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Abstract 

     An image diagnosis by deep learning was applied to failure analysis of power devices. A series of images 

during a process to failure by power cycling test was used for this method. The images were obtained by a 

scanning acoustic microscopy of our real-time monitoring system. An image classifier was designed based on a 

convolutional neural network (CNNs). A developed classifier successfully diagnosed input image into a normal 

device and an abnormal device. The accuracy of classification was improved by introducing a pre-training and 

an overlapping pooling into the system. A technique to extract a feature related a failure is essential for the 

failure analysis based on the real-time monitoring and the deep learning is one likely candidate for it. 

1. Deep Learning applied for failure analysis of

power devices

The development of power devices is 

remarkable and further market expansion in the 

future is expected. Moreover, devices using wide 

band gap semiconductors are put on the market and 

new packaging technology for such next-generation 

devices are developed rapidly. Since these devices 

expected to use under high frequency, high power 

density and harsh condition, new technique is 

required to ensure the reliability of them. 

We have proposed a failure analysis based on a 

real-time monitoring (RTM) [1-6]. The RTM enables 

to visualize the mechanism that leads to a failure by 

obtaining the change of structure inside the device, 

current distribution, electromagnetic field 

distribution and temperature distribution in time 

domain with high spatial resolution. The RTM 

generates time-series huge image data but it is almost 

impossible for human senses to extract and to judge 

only changes related to failure from them. Therefore, 

together with the technique to recognize such slight 

change in the data automatically, the failure analysis 

by RTM can increases its utility. 

In last decade, the development of deep learning 

(DL) has been remarkable [7]. Especially, a

convolutional neural networks (CNNs) is utilized to

an image recognition and has been successful for

automatic diagnosis in the medical field [8-10].

Fig. 1.  A structural model of image diagnosis by CNNs. 
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Moreover, the DL have begun to be taken in 

microelectronics [11-14]. Fig. 1 shows an example 

structural model of image diagnosis based on CNNs 

[15]. 

In this paper, we applied DL to the RTM for 

failure analysis of power devices. To apply DL to 

RTM, we developed a classifier that diagnoses a 

series of scanning acoustic microscopy (SAM) image 

obtained by RTM into “normal device” and 

“abnormal device”. Moreover, we proposed the 

method to figure out a mechanism of failure mode by 

using RTM data with a deep learning. 

2. CNNs based image diagnosis

2.1. Studied failure mechanism 

To apply DL to RTM, we validated a classifier 

that judges a series of scanning acoustic microscopy 

(SAM) image obtained by RTM into two classes, 

“normal” and “abnormal”. We used a set of images 

obtained when a failure had occurred caused by a 

degradation of wire bonding during power cycling 

test [1]. Fig. 2 shows the representative SAM images 

for training and testing of the classifier. The real-

time monitoring was performed with a diode on a 

DBC substrate. The bonding condition was observed 

by SAM from the DBC substrate side. A failure 

occurred due to bond wire lift-off after 4677 power 

cycles. In this case, as the SAM image was observed 

each 100 cycles, we obtained 48 images adding 

initial and failed image by the power cycling test.  

2.2. Data set preparing 

We assigned an area of interest (AOI) around the 

diode and extracted the area of 100  100 pixels 

form original 300  300 pixels image. To prepare a 

data set for the training and testing the classifier, we 

have to classified the images to “normal” device and 

“abnormal” device. As shown Fig. 2, it is almost 

impossible to distinguish a difference among these 

images by a human vision. A behavior of forward 

voltage VF of the DUT at the power cycling test was 

used as a criterion. A remarkable change of VF was 

observed after 4300 cycles and in a few ten cycles 

just before the failure occurred. Moreover, an image 

change at bonding position was detected in subtract 

images after 4400 cycle [1]. Therefore, we 

categorized the 4 images after 4400 cycles as 

“abnormal device”. 

The number of images of 48 is too small for the 

training and testing the classifier. Therefore, we 

generated 3 images by 90-, 180-, 270-rotated and 

4 mirrored images from the 48 images, consequently, 

we prepared a data set of 384 images. 

Fig. 2.  SAM images of a process to failure by poser cycling test. 



