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State Observer-Based Robust Control Scheme for
Electrically Driven Robot Manipulators

Masahiro Oya, Chun-Yi Su, and Toshihiro Kobayashi

Abstraci—By using a state observer, a new robust trajectory tracking-
control scheme is developed in this paper for electrically driven robot ma-
nipulators. The role of the observer is to estimate joint angular velocities.
The proposed controller does not employ adaptation, but assures robust
stability of tracking error between joint angles and desired trajectories.
At sacrificing asymptotical stability of the tracking errors, the configura-
tion of the proposed controller becomes very simple, compared with re-
gressor-based adaptive controllers. It is shown in the closed-loop system
using the proposed controller that the Euclidian norm of tracking errors
arrives at any small closed region with any convergent rate by setting only
one design parameter. Especially for the desired trajectories converging to
constant ultimate values, it is assured that tracking errors converge to zero.

Index Terms—Electrically driven robot, robot manipulators, robust con-
trol, state observer, tracking control.

1. INTRODUCTION

As demonstrated in [1], the actuator dynamics constitute an impor-
tant component of the complete robot dynamics. If the actuator dy-
namics is ignored, the designed controller may not yield good system
overall performance. In recent years, controls for robot manipulators,
including the actuator dynamics, have received considerable attention
and several control schemes have been developed [2]-[14]. In the early
works [2], [3], the controllers required full knowledge of system dy-
namics. If there are uncertainties in the dynamics, the controllers pro-
posed in [2] and [3] may give a poor performance, and may even cause
instability. To overcome the uncertainties in the dynamics, robust con-
trollers have been proposed in [4]-[15]. However, these controllers
normally require full state measurements. In general, full state mea-
surements may not be available, due to cost of sensors, weight limi-
tation, effects of noises, etc. Especially for the velocity measurement
of joint angles, the required accuracy may not be achieved ih prac-
tical applications, due to the existence of noises [16]. Most recently,
control schemes without using velocity measurements were proposed
in [17] and [18], where regressor-based adaptive controllers are em-
ployed. These controllers are effective for uncertainties in robot and
actuator dynamics, and guarantee asymptotical stability of the tracking
errors. However, the construction of the regressor is not trivial for a
general robot, even when only desired values are involved.

In this paper, we will develop a new robust tracking-control scheme
with the use of a state observer without involving adaptations, velocity
measurements of joint angles, and the regressor. A precompensator is
first introduced to obtain a new representation for the electrically driven
robot dynamics. Then, a new robust controller is developed, which
has the following features: 1) it is assured that the Euclidian norm of
tracking errors can reach to any small closed region with any conver-
gent rate by setting only one design parameter; 2) it is assured that
the tracking error converges to zero when the desired trajectories g4(t)
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converge to ultimate constant values; and 3) the configuration of the
developed robust controller is very simple, if compared with that of the
regressor-based adaptive controllers.

Il. NEW REPRESENTATION OF ROBOT MANIPULATORS
WITH INTEGRAL PRECOMPENSATOR

Consider an n-link manipulator with revolute joints driven by armg.
ture-controlled dc motors with voltages being inputs to amplifiers. Ag
in [3] and [4], the dynamics are described by

Mp(q)q(t) + Bp(a,q)d(t) + gp(q) = KpnIp(t) } ;
Mp(q) = Dp(q) +J M

Lip(t)+ RIp(t) + K.q(t) = up(t) ")

where g(t) € R™ is joint angles, Ip(t) € R™ is the armature cur-
rents, and up(t) € R™ is armature voltages. Dp(q) € R"*" isg
positive definite inertia matrix of the manipulator, Bp(g,q) € R™*"
is Coriolis and centrifugal torques, and gr(gq) € R™ 1s the gravita-
tional torques. .J, L, and R are the actuator inertia matrix, the actuator
inductance matrix, and the actuator resistance matrix, respectively. K,
is the matrix that characterizes the voltage constant of the actuators,
and Kpy is the matrix characterizing the electromechanical conver-
sion between current and torque. J, L, K, K., and K py are positive
definite constant diagonal matrices.

The control objective pursued here is as follows. For any given de-
sired bounded trajectories g.(t), g4(t), and ¢4(t), with some or all of
the manipulator and actuator parameters unknown, derive a robust con-
troller for the actuator up without using the measurement of joint ve-
locities, such that the manipulator position vector ¢(t) tracks ga(t).

