure 1.3 Molecular structure of some typical semiconducting polymers. 

 

In the pristine or ideal intrinsic state, there are no free charge carriers in the conjugated polymers. 

The charge carriers are introduced through partial reduction or oxidation which consequently leas 

(a) (b) (c)

Poly(3-hexylthiophene)
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to the generation of n-type carriers or p-type carriers respectively. The extrinsically generated 

carriers introduce charged defects like polarons, bipolarons, and solitons15. In terms of band theory, 

the concept of doping induced carrier transport can be understood from the perusal of Figure 1.4. 

Similar to the concepts of inorganic materials, the highest occupied band in conjugated polymers 

is called the valence band (VB) and the lowest unoccupied band is called the conduction band (CB). 

While the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital 

(LUMO) corresponds to the top edge of VB and bottom edge of CB respectively. The charge carrier 

needs a specific quantity of energy to move from the VB to the CB15,16. Therefore, the energy gap 

between the HOMO and LUMO levels is termed as bandgap (EG) which is responsible for the 

optoelectronic nature of the material i.e., conducting, semiconducting, or insulating as well as the 

color of the corresponding thin film. In metals, CB is partially overlapped with VB (EG = 0) and 

the electrons in the VB face no barrier to go to CB and become electrically conductive. In the case 

of conjugated polymers, a narrow gap exists between VB and CB (EG ≠ 0), and by various types 

of doping their band structure is further changed.  

 

Figure 1.4 Schematic illustration for the bandgaps in (a) conductor, (b) semiconductor, and (c) insulator. 

 

When an electron is being inserted into the LUMO (or taken out from HOMO) of a 

semiconducting polymer, the corresponding CB (or VB) becomes partially filled and the resulting 

overlapping 
bands

(
a
)

Co
nd

uc
to

r

(a) (b) (c)
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radical anion (or cation), is called polaron17. The polaron can possess both types of charges. 

Injection of a secondary electron to a conjugated polymer chain which already possessed a negative 

polaron leads to bipolaron formation and a similar concept is true for the positive bipolaron 

formation17. 

 

 

Figure 1.5. Schematic representation for the polaron, bipolaron, and soliton pair formation due to external 
doping on a polyacetylene backbone. 

 

Doping in conjugated polymers can primarily be categorized into four types based on its method, 

discussed as follows: 

Chemical-doping:  SPs can either be partially reduced or oxidized by exposing them to a suitable 

by e--donating e--accepting or dopant material respectively which consequently lead to the 

formation of charge carriers18.  

Electrochemical-doping:  In electrochemical processes, SPs, possessing a large amount of π-

electron cloud, can be typically utilized as source/sink for the flowing electrons which further lead 

to their desired doping p-type/n-type respectively19. 

 

Photo-doping: By irradiating the SPs using photons of sufficient energy (> EG of the SP) the 

electrons present in the VB are promoted to CB leading to the formation of mobile charge carriers20. 
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Charge injection-doping: The mobile carriers can be accumulated in the SP film by applying a 

specific amount of potential to the metal/insulator/SP multilayered structure21. 

 

1.3 Basics of Organic Electronic Devices 

1.3.1 Importance of Orientation in Semiconducting Polymer Films 
The over-performance of an organic electronic device is highly influenced by the thin film 

morphology.22,23 Since the SPs possess quasi-1-dimensional structure, the charge carrier transport 

is improved when the polymer backbones are unidirectional oriented in the thin film, as shown in 

Figure 1.6. Since the π-electron cloud is more delocalized along the backbone, therefore, charge 

carriers are more mobile along the backbone orientation direction24. Further along the 

intermolecular p-p-stacking, the charge carrier mobility is lower than that along the backbone 

orientation direction but higher than that along the alkyl side chain direction. The alkyl side chains 

are attached to the polymer backbone to make it soluble in common organic solvents. Since the 

side chains do not possess conjugated π-bonds and corresponding π-electron cloud, they act as an 

insulator and the carrier mobility is least along the side chains. Hence, the backbone orientation 

also leads to anisotropic charge transport in the polymer thin film. 
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Figure 1.6 Schematic Representation for carrier transport mechanism along ideally the oriented polymer 
backbones (a). Schematic illustration for Face-on (b) and Edge-on (c) macromolecular conformation on the 
substrate. 

 

 The backbone conformation is also important in the overall charge transport. Depending on 

the relative arrangement of the polymer backbone with respect to the substrate plane, the 

conformation is cauterized in three types: face-on, edge-on, and end-on. In edge-on conformation, 

the alkyl chains lie along the substrate normal whereas the conjugated backbone and the π-π-

stacking lie in the substrate plane. In the face-on conformation, the polymer-backbone and the alkyl 

side chain lies in the plane of the substrate while the p-p-stacking lies along the substrate normal. 

In the end-on conformation the conjugated backbone lies along the substrate normal whereas the 

π-π-stacking and the side chains lie in the plane of the substrate25. Since the ideal backbone cannot 

be attained in the polymer thin film, therefore, optimum carrier transport characteristics are attained 

when the conjugated-backbone and the π-π-stacking are kept in the plane of the transport. Hence, 

for efficient vertical charge transport (for example in organic solar cells, organic Schottky diodes, 
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organic light emitting diodes, etc.) end-on conformation would be preferred; however, attaining 

this conformation is quite difficult for common conjugated polymers. Therefore, for optimum 

vertical charge transport face-on macromolecular conformation is preferred26,27. On the other hand, 

for high in-plane charge transport (for example in organic field effect transistors, OFETs), the edge-

on conformation is preferred; however, the charge transport anisotropy is high in the case of face-

on conformation due to insulating nature of the alkyl side chains28. 

 There are various orientation techniques which lead to varying macromolecular 

conformation in the polymer thin film. Generally, the solution processes (such as solution 

shearing29, off-center spin coating11, directional solvent evaporation on nanostructured 

substrates11,30, etc.) lead to edge-on conformation because which is more thermodynamically stable, 

and in the presence of solvent, the polymer backbones get sufficient freedom to attain this state. 

Further, the orientation techniques in which mechanical force is applied on the polymer backbones, 

lead to face-on macromolecular conformation. However, there are reports regarding the face-on to 

edge-on transition after high temperature annealing of the polymer thin films. Furthermore 

depending on the interaction between the orienting substrate and the polymer backbones any of the 

three conformations is plausible in this category few techniques are as follows floating-film transfer 

technique11,31, directional epitaxial crystallization24,32, and dynamic-template-directed orientation33, 

end-on orientation by surface segregation25. 

The orientation characteristics in the polymer thin films are quantitatively characterized 

through polarized UV-Vis-NIR absorption spectrophotometer, polarized Raman 

spectrophotometer, etc. However, the qualitative orientation characteristics i.e. backbone 

orientation along with macromolecular conformation and thin-film crystallinity is characterized 



P a g e  | 11 Kyushu Institute of Technology  

through more sophisticated techniques like electron diffraction measurements and grazing 

incidence X-ray diffraction measurements, etc.      

 

1.3.2 Types and Effects of Interfaces in Organic Electronic Devices 
The electrical characteristics of the conjugated polymer-based devices are sensitive to the 

morphology of the bulk of the semiconductor layer as well as the interface quality. Since organic 

electronic devices are generally fabricated by depositing layers of conducting, semiconducting, 

and/or dielectric layers, therefore, their transport and other characteristics can be controlled through 

proper understanding and optimization of the interfaces. Depending on the type of involved layers, 

interfaces can be divided into three categories such as i) conductor/semiconductor (conductor/SC) 

interface which mainly influence the charge injection to and extraction from the organic thin films, 

ii) semiconductor/semiconductor (SC/SC) interfaces present in layer-by-layer34 structures, and iii) 

semiconductor/dielectric (SC/dielectric) interfaces mainly present in planar device structures11. 

Although interfaces can be of various kinds, their primary involvement can be understood in terms 

of charge trapping 35–37.  Near the interfaces, the availability of density of states due to chemical 

impurities, hamper the desired carrier transport. Especially in the planer device structure, the 

semiconductor to dielectric interface plays a crucial role. In the ON state of OFETs few molecular 

layers near the interface are responsible for carrier transport, and as extensively reported the thin 

film morphology near the dielectric interface is affected by the interaction between the organic 

semiconductor and chemical groups present at the interface, therefore the near interface 

macromolecular disorder may be detrimental to the overall carrier transport 38,39. The energy band 

mismatch at the electrode/semiconductor interface also affects the charge injection and extraction 

which can be optimized by proper selection of materials and/or by depositing interfacial layer 40,41. 

As discussed the effective resistance encountered at the conductor/SC interface, termed as contact 
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resistance, can be optimized by varying the type of electrode, an organic semiconductor, as well as 

by an interfacial-layer between them in some cases; nevertheless, the traps present at the interface 

play a crucial role in overall contact resistance42–46.  As demonstrated by Tsukagoshi and coworkers, 

regardless of copper’s lesser work function which leads to a larger barrier for hole injection at 

copper-pentacene contact, yet the effective contact resistance of pentacene based OFET, with 

copper as the top source and drain electrodes, was lower compared to the contact resistance in case 

of gold electrodes43. Further, it can be argued that in the field effect transistors, if there is a barrier 

for injecting holes through one electrode in such case there must be no barrier for extracting holes 

from the other electrode where the metal/organic interface at both the contacts possess a similar 

band structure. Since the estimated magnitude of contact resistance at both contacts was 

approximately similar, therefore, it can be speculated that the presence of traps at the interface 

significantly influenced the overall contact resistance44. Therefore to understand the transport 

properties of the organic electronic devices, exhaustive analysis of the effect of thin-film 

morphology and interfaces is crucial.  

 

1.3.3 Planar Devices Structure: Organic Field Effect Transistor 
Owing to the uncanny development of the technology, the field elect transistors have 

become an essential part of our lives. From simple switches to mobile phones or complicated 

supercomputers, their basic building block is the field effect transistor. In general concept of field 

effect can be understood as tuning the effective resistance of a semiconductor layer by applying 

and varying the electric field orthogonal to the plane of the film47. Similar to the capacitive 

operation in which the dielectric layer is placed between two conducting layers, the field effect 

transistor is fabricated by keeping the dielectric layer between the active semiconductor layer and 

the gate electrode. Further, depending on the applied potential at the gate electrode, charge carriers 
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are accumulated at the gate electrode and consequently, opposite charge carriers are accumulated 

in the semiconductor layer (near dielectric interface), similar to the charge accumulation in the 

capacitors. The type and magnitude of the accumulated charge is responsible for the variation of 

the overall resistance of the semiconductor layer near the dielectric interface, which precisely 

depends on the magnitude and direction of field applied between the gate and the semiconductor 

layers. The organic field effect transistors (commonly termed as OFETs) are a category of field 

effect transistors in which the organic semiconductors are utilized for fabricating the active 

semiconducting layer, as schematically shown in Figure 1.7. A typical OFET consists of three 

electrodes (also termed as terminals: source, drain, and gate) along with an organic semiconducting 

layer and a dielectric layer. Although for flexile organic circuits, all the constituent materials of the 

OFETs would by of flexible nature and there are various options in this regard as well as huge 

scientific effort is dedicated to developing such materials, due to ease of fabrication generally 

highly-doped Si (acting as a gate electrode) substrate with thermally grown SiO2 at the top (acting 

as dielectric) is utilized to demonstrate research and development in OFETs48. 

 

 

Figure 1.7 Schematic diagram of organic field 
effect transistor. 
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Following the above discussion, a dielectric layer is kept between the active layer and the 

gate electrode, and two electrodes (source and drain) are patterned such that there is some gap 

between them which is termed as the OFET’s channel. Moreover, the source and drain electrodes 

are in contact with the active semiconducting layer, and responsible for charge injection and 

extraction. The width of the source and drain electrodes corresponds to channel width (W) whereas 

the gap between them is defined as the channel length (L). Theses OFET parameters are crucial for 

its transport characteristics. Depending on the fabrication flow, the OFET architecture is varied 

and it can be categorized mainly in four types i) Bottom gate top contact OFET, ii) Bottom gate 

bottom contact OFET, iii)top gate bottom contact, and iii) top gate bottom contact OFET, as shown 

in Figure 1.8. The OFET architecture also affects its optoelectronic properties and can be 

optimized by varying and the device architecture and comparing their transport properties. 

 

 

Figure 1.8 Schematic illustration for different architectures of OFET. From left to right, bottom contact 
top gate (BC/TG), bottom contact bottom gate (BC/BG), top contact bottom gate (TC/BG), and 

top contact top gate (TC/TG). Reproduced with Permission,1 Copyright 2020 WILEY-VCH. 

 

In deciding the OFET’s electrical characteristics, the dimension and morphology of the 

dielectric layer are also key parameters apart from the OFET architecture and the channel 

dimension. The thickness and dielectric constant of the dielectric layer are responsible for the 

extent of charge accumulation in the semiconducting layer. Therefore depending on the desired 

substrate
organic semiconductor

gate dielectric
electrode
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operating voltage (gate voltage) for any circuit element (OFET), the thickness and material for the 

dielectric layer can be optimized. In the recent past, many organic dielectric materials have been 

reported to satisfy the requirements of the operating voltage conditions of the evolving flexible 

organic circuits48–51. Their solution processability makes them a potential candidate for the cost-

efficient fabrication of organic electronic devices.  

To understand the operating mechanism of a typical OFET, the energy band diagram can 

be helpful, as shown in Figure 1.9. In the band diagram, the Fermi energy level (EF) of the drain 

and source electrodes along with the HOMO and LUMO level of the organic semiconducting 

material is drawn side by side, following the OFET’s in-plane structure. The energy band diagram 

provides the basic concept regarding the type of carrier transport in the film and the contact 

resistance. In the pristine form, the organic semiconductors do not possess any mobile charge 

carrier but the type of electrode as well as the applied gate voltage decides the type of carrier 

transport through a specific organic material. Therefore, depending on the HOMO/LUMO level of 

the organic semiconductor, an appropriate source, and drain electrode can support or hinder the 

specific type of carrier transport.   
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Figure 1.9 Schematic representation for the band diagram of OFETs. 

 

Operating Mechanism: By applying a negative gate bias (VGS) the positive charge carriers are 

accumulated in the organic semiconductor layer (near its dielectric interface) and the Fermi energy 

level of the source and drain electrode moves towards HOMO the organic semiconductor (p-type). 

A similar mechanism also occurs for the n-type organic semiconductor when the positive gate bias 

is applied, as shown in Figure 1.9. The accumulated charge carriers provide an electrically 

continuous path with higher conductivity compared to unbiased conditions. Further, by applying 

the appropriate electric field across the channel (i.e. by biasing the source and the drain electrodes), 

charge carriers are transported which is called ON state of the transistor, as depicted in Figure 

1.9(c and d). 

Analysis of OFET’s Electrical Performance: Following the previous discussion, OFET can be 

compared to a capacitor, in which opposite charge carriers are accumulated in the organic 
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semiconductor layer. The amount of the charge carrier accumulation (here considering the carrier 

density as ‘n’) can be easily tuned by varying the gate bias.  

 Average applied bias at a distance x can be equated to the difference of average channel 

potential with respect to the gate potential acting on the other side of the dielectric layer. Further, 

total charge carrier density at a distance 𝑥𝑥 is 𝑄𝑄𝑇𝑇(𝑥𝑥) on a capacitor plate is given by the following 

equation:  

 𝑄𝑄(𝑥𝑥) = (𝑉𝑉𝐺𝐺𝐺𝐺 −  𝑉𝑉(𝑥𝑥) − 𝑉𝑉𝑇𝑇𝑇𝑇) 𝐶𝐶𝑖𝑖  (1.1) 

 

Here 𝐶𝐶𝑖𝑖 is the capacitance per unit area of the dielectric layer and 𝑉𝑉(𝑥𝑥) is the voltage at distance 𝑥𝑥.  

Considering drift current density ( 𝐽𝐽) in the channel is governed by Ohm’s law, which is a product 

of the electrical conductivity (σ) and electric field (𝐸𝐸) and can be expressed as follows: 

  𝐽𝐽 = σ 𝐸𝐸  (1.2) 

 

Since σ is the product of unit charge (𝑞𝑞), charge carrier density (𝑛𝑛), and carrier mobility (𝜇𝜇), then 

Eq. 1.2 can be written as Eq. 1.3. 

 𝐽𝐽 = 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 

 

(1.3) 

Substituting 𝐸𝐸 =  − 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

   , 𝑞𝑞𝑞𝑞(𝑥𝑥) = 𝑄𝑄(𝑥𝑥) =  (𝑉𝑉𝐺𝐺𝐺𝐺 −  𝑉𝑉(𝑥𝑥)−𝑉𝑉𝑇𝑇𝑇𝑇) 𝐶𝐶𝑖𝑖 in Eq. (1.3) with neglecting the 

negative sign, Eq. 1.3 can be written as Eq. 1.4.  

 
𝐽𝐽 = (𝑉𝑉𝐺𝐺𝐺𝐺 −  𝑉𝑉(𝑥𝑥) − 𝑉𝑉𝑇𝑇𝑇𝑇) 𝐶𝐶𝑖𝑖𝜇𝜇

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 (1.4) 
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Eq. (1.4) can also be written as Eq. (1.5) 

 𝐽𝐽𝐽𝐽𝐽𝐽 =  𝐶𝐶𝑖𝑖𝜇𝜇(𝑉𝑉𝐺𝐺𝐺𝐺 −  𝑉𝑉(𝑥𝑥) − 𝑉𝑉𝑇𝑇𝑇𝑇) 𝑑𝑑𝑑𝑑 

 

 (1.5) 

Here 𝐽𝐽 is constant. Further, integrating Eq. (1.5) from source to drain i.e. along the channel length 

(L) (𝑥𝑥 = 0 to 𝑥𝑥 = 𝐿𝐿  ).  

 

 

𝐽𝐽 � 𝑑𝑑𝑑𝑑
𝐿𝐿

0
=  𝐶𝐶𝑖𝑖𝜇𝜇 � (𝑉𝑉𝐺𝐺𝐺𝐺 −  𝑉𝑉(𝑥𝑥) − 𝑉𝑉𝑇𝑇𝑇𝑇) 𝑑𝑑𝑑𝑑

𝑉𝑉(𝐿𝐿)

𝑉𝑉(0)
 

 

(1.6) 

Since 𝑉𝑉 (0) = 0 and 𝑉𝑉 (𝐿𝐿) = 𝑉𝑉𝐷𝐷𝐷𝐷, on solving the Eq. (1.6), we get Eq. (1.7). 

     

𝐽𝐽 =  
𝐶𝐶𝑖𝑖𝜇𝜇
𝐿𝐿

 (𝑉𝑉𝐺𝐺𝐺𝐺 − 𝑉𝑉𝑇𝑇𝑇𝑇)𝑉𝑉𝐷𝐷𝐷𝐷 −
𝑉𝑉𝐷𝐷𝐷𝐷

2

2
  (1.7) 

 

Upon substituting 𝐽𝐽 =  𝐼𝐼𝐷𝐷𝐷𝐷𝑊𝑊 , it must be noted that 𝐽𝐽  for the channel is A/cm since 𝑄𝑄(𝑥𝑥) =

𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎/𝑐𝑐𝑐𝑐2  

 

     

𝐼𝐼𝐷𝐷𝐷𝐷 =  
𝐶𝐶𝑖𝑖𝜇𝜇𝜇𝜇

𝐿𝐿
 (𝑉𝑉𝐺𝐺𝐺𝐺 − 𝑉𝑉𝑇𝑇𝑇𝑇)𝑉𝑉𝐷𝐷𝐷𝐷 −

𝑉𝑉𝐷𝐷𝐷𝐷
2

2
  (1.8) 
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Here Eq. (8) is valid under two assumptions: i) transverse electric field in the channel 

induced by 𝑉𝑉𝐺𝐺𝐺𝐺 is much larger than the field along the channel due to 𝑉𝑉𝐷𝐷𝐷𝐷, and ii) the mobility is 

constant all over the channel. The first assumption is also called Shockley’s gradual channel 

approximation of junction field effect transistor.52 The validity of this approximation holds true if 

the thickness of the dielectric is too less than the channel length.  

Since in linear region 𝑉𝑉𝐷𝐷𝐷𝐷 ≪ (𝑉𝑉𝐺𝐺𝐺𝐺 − 𝑉𝑉𝑇𝑇𝑇𝑇) and 𝑉𝑉𝐷𝐷𝐷𝐷
2

2
  in the Eq. (1.8) will be very small, 

therefore, it can be neglected and 𝐼𝐼𝐷𝐷𝐷𝐷 in linear region (𝐼𝐼𝐷𝐷𝐷𝐷
𝑙𝑙𝑙𝑙𝑙𝑙) can be simplified as Eq. (1.9). 

     

𝐼𝐼𝐷𝐷𝐷𝐷
𝑙𝑙𝑙𝑙𝑙𝑙 =  

𝐶𝐶𝑖𝑖𝜇𝜇𝜇𝜇
𝐿𝐿

 (𝑉𝑉𝐺𝐺𝐺𝐺 − 𝑉𝑉𝑇𝑇𝑇𝑇)𝑉𝑉𝐷𝐷𝐷𝐷  (1.9) 

 

Similarly in saturation where 𝑉𝑉𝐷𝐷𝐷𝐷 ≥ (𝑉𝑉𝐺𝐺𝐺𝐺 − 𝑉𝑉𝑇𝑇𝑇𝑇), the 𝐼𝐼𝐷𝐷𝐷𝐷 in the saturation region (𝐼𝐼𝐷𝐷𝐷𝐷
𝑠𝑠𝑠𝑠𝑠𝑠) can thus be 

described by Eq. (1.10). 

