論文

帯電銅パイプから放射される電磁パルス の測定と解析

正 員	馬	杉	正	男	(NTT)
非会員	村	Ш		雄	(NTT)
非会員	桑	原	伸	夫	(NTT)
非会員	雨	宮	不二	二雄	(NTT)

Measurement and Analysis of Electromagenetic Pulses Radiated from a Charged Copper Pipe

Masao Masugi, Member, Kazuo Murakawa, Non-member, Nobuo Kuwabara, Non-member, Fujio Amemiya, Non-member (NTT)

This paper describes experimental and analytical results of electromagnetic pulses from a charged copper pipe. Electromagnetic pulses from a copper pipe were measured by EMI type antennas (a loop antenna, a biconical antenna, and a double ridged guide antenna). In this paper, electromagnetic energy of the electromagnetic pulses was analyzed by integrating enegy spectrums of three frequency domains $(1\sim30 \text{ MHz}, 30\sim300 \text{ MHz}, 300\sim750 \text{ MHz})$.

As a result, the analysis shows that radiated electromagnetic energy by discahrge events does not always increase in proportion to charging voltage. In addition, high speed touch discharges by charging voltgae of 7 or 10 kV increase electromagnetic energy especially in the frequency region of $300 \sim 750$ MHz.

キーワード:静電気放電,電磁障害,充電電圧,電磁パルス,帯電銅パイプ

1. まえがき

近年のディジタル技術の普及と共に各種の電磁妨害 波に起因する電磁障害が問題になっている。とりわけ 静電気放電(Elecrostatic Discharge; ESDと略記) の際に放射される電磁パルス(以下,静電気パルスと する)は、立上り時間が数nsあるいはそれ以下の現象 であり、電子装置の誤動作や素子の絶縁破壊などを引 起こす障害原因となる^{(1)~(4)}。半導体素子は、高速度 化、低電力化の方向にあることから、過電圧に対する 耐力が今後とも弱くなることが予想され、この種の問 題はますます重要な課題になってくると考えられる。

静電気放電に伴って発生する電磁障害は,放電電流 により電子装置の誤動作や素子の破壊を引起こす場合 や,放電の際に放射された電磁波が周囲の電子装置に 影響を与える場合がある。特に,放電時に放射された電磁波が電磁障害作用を発生させる現象は,間接 ESD として知られており⁽¹⁾⁽²⁾,従来より静電気放電により 放射される電磁波の進行状況の測定などの研究が進め られてきた^{(3)~(5)}。間接 ESD に関しては,帯電物体が 速度を有する場合に,その電磁干渉作用が強くなる現 象などが報告されているが⁽⁶⁾,その特性は十分明らか になっていない。

ところで,静電気放電などに伴う電磁パルスを測定 する際,ループアンテナなどの電磁界測定用アンテナ (以下,EMI測定用アンテナ⁽⁰⁾とする)による測定で は,(i)周波数特性が限定されている,(ii)電界強度 を算出するためのアンテナの位相情報が得られない, などの理由により,測定波形を定量的に解析できない という問題点があった。また,広帯域の波形を測定す

1020

T. IEE Japan, Vol. 112-A, No. 12, '92

ることを目的として、電気光学効果を利用したセンサ が報告されているが、現状では 10 V/m 程度の検出感 度しかなく、静電気放電などの測定には使用できない 状況にある⁽⁸⁾。従って、過渡現象である静電気放電の 個々の事象を正確に検出し、その特性を解析すること が従来からの重要な課題であった。

本論文では、帯電させた銅パイプを放電させたとき に放射される電磁パルスの測定とその解析を通して、 静電気放電に伴う電磁波の特性把握を試みた。その 際、広い周波数帯域をカバーするように、異なる周波 数特性を有する複数の広帯域アンテナを用いて、電磁 パルスを時間領域で測定する方法を考案した。更に、 電磁パルスのエネルギースペクトルに注目し、使用し た各アンテナの周波数帯域別に電磁エネルギー量を解 析した。この方法により、従来では困難であった過渡 現象である放電時の電磁パルスを定量的に解析するこ とが可能になった。そして本論文では、帯電銅パイプ から放射される電磁パルスのエネルギーに関して、充 電電圧の差や帯電物体の速度の有無による特性の変化 を明らかにした。

2. 帯電銅パイプからの電磁パルスの測定

帯電物体の放電時に放射される電磁パルスには,立 上り時間が数ns以下のものが含まれることがあ り⁽⁹⁾,波形を精度良く測定するためには,広い周波数 帯域にわたって測定する必要がある。ここでは,周波数 特性の異なる複数の EMI 測定用アンテナを使用し, 分割した複数の周波数帯域別に帯電銅パイプから放射 される電磁パルスの測定を行った。