In the following development, suppose that the armature current
Ip(t), joint angles g(t), and armature voltage u p(t) are measurable,
and the joint angles of the robot manipulator (1), (2) are held at some
fixed angle by using some simple joint-angle feedback controller.
Then, up(t) can be represented as up(t) = w(t) + u, where @ is
a.constant voltage to hold the joint angle. In this case, the relations
q(0) = 0, gp(g(0)) = KpnIp(0), and RIp(0) = W are satisfied.
When the signals 1(t) = Ip(t) — Ip(0), u(t) = up(t) — @ are used
to initialize the manipulator (1), (2) in the case of the fixed-angle
situation, the electrically driven robot manipulator can be described by

M(q)g(t) + Blg,q)q(t) + glg) = KnI(t) )
LI(t) + RI(t) + K.q(t) = u(t)

L’P"‘ ZPm
o) = 2@ 0 a0) K

Lpm 7 |

Ef'm
where p, = Amin[Mp(g)] is the lower limit of eigenvalues of
Mp(q), and the symbols M(q), B(q, ). g(g), and K are introdllc'id
to normalize the lower-limit eigenvalue of the manipulator ineri
matrix. It should be noted that the constant values i and Ip(0) canbe
obtained from the measurable signals Ip(t) and up(1).

It is well known that manipulators and actuators are characterized by

the following properties [19]-[21].

P1) The relation B(q, x)y = B(q,y)z holds, and there exists 3
bounded positive constant 5, such that || B(q, z)y|| < f’b”f”"?"
for any two given vectors x, y € R™.
P2) The relation M(q)i(t) — Blq,q)q(t) = (1/2)[(8/90)
[a()T M(g)g(t)]]" is satistied.
P3) The matrix M(q) is symmetric positive definite and ther®
exist bounded positive constants p (= 1) and p,,, for any ¥
x such that ,Jm.rT.r <aTM(q)x < Pl
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P4) There exist bounded posmve constant values p, ., py,, forany
vector z such thatp, Tz < 2" Knz < py, 2’ =
PS) There exist bounded positive constants o\, 7, P 1. s
. Pre. such that (M@ < 7 [ o)l < P
IIt'iy(r;)/f? qll <7, 1Bl < 7, 1L < 7y 1Kl < Py
To make (1) track a desired trajectory q4(t), let us consider a pre-
compensator of the following form:

w(t) = p(t) -l»./p('r)dr = ”_;“_1 [n(D)] @)
0

where the symbol p denotes the differential operator, and the signal
pu(t) is the input to the compensator. Then, to develop a control scheme
achieving the control objective, the robot model (3) is rewritten as fol-
lows (see Appendix I):

M(q)g(t) — M(q)q(t) + B(q, 4)q(t) + hy(t) = KnIrp(t) (5)

LIp(t) + RIp(t) + K.q(t) — hs(t) = p(t) (6)
and
—(t—7 a 3
= [ @i + 2 2icr)
+%f(é,cj)] dr
@)= |2 a0 M(@it) i ST
fw:—[aq qq-]

U
h;(t}:f e K G(7)dr
0

o - : ,—(t=r) SO
Ie(t) = I(1) _/0 e I(7)dr = PH[!(:)]. )

In the above expression, the function f(a,b) is defined as f(a,b) =
[(8/8q)[a” M (q)b]]" for any vector a and b € R™, where the depen-
dence on ¢(t) is dropped for the simplicity in the later development.

It should be noted that property P2 has been used to derive the new
representation (5)—(7). Also, the gravitational torques g(g) are repre-
sented by the term (3,(q)/dq)q(t).

IT1l. CONTROLLER DEVELOPMENT

In the following development, the design procedure will be described
4 a two-step process. Firstly, the signal I (t) in (5) is regarded as the
input signal. An embedded control input Ir4(t) is designed so that the
desired tracking can be achieved. Secondly, p(t) is designed so that
Ie(t) tracks I'r4(t) without using the signal g(¢). In turn, this allows
9(t) 0 track the desired trajectory qa(t).

A. Synthesis of Embedded Signal It-4(t)

First, letus suppose that the signal g (#) is available and the signal I (1)
fanbe treated as an input signal. A robust controller will be synthesized,
S0 that ¢(t) tracks the desired trajectory g.(t) for the subsystem (5). To

ieve such an objective, an additional property is exploited.
P6) There exists a bounded positive constant-value 7 4 such that
lf(a,b)| < Agllallllb]] for any a, b £ q(t).

or the development of robust controller, the following standard as-

Sumptions are required for the system (5)- (7)

A1) There exist known diagonal constant matrices % N» ﬁ K’
and there exist bounded pO'illlVE: constant values ”u' ) o
H*t such that ,ur,rrr < o I\NI\N z < P, «.Jl.r for all r,
IRl = |k - R|| < 7~ |E.|| = | K. - K.| < Pr.-

79

A2) There exists a known bounded function 7(g), and
there exist bounded positive constant values p—~ ml
such that l!(ay(q)/aq)ll < P ll(au(q)/aq)ll —