 

 

 
Table 1 

Evaluation criterions 

 

 Normal device Abnormal device 

Normal label a (correct) c 

Abnormal label b d (correct) 

 

2.3. CNN model 

 

In this study, CNNs was applied to classification 

of the SAM image. In medical field, it is possible to 

design highly accurate classifiers by CNNs, because 

useful methods of feature extraction are established 

by using a dictionaries of medical images for 

learning. However, there is no precedent and image 

sample for learning is very few in our case. 

Therefore, we had to select appropriate CNN model 

and modify it to apply this method to SAM images 

of power device. 

The classifier was designed based on a model 

VGGNet [15]. Fig. 1 shows a conceptual diagram of 

VGG16 model which constructed with 13 

convolutional layers and 3 fully connected layer. We 

modified this model by a fine tuning and an 

overlapping pooling [7, 16]. The fine tuning is a 

process of learning the SAM images for a pre-

training model. We applied ImageNet [17] for the 

pre-training. The input weights determined by pre-

training are frozen so that weight parameter does not 

update during learning. The optimum number of the 

layer to freeze was experimentally obtained 14th. In 

the overlapping pooling, a pixel area is overlapped 

when an aggregate operation by a pooling. This 

method can improve the accuracy of aggregate by 

suppressing an over learning that is likely to occur 

with a small data set like this case. 

To prevent a change of weight parameter 

obtained the fine tuning during training, the weight is 

frozen up at optimal layer. The optimal layer was 

obtained experimentally by using three models of the 

pre-trained weight was frozen to 18th layer, 15th 

layer and 11th layer. When a same data set was used 

for training and testing of these models, the highest 

accuracy was obtained when the weight was frozen 

to 15th layer. 

Fig. 3 shows a structure of our proposed model. 

In this model, the pre-trained weights are frozen up 

at the 14th layer, and overlapping pooling is applied 

to the pooling layer of 15th and 19th layer. The 

detail of this model is shown in Appendix.  

 

2.4. Evaluation result 

 

The classifier was evaluated by a k-fold cross-

validation [7]. The data set of the SAM image was 

randomly divided into four data sets. Each data set 

constructed by 96 images including 88 images of 

“normal” device and 8 images of “abnormal” device. 

The three data sets were used for training and the 

original images without augmentation data was used 

for testing. A result of the classification was 

categorized as shown in Table 1 and CCN model 

was evaluated with the following value: 

 

accuracy = (a + d) / (a + b + c + d) (1) 

 

True Positive rate (TP) = a / (a + b) (2) 

 

False Positive rate (FP) = c / (c + d) (3) 

 

As for ideal classifier, the value of accuracy, TP and 

FP is 1, 1 and 0 respectively. In addition, the value of 

TP and FP indicates accuracy of judgement for 

“normal” device and “abnormal” device respectively. 

These values obtained by testing were different for 

each test because of a bias of data set, therefore we 

used an average value which obtained by 5 tests of 

each data set. 

We compared three CNN models constructed 

 
Fig. 3.  Proposed model of image diagnosis by CNNs. 



 

 

based on the VGG16. One is a model without frozen 

up of the pre-trained weight. Second is a model pre-

trained weight are frozen up at the 14th layer, and 

our proposed model which the pre-trained weights 

are frozen up at the 14th layer and overlapping 

pooling is applied to the pooling layer of 15th and 

19th layer. The results are shown in Table 2. If a 

CNN model judges all images in the data set as 

“normal” device, the accuracy is 0.92, TP = 1.0 and 

FP = 1.0 (a = 88, b = 0, c =8, d = 0). The result of 

first model without frozen up of pre-trained weight 

was indicated almost same value of this case. This 

result means that this model could not construct an 

accurate classifier. In the case of second model 

which the pre-trained weight is frozen up, the 

accuracy and FP were improved. Moreover, our 

proposed model with overlapping pooling indicated 

good score in all parameter. The value of 0.14 in FP 

means judgement accuracy for “abnormal” device is 

lower. This result caused by much fewer “abnormal” 

device image than that of “normal” device images in 

the data set. 

 

 

3. Advantage of failure analysis based on Real-

Time Monitoring with Deep Learning 
 

A failure mode of power devices is determined 

by a correlation between physical phenomena 

occurring during process to failure. In principle, it is 

possible to record all these phenomena by RTM if 

appropriate parameters are selected for monitoring. 