     

𝐼𝐼𝐷𝐷𝐷𝐷
𝑠𝑠𝑠𝑠𝑠𝑠 =  

𝐶𝐶𝑖𝑖𝜇𝜇𝜇𝜇
2𝐿𝐿

 (𝑉𝑉𝐺𝐺𝐺𝐺 − 𝑉𝑉𝑇𝑇𝑇𝑇)2  (1.10) 

 

1.3.4 Basics of Organic Schottky diode a Vertical Device Structure  
Among the organic electronic devices having vertical charge transport, the organic Schottky diode 

the most basic device structure. It this device structure the desired organic semiconducting active 

layer is sandwiched between two electrodes. One of the electrodes makes Ohmic contact with the 

active thin film while the other makes Schottky contact. The energy band diagram of a typical 

Schottky contact and the Ohmic contact at the electrode-semiconductor interface is shown in 

Figure 1.10.  The selection of the electrode and the semiconductor materials significantly 
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influences the overall device performance. During the formation of electrode-semiconductor 

junction, the charge carriers move from one to other depending on their energy levels, such that 

the electrode’s work function could match with the fermi-level of the semiconductor. The transfer 

of the charge carrier also leads to band bending.  When the magnitude of the p-type 

semiconductor’s fermi level is higher than the electrode’s work-function, effectively the positive 

charge carriers are transferred from the semiconductor to the metal and Schottky barrier is formed 

at the junction with the barrier height of ΦB, as shown in Figure 1.10 (a). On the other hand, if the 

magnitude of p-type semiconductor’s fermi level is smaller than the electrode’s work-function, 

effectively the positive charge carriers are transferred from the electrode to the semiconductor layer 

leading to the formation of an Ohmic contact, and in this, the barrier height is negligible as shown 

in Figure 1.10 (b). Although this concept is appropriate for inorganic semiconductors, slight 

improvisations are desired for organic semiconductors because the organic semiconductors possess 

a comparatively larger energy gap (typically >2 eV) and carrier density is also low which can be 

excited by the thermal energy. a small number of free charge carriers are thermally excited. Apart 

from this, the trend of band bending in the organic diodes is also quite different from the 

conventional inorganic diodes These concepts have been discussed in more detail in Chapter 4.   

 

 
Figure 1.10 Energy level alignment at the metal/semiconductor contact for (a) the Schottky contact and 

(b) ohmic contact53. Reproduced with Permission, Copyright Materials Research Society 2017 
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1.4 Existing Problems and Research Motivation 
Semiconducting polymers (SPs), due to their excellent optical, electrical, and mechanical 

properties, have gained huge scientific interest in fabricating efficient flexible electronics. 

Fabrication of Organic Electronic devices (OEDs) involve deposition and processing of various 

semiconducting, conducting, and/or layers dielectrics. Thus the overall electrical performance of 

an OED depends on individual thin-film morphology and the interface between them. Therefore, 

the corresponding optimization is essential to attain the desired OEDs performance. Charge 

transport in SPs thin-films occurs along the π-conjugated backbone, through π-π stacking between 

adjacent conjugated backbones, and intermolecular as well as interdomain hopping. Moreover, 

hopping assisted intramolecular charge transport also takes place at discontinuous π-conjugation 

present in folded and twisted SP chains. In recent past huge efforts of various research groups have 

been dedicated to improving the crystallinity of SP thin-films by chemical structure engineering, 

developing various thin-film fabrication techniques, and post-processing of the thin films aiming 

towards enhancement in transport characteristics of  OEDs. Our group has also developed a novel 

technique, called floating-film transfer method (FTM), for oriented SP film fabrication at the 

atmosphere-liquid interface through which multilayered coating is also possible without damaging 

underlying layers. Further, there are reports regarding SP/dielectric and SP/metal interfaces, still 

comprehensive experimental investigations as well as theoretical analysis are required for clear 

understanding and enhancement in OEDs’ transport characteristics.  

Further, the environment and health related challenges of organic electronics is also a big 

issue to be addressed before its mass fabrication. Regarding large scale applications, inexpensive 

fabrication of polymer-based OEDs has been demonstrated with solution-based printing 

technique11,54,55. The vapor of halogenated solvents, which is commonly utilized in conjugated 

polymer thin film fabrication, can lead to serious health and environment hazard56. Therefore 
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efficient utilization or modification in existing techniques, as well as invention of new techniques, 

are highly desired to reduce or substitute the presently inevitable need of halogenated solvents in 

organic electronics.     

After scrutinizing current state-of-art three of the major challenges were focused on towards 

large sale fabrication of sustainable organic electronics with controlled charge transport. In this 

thesis work some of the well-known SPs such as regioregular poly(3-hexylthiophene) (P3HT), 

poly[2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene] (PBTTT), poly(3,3ꞋꞋꞋ-didodecyl-

quarterthiophene) (PQT), were utilized for thin-film fabrication through spin-coating, drop-casting, 

FTM, and friction transfer techniques and they characterized were carried out through polarized 

absorption spectroscopy, polarized Raman spectroscopy, interference microscope,  X-ray 

diffraction, grazing incidence X-ray diffraction, and atomic force microscopy. To investigate the 

effect of thin-film morphology on their transport characteristics, their electrical measurements were 

conducted by fabricating thin-film transistors, Schottky diodes, and memristors. The device 

dimension and architectures were also varied to attain optimum electrical performance of OEDs. 

In order to accomplish the aim of efficient fabrication and commercialization of organic 

electronics, certainly, there is a need for the development of efficient device fabrication technology 

aiming towards,  

1. Cost-efficient 

2. Large area thin film fabrication and swift characterization for efficient optimization 

of film morphology   

3. Capable of increasing orientation and crystallinity of the films  

4. Freedom of film’s thickness and morphology tuning 

5. Minimum material wastage 
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6. Environmentally sustainable system 

7. Uncomplicated processes with simple instrument and ease of handling 

8. Development of analytical/characterization techniques for efficient utilization of 

existing technology and further development.   

As discussed various techniques have been reported for improving the crystallinity of the 

thin films and many of them, like FTM, friction transfer, solution-shearing, etc., lead to the 

inexpensive fabrication of large-area SP thin film. Corresponding thin film morphology, an implicit 

function of various casting parameters, can be optimized through a series of film fabrication by 

tuning the parameters and comparing their characteristics. Besides, position-dependent 

morphological variation is another big issue with large area SP thin films. There are many 

sophisticated techniques, atomic force microscopy, X-ray diffraction, near-edge x-ray absorption 

fine structure spectroscopy, variable angle spectroscopic ellipsometry, etc., through which precise 

microstructural characterization of SP thin films is performed but they are not suitable for swift 

characterization of large-area thin films (of several cm2).  2D-positional mapping technique was 

developed for swift microstructural characterization of thin-films and fast optimization of 

experimental parameters resulting in charge transport uniformity at large-scale.  With this mapping 

technique, position-dependent absorption spectra were measured at varying locations through the 

aligned light source and multichannel detector and by the controlled movement of the sample stage. 

The sample was scanned along multiple lines by comparing the intensity, broadening, and shifts of 

absorption spectra a map of microstructural distribution throughout the thin film was realized. 

Further, as transport characteristics of OEDs primarily depend on the thin film morphology 

and the interfacial qualities, therefore, the effect of the interface and the thin-film morphology on 

in-plane and out-of-plane charge transport were studied. To analyze the effects on vertical charge 

transport, Organic Schottky diodes were fabricated with varying metal/SP interfaces, and the 
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morphology of the SP film was also varied by opting different casting techniques. An extensive 

transport model was also developed for calculation and comparative analysis of their transport 

parameters. In-plane charge transport was studied by fabricating organic field transistors, in 

bottom-gated top contact device architecture on bare and self-assembled mono-layer treated 

substrates (Si/SiO2). On annealing, conformational changes in the thin film were observed which 

also varied depending on the substrates’ surface energy. Consecutive effect on in-plane charge 

transport was also recorded and to interpret a pertinent carrier-transport mechanism was proposed 

in light of the obtained results from temperature and interface dependent electrical and optical 

characterization of the friction transferred PBTTT thin-films. Further efforts were also dedicated 

towards environmentally sustainable large scale fabrication of OEDs. In this regard, a new film 

fabrication technique was also developed which interestingly provided significant improvement in 

film crystallinity and in-plane charge transport.  

 

1.5 Organization of the Thesis 
Chapter 1 introduces the concerns related to the present state-of-art in organic electronics, 

problems related to thin-film fabrication techniques for SPs, the need for comprehensive 

understanding pertaining to the SP/dielectric, and SP/metal interfaces and their implication on the 

charge carrier transport. The theory of electrical conduction in SPs, their charge carriers, energy 

band as well as charge carrier transport, with existing thin-film fabrication techniques has been 

discussed in detail followed by challenges currently being faced and justification about the aim of 

the present research work conducted. 

 

In chapter 2, a brief outline of the SPs like P3HT, PBTTT, PQT utilized in the present thesis, 

their thin-film processing adopting spin-coating, drop-casting, floating film transfer, and friction 
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transfer techniques. Various techniques used not only for the characterization and analysis of the 

oriented thin films but also for fabrication and analysis of various organic electronic devices have 

been discussed in detail. 

 

3rd chapter deals with the development of a novel 2D-positional mapping technique for the 

swift microstructural characterization of the large area oriented thin-films and fast optimization of 

experimental parameters resulting in charge transport uniformity. With this mapping technique, 

position-dependent polarized absorption spectra were measured at varying locations utilizing the 

aligned light source and multichannel photonic analyzer along with the XY motion-controlled 

mobile sample stage. The sample was scanned along multiple lines by comparing the intensity, 

broadening, and shifts of absorption spectra to map the uniformity and microstructural distribution 

throughout the thin films. 

 

Chapter 4 deals with the investigation on the effect of the interface and the thin-film 

morphology on in-plane and out-of-plane charge transport. To analyze the effects on vertical charge 

transport, organic Schottky diodes (OSDs) were fabricated with varying metal/SP interfaces and 

morphology of the SP films utilizing different thin-film fabrication techniques. A new generalized 

model was proposed for the analysis of charge transport and extraction of the device parameters. 

In-plane charge transport was studied by fabricating organic field transistors (OFETs). Results on 

the temperature and interface dependent electrical and optical characterization of OFETs utilizing 

friction transferred PBTTT thin-films led to the proposal of a pertinent carrier-transport mechanism 

to interpret the results pertaining to the implications of the conformational changes owing to the 

change in the substrates’ surface energy and annealing temperature.   
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In chapter 5, efforts were directed towards the development of the large area and 

environmentally benign thin film fabrication and their improvisation followed by their utilization 

to fabricate OEDs like OSDs, OFETs, and organic memristors. Fabrication of large-area thin films 

of highly extended PBTTT chains was demonstrated improvised Friction transfer technique. 

Interestingly, by optimizing the casting conditions and placing a little amount of borderline solvent, 

oriented PBTTT thin films were drawn on low surface energy/hydrophobic substrates. Subsequent 

optical characterization of the thin film revealed a highly extended polymer backbone, for instance 

(003) peak corresponding to the polymer’s repeat unit was evidenced from the in-plane grazing-

incidence X-ray diffraction pattern. It is worth noting that this peak is rarely observed in this class 

of SPs due to unavoidable twists and folds occurred through many other casting techniques. Further 

facile in-plane charge transport was demonstrated by fabricating OFETs which consequently 

shown significant enhancement in the charge carrier mobility. 

 

Finally, chapter 6 of this thesis presents the overall conclusion of the whole work 

summarizing the main results along with future work and their perspectives.  
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Chapter 2: Materials and Methods 
 

2.1 Materials 

 

Figure 2.1 Chemical Structure of different π-conjugated semi-conducting polymer with their abbreviation 
used.  (a)  Regioregular poly(3-hexylthiophene), (b) Poly(3,3ꞋꞋꞋ-didodecyl-quarterthiophene), (c) Poly[2,5-
bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene], (d) Poly[4,8-bis[(2-ethylhexyl)oxy] benzo [1,2-

b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]. 

 

Poly(3,3ꞋꞋꞋ-didodecyl-quarterthiophene) (PQT-C12) was synthesized following the repotrd 

method57 . Further, after synthesis the semiconducting polymer (SPs) was purified through Soxhlet 

extraction technique58,59. Regioregular poly(3-hexylthiophene) (RR-P3HT) and poly(3,3ꞋꞋꞋ-

didodecyl-quarterthiophene)  (PBTTT-C14) were purchased from Sigma Aldrich. Poly[4,8-bis[(2-

ethylhexyl)oxy] benzo [1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-

ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl] (PTB7) was supplied by from 1-Material. The 

chemical structure of the SPs are shown in Figure 2.1. Super dehydrated solvents (chloroform, 

chlorobenzene, 1,2-dichlorobenzene, toluene) were supplied by Sigma Aldrich. 

PTB7

(a) (b)

(c) (d)

RR-P3HT
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2.2 Thin Film Fabrication Techniques 

 2.2.1 Spin coating technique 
The most common technique to coat the laboratory scale thin film is the spin coating technique. 

From the initial stage of the field of organic electronics, it has been utilized for fabricating various 

organic thin films using organic semiconductors, dielectric materials, as well as occasionally the 

conducting materials also. To cast the film, at first, the desired material is dissolved in an 

appropriate solvent and further, the solution is placed on the substrate which was fixed on the 

spinning chuck of the spin-coating machine. To fix the substrate on the chuck it is connected to a 

vacuum pump which provides a mild vacuum, consequently, the substrate is adhered/sucked to the 

chuck. The digital image of the laboratory spin-coater along with the coating mechanism is shown 

in Figure 2.2.  The spin speed and the time of spinning can be varied according to the requirement 

and the can be manually set in the operating program. The key parameters to decide the thickness, 

morphology and the crystallinity of a spin-coated film are the solution concentration and spin speed.  

The type of solution is also crucial because the volatile evaporates fast and lead to speedy drying 

of the film with higher thickness compared to that coated with less volatile solvents.        

 
Figure 2.2 Digital image of a spin coating unit (a) and corresponding film fabrication mechanism. 
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2.2.2 Floating-film Transfer Method (FTM) 
The floating-film transfer method is a recently developed technique to coat the oriented 

semiconducting polymer thin films60,61. In this technique, at first, the polymer thin films are 

fabricated at the interface of hydrophilic liquid and air. For oriented film fabrication, generally, the 

volatile solvent is selected and as the hydrophilic liquid substrate mixture of ethylene glycol and 

glycerol is utilized. The hydrophobic liquid (acting as the substrate for film fabrication) is pooled 

in a tray and ~10-15 µl of the polymer solution is placed on it. The polymer solution gets spread 

on the liquid substrate and simultaneously the solvent is evaporated. Moreover, during the 

expansion of the film the viscous hydrophobic liquid substrate exerts force in opposite direction to 

the expansion. Thus due to the simultaneous action of two opposing forces, the polymer backbones 

are oriented and since the solvent also gets evaporated fast, the oriented thin film is obtained. The 

film morphology can be optimized by tuning the casting parameters, which are: i) solution 

concentration, ii) viscosity of the liquid substrate, and iii) temperature of the liquid substrate. The 

solid film can easily be transferred to any desired substrate by stamping. Recently the expansion 

of the polymer thin film was controlled using a custom made slider which led to the formation of 

large area (>20 cm2) oriented thin films with just one drop of the polymer solution, as shown in 

Figure 2.3.  

 

Figure 2.3 Schematic representation of thin-film fabrication by Floating Film Transfer Method and the 
digital image of a representative thin film. 
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Thus this technique is very cost-effective. The key advantage of this technique is that it qualifies 

the layer by layer casting of the solution-processed polymer thin films without damaging the 

existing layers on the substrate.      

 

2.2.3 Friction Transfer Technique (FT) 
Generally, the friction transferred thin films is fabricated on the bare substrate (glass, silicon or 

Si/SiO2) due to better adherence of the thin films; however, with some polymers with lower contact 

angle, the FT thin films can be cast on SAM treated substrate also. At first, a pellet is fabricated 

with the desired conjugated polymer powder for which it is compressed under ~1280 kgf/cm2 for 

around 3 h. Subsequently, the pellet is sliced into two semi-circular parts. The flat surface of the 

semi-circular pellet-cut, attached to a pellet-holder, is fixed on the substrate mounted on the mobile 

stage, as shown in Figure. 2.4. 

 

Figure 2.4 Schematic Illustration of Friction Transferred Technique for thin film fabrication. A digital 
image of representative friction transferred polymer thin film. 

 



P a g e  | 31 Kyushu Institute of Technology  

For friction transferred film fabrication, the pellet is squeezed and drawn on the substrate by 

moving the stage. Through this technique, the polymer backbone is aligned along the drawing 

direction and the extent of orientation is optimized by varying the casting parameters, which are 

squeezing load, stage speed, and substrate temperature. In the case of friction transfer of PBTTT 

C14, it was observed that at lower speed the thin films were more oriented which is further 

discussed in Chapter 4.  In this casting technique, the shear force between the pellet and the 

substrate acts along the substrate plane, therefore generally face-on conformation is induced to the 

polymer backbone62. Although by annealing at high temperature there are chances for 

conformational change from face-on to edge-on63, the extent of conformational change is highly 

sensitive to the substrates surface energy. 

 

2.2.4 Drop Cast Technique 

Generally, a high boiling point solvent is preferred for thin-film fabrication through the drop-

cast technique which assists in slow solvent evaporation. Drop-casted films are prepared by placing 

drops of the polymer solution on the desired substrates which further covered with a petri-dish in 

order to control the slow solvent evaporation rate, the schematic illustration for thin-film 

fabrication is shown in Figure 2.5. Due to slow solvent evaporation, the polymer backbone gets 

sufficient time to attain more thermodynamically stable edge-on conformation, and thin-film 

crystallinity increases due to improved self-assembly.       
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Figure 2.5 Schematic Illustration of Drop-cast Technique for thin-film fabrication.  

 

2.3 Device Fabrication and Evaluation  

2.3.1 Substrate Preparation 
OFETs were fabricated in bottom gated top contact architecture on Si wafers which has heavily p-

doped Si (as the gate) and thermally grown SiO2 layer (of thickness 100 nm or 300 nm) at top 

acting as the dielectric. The capacitance values for the dielectric layers of thickness 100 nm and 

300 nm were 30 nF/cm2 and 10 nF/cm2 respectively. The substrates were cleaned thoroughly by 

ultra-sonicating them sonicating in acetone, isopropanol, and ultra-pure water for 10 minutes each. 

Further, the substrates were dried and annealed at 150 °C under ambient conditions. Some of the 

substrates were also subjected to hydrophobic treatment by immersing them in the 10 mM solution 

of octadecyltrichlorosilane, following the reported literature31.   

For vertical device structure either ITO coated or plane glass substrates were utilized. To 

pattern, the bottom electrode desired portion of ITO was covered with polyimide tape and the 

remaining area was etched using the mixture of ZnO powder and hydrochloric acid. All the 

substrates were thoroughly cleaned similarly mentioned above followed by annealing at 150 °C for 

1 h. Bottom electrodes on bare glass substrates were deposited by patterning thermally evaporated 

metal, under a high vacuum (pressure below 10-6 Torr).     
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2.3.2. Deposition of Active Layers and Electrodes 
Isotropic thin-films of organic semiconductors were cast through spin-coat and drop-cast 

techniques whereas oriented thin films were deposited through FTM and friction transfer 

techniques. The top electrodes for OFETs i.e., source and drain, were patterned using Ni-mask of 

desires channel length and width as shown in Figure 2.6. For the vertical device structure, polymer 

thin films were coated on a glass substrate with the patterned bottom electrodes and the top 

electrode was deposited as metal strips orthogonal to the bottom electrodes, as schematically shown 

in Figure 2.7. For electrical characterization, the devices were fixed in a rigid box having 

conducting pins to which the electrodes were connected using thin gold wires.  

 

 

Figure 2.6 Digital image nickel shadow mask put on organic semiconductor film coated on Si substrates (a)  and the 
bottom section of (a) shows thermally evaporated gold source and drain electrodes patterned with the shadow mask. 
Scanning electron microscope images of the channel width (W) of ∼2 mm (b) and channel length (L) of ∼20 µm (c).   
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Figure 2.7 Schematic representation of the organic Schottky diodes with different architecture with 
Schottky contact at above (a) and below (b) the semiconductor layer; side views (left) and top views (right).   

 

2.3.3 Electrical characterization 
The electrical characterization of the devices was conducted under mild vacuum, pressure ~ 10-2 

Torr. The current-voltage measurements of both OFET and diodes were conducted using a Keithley 

2612 two-channel source-meter interfaced with a computer. For OFET’s characterization, both the 

channels were operated to connect its three terminals. The field effect mobility (μ), the threshold 

voltage (Vth), and ON/OFF ratio of the OFET were estimated from their transfer characteristics as 

depicted in Figure 2.8. To estimate the μ, the saturation region the  √𝐼𝐼𝐷𝐷𝐷𝐷 vs 𝑉𝑉𝐺𝐺𝐺𝐺 characteristics 

were analyzed with the help of Eq. (2.1 and 2.2). 
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Figure 2.8 Representative transfer characteristics of OFET with the active layer of PBTTT-C14. 

 

     

𝐼𝐼𝐷𝐷𝐷𝐷 =  
𝐶𝐶𝑖𝑖𝜇𝜇𝜇𝜇

2𝐿𝐿
 (𝑉𝑉𝐺𝐺𝐺𝐺 − 𝑉𝑉𝑇𝑇𝑇𝑇)2  (2.1) 

 

After differentiating Eq. (2.1), rearranging and putting ∂�𝐼𝐼𝐷𝐷𝐷𝐷

∂𝑉𝑉GS
= 𝑧𝑧 the saturation mobility of an 

OFET can be written as follows: 

     

𝜇𝜇 =  
2𝑧𝑧2

𝐶𝐶𝑖𝑖
𝑊𝑊
𝐿𝐿

 
(2.2) 

 

The electrical performance of the organic Schottky diodes were conducted using one of the 

channels of the same source-measure unit as above. The lnJ –V plot of RR-P3HT based organic 

Schottky diode is shown in Figure 2.9. The diode parameters, i.e., reverse saturation current (J0), 

ideality factor (𝜂𝜂), and barrier height ( 𝜙𝜙B ) were calculated using the following expression 

corresponding to thermionic emission pphenomena64–67: 



P a g e  | 36 Kyushu Institute of Technology  

 𝐽𝐽 = 𝐽𝐽0 �exp �
𝑞𝑞𝑞𝑞

𝜂𝜂𝜂𝜂𝜂𝜂
� − 1� (2.3) 

Where, 𝐽𝐽0 = 𝐴𝐴∗𝑇𝑇2 exp �−
q𝜙𝜙B

𝑘𝑘𝑘𝑘
� (2.4) 

Here J is the current density through the diode and V represents the applied voltage across it. k 

is the Boltzmann constant A* is Richardson constant, T represents the ambient temperature and q 

is the electronic charge. At room temperature, when forward bias V > (3kT/q), the thermionic 

emission model Eq. (2.3) can be approximated Eq. (2.5) 64–67 

 𝐽𝐽 = 𝐽𝐽0 �exp �
𝑞𝑞𝑞𝑞

𝜂𝜂𝜂𝜂𝜂𝜂
�� (2.5) 

From Eq. (2.5), 𝐽𝐽0 can be estimated by extrapolating the linear section of the lnJ versus V  plot 

to V = 0 V. Moreover, the 𝜂𝜂 is obtained from its slope. Therefore, calculating 𝜂𝜂 Eq (2.5) is 

differentiated and rearranged resulting in Eq. (2.6).  