(3g(q)/0q) — Kn K 5" (33(q)/89)]| < (et
A3) For given desired trajectories ga(t). there exist bounded pos-
itive constant values 5y, p .. 1 = 1,2, such that ||q«(2)|| < 7,.
”qd(t)" = ﬁlu ”'}d(f)" < Fd‘z
A4) The initial value ¢(0) is bounded.
It is noted that K, R, and I\ are estimates for K, R, and K.,
respectively, g(g) 1s an estimate of g(q), and e denotes estimated error.
To design an embedded control input so that g(#) in the subsystems
(5) tracks ga(t), in the following, we define:
s(t) = B7"q(t) + (1),

q(t) = q(t) — qu(t) (8)

where /7 is a positive design parameter introduced to improve tracking
performance. It is noted that the norm of the initial tracking error s(0)

does not increase with respect to the design parameter 3. Using the
relation

1 t

i)~ [ a@r= [ Linirtega0) ©
0

0

and the property P1), the error system can be obtained as

M(q)i(t) = — (BB(q,s — q) — (B+ 1)M(q) + 2B(q,4a4))
x (s(t) — g(t)) — B~ ' wealq, qu, §a) — B~ h(t)
+ B KnIr(t) - B Kn R
x a(q)—f ~UTg(g)dr ) (10)

¢
h(t) = hg(t) — f

ety R B j(ryar
aq

— =y [ B - .
:,fe ¥ ‘[%f(s-wl,s—«})-#wf.d(q,qd)
0

+ B8 (M(q) (s(t) - 3(8))
29 oty — e
dq 3

+f(‘id.s—'ﬂ)]d"’ an
where w.d(q, 4, §a), whsalq. ga) are given by
wsd(q,qa, §a) = M(q) (§a(t) — ga(t)) + B(q.qa)qa(t)
— KEnKy'e G (q(0)) . (12)

2 : T dg .
nalavia) = M(@)iu(t) + 5 F(a ) + 5L da(t)

It should be emphasized that the notion for f(s—¢, s—¢) and f(g4, s—
7) should follow the definition of f(a,b). For example, f(§a, s —q) =
[(8/89)[ga(t) M(q)(s — ).

Based on the error system (10), if the signal /(%) can be treated as
a control input signal, the signal Iz (1) can be synthesized as

4

Ie(t) = —Bv. K5's(t) + K5 | G(q) - /e““‘”ﬁ(q)d'r (13)
(1]

for hny f# > 2. Then, it can be proved that this robust control law

can stabilize the error system (10) with proper selection of the scalar
positive gain ..
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Remark: As a matter of fact, many robust control laws have been
proposed in the literature and can be directly applied. However, the
merit of this new control law is that only one design parameter [ needs
to be adjusted, and there is no regressor involved, which makes the
controller design simple.

In the above control law, the measurement of joint velocities ¢(t)
is required. However, as assumed in the paper, the signal ¢(¢) is not
available. To remove such a requirement, instead of using I () in (13),
an embedded signal Ir4(t) is defined as

¢
Tralt) = —Br. Ko+ B5t | ata) - f ~(t="g(g)dr

0

(14)
where the signal 5(t) denotes the estimate of the tracking error signal
s(t) and is generated by

§(t) = (vB7" + 1)a(t) + A7 q(1) + se (1)

“l’(t) :7e‘}'(t) - ’YCE(t)
5¢(0) = = (7. + 1)87'G(0)

(15)

where the scalar constant . is a positive design parameter and will be
specified later.

It can be proved that the embedded signal Ir4(t) in (14) can still
guarantee the tracking of the subsystem (5) if Irq4(t) is treated as an
input signal I (¢). The proof is omitted, since the conclusion can easily
be drawn for the proof of the main result (Theorem 2) in Section III-C.

B. Synthesis of Control Signal

From the dynamic (5), (6), it is clear that the signal Iz (t) cannot
be used as an mput signal. It 1s the control signal p that generates the
I-(t). The design task turns to the development of the control signal
Jt, which forces Ip(t) to track Ira(t).

To develop such a controller, the error signals Ig(t), 5(t) are, re-
spectively, defined as

Ir(t) = "% " Kn (Ip(t) = Ira(t)), &(t) = s(t)—&(t). (16)
The error signal ITr(t) is defined so that || I (0)|| does not increase
with respect to 4 and ,. Then, it is seen from (10), (11), (15), (6), and
(7) that the tracking error system can be described by

M(q)s(t) = — (BB(g,s — q) — (8 + 1)M(q) + 2B(q, 4a))
X (s(t) = G(t)) = B hgy(t) = B hya(t)
+~r,1c~!?;‘fp(t)
— 1 En KR (s(t) = 5(t)) (17
M(q)s(t) = — (ﬂB(q,s—rD+2B(q,qa)) (s(t)—q(t))
= B hg ()= hga(t) + 7. KnE N T (1)
—wWENKN (s(t)=5(8) -7 M(g)5(t)  (18)
hy = fc'“'”[’izf{sﬁfis—m !
qa & 2 1
+ B(M(q) (s(t) — (1))
- ACORT OV G

