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1.  INTRODUCTION

Japan is one of the world’s leading countries of earthquakes [1] 
and has been hit by disasters caused by earthquakes. In the event 
of such a disaster, it is often very difficult to search for the victims 
by human search activities. Therefore, recently, attention has been 
paid on the development of an automatic search method for those 
victims from aerial images taken by UAVs.

There are various automatic human detection methods for search-
ing people [2–4], but most of them are based on the premise that 
the target fallen person’s body orientation is unified and the subject 
is upright [3,4]. However, there is obviously no uniformity in the 
orientation of a fallen person’s body taken with an UAV. Therefore, 
in this paper, we propose an automatic detection method of a fallen 
person that does not depend on its body orientation.

The proposed method employs Rotation-invariant Histogram 
of Oriented Gradients (Ri-HOG) features [5–7] and Rotation-
invariant Local Binary Pattern (Ri-LBP) [8–10] as the features 
describing texture objects, or a person fallen on the ground, since 
they are the features robust to object rotation. In addition, Random 
Forest [11,12] is used for designing a classifier.

Having detected a fallen person [9], the proposed method also 
detects the head and lower body areas using the peak value of a 
gradient histogram. This enables quick support of the fallen person 
for communication, medical care, food, etc.

The proposed method is examined its performance by the experi-
ment using areal images.

2.  MATERIALS AND METHODS

2.1.  Ri-HOG Features

The Ri-HOG feature [5,6] is the HOG feature [13] with rota-
tional invariance. Unlike the original HOG, which uses rectan-
gular cells, the cell arrangement derived from dividing concentric 
circles is used in Ri-HOG feature. This section describes the 
Ri-HOG feature.

2.1.1. � Calculation of luminance  
gradient information

The input color image is gray-scaled and the luminance gradient 
at each pixel is calculated. From the obtained luminance gradient, 
the intensity and the direction of the gradient are calculated in the 
Cartesian coordinate system.

Assuming that the origin O is at the center of an input image, the 
relative luminance gradient direction q  ¢ in the polar coordinate 
system is defined by the difference between the luminance gradient 
direction q (x, y) of a pixel at (x, y) and the declination φ(x, y) of the 
pixel provided by the polar coordinate system, as given by

		  ¢ = -q q j( , ) ( , )x y x y �  (1)

A RT I C L E  I N F O
Article History

Received 23 November 2020
Accepted 23 May 2021

Keywords

Fallen person detection
head and lower body detection
aerial images
rotation-invariant HOG
rotation-invariant LBP
Random Forest
peak of gradient histograms

A B S T R AC T
This paper proposes a method of detecting a person fallen on the ground and its head and lower body from aerial images. 
The study intends to automate discovering victims of disasters such as earthquakes from areal images taken by an unmanned 
aerial vehicle (UAV). Rotation-invariant histogram of oriented gradients and rotation-invariant local binary pattern are used 
as features describing a fallen person so as to detect it regardless of its body orientation. The proposed method also detects the 
head and the lower body of a fallen person using the peak of the gradient histogram. Experimental results show satisfactory 
performance of the proposed method.

© 2021 The Authors. Published by Atlantis Press International B.V. 
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

*Corresponding author. Email: etheltan@cntl.kyutech.ac.jp

Journal of Robotics, Networking and Artificial Life 
Vol. 8(2); September (2021), pp. 134–138

DOI: https://doi.org/10.2991/jrnal.k.210713.013; ISSN 2405-9021; eISSN 2352-6386 
https://www.atlantis-press.com/journals/jrnal

http://creativecommons.org/licenses/by-nc/4.0/
mailto:etheltan%40cntl.kyutech.ac.jp?subject=
https://doi.org/10.2991/jrnal.k.210713.013
https://www.atlantis-press.com/journals/jrnal


	 J.K. Tan and H. Egawa / Journal of Robotics, Networking and Artificial Life 8(2) 134–138	 135

The value q ¢ is quantized to eight directions having an interval of 
45°.

2.1.2.  Creating a 2-D histogram

In the method, a concentric circle consisting of three (large, 
medium and small) circles is divided into 36 areas in the angu-
lar direction, and each small area is defined as a cell (The total 
number of cells is 108.). The cells in the smallest concentric circle 
are given numbers as 1, 4, 7, …, 106 clockwise starting from the 
area in the 0° direction. Similarly, the cells in the middle circle 
are numbered 2, 5, 8, …, 107 and the cells in the largest circle 3, 
6, 9, …, 108.