 
𝜂𝜂 =

𝑞𝑞
𝑘𝑘𝑘𝑘

d𝑉𝑉
d(ln𝐽𝐽)  

(2.6) 

It was observed that the lower slop region which results in a higher value of 𝜂𝜂 is more 

appropriate because in that region only the nonlinearity was evidenced in J versus V plot which is 

the typical nonlinearity as an effect of thermionic emission as described in Eq. (2.3). 
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Figure 2.9 (a) lnJ versus V  plot for the organic Schottky diode with the device as schematically shown 
in the inset. Reproduced with permission68. Copyright (2019) American Institute of Physics.  

 

Further, to measure the frequency response of the organic Schottky diodes, it is connected in 

series with a load resistor and a variable frequency AC-voltage source (Multi-Function Generator, 

WF1974). An oscilloscope (Agilent MSO-X 2004A) was connected across the resistor to monitor 

the ripple voltage. The rectified output voltage across the load resistance was measured and was 

compared with the input signal to determine the optimum frequency limit of the diode.     

 

2.4 Thin-film Characterization  

2.4.1 Ultraviolet-visible spectroscopy 
When light is incident on organic materials having π electrons, it can be absorbed partially 

depending on the energy band gap in the organic material. Because the wavelength which 

corresponds to the required energy for exciting the ground state π electrons to a higher state π* 

orbital, is maximum absorbed and the λmax can also vary depending on the film crystallinity. 

Therefore the resulting absorption spectra provides many key information regarding the sample. In 

this thesis work, for UV-Vis-NIR absorption spectroscopy the polymer thin film was coated on a 
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glass substrate and characterized by a dual-beam spectrophotometer (JASCO V-570). Moreover, 

to characterize the extent of optical anisotropy (due to oriented polymer backbone) in the thin film, 

a Glan−Thompson prism was also kept between the sample and the light source. Due to incident 

light, the π-π* transition occurs in the conjugated polymer and the corresponding dipole moment 

lies along the polymer backbone direction. Thus if the polymer thin-film is oriented, then the 

incident linearly polarized light be absorbed maximum when the polarization direction of the 

incident light is kept parallel to the backbone orientation direction (∥). Similarly, the absorbance 

will be minimum, when they are orthogonal (⟘). Further by comparing both of these absorbance 

values, the extent of orientation can be estimated in terms of dichroic ratio (DR) =A∥/A⟘, where A∥ 

represents the maximum absorbance at λmax-∥ (the wavelength corresponding to which the parallel 

absorption spectrum exhibits the maximum absorbance value) in the case of ∥ incident light and 

A⟘ represents the absorbance value of spectra when the incident light is polarized ⟘. 

  

 

Figure 2.11 Digital image of (a) JASCO V-750 UV-vis spectrophotometer, (b) beam area scanned on the 
substrate, and its schematic is shown in the inset, and (c) Glan- Thomson prism utilized for polarized 
absorption spectroscopy. 
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2.4.2 X-ray Diffraction (XRD) 
XRD measurement reveals the crystallinity, and macromolecular arrangement present in 

the thin films of organic semiconductors. The semiconducting polymers can attain stacking along 

any of the three-axis which simply can be defined as i) along the alkyl side-chains (a-axis), ii) along 

the intermolecular p-p-stacking (b-axis), and iii) along the polymer backbone, i.e., monomer repeat 

units (c-axis). Depending on the presence of such stacking in the polymer thin films (a00), (0b0), 

and (00c) peaks respectively can be obtained in the XRD pattern. The polymer backbone can attain 

three types of conformations with respect to the substrate, which is edge-on, face-on, and end-on11. 

Therefore, out-of-plane and in-plane XRD measurements are required for proper analysis of the 

polymer thin film. Out-of-plane XRD measurement provides the information regarding the type of 

stacking along the film thickness, and in this case, the typical θ - 2θ XRD measurement can be 

conducted, as schematically shown in Figure 2.12 (a). In this thesis work, such measurements were 

conducted by a Rigaku X-ray diffractometer. However, in this setup the incident X-rays are not 

surface sensitive, therefore, it is not appropriate for in-plane characterization. Further, for in-plane 

measurements, the X-ray was incident at the grazing angle (ω) with respect to the substrates. When 

the grazing incidence angle is kept below the critical angle (ω < ωc) the incident X-rays are totally 

externally reflected because of its index of refraction being <1.  Consequently, the evanescent field 

propagates within the sample which is surface sensitive. Hence, based on  this mechanism the in-

plane grazing incidence X-ray diffraction (GIXD) measurements are conducted to characterize the 

microstructural distribution along the polymer thin film. In this thesis work, the in-plane GIXD 

measurements were conducted through Rigaku smart lab X-ray diffractometer. A typical schematic 

for GIXD measurement is shown in Figure 2.12 (b).   

During in-plane GIXD measurements, by keeping the incident X-ray at an appropriate ω 

with respect to a film (substrate is rotated in its plane), the surface and near-surface microstructures 
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are characterized. Since semiconducting polymer (having quasi 1-dimensional structure) can be 

oriented in the thin film, therefore, to characterize the anisotropic macromolecular arrangement in 

the plane of the film, in-plane GIXD measurements were conducted by keeping the scattering 

vector  (S) parallel (χ = 0°) and perpendicular (χ = 90°) to orientation direction11,69,70.  Further, by 

rotating any two of X-ray source, sample, and detector; along out-of-plane of the film (considering 

the Bragg diffraction conditions), macromolecular arrangement along the film thickness is obtained.  

 

 

Figure 2.12 Scheme for out-of-plane XRD (a) and in-plane GIXD (b) measurements. Reprinted with 
permission from70. Copyright 2020 American Chemical Society. 

 

2.4.3 Atomic Force Microscopy (AFM) 
AFM is a sophisticated measurement technique which can characterize the atomic level distribution 

on the film, also known as the surface topography. The working principle of AFM is, in this 

technique the differential analysis of the atomic level interaction between the AFM tip and the 

sample surface reveals the surface morphology. Through this technique, any type of sample 

(conducting film, semiconducting film, and insulating film) can be efficiently characterized. The 

AFM tip gets deflected due to force between the tip and the sample when the cantilever is brought 

closer to the surface of the sample. The interaction between the tip and the surface can be of various 

types such as van der walls, chemical, capillary, mechanical, or electrostatic, etc. Generally for 

characterizing the soft films like that of semiconducting polymers, the tapping mode AFM 

measurement is preferred, which decreases the chance of sample damage or frequent tip 

contamination. During AFM measurement, the bending of the cantilever is recorded by focusing a 

laser beam on its back (opposite to the tip side), which further is reflected. The reflected beam is 
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detected by a position-sensitive photodetector, which subsequently converts it into an electrical 

signal. Hence the bending in the cantilever (due to tip-surface interaction) is finally converted into 

the electrical signal. In this thesis work, AFM measurements were conducted through a JEOL 

SPM5200 with Olympus probe (OMCL- AC200TS-C3) setup (digital image is shown in Figure 

2.13) which was operated in the tapping mode.  

 

 

Figure 2.13 Digital image of the AFM measurement setup 
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Chapter 3. 2D Positional Mapping for Swift Microstructural 

Characterization of Large Area Thin-films 
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3.1. Introduction 

Organic semiconductors have drawn widespread attention in the recent past due to their 

vital application in diverse areas of flexible, wearable, and transparent electronics71–73. Inexpensive 

and uncomplicated solution based techniques for fabricating organic electronic device makes it a 

potential candidate for large scale fabrication of flexible electronics55,74,75. In this regard, SPs with 

their better solution rheology and high solubility in common organic solvents became more 

desirable for printed electronics14. Charge carrier transport in organic semiconductors occurs 

through π−electron clouds along the conjugated backbone or overlapped between adjacent 

molecules, assisted inter and intra-chain as well as inter-domain hopping76,77. The recent past has 

witnessed a huge improvement in transport characteristics of OSCs by enhancing thin-films 

crystallinity and macromolecular ordering through various casting techniques11. The quasi-one-

dimensional nature of SPs plays a significant role in deciding the device performance. Especially, 

dramatic enhancement in µ of the SPs is expected while orienting the polymer backbone along the 

OEFTs′ channel direction11,26. For instance, significant enhancement in the µ of SPs, reaching 

beyond 10 cm2/V⋅s, has been reported by orienting the SP backbone78–80. However, 

morphologically uniform thin-film fabrication and their reliable characterization at large is one of 

the existing challenges to be addressed before the anticipated commercialization of organic 

electronics. Various technologies have been developed to fabricate large area thin films, such as 

FTM81, solution shearing55, dynamic-template-directed orientation33, etc. However, for large area 

solution processed thin films, their thickness and morphological variations are should be controlled 

in order to obtain device reproducibility, which instigates the need for swift and precise 

characterization of distribution in microstructural characteristics of the thin films. There are various 

sophisticated techniques for microstructural characterization of the thin-films, for instance, XRD, 
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GIXD, AFM, atomic force microscopy, near edge x-ray absorption fine structure spectroscopy, 

variable angle spectroscopic ellipsometry, polarized absorption spectroscopy etc.69,70,82,83; however, 

it may be a troublesome job to utilize them for large scale characterization. Considering the 

inevitability of swift and economical scale characterization of the thin films, a new technique for 

two-dimensional (2D) positional mapping of thickness and macromolecular ordering in large area 

thin films was developed. In this mapping technique, the point-areas of thin-film coated on glass 

substrate were illuminated with a white light beam, and the transmitted light was collected by a 

multichannel detector. Due to simultaneous illumination and detection in the whole wavelength 

region for each point, a complete absorption spectrum was generated instantaneously. Using the 

mobile stage whole sample was characterized in no time. Since the absorbance corresponding to 

different wavelength depends on the material characteristics as well as thin-film morphology84, 

therefore, by integrating measured absorption spectra the microstructural distribution throughout 

the sample was obtained.  

 

3.2. Experimental Details 

PBTTT-C14, P3HT, dehydrated chloroform, 1,2-dichlorobenzene, were purchased from 

Sigma Aldrich. Two types of spin-coated samples were fabricated on glass substrates (25 mm × 10 

mm). For one the casting solution was prepared by dissolving PBTTT-C14 in 1,2-dichlorobenzene 

in concentration 0.25% (w/w), which was spun at 1500 rpm for 120 s. The other solution was made 

with P3HT by dissolving it in super dehydrated chloroform in concentration 1% (w/w), which was 

spun at 2500 rpm for 40 s. For FTM film fabrication PBTTT-C14 was dissolved in hot chloroform 

in the concentration 1% (w/w). Further large area floating-films were prepared by placing one drop 

(∼15 µL) of the solution on the orthogonal liquid substrate. As the liquid substrate, a mixture of 

ethylene glycol and glycerol in 3:1 ration was properly stirred and kept at temperature ∼ 55 ℃. The 
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unidirectional film growth was guided by the inclined surface of the custom made slider as 

schematically shown in Figure 2.3. Samples were stamped on 25 mm × 10 mm glass substrates 

from three different locations of ribbon-shaped thin-film. The samples were characterized by a 

conventional double beam UV–Vis spectrophotometer (JASCO V-570) and 2D positional mapping 

technique, system details are provided in the next section. 

 

 3.3. Results and Discussion 

3.3.1. Setup and Operating Principle of 2D Positional Mapping: 

Photonic multichannel analyzer (PMA), (C7473-36, Hamamatsu Photonics, Japan) is the 

central part of the mapping system. The other internal components are a halogen lamp (Megalight 

100, Schott, IBE SMT Equipment, Magnolia) coupled with optical fiber and focus lens, a 2D 

mobile stage (Stepping motor-drive SGSP stage/TSDM series, Sigma Koki, Japan) interfaced with 

a 2D stage controller (Mark-12, Sigma Koki, Japan), a sample holder fixed to the mobile stage, a 

digital function generator (DF1906, NF Corporation, Japan), a polarizer fixed on a rotation 

motorized stage, SGSP-40YAW, Tamagawa Seiki, Japan, and a 4-axis stage controller (SHOT-

304GS: 4 axes, Sigma Koki Co., Ltd., Japan) coupled with controller pad (CJ-200, Sigma Koki 

Co., Ltd., Japan) for controlled rotation of the polarizer. All the components were assembled as the 

schematic diagram shown in Figure 3.1. PMA which consists of a Czerny-Turner type 

spectrograph and thermoelectrically cooled back-thinned charge-coupled devices (BT-CCDs) as 

photodetectors with electronic shutter function. An array of 1024 photosensitive BT-CCDs is there 

inside the PMA to accomplish multichannel spectroscopy. The multi-channel detector and the 

diffraction grating are rigidly fixed to get reproducible results. The shutter connected to the 

photodetector unit was controlled through a pulsed signal produced by the function generator. An 

illustrative schematic for the mechanism of multichannel spectral detection inside the PMA has 
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been schematically shown in Figure 3.2. The 2D mobile stage with a sample holder was fixed at 

∼10 cm distance from the focus lens to get optimum illumination intensity and for easy handling.  

The effective aperture of the optical fiber of the PMA has a diameter of 1 mm, which 

limits the least possible area to be scanned, to a diameter of 1 mm. In the present setup, a mask 

with an orifice in the range of 0.1 mm - 0.9 mm was placed before the detector optical fiber to 

control the light-receiving area. In the present system, the possible range of stage speed was 

between 1 mm/s to 10 mm/s. The rate of signal detection was controlled by tuning the shutter 

opening frequency rectangular pulsed signal (between 0.1 mHz to 2 MHz).  Since the sample stage 

is mobile, so the ON state of the pulsed signal should be such that the PMA can receive the 

transmitted beam corresponding to each point area without any interference from the neighboring 

point area. To avoid the interference, the ON state duration of the rectangular pulse signal was 

fixed to 20 ms (Figure 3.1), it is also the lowest limit of exposer time for the detector of PMA.  
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Figure 3.1 (a) Schematic illustration and (b) Digital image of 2D positional mapping set-up. (c) The 
magnified image to show adjustment of stage, illumination source, and detector. Reprinted with 
permission85.  Copyright: 2019, Elsevier. 

 

 

Figure 3.2 Schematic illustration for the working mechanism of spectrograph inside Photonic Multi-channel 
Analyzer. Reprinted with permission85.  Copyright: 2019, Elsevier. 
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White light coming from the halogen lamp with a beam width of 5 mm was focused at a 

point area on the sample and the transmitted beam was collected by the aligned optical fiber 

connected to PMA. Inside PMA, the beam was collimated and dispersed by the spectrograph in 

constituent wavelengths. The dispersed optical signal was received by the array of photodetector 

leading to the formation of a complete absorption spectrum for the point area. For integration and 

analysis of the absorption spectra, PMA was interfaced with a computer. To improve the signal to 

noise ratio five consecutive absorbance data of the absorption spectrum were averaged out and 

such spectra corresponding to each point areas were further integrated. For more accurate mapping 

of the thin-film the area of the point and the gap between two points was kept as minimum as 

possible by optimizing measurement parameters such as i) mask diameter, ii) stage speed, and iii) 

shutter operating frequency with the following correlation:  

 

3.3.2. Thin-film Characterization: 
In order to map the thickness and/or molecular orientation, thin-film cast on a glass substrate was 

mounted on the substrate holder attached to the mobile stage. The absorbance of the bare substrate 

was measured as a baseline before characterizing the thin film cast on the same substrate. Further, 

the variation in peak-absorbance of the absorption spectra was correlated with the corresponding 

thickness of the thin-films using Beer-Lambert law85,86. Position dependent absorption spectra were 

measured at continuous point areas along multiple lines through aligned light source and detector 

and by the controlled movement of the sample stage. Non-polarized and polarized electronic 

absorption spectra of the point areas were measured probe the variation of thickness and molecular 

orientation (if present), respectively.  

 Mask diameter =
Stage speed

Shutter operaing frequency
 Eq. (3.1) 
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3.3.2.1 Mapping of thickness variation:  

Uniform and pinhole-free thin films are essential for the fabrication of high-performance devices; 

however, but there are fewer reports about the uniformity of spin-coated films. To explore the 

thickness uniformity, 2D positional mapping of spin-coated PBTTT-C14 films was performed with 

measurement parameters as stage speed of 1 mm/s, mask diameter of 0.2 mm, and shutter operating 

frequency of 5 Hz with 10% duty cycle. Though spin-coated films seem to be uniform by the naked 

eye (Figure 3.3), the mapped thickness profile reveals that films are not that much uniform and 

films in the center region are thinner as compared to that towards edges. In Figure 3.3, the 

projection of the sample’s thickness profile in a horizontal plane, depicted by pink closed circles, 

represents the location of the corresponding mapped point-area on the sample. A partly magnified 

image shows the continuous arrangement of 25 point-areas (with a diameter of 0.2 mm) within 

5mm width. The whole sample was mapped point by point and the discrete thicknesses were 

integrated to visualize its thickness variation map. The increasing trend of thickness from the center 

towards the edges. Therefore, it can be claimed that small area spin coating might be good at the 

laboratory level but not much suitable for large area applications. Further to validate the reliability 

of this mapping technique, absorption spectra at a point area near the center measured by this 

technique and the absorption spectra obtained through conventional spectrophotometer were 

compared. From the perusal of Figure 3.3 it is clear that peak-absorbance, λmax, and vibronic 

features are almost similar in both cases. 
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Figure 3.3 2D positional profile of thickness (a-c) in the spin-coated thin films of PBTTT-C14 (d). (a) 
Arrangement of point area (with diameter = 0.2 mm) on the sample and corresponding thickness. Discrete 
(b) and integrated (c) thickness profile of the spin-coated film (d). Electronic absorption spectra of the films 
obtained through the mapping system (near center) (e) and conventional spectrophotometer (f). Output curve 
(g) and transfer characteristics (h) for OFETs fabricated using spin-coated films. Inset in (g) is the device 
architecture of the OFET, where OTS treated substrates were utilized and samples were annealed similarly 
to the earlier cases. Reprinted with permission85.  Copyright: 2019, Elsevier. 

 

3.3.2.2 Mapping of variation in backbone orientation:  

In order to map SP orientation, ribbon-shaped FTM tin-film of PBTTT-C14 was taken into 

consideration. When a drop of SP solution is placed at the interface of the slider and orthogonal 

liquid substrate, walls at both edges of the slider assist the unidirectional expansion of the SP 

solution leading to the formation of large area ribbon-shaped thin films, as schematically shown in 

Figure 2.3. Quick solvent evaporation and simultaneous action of opposing viscous force during 

film expansion result in solid oriented thin-film floating on the liquid substrate. In this work 

floating films of length >15 cm long along the expansion direction were fabricated on a hydrophilic 
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liquid substrate. To probe the variation in molecular orientation and thickness, three substrates (10 

mm × 10 mm) were used to stamp samples from the floating films. Each sample was taken at 5 cm 

gap from the film at different positions i.e. 1) far, 2) middle, and 3) near, from the slider side as 

shown in Figure 3.4. Thickness mapping of the samples was done similarly as the above-discussed 

case of spin-coated PBTTT-C14 samples. From the perusal of Figure 3.4, It can be seen that there 

is uniform thickness distribution in the far-end region of the film which can be attributed to higher 

freedom for the film expansion. For orientation mapping polarizer was placed between the 

illumination source and the sample and absorption spectra along (∥) and orthogonal (⟘) to ribbon 

width direction were me measured. The distribution of orientation (in terms of DR = A∥/A⟘) shown 

the opposite trend to that of thickness, as thinner films exhibited higher DR values and vice versa 

is also true. A close observation of the map of all three samples reveals that films are relatively 

uniform in the central area as compared to the peripheral region of the sample specimens.  This can 

be explained considering the fact that film expands in the forward direction from the slider end but 

it tends to expand along the width direction too and viscous force along the width will be more 

prevalent. To verify the mapped orientation of the thin films, the same samples were also 

characterized through the conventional spectrophotometer, corresponding polarized absorption 

spectra are shown Figure 3.3, which match very well with results obtained through 2D positional 

mapping system. 

 



P a g e  | 53 Kyushu Institute of Technology  

 

Figure 3.4 Mapped profiles of the thickness (a-c) and orientation intensity (e-g) for the PBTTT-C14 thin 
films fabricated by FTM (d). Corresponding polarized electronic absorption spectra (h-j) measured by 
conventional spectrophotometer is shown in the extreme right. Reprinted with permission85.  Copyright: 
2019, Elsevier. 

 

3.3.2.3 Mapping of Intermolecular Ordering: 

As discussed above, the peak absorbance was utilized to map thickness and SP orientation in the 

thin films. Besides, variation in the intensity, spectral width, and position of vibronic peaks can be 

utilized to map intermolecular interaction in the thin film87,88. To demonstrate it the spin-coated 

sample of a highly soluble SP, RR-P3HT was characterized through 2D positional mapping 

technique. In this case more volatile casting solvent, chloroform was chosen for film fabrication. 

Since rapid evaporation of the solvent can lead to higher morphological variations, which would 

be suitable to observe spectroscopic differences with more accuracy. The integrated peak 

absorbance of the whole sample reveals that the sample is non-uniform and the thinner region exists 
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near the center. To visualize the distribution in macromolecular assembly throughout the sample, 

the vibronic peaks of positional absorption spectra obtained through the mapping technique were 

analyzed in the light of Spano’s model. From the perusal Figure 3.5 variation in the vibronic 

shoulder in the absorption of spectra, measured at different locations along the diagonal, is clear. 

This is the evidence of variation in the P3HT thin-film crystallinity, which is known to promote 

the appearance of lower vibronic modes and arises due to the fibrous crystalline domain 

formation89–91. Especially, the growth of 0–0 modes in P3HT is discussed by Spano in detail 

correlating with the electronic structure of excitonic bandwidth (W) with intermolecular coupling 

transition energy, Ep, by Eq. (3.2) as shown below84. where A0-0 and A0-1 refer to respective 

intensities of 0–0 and 0–1 transition. Spano’s model was applied for the detailed and quantitate 

analysis of inter and intramolecular ordering84.  
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�
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(3.2) 

Ep denotes the vibrational energy at 0.18 eV 87,88. The calculated values of W are summarized in 

Table 3.1. The lower values of W were obtained for the central region of the thin film which 

corresponds to higher intermolecular ordering. Moreover, as discussed above the central region 

was also comparatively thinner. Therefore, it can be claimed that relatively slower drying near the 

spinning axis led to thinner and higher macromolecular ordering in the thin film.  
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Figure 3.5 Position-dependent variation in the absorption spectra in terms of of relative vibronic peaks. 
Each spectrum was measured through 2D positional mapping technique on the spin-coated RR-P3HT thin-
film. An integrated map of peak absorbance for continuous arrays point-areas (diameters ∼0.5mm) is shown 
in the inset. Reprinted with permission92. 