<+ M= rn)]fh

i
h.,d(t):wsa(q,rj.r,fja)+[ e " wnalg, qa)dr )
[{]
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Kn
Bs

pr(f.} = —RIp(t)-
it

X ﬁf,,--,;(t)q-ﬁeqd(t)f/e*(‘*”ff,_gd(ﬂr)dr
0

+ gﬂu{:) +wia(t)s(t) +w (D)3(2)
+ w ”(f)fj(f) + hfrj (20)
e B R B (ﬁ +1)L- L%
Vs vs 04
w~t)= — R+7.L (2”1
~(f)——I\NIse~(ﬁ+1)L+ LR :
Ys Oq
fuﬂ(t)=(L—R)f e*“*”—f(sm — g |
0 3!}
+ RyK. f e~ (s(r) — (7)) dr
0 5
@)

t
hia(t)= —KNI{“q'ud(t)+—/ e~ MRy Koga(r)dr (

0
a7 . =t —-ry07 .
—La—zqd(t)+(L—R)/e ( ‘g—gw(r)dr

+(L—R)e G (q(0)).

In the above error system, it is obvious from the properties P1, P3—P6;
and A1-A4 that there exist bounded positive constants p_, P, such -
that

ROl < Byas IR 1alt)I] < P14 @)
and there exist bounded positive constants p,,, 1 = 1...
scalar positive signals hq:(t),2 = 1...4, ki (t) such that

= 1; I =
B ! [Ihg ()] < 5\/ﬁ'mﬁqdﬁqlhql(t)""i\} fj'l’ﬂpqdf’qth'l’(t]‘ s

4,7, and

1 _ i
+ 3/ PP aPpahas(®) + Tahaa(t) QA
h1, (Ol €7y hn(t)

@5

_ Qﬁf

=4/P P =4~
Pz _1{ P +.0* +Pfﬂrn L
P = e+ 7)py + K17y
haa (1) = ~ o (0)+1/67,

: e — 6q il

hga(t) = h’r[l(-t)—'- \fzﬂpf Pod s gl i
) N 2
has(t) = —hys(t)+4/Bp; lla(ell® a Y

ToPgd

haa(t) = —haa(t)+7,4 ||s(t) — G|

hi(t) = —hu(O)+ls@]] + gl
hei =0, i=1,2,3, hpn(0)=0

where 7o is a positive design parameter, &, is a positive constant, and
these parameters are specified later.
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q,(n

Electrically driven robot |
manipulator (3)

Fig. 1. Configuration of the closed-loop system using the proposed conuroller.

Based on the above error dynamics, the robust control law is then
synthesized by

t
() =—Br1 7 Ky Tr+ RIpa(t)+ K oda(t) - / e R oga(r)dr

(28)
1 and the design parameters are given by the following form:
Yo = ¥s1708% + Va2 108 + Ys38 + Yea
Ye = Ye1Vs + Ye2Y0B% + Ve V0B + YeaB + Yes (29)
Vi =07 + Yi2ve +1138% + 158 + y1a + ’115;13-
where v,i. 8= 1...4;9eis t = 1...5; i, 4 = 1...5 are positive

| design parameters.

Theorem 1: 1n (28), the control law is expressed as the input to the
compensator. Based on the definition of u(f) in (4), the control low
(28) can be expressed as

wO)=— B3l | 50+ [ Sr)ar | =3 O+T i)+ Kot
(1]
)=y Ky'+ REY (30)
Proof: See Appendix 1L
The configuration of the closed-loop system using the proposed con-
| troller is shown in Fig. 1. The symbol p in Fig. 1 denotes the differential
i Operator. In Fig. 1, the gains 7., ve,71, and /3 are scalar, and matrices
K. and T'; are constant diagonal matrices. The configuration of the
- controller is very simple, as compared with the regressor-based adap-
" tive controllers.

C. Stability Analysis

" Before describing the stability analysis of the closed-loop system,
the following lemma is required.
Lemma I: Let us consider a nonnegative function V/(t). It is as-

Sumed that 4, is a fixed constant value, such that YoPga = 2V(0). If
the derivative of V(1) satisfies
S5Pqd
o
V(t) * + 57 (31)

then V(1) is uniformly bounded for any 7 > /57, ", and satisfies the
Elation

V(t) < 7”'”‘” (32

799
Proof: See Appendix IIL.
For stability analysis, we also need the following definitions:
&
€q =30 + Py +4PyPas + 5+ Ppq- (33)
Ponn = KNP + Py Py W
— B +28)” + Py + 28,
Pys1 =
s 1
+ Ps +45)" + 325, 2,,,, =
8¢, £2 Pyd
q q
8
. PaiPgd - ¢ (34)
Pys2 = Z _glzi’ Pysz = 3’Jru
a=1
Pust = PrrPar + 3P + 80yPay + 4034 + 20a
e Pm1 2[’&
Puss = ( + )P,.
vsh 46q q gd
Puse = P Pay +4PpP 4y + 'ﬁ’fq + 21—0—.,.1- 4

The stability of the closed-loop system described by (5), (6), (14),
(15), (28), and (29) is now stated by the following theorem.