<2・1> 電磁パルスの測定系 帯電させた銅パイ プから放射される電磁パルスの測定系を図1に示す。 同図において,長さ60 cm,直径 15 mm で先端が半 球状になっている銅パイプ(L1)を帯電(極性:正) させ、銅パイプL1の下側に設置してある長さ20 cm,直径 15 mm で先端が半球状になっている銅パイ プ(L2)に近づけて放電を発生させた。このとき,図 2に示す電気的な等価回路で表現できる充電用回路の A 部を直接銅パイプ L1 に約5秒程度あてて充電させ た後に,できる限りすばやく下側の銅パイプ L2 に接 触させて放電を発生させる方法をとった。また、帯電 銅パイプ L1 を緩やかに銅パイプ L2 に近づけた場合 と、銅パイプL2の3cmおよび5cm真上の位置から 落下させたときの場合について測定を行った。ところ で、銅パイプに流れる電流が大地面に対して垂直方向 に流れる際に放射される電界は、垂直偏波成分が支配 的となると考えられる。ここでは,帯電銅パイプによ

図1 電磁パルス測定系

Fig. 1. Measurement geometry setup for electromagnetic pulse.

図 2 銅パイプの充電回路 Fig.2. A charging circuit for a copper pipe.

表 1 アンテナの周波数特性と解析対象周波数領域 Table 1. Frequency performance of antennas and frequency domains for analysis.

アンテナの種類	周波数特性	解析対象周波数領域
ループアンテナ	10 k~30 MHz	1~30 MHz
パイコニカルアンテナ	30~300 MHz	30~300 MHz
ダブルリッヂドガイド アンテナ	200 M~2 GHz	300~750 MHz

る放電現象を解析するにあたって、対象とする電磁パ ルスを垂直偏波成分に限定して各アンテナを設定した。

ただし測定器として使用した波形ディジタイザは上限 750 MHz までの周波数特性が保証されている。また、使用した EMI 測定用アンテナの特性は表1に示すとおりである (それぞれのアンテナの外形とアンテナ係数⁽⁷⁾については付録に示した)。なお、測定時の大気温度は 20(±2)°C,相対湿度は 50(±5)%であった。

〈2・2〉電磁パルスの測定結果と考察 銅パイプ L1を銅パイプL2に緩やかに近づけた場合について, 充電電圧0.5,10kVの電磁パルスを,ダブルリッギ ドガイドアンテナにより測定した波形例を図3に示 す。同図より,充電電圧が0.5kVの場合の波形に は,充電電圧が10kVの場合に比べて立上りが速い 振動成分が多く観測されることがわかる。次に,銅パ イプL1を銅パイプL2の上部3cmの高さから落下 させたときの場合のダブルリッヂドガイドアンテナに よる充電電圧10kVの波形例を図4に示す。図3

電学論A, 112巻12号, 平成4年

Fig. 3. Obtained electromagnetic pulses by a double ridged guide antenna (low speed touch).

図 4 帯電銅パイプを3cm高からの落下時 に検出した電磁パルス(ダブルリッヂドガイ ドアンテナによる)

Fig. 4. Obtained electromagnetic pulse when the charged copper pipe was dropped from 3 cm hight point (by a double ridged guide antenna).

(b)と図4の測定波形を比較すると、銅パイプを落下 させた図4の波形のほうに、立上りが急なひげ状の振 動成分が増加していることが観測される。

続いて、銅パイプ L1 を銅パイプ L2 に緩やかに接触させた場合、3 cm 上から落下させた場合、5 cm 上から落下させた場合の3 通りについて、充電電圧と波形のピーク・ピークの振幅値の関係をまとめた結果を図5 に示す。同図において、実線は銅パイプ L1 を緩やかに接触させた場合、破線は3 cm 上より落下させた場合、一点鎖線は5 cm 上より落下させた場合である。そして、ばらつきを考慮する意味から充電電圧

図 5 充電電圧と検出波形のピーク・ピーク の振幅値の関係 (ダブルリッヂドガイドアン テナによる)

Fig. 5. Relation between charging voltage and amplitude of peak-peak value of obtained waves (by a double ridged guide antenna).