Given a pixel p(x,y) in a cell, six offset regions W1(p), W2(p), …, 
W6(p) are further defined by dividing a semicircular region exist-
ing in the radial direction of p. Let q be a pixel in one of the offset 
regions of p. A 2-D histogram is calculated with pixels p and q to 
use the co-occurrence information with respect to their gradient 
intensities and luminance gradient directions. Six 2-D histograms 
are created with each cell as it has six offsets. The 2-D histogram is 
calculated using the following formula:
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Here, i (i = 1, 2, …, 108) is the cell number, j (j = 1, 2, …, 6) is the 
offset number, o1 is the luminance gradient direction of pixel p after 
quantization, and o2 is that of the offset pixel q after quantization. 
Si is the cell of present concern, Wj(p) is the offset region of pixel p 
and K(*) is the function whose value is 1, if the argument is true, 
and 0, otherwise.

To reduce the influence of changes in local brightness and contrast, 
each 2-D histogram obtained by Eq. (2) is normalized.

2.1.3. � Gradient histogram and  
Ri-HOG feature vector

Since the value of luminance gradient direction q of the entire cir-
cular region in the Cartesian coordinate system ranges from 0° to 
360°, it is quantized in 36 directions every 10° intervals. A gradient 
histogram of the entire circular region is then made and its peak 
angle is found as the reference direction. The cells are rearranged 
in the clockwise order from the reference direction.

The cell numbers of the smallest concentric circle are expressed as 
follows:

	     i N uu = =1 4 7 1 2 3 36, , , , ( , , , , )� � �  (3)

Using Notation (3), the cells are arranged in the order of i1, i1 + 1,  
i1 + 2, i2, i2 + 1, i2 + 2, i3 …, i36 + 2, if the peak of the gradient histo-
gram is 0°, and they are connected in the order of i36, i36 + 1, i36 + 2,  
i1, …, i34 + 2, i35, i35 + 1, i35 + 2, if the peak of the gradient histogram  
is 350°. Since each of the 108 cells has 6 2-D histograms and the 
histogram has 64 components, concatenation of all of these com-
ponents defines an Ri-HOG feature vector whose dimension is 
41,472.

2.2.  Ri-LBP Features

Rotation-invariant local binary pattern feature is a feature obtained 
by adding rotational invariance to the LBP [14]. This section 
describes Ri-LBP features.

2.2.1.  Local binarization

An input image is gray-scaled as shown in Figure 1a, and the 
brightness values of the pixel of interest and its eight adjacent pixels 
are compared. If the gray value of an adjacent pixel is larger than or 
equal to that of the center pixel, the adjacent pixel is given 1, oth-
erwise given 0. By aligning the obtained 0 and 1 from the top-left 
pixel in the direction of the arrow shown in Figure 1b, an 8-digit 
binary number is derived, which represents the center pixel.

In Ri-LBP, the starting point is changed in turn to acquire 8-digit 
binary numbers, and the minimum value out of the eight numbers 
represents the center pixel. For example, in Figure 1, the LBP value 
is 01000011b = 67d, but the Ri-LBP value is 00001101b = 13d.

2.2.2. � Histogram creation and  
Ri-LBP feature vector

The cell of the Ri-LBP feature is the same as the cell of Ri-HOG 
feature.

Since LBP is given as an 8-digit binary number, there are 256 values 
from 0 to 255, but in Ri-LBP, there are 8-digit binary numbers 
that have a same value by changing the start point. For example, 
10000000b = 128d in LBP is expressed as 00000001b = 1d when the 
start point is changed. Hence 10000000b and 00000001b are equiv-
alent in Ri-LBP. After all, the total number of Ri-LBP values is 36.

Since there are cases where the number of pixels in one cell is less 
than 36, the proposed method divides 36 patterns into nine pat-
terns and creates a histogram with each cell. This histogram is 
normalized. The cells are rearranged based on the reference angle 
that gives the peak in the brightness gradient direction obtained in 
Section 2.1.3, and the histograms of all the cells are concatenated. 
This provides the Ri-LBP feature vector having the dimension of 
972, since each of the 108 cells has a histogram of nine components.

After all, an image for training and test in the proposed method 
is described by the 42,444-D feature vector containing rotation- 
invariant HOG and LBP features.

Figure 1 | Example of a local binary pattern: (a) an input gray-scale image, 
(b) binarization by comparing the brightness of the center pixel with its 
eight neighbors.
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2.3.  Detection of a Fallen Person

The proposed method uses Random Forest as a classifier. The 
advantages of Random Forest include that it is possible to learn effi-
ciently even with high-dimensional features by random learning, 
and that the influence of the noise contained in learning data can 
be suppressed efficiently by their random selection.

3.  HEAD AND LOWER BODY DETECTION

The head and the lower body of a fallen person are detected using 
the angle at which the gradient histogram in the circular region 
obtained in Section 2.1.3 has a peak. When a fallen person exists 
in a detection window in the orientation shown in Figure 2, the 
horizontal gradient becomes large and the peak angle of the gradi-
ent histogram is 0° or 180°. Therefore, the areas shown by the red 
frame in Figure 2 are the estimated head position. Let us assume 
that the posture of a fallen person is straight. Then, if the peak 
angle in the gradient histogram is denoted by wpeak, the angle w 
indicating the orientation of the head is provided by

		      w w= ± °peak 90 �  (4)

On the other hand, the lower body position is estimated by (i) 
searching for the area opposite to the detected head on the fallen 
body, or (ii) searching for the end area of the fallen body if the head 
is not found.