Theorem 2: Let us consider the controller (15), (28), and (29) for
the robot manipulator (3) with initial values ¢(0) = 0, I(0) = 0,
and ¢(q(0)) = 0. If the positive design parameters vy and ., 1 =
1. 4 v, =1...5;vn,t = 1...5 are fixed so that the following
inequalities are satisfied:

1 _
E_kgpvn'l W

Vo1 = ——
Ly

ﬁu,n Va2 2

B e -
Va3 2 ‘_:‘(Ppga + Py +Eq +0.55,,) 3

P (35)

Yaa > —(5 = Pous)
Pz )

Y 214 27,5, e 2 Pusa }
(36)

. s > 37,

Ye2 2 ﬁu,:,y

Yok = 0.55,,,, Ye§ = Puse +

- =3 .
P~ P =2
T > =k A %

yia > (37)

vis 23051 + Py +2_A
qd

w2 2o (1won+ o)

e O] T

47 (1011 + % 13 (o) ] a8)

Then, the closed-loop system using the controller (15), (28), and (29)
becomes stable for any [ such that

G>2and B> /595" (39)

Moreover, there exists a positive constant 6 independent of the design
parameter /7 such that

» a
lgI* <ey'e 2'V(0)+

(40)

o

Eqf
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Proof:  Consider a positive definite function

V(t) = Va(t) + Va(t) + Vo () + Vi(t) + Va(2) (41)
Vi(t) =s(t)" M(q)s(t), Va(t) = 5(t)" M(q)3(2)
Va(t) =e,q(8)"q(t), Vi(t) = Irp(t)T LTp (1) ol

4
Va(t) = )~ has(®)* + b (8)*

=1

where £, is defined in (33).

It can be proved that the derivatives of V,(t), V~ ~(t), Vy(t), Vi(t),
and V(1) sausfy the following inequalities (see Appendlx IV), where
relation p = 1 has been used in the derivation of the following in-
equalities (43) and (46), and the relation s, — 2pq., > 0 has been used
in the derivation of the following inequality (45):

Vi(t) + VA(1)
< —p 2 IO = (29 — 7. — 2p,77:) 15 (1))
st (Fusl ‘mﬂ? + ﬁlvsz'-r"ﬁ + ,_’ns:iﬁ + Buad) “5(‘)“2
+ (Puss108” + Buaa 108 + Byge) 5012

+ (P + Py + 45y54,) GO

3
(Va(®) + Vo(0) + Va(0)" + 3 has()*

=P
‘:mpqd =1
= 27
—hq-a(tJ + —-—+ka Vs Ir(t)”
L ||hqa(t)]”
- = 43
B2 P s
‘., y i 2 pld 1
/i(t) < =27 [Ie ()| + | (67>, + 255, + 4P 7

+3(p: + po)* + 35 + P

5 — 2
+ 67 6° + pive) Ir(t)”
+ IO + 1O + (e + 1) 1581
1 (h1a(®)] B,
—h l(t) +: iﬁ—“T (44)

Va(t) < — (eaB + 2754) 11" + (248 — 28%,) lIs(0)]*

+4p,,4(0) " s(t) (45)
; - 1 1
Va(t) < —Va(t) - leh.,.(r)" = §h.,-4(r.)2 ~ Ehn(tf
+ (44275 +7,8) lIs(0))*
P 5 _— < 3 T
2 (4+2;,,4 U IO - a7ty s(o
. (Valt) 4 V() Va(2). (46)

ToPqa
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Since 4 > 2, it follows from (33) that

=BEg = = 5Eq — ks

= P "
- g‘eq_ (Pm + ?f)ﬂ Pm

Considering inequalities (35)(37) are satisfied, it is seen rm.

IA

4PyPar — D — Pas- “n

'\;

(43)—(47) that the following relation can be obm:m:d 7
VD) < - 8 (V0 + O+ YO+ Vi) - V)
4'.