0.5, 1, 3, 5, 7, 10 kV の各場合について 5 回ずつ 測定し,充電電圧 0.5 kV で銅パイプを緩やかに接触 させた場合の平均値を 1 として規格化してある。同図 より,波形の強度は充電電圧に伴って必ずしも増加し ないことがわかる。また,波形のピーク・ピークの振 幅値は,銅パイプ L1 を落下させた場合とそうでない 場合について顕著な差はみられないこともいえる。

なお,銅パイプ L1 の落下の有無により,電磁パル ス波形の振動成分などが変化している現象について は、放電形成時における放電電流の立上り率などの変 動が作用しているものと推定される⁽¹⁰⁾。すなわち, 放電電流が流れ始める際の立上り時間の変化が,空間 に放射される電磁パルスの特性に影響していると考え られる。

更に、銅パイプ L1 を銅パイプ L2 に緩やかに近づ けた場合について、充電電圧 $0.5 \, \mathrm{kV}$ の電磁パルスを ループアンテナとバイコニカルアンテナにより測定し た波形例を図 6(a), (b)に示す。同図より、使用し たアンテナの周波数特性が低下するほど、緩やかな振 動成分の波形が支配的となり、図 3(a)に観測された 立上りが急なひげ状の振動成分が観測されないことが 確認できる。

続いて、図5と同様に、ループアンテナとバイコニ カルアンテナについて、銅パイプL1を銅パイプL2 に緩やかに接触させた場合、3 cm上から落下させた 場合、5 cm上から落下させた場合の充電電圧と波形 のピーク・ピークの振幅値の関係をまとめた結果を図 7(a)、(b)に示す。同図において、実線は銅パイプ

1022

T. IEE Japan, Vol. 112-A, No. 12, '92

Fig. 6. Obtained electromagnetic pulses by a loop antenna and a biconical antenna (low speed touch, charging voltage=0.5 kV).

L1 を緩やかに接触させた場合,破線は3 cm 上より 落下させた場合,一点鎖線は5 cm 上より落下させた 場合であり,充電電圧 0.5, 1, 3, 5, 7, 10 kV につ いて各5回ずつ測定し,充電電圧 0.5 kV で銅パイプ を緩やかに接触させた場合の平均値を1として規格化 してある。同図より,ループアンテナとバイコニカル アンテナに関しても,ピーク・ピークの振幅値は充電 電圧と必ずしも比例せず,充電電圧 3~10 kV 付近で 頭打ちとなっていることがわかる。また,銅パイプ L1 を緩やかに接触させた場合と落下させた場合で大 きな差は見られないことも確認できる。

3. 電磁パルスの解析

本章では、図1の測定系で得られた電磁パルスの特 性把握を試みる。ここでは、測定波形の解析方法を示 すと共に、帯電銅パイプから放射された電磁パルスの エネルギー量の解析結果を示す。

<3·1> 電磁パルスの解析方法 まず、測定した 電磁パルスの解析方法を示す。測定波形の解析には、 測定器とEMI測定用の各アンテナの周波数特性を考 慮し、得られた時間波形の周波数成分を複数の周波数 帯域別に分割して計算する方法をとる。ところで、電 磁パルスの周波数スペクトルを求める際に、時間領域 において測定波形の打切りを行うと、鋭い不連続が発

電学論A, 112巻12号, 平成4年

----:緩やかに接触時 ……:3 cm 上より落下時 ---・:5 cm 上より落下時

図 7 充電電圧と検出波形のピーク・ピーク の振幅値の関係(ループアンテナとバイコニ カルアンテナによる)

Fig. 7. Relation between charging voltage and ampiltude of peak-peak value of obtained waves (by a loop antenna and a biconical antenna).

生し,周波数領域においてサイドローブが生じる。この打切りによる誤差を小さくするため,本論文ではハニング関数⁽¹¹⁾を窓関数として使用した。

いま, アンテナ端子で検出した電圧波形を v(t) と し, 窓関数 W(t) としてハニング関数を使用した場 合,時間波形の処理時間領域を $T_i \sim T_2$ とすると, 周 波数スペクトル V(f) は次式で与えられる。

$$V(f) = \int_{T_1}^{T_2} v(t) W(t) \exp(-2\pi j f t) dt$$
.....(1)

 $W(t) = 0.5(1 - \cos\{2\pi t/(T_2 - T_1)\}) \cdots (2)$

また, 測定に使用するアンテナのアンテナ係数を A(f)とする。ここで, アンテナ係数とは, アンテナ で検出した端子電圧から電界強度を計算する際の変換 係数のことである⁽⁷⁾。そして, アンテナ係数は振幅成 分を a(f), 位相成分を $\exp{\{j\phi(f)\}}$ とすると,

 $A(f) = a(f) \exp\{j\phi(f)\} \cdots (3)$

で与えることができる。このとき、検出した電磁パル スの電界強度の周波数スペクトル *E(f)* は

E(f) = V(f)A(f)