 

Table 3.1 The value of excitonic bandwidth (W) at different locations of the spin-coated (SC) as shown in 
Figure 3.5. The position-dependent absorption spectrum was measured through 2D positional mapping 
technique. Reprinted with permission92. 

Point location W (meV) 

(0, 0) 556.41 

(2, 6) 492.01 

(4, 11) 491.83 

(6, 17) 433.04 

(7, 20) 537.74 

 

3.4 Conclusion 
2D positional mapping system has been developed, which is capable of swift profiling variation in 

thickness, macromolecular orientation, and intermolecular ordering of large-area thin films. The 

application of the mapping system was successfully demonstrated using various oriented as well 

as non-oriented thin-films of thiophene based SPs. Thin films were prepared by ribbon-shaped 

FTM, and spin-coating methods. Positional mapping of spin-coated thin-films of PBTTT-C14 
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shown a gradual increase in the thickness from the spinning center towards the edges. Similarly 

the mapped distribution in thickness and macromolecular ordering in spin-coated RR-P3HT shown 

that the central region of the thin-film exhibited lower thickness and more uniform morphology 

and high macromolecular ordering as well. In the case of the ribbon-shaped FTM film of PBTTT-

C14, the far end region was more uniform and oriented as a consequence of higher freedom of 

expansion. The mapped thin-film morphologies were successfully verified by comparing them with 

the results obtained through conventional UV-Vis spectrophotometer. Hence, the 2D positional 

mapping technique can be successfully utilized to characterize the morphological distribution in 

the large-area organic thin-films for efficient thin-film fabrication and cost-effective utilization of 

the resources. Furthermore, in situ characterization during thin-films fabrication can also be 

explored as a further application of the mapping technique. 
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Chapter 4: Influence of Thin-film Morphology and 

Interfaces on Transport Characteristics of Organic 

Electronic Devices 
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4.1. Introduction 
The electrical performance of the semiconducting polymer (SP) based devices are highly 

sensitive to the bulk morphology of the semiconductor layer as well as the interfacial morphology. 

The interfaces can be divided into three categories, i) conductor/semiconductor (conductor/SC) 

interface which mainly influences the charge injection to and extraction from the organic thin films, 

ii) semiconductor/semiconductor (SC/SC) interfaces present in layer-by-layer34 structures, and iii) 

semiconductor/dielectric (SC/dielectric) interfaces mainly present in planar device structures11. 

Though conductor in conductor/SC interface can be any of various organic or inorganic conducting 

materials, for lucid understanding only metal/SC interfaces will be considered throughout this 

exposition. The effective resistance encountered at the metal/SC interface is termed as contact 

resistance (RC) which can be tuned by the varying the choice of metal, an organic semiconductor, 

and sometimes by an interlayer between them; however, the presence of trap states is well known 

to play a dominant role to determine the RC
42–46.  The report by Tsukagoshi and coworkers 

demonstrated a valuable insight to understand the effect of trap-sites present at the metal/organic 

interface43. Despite the lower work function of copper (Cu) with a higher hole injection barrier at 

the Cu/pentacene interface, resultant RC with Cu top contact was smaller than the corresponding 

Gold (Au) contact. Further, it can be argued that in the OFETs, if there exists a barrier for hole 

injection at source contact then there must not be any barrier for hole extraction where the 

metal/organic interface at both the contacts possesses a  similar band structure. Since the magnitude 

of RC was found to be of the same order, therefore, the domination of trap-states in determining RC 

cannot be avoided44. The effective resistance inside the organic thin-film along with that at the 

SC/SC interface, if present, can be considered under Bulk resistance (RB), which primarily depends 

on the thin-film crystallinity31,77,93,94. With a decrease in crystallinity of the thin-film effective 

carrier mobility decreases95 leading to the formation of space-charge inside the thin film96–101. The 
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effective resistance due to SC/dielectric interface primarily hampers the charge transport in planar 

device structure like OFETs102. The presence of dipoles at the dielectric interface acts as trap-sites 

for the induced charge carriers near the SC/dielectric interface102–104. Moreover, the interaction 

between the SP backbone and dielectric layers also affects the morphology of the organic-thin film 

near interface105. Therefore to understand the transport properties of the OEDs, exhaustive analysis 

of the effect of thin-film morphology and interfaces is crucial.  

In this chapter, the effect of the interfacial layer and the thin-film morphology on in-plane 

and out-of-plane charge transport have been discussed. To analyze the effects on out-of-

plane/vertical charge transport, Organic Schottky diodes (OSDs) were fabricated with varying 

metal/SC interfacial properties, and the morphology of the SP thin film was also varied by opting 

different casting techniques. Though there are previous reports which deal with the physical 

phenomena of the organic diodes by analyzing the experimental observations through theoretical 

models. These models were developed by considering the bulk phenomena, the charge 

injection/extraction phenomena at the interface, or by their combined effect, as a function of the 

applied voltage.96–101 However, the architecture-dependent deviation of the physical model from 

practical electrical characteristics remains a challenge.99,106,107 Herein we report a robust model 

incorporating both interface and bulk phenomena of the organic Schottky diode (OSDs) as a 

function of current. OSDs were fabricated with varying metal/SC interface at Schottky contact and 

the morphology of the active layer was also varied. Through the comparative analysis of their 

current density – voltage (J – V) characteristics, the influence of bulk and interface on vertical 

charge transport was demonstrated. A Schottky diode consists of a SC layer placed between an 

Ohmic and an Schottky contact,  for injection and blocking of current flow in forward and reverse 

bias, respectively108. Resultant rectification ratio (RR) of the diode depends on the quality of 

Schottky contact, high RR can be obtained with a large Schottky barrier. Most of the SPs in pristine 
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state show p-type behavior, therefore, low work-function cathode such as calcium, magnesium, etc. 

is recommended for efficient Schottky contact. Though with lower work-function they provide 

larger Schottky barrier, rapid device deterioration due to their less air-stability cannot be avoided109. 

Hence for optimum device performance, Al was selected as the electrode for Schottky contact with 

P3HT and Ohmic contact was realized with Au65. Besides the unique property of Al, a decrease in 

work-function after oxidation was utilized to improve RR of the OSDs40,110,111. A thin AlOX 

interlayer was placed between P3HT and Al to investigate their influence on the transport 

properties of the OSDs. The interfacial AlOX layer was also characterized through AFM, XPS, and 

UPS for better interpretation of its effect on the overall device performance. Further, to see the 

influence of bulk on transport characteristics, the crystallinity of the active layer was varied by 

changing the thin-film fabrication technique, such as spin-coating and drop-casting. The 

crystallinity of the thin-films was verified through GIXD measurements. Finally, implications of 

the interface and semiconductor layer on charge transport were analyzed various modeling 

equations. The modeling equations were designed by combining possible physical phenomena 

taking place at the metal/SC interfaces and inside the SP thin-film. 

For the analysis of in-plane transport properties, OFETs, in bottom-gated top contact device 

architecture, were fabricated. Since of dielectric’s surface energy and the presence of dipoles on it 

significantly affect the thin-film morphology102–104, therefore, for comparative analysis, the OFETs 

were fabricated on a bare and self-assembled monolayer (SAM) treated substrates (Si/SiO2). 

Highly oriented thin-films of PBTTT-C14, fabricated by friction transfer technique, were selected 

as a model to fabricate channel of OFETs. The thin-films were annealed at 100 − 200 ℃ on both 

types of substrates and corresponding morphological variations were investigated through grazing 

incident X-ray diffraction (GIXD) and X-ray diffraction (XRD). Further, the effect of thin-film 

morphology on transport properties was examined by fabricating OFETs and comparing their field-
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effect mobility and mobility anisotropy. It was observed that on the bare substrate µ∥ and µ∥/µ⟘ 

increased with annealing at the lower temperature (up to ~120 ℃) and decreased beyond this 

temperature. On the other hand, on SAM treated substrates, µ∥ consistently increased with 

annealing temperature and µ∥/µ⟘ followed the opposite trend. Besides, increased backbone-

orientation in the thin film was observed after annealing at a higher temperature (~180 ℃ ) as 

characterized through polarized UV-Vis absorption spectroscopy. Since absorption spectra can 

reveal the extent of macromolecular orientation only but not the film crystallinity, which is crucial 

for a clear understanding of the transport characteristics. Therefore, interface and annealing 

condition-dependent variations in the µ∥ and µ∥/µ⟘ of the thin-films were analyzed by considering 

their XRD and GIXD patterns. Ultimately a pertinent model regarding macromolecular 

arrangement was proposed in light of the obtained results from temperature and interface dependent 

electrical and optical characterization of the thin-film. 

 

4.2. Experimental Section 

4.2.1 Materials and Methods of OFETs 

4.2.1.1 Materials and Thin-film fabrication: 

PBTTT with MW > 50 kDa (product code: 753971-250MG) was purchased from Sigma Aldrich. 

Dehydrated hexamethyldisilazane (HMDS) was supplied by Sigma Aldrich. The other solvents 

were purchased from Wako Chemicals. The substrates (glass, Si, and Si/SiO2) were cleaned by 

following the procedure discussed in chapter 2. They were ultrasonicated in acetone, isopropanol, 

and ultrapure water for 10 minutes each. Further, the substrates were annealed for 1 h by keeping 

them on a hot plate with temperature fixed at 150 ℃. For SAM treatment using HMDS, cleaned 

and dried substrates were covered with HMDS droplets and placed in a closed glass petri dish and 
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kept at 50 ℃ for 1 h followed by sonication in dehydrated chloroform for 5 min and annealing at 

150 ℃ for 1 h. The polymer pellet was prepared according to the method reported earlier.62 Thin 

films of PBTTT-C14 were cast using friction transfer technique on the desired substrates by 

drawing the polymer pellet on it at a constant speed of 50 mm/min with a fixed squeezing load of 

3 kgf/cm2, as schematically shown in Figure 2.4.  

4.2.1.2 OFET fabrication and characterization: 

OFETs were fabricated in the bottom gate top contact device architecture on heavily p-doped 

silicon substrates with 300 nm thick thermally grown SiO2 at top which acted as the dielectric layer. 

For OFET fabrication and optical measurements, the thin-films were annealed at various 

temperatures for 3 − 5 min in Argon-atmosphere and subsequently cooled slowly to room 

temperature. Further, to complete the OFETs, Gold electrodes were thermally evaporated on the 

friction transferred PBTTT thin film (deposition rate ~ 1.5 Å/s under the pressure of ~ 10-6 Torr). 

A nickel shadow mask with channel length and width of 20 µm and 2 mm, respectively, was utilized 

to pattern the source and drain electrodes, digital image for masking is shown in Figure 2.6. For 

electrical characterization, the OFETs were kept under vacuum (pressure ~10-2 Torr) and the 

transfer and output characteristics were measured with Keithley 2612 two-channel source-meter.   

4.2.1.3 Thin Film Characterization:  

The electronic absorption spectra of thin films coated on glass substrate were measured by 

dual-beam spectrophotometer (JASCO V-570). A Glan-Thompson prism was placed between 

sample and the illumination source in order to measure polarized absorption spectra. The out-of-

plane XRD (θ-2θ) measurements were performed with Rigaku X-ray diffractometer whereas the 

in-plane GIXD (φ-2θχ) measurements were conducted through Rigaku smart lab diffractometer. 

For both the XRD and GIXD measurements, the samples were coated on Si substrates and some 

of them. It is to be noted that for the absorption spectroscopy, XRD, and GIXD measurements 
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corresponding to the OFETs fabricated on HMDS treated substrates, the corresponding glass or the 

Si substrates were also treated with HMDS.  

 

4.2.2 Materials and Methods of OSDs 

4.2.2.1 Materials  

Regioregular P3HT, super dehydrated chloroform, and super dehydrated chlorobenzene were 

purchased from Sigma Aldrich, Japan, and were used as received. Other cleaning solvents acetone, 

isopropanol was supplied by Wako Chemicals, Japan. 

4.2.2.2 Fabrication of Thin Film and OSDs  

The solution of P3HT in chloroform (with concentration1.5% w/w) and in chlorobenzene 

(with concentration 0.2% w/w) were prepared to fabricate the spin-coated and drop-casted films 

respectively. Glass substrates patterned with bottom electrode were utilized for the device 

fabrication. Drop-cast films were prepared by placing the P3HT solution on the substrates and they 

were covered with petri-dish for slow solvent evaporation.  The spin-coated films were prepared 

by placing the solution on the substrate fixed on the chuck of the spin-coater, followed by spinning 

it at 800 rpm for 5 s and then 1500 rpm for 40 s. The film fabrication step was conducted under 

ambient conditions and then they were dried by keeping them under vacuum. Further, the films 

were annealed at 150 ℃ for 20 min in the argon atmosphere. Then the films coated on the substrate 

were masked such that the top electrode can be deposited orthogonal to the bottom electrode. The 

top electrode was thermally evaporated under high vacuum (pressure ~10-6 Torr). OSDs were 

fabricated with the cross-sectional area of 4 mm2. Thermally evaporated Al and Au electrodes were 

utilized for making Schottky and Ohmic contacts, respectively. In some OSDs AlOX interlayer 

(Figure 4.1) was deposited before depositing a thick Al electrode at top. In such cases, at first a 

thin (of desired thickness, where the thickness value shown by the thickness monitor was taken 
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into consideration) Al layer was thermally evaporated on the P3HT layer, under high-vacuum 

followed by exposing them to ambient condition for ⁓ 1 hour to the oxidation of Al. Further, ∼60 

nm thick Al was thermally evaporated above AlOX layer to complete the OSD fabrication.  

 
Figure 4.1 Schematic representation for architectures of Schottky diodes fabricated with Al as top-contact 
pristine (a) and with AlOX interlayer (b) and with Al as bottom-contact. Reproduced with permission68. 
Copyright (2019) American Institute of Physics. 

 

4.2.2.3 Device and Thin Film Characterization 

Current versus voltage measurements of OSDs were conducted under vacuum through the 

same source-meter (Keithley 2612) as discussed above but in this case, only one channel was 

utilized. Out-of-plane XRD and in-plane GIXD measurements of the spin-coated and drop-casted 

films were carried by Rigaku X-ray diffractometer and Rigaku smart Lab respectively. 

Photoelectron spectroscopy (XPS and UPS) measurements were conducted through the Shimadzu 

Kratos Axis-Nova spectrometer. Al Kα excitation source was used at pass energy of 80 eV with the 

energy resolution of 1000 meV. For the XPS and UPS characterization, 10 nm thermally evaporated 

Al on top of the P3HT layer was utilized as the sample, which was also kept in an ambient 

atmosphere for 1 h before the measurement. The samples were etched by Ar+ ions (for different 

intervals between 0-60 s) in order to obtain the depth profiling in XPS and UPS measurements. 

The AFM measurement of similarly prepared films on Si substrates was performed through a 

scanning probe microscope (JSPM5200, Shimadzu, Japan).  
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4.3. Results and Discussion 

4.3.1. Role of Bulk and Interfacial Morphology on Vertical Charge Transport 

4.3.1.1 Electrical Performance of OSDs with Varying Architecture    

The electrical measurements of OSDs fabricated in different architectures shown asymmetric J –V 

characteristics, Figure 4.2. The J –V characteristics clearly reveal the higher current flow in 

forward bias and around four orders of lower current in reverse bias which can be attributed to the 

formation of Schottky barrier at the Al/P3HT interface. The thermionic emission model as given in 

Eq. (2.3) was proposed for inorganic Schottky diodes but and has been widely accepted for organic 

semiconductors as well64–67. η and J0 are device parameters representing ideality factor and reverse 

saturation current density respectively. J0 and η were calculated from the intercept and slope of lnJ 

–V  plot and the RR was calculated from the ratio of current flowing through the device under 

forward and reverse bias at the same applied potential. All of the calculated parameters for different 

device structures are summarized in Table 4.1. A perusal of Figure 4.2 and Table 4.1 clearly 

corroborates that RR of the OSDs having pristine Al as top-contact is similar to that of devices in 

Al as bottom-contact. 

 

Figure 4.2 J – V characteristics of the Schottky diodes (a) along with the device architectures shown in the 
inset. Energy band diagram for the different layers in the OSD with pristine Al and AlOX interlayer (nano-
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structures of AlOX with 10 nm thick Al) at the Schottky contact (b, d) and Energy band diagram of the 
corresponding OSDs in forward bias (Va > Vbi) (c, e). Energy levels are shown with respect to the vacuum 
level. Reproduced with permission68. Copyright (2019) American Institute of Physics. 

 

Table 4.1 Average electronic parameters calculated for the OSDs fabricated in different device architectures 
(Figure 4.1). More than three independent devices were fabricated and analyzed in each case. All the OSDs 
were fabricated with spin-coated P3HT films except when it is mentioned. Reproduced with permission68. 
Copyright (2019) American Institute of Physics. 

Diode configuration Ideality Factor (𝜂𝜂) J0  (A/cm2) 

Al-top contact (without AlOX) 3.56 ± 10.80% (2.57 ± 1.7)×10-12 

Al-top contact (with 10 nm AlOX) 3.19 ± 12.29% (5.99 ± 3.1)×10-12 

Al-bottom contact 2.29 ± 18.85% (5.33 ± 1.6)×10-12 

Al-top contact (with 10 nm AlOX) 
(P3HT drop-casted) 

7.19 ± 7.86% (9.27 ± 5.79)×10-9 

 

Significant improvement in the rectification ratio was obtained in the case of 10 nm AlOX 

layer at top, clearly visible in Figure 4.3. This enhancement in RR can be attributed to the optimal 

interfacial band structure at the Schottky contact. Upon oxidation, the work function of Al 

decreases at the Schottky interface,110 which favors the holes transport under forward bias but 

blocks in the reverse direction leading to enhancement in the ON-current (Ion), while OFF-current 

(Ioff) is reduced more effectively. Low RR was evidenced with Al at bottom, where the formation 

of a thin oxide layer at the interface in ambient condition naturally occurs. Therefore, the effect of 

device architecture on the performance of OSDs was also probed in detail. Since the pristine Al 

surface cannot oxidize fully, therefore, an arbitrary state ‘x’ is considered to represent the oxidized 

Al layer (AlOX) and its corresponding work-function was drawn less than that of pristine Al in 

Figure 4.2 (d,e). The oxide growth saturates towards depth due to limited penetration of aerial 

oxygen irrespective of the exposer time and for Al it has been reported to be ⁓2 nm. Nonetheless, 

the work-function of AlOX also starts to increase with aging.110 Considering both of these points, 

the interfacial Al layer was exposed to the ambient condition for 1 h. Schematic representation of 
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the energy band structure of the OSDs with and without AlOX layer has been shown in Figure 2(b-

e). The increasing trend of the work-function of AlOX towards the depth of the interfacial layer 

represents the lesser oxidized region. To construct the energy band diagram, the work functions of 

Au and Al, along with the energy of the highest occupied molecular orbital (HOMO) and lowest 

unoccupied molecular orbital (LUMO) of P3HT was taken from the values reported in the 

literature.112,113 After the inception of SPs and demonstration of their semiconducting behavior, 

Schottky model based on thermionic emission developed for the silicon has been quite frequently 

used straightway for the organic diodes to deduce electronic parameters like ideality factor.114 

Standard Schottky model predicts that the depletion region should be confined to the small part of 

the film thickness. However, in OSDs, low carrier concentration leads to the extension of the 

depletion region throughout the film thickness (≈100 – 200 nm).  This poses a limitation to the 

straightforward use of the thermionic emission model for OSDs leading to the proposal of other 

models like metal-insulator-metal (MIM) without having a partial depletion region.100,115–117 This 

was further validated through the small value of experimentally calculated Richardson constant (2 

× 10-9 Acm-2K-2) obtained by temperature-dependent J –V  characteristics of OSDs, which is far 

from the typical value of Richardson contestant (120 Acm-2K-2) used for inorganic 

semiconductors.65,118 Keeping these arguments in mind, energy band diagram for the OSD as 

shown in Figure 4.2 (c, e) was constructed taking the MIM model into consideration. Contrary to 

OSDs fabricated with Al top contact as shown in Figure 4.1, J –V characteristics were noisy and 

suffered reproducibility issues with Au top contact as shown in Figure 4.2 (a). The non-repetitive 

J –V curves in combination with pronounced leakage current for OSDs with Au top contact could 

be attributed to the diffusion of heavy and hot Au atoms into the soft polymeric semiconductor 

film. Which is supposed to cause large Au−thiol chemical interaction and damaged Au/P3HT 

interface.119,120   
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Figure 4.3 Comparative representation of J–V characteristics for the OSDs with varying thickness of 
interfacial AlOX layer, the corresponding device architecture is shown in the inset. 
 

4.3.1.2 Characterization of AlOX Interfacial Layer 

In order to visualize the surface morphology of the optimized AlOX interlayer (10 nm), 

AFM measurement was conducted and the obtained images are shown in Figure 4.4. From the 

perusal of Figure 4.4 (a, b), small islands of Al (≈ 100 nm wide) was clearly observed from the 

height image with root mean square (RMS) surface roughness of ≈ 2.61 nm. Minimization of 

surface energy might have assisted this formation of islands during thermal evaporation since the 

metal deposition occurs as a tiny cluster of atoms. Moreover, less freedom to rearrange themselves 

on the polymer surface could also have assisted the formation of such a nanostructured interface. 