4.  EXPERIMENTAL RESULTS

Two experiments are performed. In Experiment 1, a fallen person 
is detected from a video, whereas the head and the lower body of 
the person are detected in Experiment 2.

4.1.  Experiment 1

In this experiment, 669 fallen person images are collected and used 
for a positive data class, whereas 1935 images which do not contain 
persons are used for a negative data class. It is noted that the neg-
ative data class contains 1218 negative images chosen from INRIA 
Person Dataset [15] to get sufficient negative data. Each training 
image is resized to a 61 × 61 pixels image. A Random Forest classi-
fier is constructed using these training data.

The classifier is applied to eight bird-eye view videos to detect a 
fallen person. The ground is flat in this particular experiment 
and the fallen person is assumed to be lying mostly straight on 
the ground. Each of these videos contains a single fallen person. 
The processed video frame is resized to 171 (height) × 300 (width) 
pixels. The size of the search window is 61 × 61 pixels. The judg-
ment on the detection is done with each detection window at each 
image frame in the video using Intersection over Union (IoU). The 
threshold of the IoU is experimentally set to 0.6.

As the result, the average recall, the average precision and the aver-
age F-value with respect to the eight videos are 0.881, 0.831 and 
0.843, respectively. The average computation time is 6.60s/frame. 
Some results are shown in Figure 3. The green square is the man-
ually set Ground Truth area and the red square shows a detected 
fallen person.

4.2.  Experiment 2

In the second experiment, the head and the lower body are searched 
and detected on the image of a detected fallen person. A head 
detector and a lower body detector are designed using Random 
Forest. For this learning, 879 head images (positive) and 2126 other 
images (negative) are used with the head, whereas 416 lower body 
images (positive) and 1858 other images (negative) are used with 
the lower body.

The designed detectors are applied to nine bird-eye view videos, in 
three of which a fallen person’s head part is occluded and in other 
three of which the person’s lower body is occluded. For the judg-
ment on the detection, IoU is again used. The threshold is set to 0.4 
in this particular experiment.

Figure 2 | Example of a presumed head position in a fallen person 
detection window.

Figure 3 | Results of Experiment 1. The green square is the Ground Truth area, whereas the red square shows the result of the detection.
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The experimental results are as follows: The average F-value of 
head detection is 0.539, whereas that of lower body detection is 
0.790. The computation time is 7.42 s/frame in average.

Some results of the detection are shown in Figure 4. In Figure 4a, 
there is no occlusion with the fallen person. On the contrary, the 
head part of the fallen person is occluded in Figure 4b and its lower 
body is occluded in Figure 4c. The red square indicates a detected 
fallen person: The blue square indicates a detected head and the 
yellow square indicates a detected lower body.

5.  DISCUSSION

The proposed method detects a person fallen on the ground from 
areal images using rotation-invariant image features. Experimental 
results show effectiveness of the method. The training data still 
needs improvement, however, in the sense of its amount and con-
tent, since a spot of disaster is normally a cluttered environment and 
a fallen person may have various postures. The evaluation on the 
performance of the proposed method is expected to be enhanced 
by learning more amount and varieties of data.

The proposed method also finds the head and the lower body of a 
detected fallen person. The information on a person’s head location 
is particularly important for further assistance such as communi-
cation or providing food.

Another intention of this body part detection is to realize direct 
detection of a fallen person with certain occlusion. In the per-
formed experiment, a fallen person is assumed to be detected 
first and then the body parts are found. The method needs to be 
improved to detect the body parts of a fallen person directly from 
an aerial image, even if its certain part is occluded.

The total dimension of the used feature vector is large. This may 
have caused the long computation time of approximately 6–7  
s/frame in both experiments. An idea to decrease the dimension is 
to reduce the number of cells by considering the peak angle of the 
gradient histogram described in Section 2.1.3. Since the peak angle 
indicates a person’s fallen orientation, some cells perpendicular to 
the orientation may be discarded.

6.  CONCLUSION

In this paper, we proposed a method of detecting a fallen person 
and its head and lower body from areal images. The method used 
rotation-invariant HOG and LBP features to describe a fallen 
person and Random Forest classifiers were designed using the fea-
tures. Experimental results showed effectiveness of the method.

Future work includes collecting larger amount of training data 
to increase the detection rate and improving the method so that 
it may detect a fallen person with various postures and occlusion. 
Decreasing the dimension of the employed feature vector is also 
necessary to reduce the computation time.
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