次に,銅パイプからの電磁パルスのエネルギースペクトルに注目する。なお,エネルギースペクトル P(f)は,周波数スペクトルE(f)の関数として次式 で与えられる⁽¹²⁾。

 $P(f) = |E(f)|^2$

本論文では、(6)式に示すようにエネルギースペク トルを周波数 f から周波数 f の領域にわたって積分 した値により電磁エネルギー量 En を定義する。これ により、EMI 測定用アンテナで検出した電磁パルス のエネルギー成分の評価を複数に分割した周波数帯域 別に行うことができる。

 $E_n(f_1, f_2) = \int_{f_1}^{f_2} P(f) df \cdots (6)$

<3-2> 電磁パルスの電磁エネルギー量の比較

ここでは表1に示した各周波数帯域別に、銅パイプ から放射される電磁パルスの電磁エネルギーと充電電 圧の関係を解析した。解析にあたっては、離散的に与 えられる1,024 個の時間波形データ v(t) と各アンテ ナのアンテナ係数(付録参照)の特性をもとに、(1) ~(5)式より電磁パルスのエネルギースペクトル P(f)を求める。なお、電磁パルスの周波数スペクト $\nu V(f)$ の計算では、解析対象とする周波数帯域と時 間処理する際の周波数分解能も考慮して、ループアン テナ、バイコニカルアンテナ、ダブルリッヂドガイド アンテナそれぞれに対して、波形の立上り部から 1,000, 100, 100 nsの時間幅にハニング関数を適用し た。また、周波数帯域 1~30 MHz については 1.200 個、 周波数帯域 30~300 MHz については 900 個, 周波数 帯域 300~750 MHz については 500 個のエネルギー スペクトル P(f) をワークステーション上のサブルー チンプログラム SSL IIを使用して計算し、それぞれ の周波数帯域別に電磁エネルギー量 Enを求める。

解析対象とする電磁パルスは、図1に示す測定系に おいて、銅パイプL1を緩やかに銅パイプL2に近づ けた場合と銅パイプL1を鋼パイプL2の上方3 cm および5 cmの高さから落下させたときのそれぞれの 場合について測定した。充電電圧を0.5, 1, 3, 5, 10 kV とし、ばらつきを考慮する意味から各々5 回ず

----:緩やかに接触時 ……:3 cm 上より落下時 ----:5 cm 上より落下時

図 8 電磁エネルギー量と充電電圧の関係 Fig. 8. Relations between electromagnetic energy and charging voltages.

1024

放射される電磁パルスの電磁エネルギー量 E_n の相対 値に注目したとき,それぞれのエネルギーの最大値を 与える充電電圧が,解析対象とする周波数帯域によっ て異なることがわかる。すなわち,充電電圧 0.5~10 kV の範囲において,平均値で比較した場合,(a)図 については充電電圧 10 kV 付近,(b)図については7 kV 付近,(c)図については 3,5 kV 付近で電磁エネ ルギー量 E_n が最大になっていることがいえる。

更に,(a),(b)図に関しては,銅パイプL1を緩 やかに接触させた場合と落下させた場合で,エネルギ ー量の平均値あるいはばらつきを比較したときにそれ ほど明確な差を見いだすことができないが,(c)図の 充電電 $E7kV \ge 10 kV$ に注目した場合,銅パイプ L1が落下した際には,平均値において,それぞれ $1.3\sim1.9$ 倍程度エネルギーが増加していることがわ かる。

4. むすび

本論文では、帯電銅パイプから放射される電磁パル スの時間領域における測定とその解析を行った。

まず,ループアンテナなどの EMI 測定用アンテナ による測定結果は,帯電銅パイプの放電時に放射され る電磁パルスの強度が,充電電圧に必ずしも比例しな い現象等を示すものであった。

続いて、測定した時間波形から求まるエネルギース ペクトルを複数の周波数帯域別に積分して、その比を とる手法に基づいて、銅パイプから放射される電磁パ ルスのエネルギー量と充電電圧の関係を解析した結 果,その電磁エネルギー量は充電電圧に必ずしも比例 しないことを示すことができた。そして、充電電圧 0.5~10 kV の範囲において、周波数帯域 1~30 MHz に対しては充電電圧 10 kV 付近,周波数帯域 30~300 MHz に対しては充電電圧7kV付近,周波数帯域 300~750 MHz に対しては充電電圧 3,5 kV 付近で 放射される電磁エネルギー量が最大となる結果となっ た。更に、帯電銅パイプを落下させた場合に、周波数 帯域 300~750 MHz に関して,空間に放射される電 磁エネルギー量が、緩やかに接触させた場合に比べて 平均値レベルにおいて、1.3~1.9倍程度増加する結 果となった。