This can be understood by the fact that when a similar or even lower thickness of Al was coated on 

bare Si/SiO2 substrate in the same deposition condition, continuous Al film was observed as shown 

in Figure 4.5. Despite the fact that the islands partially cover the underneath polymer layer (≈30%), 

the RR for the OSDs with AlOX interlayer was found to be dramatically improved compared to that 

of devices without AlOX interlayer with Al at top (Figure 4.2 (a)). As already stated, oxidation of 

the exposed surface of Al continues up to around 2 nm along depth, but the nano-islands of AlOX 

play a dominant role in the device performance due to an increase in their effective surface area. 
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When the Al surface is exposed to air, a large amount of oxygen is also expected to be trapped on 

the oxide surface. The empty levels of the adsorbed oxygen are filled by the electron tunneling 

from the underlying Al atom, concomitantly a charge double layer is formed with a negative charge 

on the external surface as schematically shown in Figure 4.4 (c). It can also be noticed that the 

resultant electric field due to this charge double layer assists the hole transport in the forward 

direction; however, it hinders the hole transport with Al at bottom contact as shown in Figure 4.4 

(c). Thus it can be said that the optimum thickness of AlOX interlayer is controlled by three 

parameters, which are the optimum coverage of the underlying polymer layer, the presence of 

pristine Al below the AlOX layer for charge double layer formation, and the distance of the charged 

double layer from the underlying polymer layer for optimum effect on the charge transport. It is 

worth to note here that during optimization, the thickness shown by the Quartz crystal monitor was 

considered without commenting on its continuity but considering its effect on the J –V 

characteristics. Therefore, from now on, this thickness value will be used for the device 

nomenclature. 

 
Figure 4.4 AFM images of the 10 nm oxidized Al deposited on top of the spin-coated P3HT film exhibiting 
height (a) and phase (b) images. Inset of (a) depicts the schematic for partially oxidized Al-island. (c) 
Schematic representation for the formation of charge double layer due to adsorbed oxygen on AlOX layer. 
(d) Schematic representation of sample geometry used for the depth profiling of AlOX interlayer by XPS 
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and UPS and the inset shows the set of ligands corresponding to graphs in (e , f). Narrow scan elemental 
XPS spectra before etching and with Ar+ ion etching from top for (e) Aluminum and (f) Oxygen. (g) Probing 
AlOX interlayer represented in terms of ratio of percentage contribution in XPS spectrum corresponding to 
Al 2p and O 1s as a function of etching time. (h) UPS spectral profile for AlOX island layer on P3HT before 
and after Ar+ ion etching (Incident beam energy (He−I) = 21.2 eV). Sample geometry for this was also the 
same as shown in the (d). Reproduced with permission68. Copyright (2019) American Institute of Physics. 

 

 

 
Figure 4.5 AFM topography of the 4 nm (a) and 10 nm (b) Al deposited on the SiO2 substrates and oxidized 
in air. AFM images of the 10 nm oxidized Al deposited on top of the spin-coated P3HT film (c) and the 
corresponding distribution map (d). From (d) the coverage of P3HT film by interfacial AlOX layer was 
estimated to be ≈30%. 

 

To have in-depth insight into the interfacial chemical composition and electronic band 

structure of AlOX on P3HT; XPS and UPS depth profiling was conducted with the sample 

schematic shown in Figure 4.4 (d). XPS spectrum for the sample is shown in Figure 4.4 (e, f) 

exhibiting peaks corresponding to Al 2p, Al 2s, and O 1s at  binding energy of 75 eV, 120 eV, and 

533 eV, respectively. A similar XPS profile for the wide scan of AlOX layer generated upon various 

(c) (d)
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oxidized and pure Al surface has also been reported by Gupta et al.121 Presence of the weak XPS 

peak corresponding to C 1s along with peaks corresponding to O 1s and Al 2p is attributed to the 

presence of hydrocarbon impurity at the surface of oxidized Aluminum (AlOX).122 Complete 

disappearance of C 1s peaks just after 10 s of Ar+ ion etching from top further supports the presence 

of hydrocarbon impurity. 

It can be seen in Figure 4.4 (e, f) that as a function of etching time (i.e. sample depth), there 

is an increase in the counts of Al 2p and concomitantly decrease in the O 1s atomic peak indicating 

a relative reduction in the extent of AlOX. In XPS measurement, the incident source was of very 

high energy (1486.6 eV), therefore, the obtained signal contains the corresponding peaks of 

elements present up to ~ 5 – 10 nm depth.40 Since the height of Al-islands are also of the same 

order (rms surface roughness ≈ 2.61 nm as observed in AFM measurement), therefore, change in 

the ratio of the XPS signal corresponding to Al 2p and O 1s was considered for probing the AlOX 

layer formed after the aerial oxidation of Al. A perusal of Figure 4.4 (g) clearly corroborates that 

initially, Al 2p to O 1s ratio was increasing, which corresponds to a decrease in oxygen contents 

with depth followed by a decrease after 50 sec of etching. Although only limited penetration of 

oxygen is possible inside the Al islands, some amount of oxygen is always present in the underlying 

polymer film due to its processing under ambient conditions, therefore, Al 2p peak intensity 

decreases after a certain depth but that of O 1s saturates which might be the reason for the decrease 

in Al to O ratio (Figure 4.4 (g)).  

The sample was further subjected to UPS measurement before and after consecutive Ar+ 

ion etching from the top and the obtained results are shown in Figure 4.4 (h). In the UPS spectra 

at the secondary electron cutoff position (corresponding spectra magnified in right inset), the 

binding energy of the sample decreases with depth. They were found at the binding energy of 17.81 

eV, 17.81 eV, 17.65 eV, and 17.45 eV for 0 s, 20 s, 40 s, and 60 s of sample etching, respectively. 
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The valence band edge (represented by the intersecting lines) shifts towards higher energy with an 

increase in sample etching and was found to be 4.24 eV, 4.83 eV, 4.90 eV, and 4.90 eV for samples 

before and after 20 s, 40 s, and 60 s of etching, respectively. These shifts correspond to an increase 

in work-function of the AlOX interlayer, which has been shown schematically in the band diagram 

after inserting the AlOX layer in Figure 4.2 (e).40 

 

4.3.1.3 Characterization of semiconducting polymer Thin-film 

Encouraged by the implication of device architecture on the performance of OSDs, where 

bottom Au and top Al contacts having 10 nm of nanostructured AlOX layer gave the best device 

performance, the effort was directed to examine the influence of film crystallinity and 

macromolecular conformation on the performance of OSDs. To accomplish this, OSDs were 

fabricated in the optimized device architecture using thin films of P3HT prepared by spin-coat and 

drop-cast methods as described in the experimental section. The obtained J −V characteristics along 

with device architecture used are shown in Figure 4.6 (a) and the device parameters obtained by 

fitting the linear region of lnJ −V characteristics are summarized in Table 4.1. It can be clearly seen 

that in spite of having similar device architecture and fabrication conditions, OSDs having spin-

coated thin films exhibited improved device performance as compared to the case of drop-casted 

thin films. 
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Figure 4.6 J -V characteristics of OSDs fabricated using thin films of P3HT prepared by spin-coated and 
drop-casted films along with the device structures shown in the insets. (b) Out-of-plane and (c) in-plane 
GIXD pattern for spin-coated and drop-casted films of P3HT. Inset of (b) shows the enlarged view of (100) 
peak in both the cases. Inset of (c) shows 15 times resolved peak of the in-plane GIXD pattern and schematic 
representation for edge-on conformation of P3HT molecules. Reproduced with permission68. Copyright 
(2019) American Institute of Physics. 

 

 

In order to understand such a marked difference in the device performance for the P3HT 

thin films fabricated by spin-coat and drop-cast methods, these films were subjected to out-of-plane 

and in-plane GIXD measurements. As can be seen in Figure 4.6 (b) that in out-of-plane mode 

GIXD spectra, all the peaks corresponding to the lamellar-stacking of the alkyl side-chains 

appeared at 4.75°, 9.97° , and 15.29°. The d-spacing calculated from the difference between 100 

and 200 peak positions was found to at 16.95 Å and 17.34 Å for the spin-coated and drop-casted 

P3HT films, respectively. The relative left shift in 100 peak position (2𝜃𝜃 ≈ 0.1°) in drop-casted 

film also corresponds to an increase in d-spacing, i.e., the alkyl side-chains are more stretched as 

compared to the spin-coated one which causes hindrance in out-of-plane charge transport. From 

Figure 4.6(b), it can be also be clearly seen that all the peaks corresponding to the lamella 

formation via alkyl side-chain stacking were more pronounced up to higher orders for the films 

prepared using spin-coating compared to the drop-casting method. In general, the position of the 

peak represents the lamellar stacking distance, whereas the sharpness of the peak is associated with 
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the crystallinity and grain size. Therefore, it can be concluded that in the present case the spin-

coated films possessed a higher degree of crystallinity as compared to that of the drop-casted films. 

Moreover, in the in-plane GIXD pattern, the presence of peak corresponding to π-π stacking at 

2𝜃𝜃 = 23.17° and absence of any (h00) peaks related to alkyl-stacking in both of the films clearly 

suggest the edge-on conformations of the polymeric backbones on the substrate as schematically 

shown in the inset of Figure 4.6(c). Since the thickness of the films prepared by both the methods 

were of the same order (≈ 200 nm), it is worth mentioning here that films prepared by spin coating 

by two-successive spin speed were of high crystallinity as compared to the drop-casted method. 

The edge-on conformation and high-crystallinity of the spin-coated samples prepared here is 

attributed to the low spin-speed (800 rpm) in combination with relatively higher polymer 

concentration (2% w/w), which gave enough time to the macromolecules to obtain 

thermodynamically favored conformation as reported earlier.22,23,31,123 At the same time, spin-

coated films possess high film uniformity with minimum surface roughness due to the absence of 

the coffee ring effect, the drop-casted film possesses non-uniform thickness distribution. Due to 

presence of coffee ring effect, the dissolved polymer molecules move towards the edges of the 

drop-casted area, which leads to inhomogeneity in the dried film.124,125 When the top electrode is 

deposited, diffusion of metal in the pinholes leads to a short resistive path resulting in increased 

IOFF as depicted in Figure 4.6 (a). Since devices were processed in ambient conditions, therefore, 

due to high surface roughness at the metal/organic interface, the effective surface area for gas-

adsorption would increase leading to an increase in interfacial trap states.126 These effects could 

have played a dominant role in the relatively hampered device performance of OSDs with drop-

casted film. Other than these, the bulk resistance due to SCLC, which depends on film crystallinity 

also affect the J −V characteristics. It is also worth mentioning here that unlike planar devices such 

as OFET, charge transport in the vertical devices like diodes and solar cells ideally takes place in 
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the out-of-plane direction, therefore, a good crystallinity in the transverse direction is required. 

Otherwise, when the charge carrier enters the bulk of semiconducting thin film it has to spend a 

larger amount of time inside the film due to an increase in intermolecular hopping and scattering 

centers at grain boundaries before being collected at the other electrode.93 The charge carriers 

residing in the organic film creates space charge, applying repulsive force for further charge 

injection, and with an increase in charge carrier inside the film the resultant repulsive force 

increases, interpreted as SCLC.   

 

4.3.1.4 Analytical Modeling 

In the ideal OSDs, under forward bias there should not be any injection barrier but 

practically it is present due to the formation of charge accumulation region in the organic thin-film 

near Ohmic contact and the charge carriers overcome this barrier through thermionic emission 

effect.101,116 Therefore, under forward bias, J –V  characteristics of an OSD is analyzed through 

comparing it with the approximated thermionic emission model as written in Eq. (4.1) 

(approximation of Eq. 2.3 for V > (3kT/q)).64–67 

 𝐽𝐽 = 𝐽𝐽0 �exp �
𝑞𝑞𝑞𝑞

𝜂𝜂𝜂𝜂𝜂𝜂
�� (4.1) 

Using Eq. (4.1), 𝐽𝐽0 is obtained by extrapolating the linear part of the lnJ –V plot to V = 0 V, where 

the value of 𝜂𝜂 is obtained from its slope with the help of Eq. (4.2). The deviation of 𝜂𝜂 from the ideal 

value (= 1) can be attributed to the occurrence of tunneling phenomena or scattering of the charge 

carriers due to presence of trap states in the devices, and the interfacial non-uniformity also 

contributes in it.64,97  

 
𝜂𝜂 =

𝑞𝑞
𝑘𝑘𝑘𝑘

d𝑉𝑉
d(ln𝐽𝐽)  

(4.2) 
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The above discussed model was originally proposed for inorganic devices, thus before 

generalizing it for organic devices, it should be scrutinized extensively. In this regard, calculation 

of 𝜂𝜂 is an appropriate example which can be calculated from either of the two linear regions with 

distinguishable slopes present in the lnJ –V plots as shown in Figure 2.9. The higher slope value 

(present at lower voltage region) can be considered to obtain lesser value of 𝜂𝜂. To verify the 

calculated physical parameters, corresponding regions on linear scale J –V  plot were analyzed as 

shown in the inset of Figure 2.9. It is clear that in higher voltage region, the thermionic emission 

phenomena is reflected through non-linear region in J –V plot (red color segment in the inset of 

Figure 2.9), the device parameters obtained from this region are summarized in Table 4.1. 

Furthermore, to understand the correlation between the device parameter and whole electrical 

characteristic, a thorough analysis of J –V curve has to be done through a general physical equation, 

which can incorporate all physical phenomena occurring in the device. 

In OSDs, various types of physical phenomena occur in different regions of the OSD as 

discussed in the earlier section, and their contribution in overall J –V characteristic is also a function 

of voltage. Therefore, modeling of whole J –V characteristic will be more reliable compared to 

considering the linear part of lnJ –V  plot, only. As discussed above, in this regard, there are some 

reports where the overall J –V  analysis has been done by integrating the sectional analysis using 

different physical phenomena or by considering one phenomenon and neglecting other.96–101 For 

instance, in one of the analytical model proposed by Blom and coworkers, the effects of bulk and 

injection contact were combined as drift (bulk effect) and diffusion (interface effect) contributions 

as a function of the applied voltage.101 The clear demarcation between the contributions of bulk 

and interface at certain applied voltage can lead to underestimation of their relative effect in some 

cases. Moreover, the device structure-dependent deviation of the physical model from practical 
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electrical characteristics still remains a challenge.99,106,107  However, being an implicit function of 

voltage, the effective contribution of the physical phenomena in overall J –V characteristic varies 

with applied bias. Which is also non-uniformly distributed in the whole device architecture as a 

function of regional/local non-linear resistances such as RC and RB. Thus, drawing a boundary 

between the effects of physical phenomena on voltage-scale/device-architecture seems improper 

since they can occur simultaneously. To address this issue, J –V characteristic of any two-terminal 

device can be interpreted through the following relation Eq. (4.3),  

 𝐽𝐽 =
𝑉𝑉

𝑅𝑅total × 𝑎𝑎
 

Where, 𝑅𝑅total = 𝑅𝑅C + 𝑅𝑅B 

(4.3) 

Here a is the cross-sectional area of the device and Rtotal is the total resistance present in the 

device at any point of time and it consists of two parts, RC and RB. RC and RB are not simply Ohmic 

but they are also generated due to various non-Ohmic physical phenomena occurring in the device, 

such as band-bending due to charge accumulation, SCLS, trap states, etc.101 At lower forward bias 

(Va < Vbi), the injection barrier at the Ohmic contact (here it is Au-P3HT contact) and at higher bias 

(Va >Vbi) mainly SCLC governs the device J –V characteristics. Scattering center present at grain 

boundaries and trap states are exponentially distributed from contact towards the bulk and they 

contribute in both RC and RB, as shown in Figure 4.7 (a – c). Thus, all the phenomena should be 

combined to frame an analytical model equation where Ohmic and non-Ohmic part of Rtotal can be 

divided into three parts i.e. resistance due to nonlinear injection barrier, resistance due to SCLC, 

and Rseries (Ohmic loss throughout the device). Since trap states and scattering centers hamper the 

overall hole mobility thus their effect can be considered as Rseries and the effect of charge double 

layer can also be accounted in the same. The RC and RB are nonlinear function of voltage drops 

across contact and bulk of the OSD and in-situ measurement of these voltage distributions are not 
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possible but macroscopic current density is same at any bias. Henceforth, interpreting their effect 

with current as a forcing function would provide an ease to interpret the effect of bulk and contact 

in one simple equation. Following the previous report, the analytical modeling equation is written 

with current as forcing function as Eq. 4.4.127 For comparative study, some of the other equations 

as listed in Table 4.2, were also used to analyze the J –V characteristics.64,127 

 

 
𝑉𝑉 =

𝜂𝜂𝜂𝜂𝜂𝜂
𝑞𝑞

ln �
𝐽𝐽
𝐽𝐽0

+ 1� + �
8𝐿𝐿3𝐽𝐽

9𝜖𝜖𝜖𝜖0𝜇𝜇
+ 𝐽𝐽𝑅𝑅series  

Where, Rseries is taken in the unit of ‘Ωcm2’. 

 

 

(4.4) 

L is the effective channel length which is the film thickness in the present case (≈ 200 nm). 𝜖𝜖 and 

µ are relative permittivity and effective hole mobility with approximate values of 3 and 3×10-4 

cm2V-1s-1, respectively were taken from previous reports.128,129   

The experimental J –V characteristics and the simulated models with different modeling 

equations (Table IV) are depicted in Figure 4.7. The constant/s J0/(and 𝜂𝜂 when kept constant) 

was/were obtained from the linear region (with the lower slope as shown in Figure 2.9) of the lnJ 

–V plot. The best fit of the experimental characteristics in different device architecture were 

analyzed through the simulated model based on Eq. 4.4 and the corresponding obtained device 

parameters are summarized in Table 4.2. Hence Eq. 4.4 can be considered as general model 

equation for the OSDs. As already discussed, 𝐽𝐽0 and 𝜂𝜂 should be calculated from the low slope 

region of J –V plot.  
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Table 4.2 The set of equations64,127 followed for the comparative analysis of the experimental J –V  
characteristics. Reproduced with permission68. Copyright (2019) American Institute of Physics. 

Equation type Equation in mathematical form with J  as forcing function; 
V( J ) 

Fitting 
Parameters 

Thermionic Emission 
(Th. Em.) 𝑉𝑉 =

𝜂𝜂𝜂𝜂𝜂𝜂
𝑞𝑞

ln �
𝐽𝐽
𝐽𝐽0

+ 1� 
𝜂𝜂 

Th. Em. + SCLC + 
Ohmic Loss(Rseries); 

(constant 𝜂𝜂) 
𝑉𝑉 =

𝜂𝜂𝜂𝜂𝜂𝜂
𝑞𝑞

ln �
𝐽𝐽
𝐽𝐽0

+ 1� + �
8𝐿𝐿3𝐽𝐽

9𝜖𝜖𝜖𝜖0𝜇𝜇
+ 𝐽𝐽𝑅𝑅series 

Rseries 

Th. Em. + SCLC 
𝑉𝑉 =

𝜂𝜂𝜂𝜂𝜂𝜂
𝑞𝑞

ln �
𝐽𝐽
𝐽𝐽0

+ 1� + �
8𝐿𝐿3𝐽𝐽

9𝜖𝜖𝜖𝜖0𝜇𝜇
 

𝜂𝜂 

Th. Em. + SCLC + Ohmic 
Loss(Rseries); [Eq. 6] 𝑉𝑉 =

𝜂𝜂𝜂𝜂𝜂𝜂
𝑞𝑞

ln �
𝐽𝐽
𝐽𝐽0

+ 1� + �
8𝐿𝐿3𝐽𝐽

9𝜖𝜖𝜖𝜖0𝜇𝜇
+ 𝐽𝐽𝑅𝑅series 

𝜂𝜂, Rseries 
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Figure 4.7 (a) Energy band structure of the OSD (Al/P3HT/Au) in forward bias (Va > Vbi) along with the 
physical different phenomena occurring in its different parts, (b) schematic representation for effect of trap 
sites in charge-scattering (the broken line represents the actual path of charge flow in absence of scattering 
center or trap sites) and (c) Schematic illustration for exponential distribution of trap states in the device. 
(d) Schematic representation for occurrence of linear and nonlinear (function of J ) resistance in different 
parts of the OSD (Al/P3HT/Au) and (e) set ligands for the experimental and fitted J –V characteristics (f - j) 
the corresponding equations are written in Table 4.2. Inset of (h) represents the magnified part of fitted data 
at higher voltage. The device structures are shown in the corresponding insets and all the OSDs were 
fabricated with spin-coated P3HT films except when it is mentioned. Reproduced with permission68. 
Copyright (2019) American Institute of Physics. 

      

 

Table V gives the understanding about the influence of metal/organic interfaces on the overall device 

resistance. The calculated value of Rseries decreased by one order of magnitude in the case of 10 nm AlOX 

interlayer as compared to that having only Al to make Schottky contact. On the other hand, it was of the 

same order in case of the bottom Al electrode and top Al electrode without AlOX layer. In forward bias, at 

Va > Vbi, space charge is being formed in the organic layer, which triggers tunneling of the charge carriers 

through the AlOX layer. In addition to this, when charge double layer is closer to the film, tunneling will be 

speedup due to favorable Coulombic interaction. At the same time, modified interfacial band structure due 

to AlOX layer will be improving the charge transport when it is near to the organic layer. The nanostructured 

AlOX island layer also improves the effective contribution of the charge-double layer, however, with an 

increase in its thickness (for instance 16 nm), Rseries increases due to the buried oxide layer which is 

ineffective to support forward charge transport. This is also reflected in the obtained device parameters from 

fitted plot Rseries (Table V) and the corresponding RR (Table 4.1, 4.3). Precise observation in the case of 10 

nm AlOX interlayer shows that the experimental data is well fitted by the model without the inclusion of 

Rseries, however, the inclusion of Rseries provides better fit (Figure 4.7(i)), unlike other cases where the 

deviation is distinguishable due to the presence of comparatively lower Rseries. This reduction can be 

attributed to the favoring effective field due to the charge double layer (Figure 4.3 (c)) and vice-versa is true 

for the case of Al as bottom contact.  Therefore, the effect of device architecture on the physical phenomena 

occurring inside is justified.    
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Table 4.3 Set of device parameters (𝜂𝜂 and Rseries) obtained by fitting the experimental J –V characteristics 
of different devices using Equation 4.6. All the OSDs were fabricated with spin-coated P3HT films except 
when it is mentioned. Reproduced with permission68. Copyright (2019) American Institute of Physics. 