LERACINE lhqa(B)II* 12 Ilhu(f)ll Pod ;

TYoPga ﬁ Pod 43 P Td 2

1 t

S~ Vi e V(r) + L lhga(OI” §

’3 Pyad 3

-3 Ihu(t)ll Pad

T &

57,4

< —-V(t)+ V()% =2

The initial value V' (0) does not increase with respect to (3 and v, . Con:

sidering this fact, it is seen from (38) and (41) that 2V (0) < V0P gq k
assured for any # > 2 and v, > (5/p,7)- According to Lemma I,!
is concluded from (48) and (39) that the closed-loop system is stable,
and 2V (t) > y0p,4. Analyzing the derivative of the positive deﬁmg
function V.(t) = V (t) + Vi(t) + V,(t) + Vi(t) by using the M
2V(t) < YoPga» it is easy to ascertain from (43)—(45) that there existy |

a positive constant &, independent of the design parameter /3 1
: 3 3

Va(t) < —%Vc(tHb.. 9

The relation (40) can be obtained from (49). 5
Remarks: ,

1) From Theorem 2, it can be concluded that the closed-loop systcll
using the proposed controller is robust stable while the mequd‘
ities (35)+(39) are satisfied, and we can make ||g(¢)||* arriveat
any small closed region with any convergent rate by setting ﬂﬂ
design parameter 3.

2) Especially in the case of V(0) = 0, from (40), it is seen lhﬁ
the maximum value of ||¢(#)|| can be arbitrarily reduced by ub
creasing the value of the design parameter /3.

3) If a bounded disturbance c(t) exists in robot dynamics (3) s
M(q)§(t)+ B(g,4)q(t)+alq) =
appear only in hgq(t) (19) as

e
s

haa(t) = wealq, 4a, §a) + /E_“_f‘w.a(q,(jd)df

t

+c(t) — ./c_“_"‘c(f)dfz;-

(1]

In the closed-loop system using the proposed controller, it can als0 -

be shown that the tracking error () converges to zero if the desi

KnI(t)4c(t). The chang?!.

-trajectories gq (1) converge to constant ultimate values. To show this,
let us consider the new signal

Iraa(Ol*

pqd

IR sa(t)l| 7ya

ha(t) = 7,

(50) l
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Desired trajectory.

Inthe case of g4 (t) converging to a constant vector, there exist bounded
positive constants dy, do such that

ha(t) < d:at!gd't. (51)

Using the relation above, it can be seen from Theorem 1 that the fol-
lowing corollary holds.

Corollary 1: Suppose g4(t) converges to a constant vector expo-
nentially. If the fixed design parameters o, vsi, ¢ = 1...45 7o,
i=1...5, 75,1 = 1...5 satisfy (35)~(38), then the tracking error
converges to zero for any /4 satisfying (39).

Proof: 1t is obvious that Theorem 2 holds. Then, as stated in the
proof of Theorem 2, V (t) satisfies the relation V(1) < (1/2)70p,,-

. According to the second inequality in (48), it can be seen that the fol-
" lowing relation is satisfied:

, 1 ha(t)
V(t) < ~§V(t) i Wi

d» —dyt

1
<=5V + gre

(52)

| Itis concluded immediately from the equation above that V(t) con-

verges to zero and the tracking error ¢(t) also converges to zero.

IV. SIMULATION EXAMPLE

In this simulation, the controller is designed for a two-link
rbot manipulator, shown in Fig. 2. The nominal values of the
Manipulator and actuator parameters are given as [22] I, = 0.6 m,
my =183 kg, la =037 m, [, =0.892 kg-m?, I» =1.02 m,
My =285 kg, l.2 =0.0.234 m, I, = 3.29 kg-mz, m. =2 kg,
Ji =701 kgm?®, J» = 7.91 kgm®, L, = 52 x 10° V-s/A,
Li=52x107 Vo/A, Ri=2 Q, Re=2 Q, K., =21 Vs,

" Ky = 21 v, Ky, = 28.8 V-5, Kn2 = 28.8 V-s, where m,

denotes the weight of the end-effector.

Let the uncertainty in robot dynamics be originated by the
Weight of the end-effector varying in the range of 1-3 kg, and
electrical parameters be assumed to have +20% uncertainty. The
‘ontroller shown in Fig. 1 is applied to the electrically driven robot
Manipulator with the true parameters that are given by m. =3 kg,
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Fig. 4. Tracking error responses for 5 = 2,4,10 in the case of g(0) =
[5,=5]" deg.

3 [deg]x IIOWl

Time [s] 8

Fig. 5. Tracking error responses for # = 2,4,10 in the case of g(0) =
[0,0]" deg.