The RTM we have proposed monitors and records 

the state change of the power device during 

acceleration test over whole period of time. The 

object to be monitored includes not only to electrical 

characteristics and heat dissipation characteristics 

but also to internal structural changes etc. The 

obtained data includes whole information of a failure 

mechanism from occurrence of a microscopic 

phenomenon which is trigger of a failure to 

degradation process to failure. In the conventional 

analysis represented failure analysis, the cause of 

failure is determined by static observation with 

opening the failed device. On the other hand, in the 

real-time monitoring, microscopic phenomena which 

can be cause of failure are dynamically observed in 

time series before a failure occurs. Therefore, the 

RTM has a great advantage for extraction of the 

relationship between physical properties of 

constitutional materials and degradation phenomena 

inside the device or extraction of phenomena that 

cannot be modelled in simulation. The RTM 

monitoring proposes a clear spec for materials and a 

new evaluation method for material development, 

and also it opens the way to the development of a 

highly accurate simulation model (see Fig. 4). 
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Fig. 4.  Method for enhancing reliability of a power 

semiconductor based on a real-time monitoring. 

 

To figure out a mechanism of failure mode by 

using RTM data, it is necessary to detect and 

quantify the parameter changes related to the failure. 

A change in monitored parameter is quantified and 

these change is indexed by a type and degree of the 

change. The time-series indexes systematically 

express a failure mechanism. By finding a pattern 

depending on a failure mode from the time series 

index, it is possible to predict future failure modes 

from RTM data during the acceleration test. 

Moreover, it is also possible to estimate a life time 

during accelerated test by judging the progress of 

deterioration from an occurrence timing of index and 

the degree of parameter change. If the target failure 

mode is limited, e.g. degradation of die attach or 

wire bonding by a power cycling test, we consider 

that the analysis method of a failure mechanism is 

applicable with monitoring of representative 

parameters without monitoring all parameters. 

Table 2 

Result of 4-fold cross validation 

 

 accuracy TP FP 

without Pre-training 0.9225 1.0000 0.8938 

with Pre-training 0.9406 0.9659 0.3375 

Pre-training + Overlapping pooling 0.9714 0.9818 0.1438 

 



 

 

A data analysis by deep learning is suitable for a 

failure analysis by RTM. The most basic role of DL 

is extraction and judgement of a parameter change 

related to a failure mechanism from RTM data. The 

data to be learned in DL is not limited to one type 

but by combining several types of data, it is possible 

to design AI that can make more complicated 

judgment. 

 

 

4. Conclusion 
 

An image classifier was designed based on a 

convolutional neural network (CNNs) for failure 

analysis of power devices by a real-time monitoring. 

A developed classifier successfully diagnosed input 

SAM image into a normal device and an abnormal 

device. The accuracy of classification was improved 

by introducing a pre-training and an overlapping 

pooling into the system. Since the small number of 

data sets, we plan to new validation test with new 

data sets in the future. 
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Appendix 
 
Detail of network model 

 

Layer Filter size Stride Output size Remarks 

input_1 - - (100,100,3) - 

block1_conv1 (3,3) (1,1) (100,100,64) ReLU 

block1_conv2 (3,3) (1,1) (100,100,64) ReLU 

block1_pool (2,2) (2,2) (50,50,64)  

block2_conv1 (3,3) (1,1) (50,50,128) ReLU 

block2_conv2 (3,3) (1,1) (50,50,128) ReLU 

block2_pool (2,2) (2,2) (25,25,128)  

block3_conv1 (3,3) (1,1) (25,25,256) ReLU 

block3_conv2 (3,3) (1,1) (25,25,256) ReLU 

block3_conv3 (3,3) (2,2) (25,25,256) ReLU 

block3_pool (2,2) (2,2) (12,12,256)  

block4_conv1 (3,3) (1,1) (12,12,512) ReLU 

block4_conv2 (3,3) (1,1) (12,12,512) ReLU 

block4_conv3 (3,3) (2,2) (12,12,512) ReLU 

block4_olp (3,3) (2,2) (6,6,512) Overlapping 

block5_conv1 (3,3) (1,1) (6,6,512) ReLU 

block5_conv2 (3,3) (1,1) (6,6,512) ReLU 

block5_conv3 (3,3) (2,2) (6,6,512) ReLU 

block5_olp (3,3) (2,2) (3,3,512) Overlapping 

Flatten - - (3,3,512) Flatten 

Dense - - (1,1,256) Dense 

Dropout - - (1,1,256) Dropout 

Dense - - (1,1,2) Softmax 

 