本論文の測定および解析結果は、静電気放電現象に 対して、電子装置の障害発生メカニズム要因の一つを 示唆するものであると考えられる。こうした放電現象 の把握は、電磁障害対策を進めていくうえでも極めて 重要な課題であり、その意義は大きい。今後は、本論 文で得られた解析結果を踏まえて、より理論的な検討

電学論A, 112巻12号, 平成4年

も加えながら研究を行っていく予定である。

最後に本研究を行うにあたり,NTT 通信網総合研 究所通信品質研究部浅谷部長,徳田グループリーダを 始めとする通信 EMC グループの皆様に感謝します。 (平成4年2月25日受付,同4年6月26日再受付)

文 献

- (1) 馬杉・村川・桑原・雨宮:「間接 ESD の時間領域における測定」,信学技報,EMCJ90-55,83 (平 2)
- (2) 川村:「静電気放電による電磁ノイズの OA 機器に対する 影響とその防止対策」,静電気学誌,13,31 (平元-1)
- (3) 増田・薗部・伊藤:「静電気火花によるノイズの電磁界の伝 搬特性」,同上,7,272(昭58)
- (4) W. T. Rhoades: "Achieving ESD equipment protection with emission controls", Symp. Record IEEE 1985 Internatinal Symp. on EMC, p. 232 (1985)
- (5) 関:EOS/ESD ハンドブック,第4章(平元)トリケップス
- (6)本田:「ESDの特徴と計算機に対する影響(その5)」,信
 学技報,EMCJ86-91,33(昭61)-
- (7) 赤尾:環境電磁工学の基礎,第4章(平3)情報通信学会
- (8) 桑原・田島・雨宮:「LiNbO3光変調器を用いた高感度電界
- センサの感度特性」, 信学技報, EMCJ91-6, 37 (平 3) (9) 馬杉・村川・桑原・雨宮:「帯電した銅パイプから放射され
- る電磁パルスの波形解析結果」,平3年信学春季全大,SB-3-1 (10) 伏見・川村:「衝突電極と過電圧放電」,信学技報,EMCJ88
- -22,53(昭63) (11) 三上:ディジタル信号処理,第3章,初版(平元)CQ出版社
- (12) 日野:スペクトル解析,第11版(昭59)朝倉書店
- (13) M. Honda: "A New Threat-EMI Effect by Indirect ESD on Electronic Euquipment", IEEE/IAS 1987, Annual Meetings, IUSD-87-97, 1674 (1987)

付 録

使用した3種類のEMI用アンテナの外形およびア ンテナ係数を以下の付図1,付図2に示す。

app. Fig. 1. Outlooks of antennas.

付図 2 アンテナのアンテナ係数 app. Fig. 2. Antenna factor of antennas.

馬杉 正男(正員)

昭和37年6月9日生。平成元年3月 慶応義塾大学大学院修士課程修了。同年 4月日本電信電話(株)通信網総合研究所 入所。以来,電磁パルスの特性解析や電

磁環境モニタリング方法などに関する研究・開発に従事。 現在,NTT 通信網総合研究所に勤務。平成3年電気学会 論文発表章受賞。電子情報通信学会員。

村 川 一 雄(非会員)

昭和35年9月7日生。61年3月熊本 大学大学院修士課程修了。同年4月日本 電信電話(株)茨城電気通信研究所入所。 以来,EMC計測に用いる放射アンテナ

の特性解析,局舎内の電磁界シミュレーションなどに関す る研究・開発に従事。現在,NTT通信網総合研究所研究 主任。電子情報通信学会員。平成2年度同学会篠原記念章 受賞。

桑原伸夫(非会員)

昭和27年6月1日生。52年3月静岡 大学大学院修士課程修了。同年4月日本 電信電話公社茨城電気通信研究所入所。 以来,通信システムの雷防護,光ファイ

バの信頼性評価,通信システムの EMI 評価および対策法 などに関する研究・開発に従事。現在,NTT 通信網総合 研究所主任研究員。工学博士。電子情報通信学会員, IEEE 会員。

雨宫、不二雄(非会員)

昭和24年2月19日生。48年3月東 北大学大学院修士課程修了。同年4月日 本電信電話公社武蔵野電気通信研究所入 所。以来,ディジタル電話の研究・実用

化,通信装置の EMC の試験評価方法の研究・開発に従事。 現在,NTT 技術協力センタ主幹技師。電子情報通信学会 員。