Jy=9492 kg m®, J, = 9.492kg- m®, L, = 6.24 x 107* V-s/A,
L =6.24x107° V-s/A, Ry = 24Q, R, =249, K., = 252 Vs,
K. =25.2 V-5, Kny = 34.56 V-5, Kn2 = 34.56 V-s. The initial
values of the manipulator are ¢, (0) = G2(0) = 0, ¢:(0) = 65 deg,
q2(0) = —40 deg, and the initial value of the desired trajectories are
set as §ai(0) = gaz =0, qa1(0) = 60 deg, ga2(0) = —45 deg.
The desired trajectories of joint 1 and joint 2 are shown in
Fig. 3. It is noted that the desired trajectories converge to constant
ultimate values. The design parameters are set so as to satisfy the
inequalities in (35)-(38) and are given by v = 1.3, +.1 = 6.3x 10,
T2 = 1.5 X 10, 753 = 8.5 x 10, o4 = 2.1 x 10%, 4 = 3.4,
Yez = 1.1 X 107}, 73 = 1.2 X 10, yeq = 3.1, 7es = 1.5 % 102,
=17 12 =13%107%, yj3 = 7.6 x 107>, y14 = 2.5x 1072,
715 = 3.9 x 107, v = 2.1 x 10%.

Fig. 4 shows trajectory tracking errors for joint 1. As shown in
Fig. 4, the tracking error converges to zero, and the convergent rate
becomes more rapid as the design parameter [ becomes larger.
To show that ||g(t)||* can be arbitrarily reduced in the case of
V(0) = 0 in (40), tracking errors for joint 1 in the case of the initial
tracking error ¢(0) = 0 are shown in Fig. 5. It can be seen that
the maximum value of [|7(t)||* decreases as the design parameter
A increases. As shown in Figs. 4 and 5, it is concluded that
the tracking performance can be easily improved by using design
parameter 3. We should mention that only joint 1 is illustrated
in the above and that the joint 2 is omitted to save space.

V. CONCLUSIONS

In this paper, a novel robust tracking controller is developed for elec-
trically driven robot manipulators. The main feature of the controller is
that the measurements of joint velocities and calculation of the robot re-
gressor are not required. Its configuration is very simple. Moreover, by
theoretical analysis and numerical simulations, the proposed controller
has the following properties. Tracking performance can be easily im-
proved by setting only one design parameter. Especially in the case of
V(0) = 0, the maximum value of ||g(t)|| can be arbitrarily reduced
by increasing the value of the design parameter /. Even if unmodeled
bounded disturbances appear in robot dynamics, this property is still as-
sured. If desired trajectories converge to constant ultimate values, the
asymptotic stability of the tracking errors is assured.
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APPENDIX |
DERIVATION OF NEW REPRESENTATION

Substituting the symbol 7 for the symbol ¢ in the first and second
equation of (3), and multiplying both sides by e~ *~™)_and then inte-
grating from 0 to ¢ with respect to 7, we obtain

' ¢
/ ﬂ~(,_r)E(T)dT +[ tzg“fﬂg(r)d'r
0 0

=Kn ]' e_('_T‘I(T)dT

: ! b (53)

j et (Li(f) +RI(T)+ f\’,q"('r)) dr
0

t
= / e My ()dr
s J

£(t) = M(q)q(t) + B(g, 4)g(t).

where
(54)

Differentiating both sides of (53), we have the new representation of
electrically driven robot manipulators as (5)~7). Here, the relations
q(0) = 0, I(0) = 0 g(g(0)) = 0, and the following relations are used
to derive the new representation:

i

o

. d —t / —(l T 6g
=2 [g(q)—e a(a(0)— [ (r)dr]
0

e'(‘_”g(q(f))dr]

=e-‘g(q(m>+f ~(t=n gq(r)ar (55)
0
/e-“—w (a())d(r)dr
)]
= M(q)i(t) — e~ M (4(0)) §(0)
- [ (M@ i i) s6)
0
fl / —(t—r |
5 /e I(7)dr
LO J
= Ip(t) (57)

- p

d —(t—7\r
= /e ) I(T)d‘T.

LO

= % [Ir(t) — e " 1(0)] =Ip(t) + e 1(0)

(58)
- t 9
% /e—“—”n(‘r)d'r
-U 1
t ¢ =
——2 i [/ t.‘_“—r}#l('r)d‘f‘i" /C‘“r]/ﬂ(a]d“dt]
dt 4
r i 0
¢ t
_ a [[tn'-[f—fiﬂ(f)dr+/’t(T)li‘l"
dt |
° 0
t
_-/p_("r'JA(T)dT = p(t). &

0
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APPENDIX 11
PROOF OF THEOREM 1

Let the signal () be given by

t

£(t) = n(t) - / R W

0

“

Using the integration by parts, it is easily :!Sl.eﬂﬂ.ll‘l that the followq

relation holds: 3
%
S E

f = [ o) dodr =~ / e~ Pig(r)dr 4 ] n(7)dr. (611:
0 0 0 o §

From (60) and (61), it follows that:

£(0) + [ €(r)dr %
=n(t) f“"" dT+]ﬂ(T)d f ‘]e fr(ﬂ)dﬂfi
= n(t). ©

Using the fact that the signal £(1) given by (60) satisfies (62), it m’l
be seen from (4), the third equation in (7), (14), (16), and (28) thatlh
expression (30) is derived.