Device Structure Ideality factor (𝜂𝜂) Rseries (Ω.cm2) 

Al (bottom contact) 2.84 ± 3.6% 844.6 ± 31.5% 

Al (top contact) 0 nm AlOX  2.95 ± 4.2% 113.6 ± 42.8% 

Al (top contact) 10 nm AlOX 3.54 ± 18.2% 32.7± 32.7% 

Al (top contact) 16 nm AlOX 15.63 ± 36.7% 3.39×105 
± 42.8% 

Al (top contact) 10 nm AlOX 
(P3HT drop-casted) 5.85 ± 24.5% 728.7 ± 30.0% 

 

4.3.2 Role of Interface and Thin-film Morphology to In-plane Charge Transport 

4.3.2.1 Characterization of Orientation in Friction Transferred PBTTT  

To fabricate a highly oriented thin film of PBTTT by friction transfer method, the film casting 

parameters such as drawing speed, squeezing load, and substrate temperature, play dominant roles 

and they were optimized. It was found that low squeezing load and slow drawing speed resulted in 

high orientation, therefore, they were fixed to the be 3 kgf/cm2 and 5 cm/min, respectively, while 

optimum substrate temperature was found to be 80 ℃ as shown in Figure 4.8 (a). Polymer 

orientation of the fabricated thin films was characterized by polarized electronic absorption 

spectroscopy and the results are shown in Figure 4.8 (b, c). Since the transition dipole moment for 

the optically induced 𝜋𝜋-𝜋𝜋* transition is aligned along the polymer backbone, therefore, linearly 

polarized light is absorbed maximum, when the polarization direction was aligned parallel (∥) to 

the polymer backbone orientation resulting in the highest value of absorbance (maximum 

absorption value at λmax), which decreases by moving the polarization direction away from the 

backbone orientation direction and reaches to the minimum, when they were orthogonal (⟘) to 

each other. The optical anisotropy was calculated in terms of the dichroic ratio (DR) = A∥/A⟘, 
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where A∥ and A⟘ are maximum absorbances of the respective absorption spectra with polarized 

light ∥ and ⟘ to the polymer orientation direction. The maximum absorbance along the drawing 

direction confirmed the orientation of polymers to be along the drawing direction. THE average 

DR of the as-prepared films was found to be 10.95 ± 0.89. The DR further increases and reaches 

up to 27.62 ± 2.46 upon annealing above LC temperature 180 ℃.31,130 Annealing temperature-

dependent DR is summarized in Table 4.4. It is worth noting that DR values were not significantly 

affected by the surface energy of the substrate. Such high DR values correspond to the highly 

anisotropic and unidirectional arrangement of the PBTTT backbones in the thin film with the order 

parameter (OP) of ~ 0.9, where OP = (DR − 1)/(DR + 2) . The OP signifies the extent of 

orientation and its minimum (0) and maximum (1) values correspond to the ideal isotropic and 

ideal anisotropic films, respectively. It can be clearly seen that absorption spectra in ⟘ direction 

do not have any vibronic shoulders (featureless) as shown in Figure 4.8 (b), which clearly reflects 

that ⟘-spectrum is originated from the randomly lying polymeric chains, withstanding chain 

twisting/folding or entanglement, having large distribution in conjugation lengths. A similar 

observation was also reported by Brinkmann group for highly oriented thin films of poly(3-

hexylthiophene). 131 The absorption peak (λmax for ⟘-absorption spectrum) of the as-cast film 

appeared at 508 nm, which was blue-shifted by 52 nm after annealing to 180 ℃ because ordered 

polymeric chains serve as a template for remaining randomly lying polymers in the film when alkyl 

side chains recrystallize during the cooling process, leading to a simultaneous increase in A∥ and 

decrease in A⟘.31,105,132 Consequently upon annealing the DR increased. Moreover, it was also 

observed that annealing beyond 180 ℃ the magnitude of increment in DR was smaller. 
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Figure 4.8 (a) Effect of substrate temperature on orientation, when the stage speed and load were kept 
constant to 50 mm/min and 3 kgf/cm2, respectively. Polarized absorption spectra of the as-cast and annealed 
(180 ℃) friction transferred PBTTT film and cast on (b) bare glass substrate and (c) HMDS treated substrate. 
Reprinted with permission from70. Copyright 2020 American Chemical Society 
 

Table 4.4. The values of charge transport parameters and optical anisotropy obtained for friction transferred 
PBTTT films cast on different substrates and annealed at different temperatures with VDD = − 80 V; VGS = − 
40 to + 40 V (for bare SiO2) or − 80 to + 40V (for HMDS treated SiO2)). The thin films were cast with 
optimized coating parameters as shown in Figure 1. All the statistics were calculated with three or more 
separate films. Reprinted with permission from70. Copyright 2020 American Chemical Society. 

Annealing 
temperature 

(℃) 

µ∥                     (cm2 
V-1 s-1) 

µ⟘                                          (cm2 V-

1 s-1) 
µ∥/µ⟘ Ion/Ioff ≈       (along 

backbone 
orientation) 

DR 

bare SiO2 bare glass 

as-cast 0.008 ± 0.0003 (4.68 ± 0.2) × 10-5 < 200 103 10.95 ± 0.89 

120 0.026 ± 0.04 (2.70 ± 0.16) × 10-5 ∼ 103 105 15.96 ± 1.25 

150 0.023 ± 0.002 (4.64 ± 2.9) × 10-5 ∼ 500 105 19.37 ± 0.71 

180 0.017 ± 0.005 (5.24 ± 1.3) × 10-5 > 200 104 27.62 ± 2.46 

200 0.012 ± 0.003 (1.04 ± 0.23) × 10-5 ∼ 200 104 24.17 ± 2.85 

HMDS treated SiO2 

HMDS treated 

glass 

200 0.334 ± 0.03 0.016 ± 0.004 > 20 106 22.6  ± 1.66 

     22.7  

 

In general, orientation techniques using shear force, DR is susceptible to molecular weight 

(MW) of the SPs and falls with an increase in MW due to chain folding and entanglement.11,32,133,134 

Using high temperature mechanical rubbing technique, high DR was obtained for lower MW 

(a) (b) (c)
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PBTTT samples but with increase in MW > 45 kDa the orientation decreased below 10.134 Whereas 

the present study was conducted with commercially available high MW PBTTT (MW > 50 kDa, 

Sigma Aldrich), which resulted in high DR, thereby suggesting that this technique can efficiently 

orient high MW polymers too, which is one of the important requirements for the facile charge 

transport.  

4.3.2.2 Characterization of Interface Driven Conformational Changes   

To analyze the macromolecular arrangement, in-plane GIXD and out-of-plane XRD measurements 

were performed as per the geometry shown in Figure 2.12. It can be seen from Figure 4.9 (a − c) 

that in case of the samples as-prepared and annealed below LC temperature for friction transferred 

PBTTT-C14 thin-film on bare oxide substrate, series of diffraction peaks (h00) corresponding to 

alkyl-stacking is observed for in-plane GIXD and are absent in the out-of-plane GIXD. This clearly 

reflects that macromolecules in the as-prepared thin films adopted face-on orientation and upon 

annealing above the LC temperature (130-140 ℃),31 where side chain melts to reorganize the 

crystalline domains leading to the observed conformational change in the thin film. A closer look 

at XRD patterns reveals that peak intensity of (h00) decreases in the in-plane and increases in out-

of-plane mode with the increase in the annealing temperature ≥ 150 ℃, while just opposite trend 

was observed for the (010) diffraction peak corresponding to π- π stacking. These results clearly 

suggest that there is a gradual change in the conformation of PBTTT-C14 from face-on dominated 

to edge-on dominated depending on the annealing temperature. It is worth to note here that at 

200 ℃, the intensity of the (h00) diffraction peak is observable in both of the in-plane and out-of-

plane modes, therefore, partly the PBTTT macromolecules can be considered to recrystallize in 

edge-on conformation. Moreover, since (010) diffraction peak did also not diminish completely in 

the out-of-plane mode at 200 ℃, it suggests that some face-on oriented crystallites also remained 

in the film.135 Results of in-plane GIXD and out-of-plane XRD of as-cast and annealed films of 
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friction transferred PBTTT on HMDS treated substrate as shown in Figure 4.9(d – f), clearly 

revealed the almost complete transformations from the face-on to edge-on after annealing the thin-

films ~ 200 ℃. The diffraction peaks (h00) of lamellar stacking of alkyl side chain were observed 

in the out-of-plane mode and diffraction peak (0k0) related to π-π stacking was observed in the in-

plane mode.  

 
Figure 4.9 The in-plane GIXD profile of the friction transferred PBTTT film as-cast and annealed at 
different temperatures on the bare oxide substrate with the scattering vector (a) parallel (χ = 0°) and (b) 
orthogonal (χ = 90°) to the drawing direction. (c) Out-of-plane XRD pattern of the films. In-plane GIXD 
profile of friction-transferred PBTTT films on HMDS-treated Si substrates as-cast and annealed at different 
temperatures with a scattering vector (d) parallel and (e) orthogonal to the drawing direction and (f) their 
out-of-plane XRD pattern. Reprinted with permission from70. Copyright 2020 American Chemical Society. 

  

4.3.2.3 Comparative Analysis of Interface Driven Electrical Performance  

To examine the impact of these highly oriented thin films of PBTTT on the charge transport, 

OFETs were fabricated on bare SiO2 substrates in the bottom gate top contact geometry as 

schematically shown in the inset of Figure 4.10 (a). The saturation µ and other electronic 
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parameters were extracted from the transfer curves (IDS − VGS) as described earlier.123 The OFETs 

were fabricated with the thin films as-cast and annealed at different temperatures (100 ℃ to 200 ℃) 

and their transport characteristics are shown in Figures 4.10 (a – b) along with summarization of 

the device parameters in Table 4.4. A perusal of the anisotropic optical and electrical characteristics 

clearly reveals that the µ did not increase consequently with the increase in DR. In spite of 

exhibiting the maximum DR for the films annealed to 180 ℃, the µ∥ was lower compared to films 

annealed at lower temperatures (Table 4.4). Consistent increment in the µ⟘ was also observed with 

annealing beyond LC temperature, which can be attributed to increase in edge-on oriented 

macromolecules in the thin film as shown in Figure 4.10 (c). However, more than two orders of 

µ∥/µ⟘ was maintained even after annealing to 200 ℃, which confirms the presence of face-on 

oriented crystallites near the dielectric interface as this has been well examined that in edge-on 

oriented PBTTT thin-films, µ∥/µ⟘ lies within one order of magnitude,11,136 and these results are 

consistent with the observation made by XRD measurements. Therefore, we anticipate that during 

annealing, the evolution of edge-on conformation starts from the top surface of the film and the 

templating process to be similar to the case of orientation templating in the ribbon-phase of 

PBTTT,137,138.  

PBTTT is a well-known material to exhibit high µ on SAM treated substrates because of 

low surface energy.38,130 However, because of the high contact angle of the octadecyltrichlorosilane 

(OTS) treated surface,139,140 it was difficult to have uniformly adhered film while squeezing the 

PBTTT pellet. Therefore, to examine the origin of this low µ and reasons behind the incomplete 

transformations of macromolecular conformation from face-on to edge-on, treatment of SiO2 

surface was performed using a mild SAM agent, HMDS that results into relatively lower contact 

angle in comparison to OTS treated surfaces. Such a difference in surface energy between SAM 

treated SiO2 substrates affects the interplay between molecule–substrate and molecule–molecule 
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interactions in their own way. However, following the assumptions and results by Kline et al.,38 

we believed if this behavior was originated because of the oxide surface, HMDS treated surface 

would be a suitable model for the investigation pertaining to the nature of macromolecular 

conformation adopted as a function of the annealing temperature. At the same time, average µ∥ of 

PBTTT films on HMDS treated SiO2 reaches up to 0.33 cm2V-1s-1 and µ⟘ to 0.016 cm2V-1s-1 (see 

Table 4.4 and Figure 4.10 (d, e)), which is comparable to other reported mobility values for PBTTT 

on OTS substrates and it has also been well demonstrated by Umeda et al. that decreasing surface 

energy of the substrates resulted in an increase in the µ of PBTTT based OFETs.11,141 

  

Figure 4.10 For friction transferred PBTTT-C14 cast on base oxide substrates: (a) representative transfer 
curves of OFETs fabricated with films annealed at different temperatures, (b) trend of μ for thin films 
annealed at 180 °C with varying orientation of channel relative to backbone orientation direction, and (c) 
variation in μ for friction-transferred PBTTT-C14 on the bare oxide substrate and annealed at different 
temperatures; all the OFETs were fabricated with device structure as shown in the inset (a). For friction 
transferred PBTTT-C14 cast on HMDS treated substrates: (d) representative transfer curves for OFETs with 
channels parallel and perpendicular to the backbone orientation direction fabricated with the thin films 
annealed at 200 °C, (e) statistical variation in μ for the thin films cast on HMDS-treated SiO2 and annealed 
at different temperatures; the OFETs were fabricated with the device architecture as shown in the inset (d). 
Reprinted with permission from70. Copyright 2020 American Chemical Society 
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4.3.2.4 Modeling Variation in Interface and Annealing driven macromolecular arrangement 

Results obtained pertaining to the differential nature of macromolecular conformations 

attained depending on the nature of surface and annealing temperature along with evidences from 

anisotropic charge transport of OFETs, a plausible charge transport mechanism for the friction 

transferred PBTTT thin films have been proposed, which is schematically shown in the Figure 

4.11. Structure of the friction transferred thin film was compared to slipped stacks or brickwork 

like film structure.142 In such structure, complete face-on orientation may lead to high µ∥ compared 

to mixed-phase of face-on and edge-on. In the former case, the charge carriers traverse through the 

inter-layer of 𝜋𝜋-𝜋𝜋 stacking, when a high resistance path (between polymer chains or domains) is 

encountered. However, in the latter case, the charge carriers face additional high resistance path 

due to presence of alkyl chains between two layers. Hence, for the efficient charge transport, the 

thin films should possess an optimum macromolecular orientation and conformation.   

 

Figure 4.11 Schematic representation for the cross-sectional view of the charge transport mechanism in as-
cast and annealed friction-transferred PBTTT-C14 thin films and substrate’s surface energy-dependent 
macromolecular conformation possessed by the thin films. In the bottom right part of the figure, only the 
bottom layer of the film is represented for better understanding. Reprinted with permission from70. 
Copyright 2020 American Chemical Society 
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This agrees well with the films annealed to 120 ℃ (on bare SiO2), which possessed higher 

orientation compared to as-cast thin films and complete face-on conformation of macromolecules. 

In the case of HMDS treated SiO2, annealing the film beyond LC temperature (~ 200 ℃) led to 

almost complete edge-on oriented thin film, resulting into higher in-plane µ∥. Along with 

conformational transformation at 200 ℃, increment in domain size, extensively reported as 

intrinsic nature of PBTTT to form large domains, when the thin-films annealed beyond LC 

temperature on SAM treated substrate, should also be taken into consideration to interpret the 

increase in µ∥.38,130 Interestingly, in the optimized conditions for films annealed to 120 ℃ on bare 

silicon oxide, µ∥ and µ∥/µ⟘ exceeded some previous reports for the same material in which the thin 

films possessed edge-on conformation and the dielectric substrates were given SAM 

treatment.81,143 Therefore, the improved µ∥ and µ∥/µ⟘ , in this case, can solely be attributed to the 

higher orientation. 

 

4.4. Conclusion 
  In this chapter, the effect of interfacial layer and the thin-film morphology on in-plane and 

out-of-plane charge transport have been discussed. To analyze the effects on out-of-plane/vertical 

charge transport, Organic Schottky diodes (OSDs) were fabricated with varying metal/SC 

interfacial properties, and the morphology of the SP thin film was also varied by opting different 

casting techniques. Though there are previous reports which deal with the physical phenomena of 

the organic diodes by analyzing the experimental observations through theoretical models. For the 

analysis of in-plane transport properties, OFETs, in bottom-gated top contact device architecture, 

were fabricated. Since of dielectric’s surface energy and the presence of dipoles on it significantly 

affect the thin-film morphology, therefore, for comparative analysis, the OFETs were fabricated 

on bare and self assembled mono-layer (SAM) treated substrates (Si/SiO2). Highly oriented thin-
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films of PBTTT-C14, fabricated by friction transfer technique, were selected as a model to fabricate 

channel of OFETs. Ultimately a pertinent carrier-transport mechanism was proposed in light of the 

obtained results from temperature and interface dependent electrical and optical characterization 

of the thin-film. 
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Chapter 5: Environmentally Sustainable Approaches for 

Fabricating Organic Electronic Devices   
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5.1 Introduction 
Inexpensive and simple processing techniques have made the organic semiconductors a 

promising contender for electronic device applications. The past decade has witnessed significant 

scientific efforts to improve the charge transport characteristics of the organic semiconductors by 

tuning their chemical structure or by varying the film fabrication techniques in order to enhance 

the macromolecular ordering. Since SPs offer better solution rheology and compatibility with 

solvent-free drawing techniques compared to small molecular organic semiconductors, they may 

be more suitable for large scale fabrication. Besides, due to quasi-one-dimensional nature of SPs, 

their backbone orientation and self-assembly in the thin films through various techniques were 

extensively explored to improve the optoelectronic characteristics of the devices 11. Although good 

solubility of SPs in common halogenated solvents led to the low-cost research and development at 

laboratory scale, the serious health and environment hazards cannot be avoided at large scale roll-

to-roll fabrication. Apart from this, controlling device to device variation, at large scale, is also 

essential. Therefore, to overcome these challenges, efficient solution processes or solvent-free 

techniques need to be explored11,70,81.  

Herein comparative study of two such techniques, floating-film transfer method (FTM) and 

friction transfer (FT), for large area thin film fabrication and their various applications is being 

reported. In FTM, by placing one drop (~10 – 15 𝜇𝜇L) of SP solution on an orthogonal liquid 

substrate solid floating film is obtained which can be stamped on any desired substrate without 

causing chemical or mechanical damage to the underlying layers if present34,60. Recently, facile 

fabrication of large area ribbon-shaped SP thin-film was demonstrated by controlling the film 

expansion direction through a custom made slider, as shown in Figure 2.3144. Utilizing friction 

transfer technique, considerable macromolecular orientation anisotropy and its impact on charge 

transport characteristics of the SP thin-films have been demonstrated11. In Chapter 4, almost one 
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order of increment in field effect mobility (µ) of friction transferred PBTTT thin film has been 

demonstrated, by tuning the surface energy of the dielectric interface70. In this chapter, both the 

techniques, FTM and FT, have been considered to demonstrate environmentally sustainable and 

economical ways for large area polymer-film fabrication, and the uniformity in their charge 

transport characteristics was also analyzed by fabricating organic field effect transistors (OFETs) 

with different parts of the film. By exploiting the advent of FTM, OSDs and organic memristors 

were also fabricated in the layer by layer structure, which further may lead to the fabrication of 

high-density 3D integrated circuits via horizontal and vertical stacking on the same substrate. The 

uniformity in both planer and vertical device performance for large area thin-films cast through 

both techniques validates their feasibility towards large scale application. For the FTM based thin-

films one order enhancement in µ (up to 0.03 cm2V-1s-1) was also obtained compared to 

conventional spin-coated thin films (∼ 0.004 cm2V-1s-1).  On the other hand, FT thin-films exhibited 

a lower value of µ; however, a considerable increase in it was observed by optimizing the channel 

length. Generally, friction transfer technique is not suitable for thin-film fabrication on SAM-

treated/smooth surfaces, and mostly the fabricated thin-film possess face-on conformation and 

through very high temperature annealing edge-on conformation can be obtained which is not 

compatible with low temperature fabrication processes63,70.  Therefore, with some improvisations 

in the existing friction transfer technique, an adequate solution was provided to this challenge. In 

the improvised friction transfer technique, a drop (∼10 µl) of chlorobenzene was put at the interface 

of PBTTT-C14 pellet and OTS-treated substrate. The as-cast thin-film possessed edge-on 

conformation and even on low temperature annealing (~150 ℃) the stacking improved 

significantly as characterized through GIXD, XRD. The thin films were also subjected to polarized 

absorption and polarized Raman spectroscopies and the obtained results pointed out towards 

increase in conjugation length which was attributed to the probability of backbone straitening of 
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less soluble PBTTT-C14. Under optimum conditions, µ ∼ 0.5 cm2 V-1 s-1 was obtained. Although 

the little amount of chlorobenzene is less hazardous, less toxic solvents like toluene and different 

other polymer-solvent combinations were also explored to show the generality of this technique. 

 

5.2 Experimental Details 

5.2.1 Materials and Substrate Preparation: 
 Regioregular poly(3-hexylthiophene) P3HT and PBTTT-C14 were purchased from Sigma 

Aldrich and used without any further purification. Anhydrous chloroform and chlorobenzene were 

also supplied by Sigma Aldrich. OFETs were fabricated in bottom gated top contact architecture 

on heavily p-doped Si (as gate) having thermally grown SiO2 (100 nm / 300 nm) at top as dielectric. 

For substrate cleaning and/or SAM treatment the procedure as discussed in Chapter 2 was followed. 

OSDs were fabricated on ITO coated glass, which was etched to obtain 1 mm wide ITO strips as 

the bottom electrode, following the procedure as mentioned in Chapter 2. Memristors were 

fabricated on the glass substrate patterned with 2 mm wide thermally evaporated Al strips as bottom 

contact.  

5.2.2 Thin-film fabrication: 
 To fabricate ribbon-shaped thin films by FTM, a drop of P3HT solution in anhydrous 

chloroform (2% w/w) was placed at the interface of slider and liquid substrate (pure ethylene glycol 

at room temperature ~ 27 ℃). For friction transfer, the pellet of P3HT or PBTTT-C14 were 

fabricated following the steps as described in Chapter 2, and for film fabrication, they were 

squeezed and drawn against the hot substrates. Friction transferred thin-films of P3HT were 

fabricated with an optimized stage speed of 50 mm/min, squeezing load of 15 kgf/cm2, and 

substrate temperature of 80 ℃, Figure 2.4 can be looked at to recognize these casting parameters. 

The thin-films of PBTTT-C14 were fabricated by solvent assisted friction transfer technique at 
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optimized stage speed of 1000 mm/min, squeezing load of 3 kgf/cm2, and substrate temperature of 

85 ℃. The thin films were fabricated, using the conventional friction transfer setup (Figure 2.4), 

while a little drop (~ 3 μl) of anhydrous chlorobenzene was placed at the interface of polymer pellet 

and the OTS-treated substrates.   

 

5.2.3 Device fabrication: 
OFETs were fabricated in three structure i) one layer ribbon shaped P3HT film, fabricated by FTM, 

was stamped on OTS treated Si/SiO2 (100 nm) substrate and for solvent evaporation, they were 

annealed at 120 ℃ for 15 min under Argon atmosphere, ii) friction transferred P3HT films were 

coated on bare Si/SiO2 (100 nm) substrates and were utilized as-cast, and iii) solvent-assisted 

PBTTT-C14 thin films were fabricated on OTS treated Si/SiO2 (300 nm) substrates and annealed 

at ~ 140 ℃ for 30 min under Argon atmosphere followed by slow cooling. OFETs’ fabrication was 

completed by evaporating ~50 nm thick Au layer under high vacuum, which was patterned as the 

source and drain electrodes using Ni shadow masks with 2 mm channel width and varying channel 

length.  