'c

APPENDIX ITI *

PROOF OF LEMMA 1 b

The roots of the equation

~V(t =0 6

O+ 7o wg (63)

are given by ‘
E

D= TD;d (1_ ,1"5[']—2")"0_1) )‘
: ©4) |
D+ - 'Yoo Y0 0qd (1 + /1 . 5'(3 27(1 ) ]

It can be seen that there are two different real roots for any

B > /575 ". From this fact, it follows that the following inequality |

holds: :
5744 '
4,(;2 <0, forV(t) € [D—, Dyl (65) :

Using the fact, it can be proved as stated below that the following pmp- ]
erties hold: !

1) in the case where V(0) < D_, V(t) remains in the reglﬂ‘
V(t) < D-;

2) in the case where D_ < V(0) < D, V(t) remains in the
region V'(t) < V(0).

Itis assumed in Lemma 1 that V(0) < (1/2)y0p,4 < Dy 1fD- <
V(0) < D4, from 2) it follows that V' (t) < V(0) < (1/2)70,—,,,,.&
V(0) < D_,from 1) it follows that V() < D_ < (1/2)vop, . From
the facts, it immediately follows that Lemma I holds.

1) Now, let us suppose that there is t2 > 0, such that V' (t;) = pp 7
D_.Since V(0) < D_, thereis a f; € [0,¢2) such that
(66)

V(fl)=Dﬁ.D, <V“}SPD. fOl‘tE(h,fg].
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However, integrating both sides of (31) from #, to t2, it is seen from
. (65) that the following inequality is satisfied:

t2

Vits) < V(t.)+/( V(t) +

V(1) + *;;j) dt<D_.

0 qd
(67)

The relation above contradicts supposition (66). Consequently, V(‘)
D_ holds.

2) From (65) it can be seen that V (¢) does not increase while V(t] s
[D-. D+]. Additionally, from the fact that if property 1) holds, it is
obvious that property 2) also holds.

APPENDIX [V
DERIVATION OF (43)—(46)

Based on the definition of p_, we can simply take it as .. 1
this case, the relations 2[a(2)]ff|s(t)]] < p, Nla@®)l? + [1s(D1p,,
lla()lI* + Va(t), and 2fla()]|I5()]| < o, “lla(l? + I3, <
la(t)[I* + V(t) can be established for any mgnal a(t). The followmg
analysis is performed by using the above relations.

1) It can be seen from (42), (23), and (24) that the following inequal-
ities hold:

(o + 27,8 ||s(1)|I° 1
< Cor 2 Pat g o4 v oy

Pons +42,)B s T
< P ) Pa e +2 V)Vt

- 8ey

2,8 lIs()ll ()1

zpbpqd

<L %8 [Is(t)l +3

V(f)

qd
2P B + P + 25, 840) ()| ()]

L (PonB + P + 2548a1) (IO + NGN*)

L (68)
287" \|hga(e)]l Is()]|
1 |[hga()I*
<2 s ——
d" (t)” + ﬁ ﬁqd
57 “I}(t) lIs()]|

iy
P = 2
e SO+, | e (o)

Skk

287" || ()l Is(D)]|

3
PuiPod 2
< (z = 9(i+4pq4) Is(t)i

3
1 3 1 2
+ 5;::.,.(1)‘ + haa(t)

803

Pt B s IS )

Prn]pqd

< e 8 s (o)) T V(t)"

Pt B NGO IS

< ""‘"""wﬂ IS + ——V=(e)Vi(2)
YoPya

qd
25,8 |s(8)]1* 15(2)|

ﬂqud

< =y s

28 Is(OI ISl (o))

4pp
g =" ‘"‘wuﬁ I

25,8 (01 lao)l*

204 Pqa _— 1
< — 0B IFOI* + 5—
£q 270p,

qd

Vo(t)*

. ) o ©
b SO (sl + 181D

< 4pypa IS + 28,54, lls(D)]*

+ 25,04, lla(H)II*

|Tp(t)

2z || T @) 150

— - 2
<% IBOIF + 7. [Te )

287" |hqa(t)|| IS(O)]]

1 a0

< 2 IFOI° + 55
qd

o RO EGT

< (Z ot 447, )usu)uz

1 3
EZ "') + hq-t(t)

It can be seen from (68), (69), (17), and (18) that V, () + V(1) satisfies
(43).

2) There exist upper bounds with respect to signals w(t), w =t
and “’1;“) in (21) as follows:
lwrs(B)ll < 222 4 5,8 + 7= + 7,
oz O] < vepe + 57 (70)

lomo] < 20 456+,
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