OSDs were fabricated on ITO patterned glass substrate in three structures by i) stamping 5 layers 

of ribbon-shaped P3HT FTM films followed by annealing at 120 ℃ for 15 min, ii) casting one 

layer of friction transferred P3HT and used as-cast, and iii) casting one layer of friction transferred 

P3HT then stamping one layer of P3HT FTM films above it followed by annealing at 70 ℃ for 15 

min. Above these thin films 10 nm AlOX interlayer (as discussed in Section 4.2.2) followed by ~70 

nm Al as top contact was deposited, orthogonal to the bottom electrode. All the experiments were 

performed in ambient conditions except thin-film annealing and device characterization. 

Organic memristors were fabricated in layer-by-layer structure of three different SPs. On glass 

substrate patterned with 2 mm wide Al stripes as the bottom electrode. At first thin films were spin-
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coated with SP solution (1% w/w P3HT or PTB7 in anhydrous chloroform, or 1.5% w/w PBTTT 

in anhydrous 1,2-dichlorobenzene) was spun at 800 rpm for 5 s followed by 2000 rpm for 40 s. 

The as-prepared films were vacuum dried for 2 h and then annealed at 120 ℃ for 15 min in Argon 

filled glub-box. Further 10 nm AlOX was deposited on the polymer films following the steps as 

discussed in Section 4.2.2. Subsequently, the top polymer layers were stamped from ribbon-shaped 

FTM film which was fabricated with SP solution in anhydrous chloroform (3% w/w P3HT or PTB7, 

or 0.5% w/w PBTTT) on the liquid substrate (consisted of ethylene glycol at room temperature for 

P3HT and PTB7 and the mixture of ethylene glycol and glycerol in 1:1 ratio kept at temperature ~ 

40 oC for PBTTT). These semi-completed samples were again vacuum-dried and annealing the 

same as above and finally 2 mm wide Al top-electrodes having thickness ~ 70 nm was deposited, 

under high vacuum, to complete the device. For clarity, positive bias was considered when the 

positive voltage was applied to the top electrode.  

 

5.2.4 Device and Thin-film Characterization: 
 DC electrical characterization of the devices was performed utilizing a Keithley 2612 source-

meter. AC response of the OSDs was measured by placing them in series with a 2 kΩ resistor and 

a variable frequency voltage signal (produced by Multi-Function Generator, WF1974). The ripple 

voltage was measured across the resistor by connecting an oscilloscope (Agilent MSO-X2004A) 

across it. For the electrical characterization, the devices were kept under mild vacuum (~10-2 Torr). 

  

5.3 Results and Discussions 

5.3.1 Efficient Utilization of Existing Technique towards Large Scale Application 

5.3.1.1 Controlled Morphology of Ribbon Shaped FTM Films for in-plane Charge Transport   

Reproducibility and uniformity of the thin film characteristics are highly desirable towards 

large scale fabrication. Therefore, in order to demonstrate uniformity in the thickness of the P3HT 
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ribbon-shaped thin films cast by FTM (Figure 5.1(a)), a large section of the film was stamped on 

a glass slide (26 mm * 75 mm) and was characterized through 2D positional mapping, the details 

of the measurement setup and its operation is described in Chapter 385. The absorption spectra 

corresponding to each point areas with diameter 0.5 mm were mapped by moving the sample with 

a speed of 1 mm/s in the plane orthogonal to the aligned white light source and detector as shown 

in Figure 3.1. Here the detector implies to the photonic multi-channel analyzer (PMA-11, C7473-

36, Hamamatsu Photonics, Japan), which consists of the rigidly fixed diffraction grating and 1024 

photosensitive back-thinned charge-coupled devices with electronic shutter function which was 

controlled through an external pulsed signal. Through this system whole absorption spectrum was 

simultaneously measured for any point and a mask was placed between the sample and the detector 

to control the scanned area. In this work the mapping system parameters like, mask diameter 0.5 

mm, stage speed of 1 mm/s, and shutter operating frequency of 2 Hz with 4% duty cycle were 

utilized for swift characterization of the large area samples. From the perusal of Figure 5.1, it is 

clear that the peak absorbance for the array of point areas from point A to point B are approximately 

equal, which also corroborates the uniformity in the thin-film’s thickness following Beer-Lamberts 

law 86. Further, in order to verify the macromolecular orientation and its variation at a large scale, 

the sample stamped on 26 mm × 75 mm glass substrate was cut in seven equal pieces (26 mm × 10 

mm) samples and their polarized absorption were measured through a UV-Vis spectrophotometer 

(JASCO V-570) equipped with Glan-Thompson prism. The polarized spectra obtained for the 

middle section of the sample is shown in Figure 5.1. Since the transition dipole moment as a result 

of optically induced 𝜋𝜋-𝜋𝜋* transition is aligned along the SP backbone, therefore, linearly polarized 

light is absorbed maximum when the light polarization direction is kept along the polymer 

backbone direction. Hence, variation in peak absorbance value, when the light polarization 

direction is changed, corresponds to oriented polymer backbone in the thin film. From the perusal 
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of Figure 5.1, it is clear that the peak absorbance was higher when the light polarization direction 

was kept along the width of the P3HT ribbon (FTM). The optical anisotropy of the samples was 

calculated as the dichroic ratio (DR) = A∥/A⟘, where A∥ represents the peak absorbance absorption 

spectra (wavelength corresponding to A∥ is λmax-∥) with the polarized light along the ribbon-width 

and A⟘ is the absorbance value (at λmax-∥) of the spectra with polarized light orthogonal to the 

ribbon-width. The DR values for all the seven samples were lying between 1.84 and 2.08. For the 

whole 26 mm × 70mm sample, the average DR = 1.95 ± 0.1 with a low standard deviation confirms 

the uniformity in the macromolecular arrangement throughout the P3HT ribbon-FTM film. The 

maximum absorbance along ribbon width confirmed the SP backbone orientation to be orthogonal 

to the film expansion direction. The obtained orientation direction is in good agreement with the 

proposed mechanism of orientation in FTM11. When a drop of the polymer solution is placed at the 

junction of the slider and viscous liquid substrate, unidirectional expansion of the SP solution is 

assisted by walls at both edge and slant surface of the slider. During film expansion, the action of 

opposing viscous force imparted by the liquid substrate and quick solvent evaporation lead to solid 

oriented film floating on the liquid substrate. 
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Figure 5.1 (a) Digital image of the P3HT ribbon (FTM)  stamped on a glass substrate and the absorption 
spectra of array of point areas (with diameter of 0.5 mm) across line AB along ribbon length, measured 
through 2-dimensional positional mapping technique, and (b) representative polarized absorption spectra of 
the film measured through conventional UV-Vis spectrophotometer. (c) Representative transfer 
characteristics of the OFETs fabricated with FTM or spin-coated P3HT thin films. The OFETs architecture 
is shown in the inset (c) and the channel direction was kept along the ribbon width. 

 

Further, in order to demonstrate uniformity in transport property of the ribbon shaped P3HT thin 

film, OFETs were fabricated with different portions of the thin film and their 𝜇𝜇 were compared, 

results are shown in Figure 5.1 and summarized in Table 5.1. Since polarized absorption 

spectroscopy confirmed the SP backbone orientation along the ribbon width, therefore, the 

channels of the OFETs were fabricated along the width direction in order to obtain optimum 

transport property. In spite of low DR value obtained in FTM cast P3HT film, significant 

improvement in the field effect mobility was noticed compared to the spin-coated films, Table 5.1. 
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Table 5.1. The average field effect mobility (𝜇𝜇average) for the OFETs (with channel length and width 
of 20 µm and 2 mm respectively) fabricated with P3HT-thin films cast through various techniques.   

Casting technique 𝜇𝜇average (cm2V-1s-1) 

Spin-coat 0.0047 

FTM 0.012 

Friction Transfer 0.0015 

 

 

5.3.1.2 Optimum Performance in Friction Transferred Based OFETs by Balanced Contact and 
Channel Resistance  

Further, in order to demonstrate uniformity in transport property of the friction transferred 

thin-film, OFETs were also fabricated with different portions of the large area (7 cm × 1 cm) FT 

P3HT thin-films fabricated on the same substrates as shown in Figure 5.2. For friction transferred 

thin films the orientation of SP backbones is reported to be along the drawing direction and in this 

work also it was verified through polarized UV-Vis spectroscopy11,70, therefore, the channels of 

OFETs were kept along the drawing direction. Since on OTS treated SiO2, it was difficult to draw 

P3HT thin-film, therefore, bare SiO2 substrates were utilized for OFET fabrication, the 

representative transport characteristics and the device structure are shown in Figure 5.2. The 

OFETs, with channel length and width of 20 μm and 2 mm respectively, fabricated using different 

regions of the thin film exhibited almost uniform 𝜇𝜇 ∼ 0.0015 cm2V-1s-1. It is worth noting here that 

friction transfer thin films possessed comparatively rougher surface and of higher thickness 

compared to the FTM thin-films, as visually observed during the experiment. Although still 

exhaustive study is required to completely understand and quantify the role of contact resistance 

and access resistance originated due to the non-uniform metal/SP interface and thicker active layer, 

the channel length were varied in order to overcome these effects 145–147. It was observed that for 

higher channel length (≳100 µm), the 𝜇𝜇 improved and it became comparable to that obtained in 
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the case of FTM film. Hence it indicated that by optimizing the OFET architecture, friction 

transferred SP thin-films can be utilized for large-sale applications. 

 

 
Figure 5.2 The absorption spectra of continuous point areas (with diameter = 0.5 mm) across line AB on 
friction transferred P3HT thin-film (a) and its digital image captured in presence of polarizing film (b). 
Representative polarized absorption spectra of the film measured through conventional UV-Vis 
spectrophotometer. Representative transfer characteristics of the thin film at different locations with channel 
length 20 𝜇𝜇m (d) and 200 𝜇𝜇m (e). The OFETs architecture is shown in the inset (d) and the channel direction 
was kept along the drawing direction.     

 

5.3.1.3 Effect of Edge-on and Face-on Backbone-Conformation on Vertical Charge Transport 

Carrier transport in the polymer thin films primarily occurs through 𝜋𝜋-electron cloud 

delocalized across the conjugated backbone which is also responsible for improved in-plane charge 

transport by orienting them along the channel direction, as discussed above. In order to reflect the 

exclusive role of polymer backbone in vertical charge transport, their end-on orientation, are 

desirable. Though there are few reports to impart partial end-on orientation into the thin film to 

orient the SP backbone perpendicular to the substrate, they are not compatible with common SPs 
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and also for large area uniform thin film fabrication25,148. In the remaining conformations edge-on, 

with pi-stacking parallel to substrate plane, is most commonly attained by solution coating due to 

lower surface energy of alkyl chains and/or their hydrophobic interaction with the substrate. 

However, polymer chains possessing face-on conformation, with alkyl stacking parallel to the 

substrate plane would result in improved vertical transport. Face-on conformantion has primarily 

been demonstrated by employing mechanical force like friction transfer of SP pellet on the 

substrate or by mechanically rubbing the SP thin film 11. However their application for vertical 

charge transport has not been explored much. Therefore, in this section implications of friction 

transferred P3HT films on vertical transport characteristics has been descried. Besides, to 

demonstrate environmentally sustainable, inexpensive, and scalable fabrication of vertical device 

structure, FTM was also utilized along with friction transfer technique. Through these techniques, 

thin film of P3HT were cast for fabricating OSDs and their transport characteristics were analyzed. 

As explained in Chapter 4, SP thin film morphology plays crucial role in deciding the overall 

charge transport, therefore, the comparative analysis of FTM and friction transfer based OSDs 

would be an adequate tool for judicious selection of a device fabrication technique.  

For the OSDs fabricated with only friction transferred P3HT films, considerable amount of 

leakage current and high device to device variation was observed which can be attributed to rough 

surface of the polymer film, besides, complete elimination of pinholes is not at all an easy task 62. 

that which can be attributed to presence of tiny pin holes in the film and/or higher roughness. 

Though the pinholes or rough topography may not hamper the in-plane transport much, they can 

be highly detrimental to the vertical transport due to formation of short paths between the two 

electrodes as a consequence of metal diffusion during top contact deposition. Since single layer 

FTM P3HT films are too thin (~10 - 12 nm) to create considerable hindrance to the vertical carrier 

transport, therefore, to passivate the pinholes in the friction trancferred P3HT based OSDs, one 
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layer of FTM P3HT film was stamped above it as shown in Figure 5.3. Further, for the comparative 

analysis, the OSDs were also fabricated by sandwiching 5 layers of FTM P3HT films between two 

orthogonal electrodes (Figure 5.3). From the perusal of the representative J-V characteristic of the 

FTM based OSD, as shown in Figure 5.3 (a), it is clear that devices possess clear rectifying 

property. As a signature of Schottky junction fabricated at P3HT/Al interface, OSDs allowed facile 

flow of current in positive bias (+ve bias applied to ITO electrode) and highly blocked in the reverse 

bias. The physical parameters for the OSDs were calculate using the thermionic equation model 

(Eq. (1.11)) and are listed in Table 5.2. The frequency response of the diodes was also measured 

and the measurement circuit and results are shown in Figure 5.3 (b, c). The trend of ripple voltage 

across the load resistance (RLoad) at a different frequency of the input-voltage signal was compared 

and it was observed that the rectification due to OSDs was distinguishable up to 10 kHz. Further, 

friction transferred P3HT along with one FTM layer based OSD was analyzed, as shown in Figure 

5.3 (d). These device structures exhibited a higher forward current and rectification ratio as well as 

improved frequency response compared to that fabricated with only FTM based films, as listed in 

Table 5.2.   
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Figure 5.3 (a) J-V characteristics of the OSDs fabricated with 5 layers of P3HT film fabricated by FTM, 
device architecture is shown in the inset. (b) Circuit utilized to measure speed of the OSD RLoad was taken 
of 2 kOhms, and (c) AC response of the OSD at frequency 10 kHz. J-V characteristics of the OSDs 
fabricated with one layer of layers of friction transferred P3HT and one layer of P3HT film fabricated by 
FTM, device architecture is shown in the inset. (b) AC response of the OSD at frequency 50 kHz. 

 

Table 5.2 Set of device parameters (𝜂𝜂 and RR) obtained by fitting the experimental J –V characteristics of different 
devices using thermionic emission model, Eq. (1.11).  

Device Structure Ideality factor (𝜂𝜂) Rectification Ratio (RR) Switching Speed 

5 layers of P3HT (FTM) ~ 1.9 ~ 105 ~ 10 kHz 

1 layers of P3HT (friction 
transfer) + 1 layers of P3HT 

(FTM) 

~ 1.8 ~ 106 ~50 kHz 

 

From the perusal of Table 5.2, it is clear that the OSDs fabricated with a combination of 

friction transferred and FTM layers of P3HT possessed better transport characteristics compared 
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to that fabricated with only FTM coated P3HT layers. Higher rectification ration in the former case 

can be attributed to a reduced hindrance to carrier transport through the semiconducting polymer 

layer. The morphology of friction transferred and FTM coated P3HT thin films has been well 

reported by our group62,149. Due to complete face-on conformation of P3HT macromolecules in 

friction transferred films intermolecular electronic coupling (as a consequence of π-π stacking in 

the vertical direction) is much larger than that in edge-on oriented FTM coated multilayered P3HT 

film in which insulating alkyl-chains’ stacking occur in the vertical direction. In the FTM based 

OSDs, the layers of P3HT thin film was coated in the open laboratory condition, therefore, the 

presence of trap states between cannot be avoided. Besides, at abrupt termination between the FTM 

coated P3HT layers larger lamellar distance (due to the absence of interdigitation between the 

separate FTM layers) is anticipated which may also be accounted for the corresponding hampered 

transport properties. Finally, it can be concluded that for highly reliable and repeatable efficient 

vertical charge transport can be fabricated by passivating the pinholes of friction transferred SP 

with a thin FTM coated polymer layer stamped at top.     

5.3.1.4 Layer-by-Layer Printing of Conjugated Polymers for Bistable Resistive Memories  

The advantages like less expensive and easy fabrication processes, mechanical flexibility, and 

freedom of tuning conjugated polyers’ physical properties through appropriate structural 

engineering have drawn huge scientific interest towards the development of next-generation 

printed electronics 71–73,150. Along with various circuit elements151, the increasing interest in simple 

two-terminal memory elements as an alternative to solid-state memories triggered significant 

research activity in the recent past152–154. They are fabricated as an array of cross-point elements 

(as storage medium) sandwiched between two orthogonal electrodes. Huge efforts have been 

directed towards the development of the storage medium in which chemical or physical changes 

occur due to applied bias leading to the memory effect. Organic bistable resistive switches are one 
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of such elements initially reported by Ma and coworkers 155–157.  

The common device structure utilized for organic non-volatile and rewritable memories are 

metal/organic semiconductor/metal junctions, field-effect transistors with charge trapping, and 

electromechanical switches, etc.158–161. Memory effect in the metal/organic/metal sandwiched 

architecture has been explored extensively using thin films of different SP, organic molecular 

semiconductors, and their blends with metal nanoparticles, etc. Moreover, layer-by-layer (LbL) 

structure of organic semiconductors with/without metal-nanostructures, sandwiched between two 

metal electrodes were also demonstrated, which exhibited better switching characteristics and 

operational stability compared to their blends159,162. The improved device characteristics in LbL 

structures manifest the better charge transport/hold through/at the well-defined interface between 

different layers. On the other hand, although the thin films of blend of two or more constituents are 

commercially viable, intrinsic problems pertaining to phase segregation is unavoidable.  

Resistive switches fabricated by LbL coating of organic semiconductors have been mainly 

demonstrated using vacuum evaporation, spray coating, coating via crosslinking polymers and 

implementation of orthogonal solvents159,162,163. However, high fabrication costs, difficulty in 

fabrication and non-uniformity for large area implementation in thin films are the main challenging 

with vacuum evaporation of organic molecular semiconductors. On the other hand, in solution-

based approaches for thin-film fabrication, intriguing issues like the need for compatible 

orthogonal solvents, chemical damage at the interface of consecutive solution coated films are yet 

to be addressed. Although crosslinking polymers can be coated in LbL architecture162, there are 

limited choices for such materials and additional steps of crosslinking may increase the fabrication 

complexity and cost.   

In order to provide an amicable solution for issues on multilayer coating via solution-based 

approaches Floating-film transfer method (FTM) was developed and extensively explored for 
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various SPs by our group11,31,60,94. FTM not only provides homogeneous oriented thin films but 

also is highly suitable for the LbL multilayer coating without having any detrimental effect on the 

underlying layers34,164. In order to make this technique more cost-effective, recently it was 

improvised, in which a drop (≈15 µl) of SP solution resulted in large-area thin films (>20 cm2), as 

show in Figure 2.3, and the film morphology can be also tuned by changing the casting 

parameters144,165. In this work, LbL structure of SP with an interlayer of Al-islands was sandwiched 

between two metal electrodes to realize the bistable resistive switches. Different SPs were utilized 

to show the versatility of this technique.  

Regioregular P3HT, PBTTT, super-dehydrated chloroform (Ch.), and 1,2-dichlorobenzene 

(DCB) were purchased from Sigma Aldrich and Poly[4,8-bis[(2-ethylhexyl)oxy] benzo [1,2-b:4,5-

b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl] (PTB7) 

from 1-Material. The thin-films were fabricated by two different techniques: (i)  Spin-coating: SP 

solution (1% w/w RR-P3HT or PTB7 in Ch., or 1.5% w/w PBTTT in DCB) was spun at 800 rpm 

for 5 s followed by 2000 rpm for 40 s, (ii) FTM: a drop of SP dissolved in Ch. (3% w/w RR-P3HT 

or PTB7, or 0.5% w/w PBTTT-C14) was placed on the liquid substrate consisted of  ethylene glycol 

at room temperature for RR-P3HT and PTB7 and mixture of ethylene glycol and glycerol (1:1) at 

temperature ~ 40 oC for PBTTT-C14. The devices were fabricated with LbL structure as 

schematically shown in Figure 5.4. At first, on a clean glass substrate patterned with 2 mm wide 

Al electrodes, the polymer solution was spun followed by vacuum drying for 2 h and annealing at 

120 oC for 15 min in Ar atmosphere. Then ~10 nm Al (thickness was obtained through calibrated 

crystal oscillator) was deposited on it through thermal-evaporation under high vacuum (~10-6 Torr). 

This 10 nm Al layer sandwiched between the SP thin-films was indeed not continuous and its 

morphological characteristics have been extensively reported by us in our recent report68. In this 

work also the interfacial Al layer was deposited in similar experimental conditions, therefore, it 
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was considered as a layer of ~100 nm wide Al-islands. For the low thickness of thermally 

evaporated metal on the organic layer, the formation of islands due to terminated deposition before 

they fuse and make a continuous layer has been reported by other groups also 156,162. Further, the 

top polymer layers were coated through FTM followed by vacuum drying and annealing. Finally, 

under high vacuum 2 mm wide orthogonal Al electrodes having thickness ~ 70 nm were deposited 

on top to complete the memory device. The electrical characterization of the devices was done 

using a Keithley 2612 source-meter in vacuum (~10-3 Torr). For clarity, only DC characterization 

is discussed here considering positive bias when the positive voltage was applied to the top 

electrode.     

The current-voltage (I-V) response for different SP based devices are shown in Figure 5.4, with 

pinched hysteresis loop as the signature of resistive switching memories166. Since all the three SPs 

utilized in this work have similar energy band structure, therefore, analytical discussion with 

anyone might be helpful to understand the charge transport characteristics of others. RR-P3HT 

based devices without interfacial Al-islands did not show any resistive switching (Figure 5.4) and 

corresponding current density was also negligible (~10-8 A/cm2). For such device structure, the 

poor charge injection can be attributed to the work-function mismatch between the SP and the 

electrode. In the other device structure, the Al-island was deposited by thermal evaporation (~0.1-

0.4 Å/s) and due to residual oxygen in the evaporation chamber, the Al-islands can be represented 

as multilayered Al clusters with thin oxide layers between the layers. Therefore, the energy diagram 

of the Al-island was considered a series of energy wells next to each other. With these 

considerations, the switching mechanism can be explained in terms of the amount of charge stored 

or trapped at the Al-islands. The effect of stored charge can be explained by the model proposed 

by Ma et al. 156. After biasing, the free electron in core-Al tunnel through the oxide barrier opposite 

to the field direction, making the Al-island layer polarized. The charge is stored at either side of 
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the middle Al layer. Subsequently, the stored charge leads to conductance change in adjacent SPP 

layers by inducing a charge similar to the conducting channel formation in the field-effect 

transistors, which can be considered as the low resistance state (LRS). The LRS state is retained 

even after the removal of bias because the polarized charge cannot recombine due to a huge barrier 

imparted by interfacial oxide layers. However, by reverting the bias the stored charges would 

recombine and lead to reinstallation of the device in its high resistance state (HRS). The concept 

and effect of trap state are well-explored 68,162, therefore, only a short discussion is provided here. 

At the oxide interfaces, large trap states lead to charge trapping resulting in space charge build-up, 

which also contributes to switching, by hindering further charge injection. Through this transport 

mechanism, the I-V response of all the device structures can be elucidated. To see the effect of bulk 

resistance, top P3HT film (FTM layers) were varied. Higher current observed for devices with 3-

layers compared to that of 5-layers can be attributed to the decrease in the bulk resistance as shown 

in Figure 5.4. Since for the devices fabricated with P3HT, the current was low and also affected 

by noise, therefore, to explore the effect of the active layer further other SPs of the thiophene family, 

PTB7 with higher time of flight (TOF) hole mobility167 and PBTTT-C14 with higher crystallinity 

but low TOF hole mobility168 were utilized, the results are shown in Figure 5.4. Consequently, in 

comparison to RR-P3HT based devices, the current obtained for different devices fabricated with 

PTB7 and PBTTT was around one order of magnitude higher, and signal to noise ratio was also 

improved. Multiple cyclic scans of a typical PTB7 based device represent repeatable device 

performance as shown in. From the precise observation of Figure 5.4, it is clear that resistance 

switching characteristics of PTB7 based devices possessed optimum on/off and signal to noise 

ratios, compared to the other two, which was attributed to optimum TOF mobility, therefore, it can 

be a better choice for further study and application. Although for the ease of fabrication the devices 

were fabricated by casting the bottom layer by spin-coating, the devices can be fabricated by 
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depositing all the SP layers by only FTM. The future research is also focused in this direction and 

will be reported separately. Further, in order to show the advantage of the present device 

architecture, a comparative analysis merits and limitations of different techniques are summarized 

in Table 5.3.       

 
Table 5.3. The merits and limitations of different device structures utilized for fabricating memory cells in 
sandwich structure. 

Device structure 
(sandwiched between 

electrodes) 

3D integration 
possible 

Compatible for 
common SPs 

Process Cost at 
large scale 

Ref. 

Organic Small molecules’ 
bilayer with metal nano-

structure 
 

Yes No Vacuum 
deposition 

high 156,163 

Bilayer Organic 
Polymersa 

 

No Yes Spray-coating Low 159 

Blend of Organic 
polymers 

 

No No Spin-coat Low 160, 169 

Crosslinking polymers’ 
bilayer with metal nano-

structures 
 

Yes No Spin-coat High 162 

SP bilayers with metal 
nano-structure 

Yes Yes FTM Low This work 

a the organic polymers refer to either insulating polymers or semiconducting polymers, depending on 
the context of the cited works. 

 
 
The bistable resistive switches were demonstrated with solution-processed LbL polymer films 

having Al-islands in the middle. The LbL fabrication of the SPs was performed utilizing a highly 

cost-effective solution based technique. To the best of our knowledge, this is the first report 

demonstrating bistable resistive switches fabricated via LbL using solution processable SPs. The 

presence of oxide covered Al islands play a crucial role in imparting the switching phenomena. 

Further, FTM can be exploited for scaling down the size of printed electronics by fabricating high-

density three-dimensional structures, through horizontal and vertical integration on the same 
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substrate. 

       

 
Figure 5.4 (a) Digital image of ribbon-shaped FTM thin-film of P3HT and illustrative schematic for layer-
by-layer film casting on a substrate, (b) representative I-V plot for P3HT based devices device for which 
schematic is shown in the inset, (b) I-V plot for P3HT layers sandwiched between two Al-electrodes, without 
interfacial Al-nanostructures, (c) I-V plot for P3HT layers sandwiched between two Al-electrodes, without 
interfacial Al-nanostructures. Representative I-V plot for separate (d) PTB7 and (b) PBTTT-C14 based 
devices, devices schematic is shown in inset (a). Multiple cyclic scans for one PTB7 based device is shown 
in the inset (d). (f) Typical energy diagram of the device and effect of applied bias. 

 

5.3.2 Development of Solvent Assisted Friction Transfer Technique 
Due to the innate quasi-one-dimensional nature of conjugated polymers, in-plane charge 

transport i.e. field effect mobility (µ) of the OFETs, can be significantly increased by orienting the 

conjugated backbone in thin films. Huge scientific efforts have been dedicated in this direction and 

considerable improvement has been reported by various research groups11,170,171. Besides, the 

crucial role of macromolecular conformation and semiconductor/dielectric interface has also been 

investigated exhaustively 38,63. To demonstrate the state-of-art µ of OFETs generally Si/SiO2 

substrates are utilized. Further hydrophobic treatment of the SiO2 dielectric surface by depositing 

self-assembled monolayer proved to be an effective approach to attain orders of increment in µ 172.  
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Although improvement µ through the unidirectional orientation of backbone has been 

demonstrated through various approaches, many challenges such as device-to-device variation, 

serious health, and environmental hazard, etc. still need to be addressed. A brief analysis of the 

state of art orientation-techniques would be helpful to understand the strengths and shortcomings 

of the existing techniques. In the recent past, by orientating conjugated polymers, significant 

improvement in µ has been demonstrated through and for orientation, some of the techniques 

utilized and their demerits are as follows: solution shearing technique was introduced for large area 

crystalline thin film fabrication of organic molecular semiconductors 173,174; however noticeable 

improvement in µ in conjugated polymer thin films could be not achieved until aggregation in 

solution was utilized 143,175,176. Besides, using doctor blade technique orientation in P3HT fibrils 

(in solution) and effective increment in µ was also obtained along fiber axis demonstrated 177. 

Along with them, for many other solution based techniques also the inevitability of aggregation in 

solution for orientation in conjugated polymer thin films and consequential increment in µ was 

confirmed 133,178–181. Generally, conjugated polymer backbone gets disentangled during slow 

solvent evaporation and crystalline microstructures are formed due to their self-assembly, this 

property was exploited for orientation and increment in µ by Heeger group; however, this is an 

extremely slow process and effective 30,78,182. Mohammadi et al. have introduced dynamic-

template-directed orientation techniques through which swift orientation of conjugated polymer 

was attained but the µ was hampered due to mechanical damage in the film occurred during transfer 

from dynamic template to the substrate 33. Apart from above-discussed issues, the need for a large 

amount of solvents may lead to serious health hazards if one gets exposed for a longer time 56. Our 

group has also developed and extensively explored an orientation technique called floating-film 

transfer technique to orient various conjugated polymers with significant improvement in µ31,60,183. 

In this technique one drop of polymer solution is placed on the hydrophilic viscous liquid substrate 
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In this method, the viscosity of the hydrophilic liquid substrate which applies compressive force to 

the spreading solution, and through the simultaneous action of opposing forces polymer backbone 

gets oriented 31,91,165. Through recent advancement, by incorporating a custom made slider, large 

area ribbon-shaped oriented thin films were demonstrated by the controlled expansion of the thin 

film. Although through this technique one drop of solvent led to the fabrication of long polymer 

thin films (area >20 cm2), the attainment of uniform orientation throughout the thin film remains 

85,144. Further using friction transfer technique highly oriented polymer thin films have been 

reported62,63. No need for solvent for film fabrication qualifies it for sustainable green technology. 

Large area thin films with considerable uniform orientation and thickness also led to nearly similar 

device performance throughout the film as discussed in Section 5.3.1.2. It is also reported that in 

the as-cast friction transferred thin films the effective µ is lower due to face-on conformation of 

the oriented macromolecules, and after very high temperature annealing it significantly increased 

due to transition from face-on to edge-on but it may not be compatible with low-temperature device 

fabrication. Further, the role of the interface in OFET performance is well explored and it has been 

reported that SAM treatment of widely utilized SiO2 dielectric led to orders of enhancement in, yet 

the less adherence of friction transferred thin films on hydrophobic substrates is another issue 

36,184,185. Conclusively in order to harness the full potential of existing technologies, some new 

technologies can be developed by combining advantages of all or some of them.    

In order to address the above-discussed challenges, an ingenious technique was developed 

by incorporating the advantages of many existing processes. Through this technique, highly 

oriented PBTTT-C14 thin film fabrication was demonstrated on OTS treated substrate with 

complete edge-on macromolecular conformation in the thin film and to fabricate the thin film the 

setup of the conventional friction technique was utilized. To fabricate the oriented thin films, one 

small drop (< 10 µL) of solvent was placed at the pellet-substrate interface and the stage was moved 
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rapidly. The thin films were subjected to various optical and electrical characterizations and 

evidences regarding improved stacking and extended chain were obtained. By varying the 

annealing conditions and device architecture, the µ of 0.5 cm2V-1s-1 along the drawing direction.  

5.3.2.1 Optical Characterization of the Thin Films 

By second derivative fitting of non-polarized UV-Vis absorption spectra of the as-cast thin 

films exhibited a peak at ~546 nm and a feeble shoulder at 594 nm wavelengths and after annealing 

above the LC temperature the peak shifted to 554 nm and shoulder became prominent at 600nm, 

as shown in Figure 5.6 (a). For conventionally friction transferred PBTTT-C14 thin films high 

orientation has been demonstrated earlier, Chapter 4. When    The visible difference in the color as 

shown in Figure 5.5 of the annealed thin film follows the significant red shift in the absorption 

spectra, Figure 5.6 (a, b). The wavelengths corresponding to maximum absorbance and the 

shoulder were observed at 546 nm and ~ 600 nm for as-cast films and on annealing, it shifted to 

556 nm and 604 nm. Since the wavelength corresponding to maximum absorbance corresponds to 

0-1 transition and the more the red shift will be the more the chain straining occurs. The shoulder 

near 600 nm corresponds to π-π stacking. Therefore, shifts in the absorption spectra manifests the 

straitening in the chain and improved stacking. Further, the non-polarized spectra were also 

compared with the convention friction transferred PBTTT-C14 thin films. The conventional film 

itself shows high backbone straitening and it further increased due to the combined effect of 

shearing force and solvent.  The optical characterizations of the thin films revealed J-aggregate 

type property in the thin film which was attributed to SP backbone straitening, which consequently 

may lead to an increase in the intra-chain electronic coupling.  
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Figure 5.5 (a) Schematic representation for thin-film fabrication technique through solvent assisted Friction 
Transfer (FT) on OTS-treated or flexible substrates, (b) chemical structure of PBTTT, (c) representative 
digital images of the fabricated thin-films on different substrates.  

 

Although a comprehensive theoretical understanding is still required to understand the 

spectroscopic characteristics of a highly planer conjugated polymer system, the obtained 

Raman/vibrational spectra can be explained by resolving the whole spectra in the peaks 

corresponding to fou types of bonds along the conjugated backbone, as summarized in Table 5.4. 

The polarized Raman spectra were deconvoluted in the constituent peaks using Gaussian function. 

From the perusal of polarized Raman spectra of the as-cast and annealed samples, Figure 5.6 (c –

f), it is clear that the peks′ intensity is higher along the drawing direction compared to that along 

the orthogonal direction, which can be attributed to the higher interaction between the incident 

polarized excitation and the Raman active bonds. Further the closer look into the resolved peaks it 

is clear that the peak at ν3 corresponding to the interring thiophene bonds are significant and almost 

comparable to the peak at v4 corresponding to thinothiophene bonds. The thinothiophene bond 

between the fused rings causes rigid rod nature to the PBTTT therefore intense peak (at ν4) has 

been reported previously for the solvent process and conventional friction transfer techniques. 

However, in those reports, very less intense c-c peak (at ν3) was observed. Therefore, the increased 

ν3 peak intensity can be attributed to more straitening of the SP backbone. As recently reported by 

Tanaka et al.186, the inter-ring c-c bond has the freedom and the twisting and folding in the  PBTTT 



P a g e  | 116 Kyushu Institute of Technology  

backbone is mainly originated by torsion in this bond. However, in this work, the combined role 

of mechanical force and the solvent causes higher straitening in the chain187.  

Table I. Raman peak assignment for PBTTT and relative peak intensities of parallel and orthogonal Raman 
spectra as shown in Figure 5.6. 

Peak Frequency (cm-1) 
As-cast 

Frequency (cm-1) 
annealed 

Assignment a) 

ν1 1342 - thiophene C-C stretch 
ν2 1410 1410 thienothiophene C=C stretch 
ν3 1462 1458 inter-ring thiophene C-C stretch 
ν4 1492 1491 thiophene C=C stretch 

a)Reference for peak assignments was taken from density functional theory (DFT) simulation reported by 
Gao et al.188 

 

 

Figure 5.6 Non-polarized (np) and polarized absorption spectra (a), polarized Raman spectra of as-cast (c) 
and annealed (d) thin films of PBTTT fabricated on OTS treated substrates through solvent assisted Friction 
Transfer techniques. The exciting electric field was kept parallel (||) or perpendicular (⟘) to the drawing 
direction for the measurements. (b) Normalized non-polarized absorption spectra of friction transferred 
PBTTT-C14 through conventional or solvent assisted technique.. Deconvolution of || spectra of as-cast (d) 
and annealed (d) thin films using Voigt function. The films were annealed at 180 ℃. 

 
To analyze the macromolecular arrangement, in-plane GIXD and out-of-plane XRD 

measurements were performed as per the geometry shown in Figure 5.7. It can be seen that in case 



P a g e  | 117 Kyushu Institute of Technology  

of the samples as-prepared and annealed below LC temperature for friction transferred PBTTT-

C14 thin-film on bare oxide substrate, series of diffraction peaks (h00) corresponding to alkyl-

stacking is observed for in-plane GIXD and are absent in the out-of-plane GIXD. This clearly 

reflects that macromolecules in the as-prepared thin films adopted face-on orientation and upon 

annealing above the LC temperature31, where side chain melts to reorganize the crystalline domains 

leading to the observed conformational change in the thin film. A closer look at XRD patterns 

reveals that peak intensity of (h00) decreases in the in-plane and increases in out-of-plane mode 

with the increase in the annealing temperature ≥ 150 ℃, while just opposite trend was observed 

for the (010) diffraction peak corresponding to π- π stacking. These results clearly suggest that 

there is a gradual change in the conformation of PBTTT-C14 from face-on dominated to edge-on 

dominated depending on the annealing temperature. It is worth to note here that at 200 ℃, the 

intensity of the (h00) diffraction peak is observable in both of the in-plane and out-of-plane modes, 

therefore, partly the PBTTT macromolecules can be considered to recrystallize in edge-on 

conformation. Moreover, since (010) diffraction peak did also not diminish completely in the out-

of-plane mode at 200 ℃, it suggests that some face-on oriented crystallites also remained in the 

film.135 Whereas for the same condition almost complete edge-on conformation was obtained on 

silane treated oxide substrate as verified by X-ray diffraction (XRD) measurements. Since such 

high annealing temperature may not be compatible with many flexible substrates, therefore, 

drawing-technique was improvised. 
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Figure 5.7. (a) Schematic diagram for the measurement technique of out-of-plane XRD and in-plane GIXD. 
(b) Out-of-plane XRD pattern and (b) in-plane GIXD patterns of the solvent-assisted friction transferred 
PBTTT thin-films, with scattering vector (c) along (χ = 0°)  and (d) orthogonal (χ = 90°) to the drawing 
direction, and (e) schematic representation for the proposed macromolecular arrangement in the thin film. 
   

To examine the impact of these highly oriented thin films of PBTTT on the charge transport, 

OFETs were fabricated on OTS treated SiO2 substrates in the bottom gate top contact geometry as 

schematically shown in the inset of Figure 5.8 (a). The saturation µ and other electronic parameters 

were extracted from the transfer curves (IDS − VGS) as described earlier123. The OFETs were 

fabricated with the thin films as-cast and annealed at 150 ℃. The difference in channel length 

dependence of the transfer curve for the as-cast and annealed thin film was observed, which can be 

attributed to differences in channel resistance.  Therefore, we anticipate that during annealing, the 

straitening and stacking of the backbone led to a decrease in overall channel resistance,137,138. 

Although few reports are there regarding the estimation of OFET’s contact resistance, efforts are 

still required to develop a reliable model. Moreover, it is well accepted that by increasing the 
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channel length its resistance can be matched with contact resistance for better analysis of OFETs. 

In this work optimum for thin films as-cast and annealed temperature were attained by analyzing 

transfer characteristics of respective OFETs with varying channel lengths. The µ of 0.5cm2V-1/s-1 

was obtained for thin films annealed at 140oC. 

 

Figure 5.8 (a) Schematic illustration for OFET and the design of a Ni-mask with varying channel lengths 
(L) is shown in the inset. Transfer characteristics of the OFETs with different L, fabricated on (b) as-cast 
and (c) annealed (at 140 ℃) solvent-assisted friction transferred PBTTT thin-films. 

 

5.4 Conclusion 
The recent developments in the field of organic electronics are mainly focused towards 

enhancing the transport characteristics of thin-films by designing, synthesis, and increasing their 

crystallinity through various casting techniques. However, still some challenges need to be 

addressed before the commercialization of organic electronics, for instance, serious health and 

environment hazards due to the inevitable use of halogenated solvents, variation in large area thin-

film, etc. In this work, two techniques, floating-film transfer method and friction transfer, have 

been utilized to demonstrate the environmentally sustainable fabrication of large area thin-films 

possessing adequate uniformity in physical transport characteristics. Organic field effect transistors 

were fabricated from using different regions of the large-area thin films (≳10 cm2) and by 

optimizing casting conditions, uniformity in µ was demonstrated. Besides, one order enhancement 

in µ, compared to spin-coated thin films, was also achieved by tuning the device architecture. A 
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new technique was proposed for highly crystalline thin film fabrication with least hazards. In such 

a case, the as-cast thin-film exhibited complete edge-on conformation and after annealing at 140 ℃, 

4-order of (h00)-peaks and absorption maximum at 556 nm was observed, representing its highly 

compact and crystalline nature. Under optimum conditions, µ > 0.5 cm2 V-1 s-1 was obtained which 

is comparable to the standard values reported for this material.  
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Chapter 6: Conclusion and Future Work 
 

The charge transport characteristics of organic electronic devices (OEDs) primarily depend 

on the thin film morphology and interfacial qualities. In recent past semiconducting polymers (SPs) 

based OEDs have drawn widespread attention and significant improvement in their performance 

has been reported by tuning macromolecular conformation and orientation in the thin-films through 

inexpensive solution-processes, exploiting inherent quasi-1-dimensionality of SPs. However, the 

inevitability of hazardous halogenated solvents and occasionally pre-aggregation of SPs are the 

main challenges to attain the goal of roll-to-roll fabrication of OEDs. In order to address these 

issues, the comprehensive effort was dedicated, consequently, fabrication of large area polymer 

thin-films were demonstrated with just one drop of solvent (floating-film transfer method, FTM) 

or without using solvent (friction transfer technique). Further, 2D-positional mapping technique 

was developed for swift microstructural characterization of thin-films and fast optimization of 

experimental parameters resulting in charge transport uniformity at large-scale. Furthermore, the 

implications of interfaces, such as dielectric/SP or metal/SP, were also studied exhaustively and 

their diverse applications were demonstrated, for instance, to improve in-plane charge transport, to 

improve the rectification ratio of organic Schottky diodes. Moreover, utilizing FTM, the fabrication 

of organic memristors in layer-by-layer architecture was also demonstrated, which may lead to 

three-dimensional integration of printed electronics. 

As discussed various techniques have been reported for improving the crystallinity of the 

thin films and many of them, like FTM, friction transfer, solution-shearing, etc., lead to the 

inexpensive fabrication of large-area polymer thin film. Corresponding thin film morphology, an 

implicit function of various casting parameters, can be optimized through a series of film 

fabrication by tuning the parameters and comparing their characteristics. Besides, position-
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dependent morphological variation is another big issue with large area SP thin films. There are 

many sophisticated techniques, atomic force microscopy, X-ray diffraction, near edge x-ray 

absorption fine structure spectroscopy, variable angle spectroscopic ellipsometry, etc., through 

which precise microstructural characterization of SP thin films is performed but they are not 

suitable for swift characterization of large-area thin films (> several cm2).  2D-positional mapping 

technique was developed for swift microstructural characterization of thin-films and fast 

optimization of experimental parameters resulting in charge transport uniformity at large-scale.  

With this mapping technique, position-dependent absorption spectra were measured at varying 

locations through the aligned light source and multichannel detector and by the controlled 

movement of the sample stage. The sample was scanned along multiple lines by comparing the 

intensity, broadening, and shifts of absorption spectra a map of microstructural distribution 

throughout the thin film was realized. 

Further, as transport characteristics of OEDs primarily depend on the thin film morphology 

and the interfacial qualities, therefore, the effect of interface and the thin-film morphology on in-

plane and out-of-plane charge transport were studied. To analyze the effects on vertical charge 

transport, Organic Schottky diodes were fabricated with varying metal/SP interfaces and the 

morphology of the SP film was also varied by opting different casting techniques. An extensive 

transport model was also developed for calculation and comparative analysis of their transport 

parameters. In-plane charge transport was studied by fabricating organic field transistors, in 

bottom-gated top contact device architecture on bare and self-assembled mono-layer treated 

substrates (Si/SiO2). On annealing, conformational changes in the thin film were observed which 

also varied depending on the substrates’ surface energy. Consecutive effect on in-plane charge 

transport was also recorded and to interpret a pertinent carrier-transport mechanism was proposed 

in light of the obtained results from temperature and interface dependent electrical and optical 



P a g e  | 123 Kyushu Institute of Technology  

characterization of the friction transferred PBTTT-C14 thin-films. Further efforts were also 

dedicated towards environmentally sustainable large scale fabrication of OEDs. In this regard, a 

new film fabrication technique was also developed which interestingly provided significant 

improvement in film crystallinity and in-plane charge transport.  
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