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Abstract

High-speed telecommunication systems are influenced by electromagnetic environments because they need a wide
bandwidth to transmit signals. Immunity tests of telecommunication equipment are effective for improving its immunity
to electromagnetic environments. However, immunity tests are expensive to carry out because there are several diffe-
rent tests. The correlation among the tests should therefore be examined in order to reduce the kinds of tests that are
necessary. This paper investigates the correlation between the electrical fast transient/burst (EFTB) test and the radio
frequency (RF) conductive immunity test. Imitation equipment was constructed with a balun, and a baseband signal
was transmitted from the associated equipment to the imitation equipment. Then, disturbances were applied to the equip-
ment, and the telecommunication quality was evaluated by using the bit error rate (BER). The results from the EFTB
test indicated that the BER was less than 6x10 ° and the value was independent of the peak value. The results from
the RF conductive immunity test indicated that the BER was affected by the longitudinal conversion loss (LCL).
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(LCL).

[ . Introduction

Recent progress in telecommunication technology has
increased the importance of transmission quality. How-
ever, the immunity of telecommunication systems to el-
ectromagnetic environments decreases according to the
increase in telecommunication speed because a wide
bandwidth is needed to transmit high-speed telecommu-
nication signals. Therefore, the induction mechanism of
high-speed telecommunication systems has been studied
[11, [2].

Common-mode choke coils are effective for improving
the conductive immunity of telecommunication equip-
ment, and many kinds of choke coils have been devel-
oped [3], [4]. However, choke coils are costly to use af-
ter the equipment has been installed because an engineer
must visit the installation location. Conductive immunity
tests carried out before installation would be effective in
reducing the cost of this countermeasure.

The limits and test methods for the immunity of the
telecommunication equipment have been published by
international standardization committees such as ITU-T
and CISPR [5], [6]. However, there are many kinds of
immunity tests because the tests are specific for the en-
vironment.

Therefore, it is necessary to reduce the various kinds
of tests needed for a certain environment by selecting the
test method, the failure criteria, and the test level. Thus,
the correlation among the different tests should be in-
vestigated. It is difficult to reduce the kinds of tests ne-
cessary in a certain case because the mechanism causing
a malfunction to occur in a telecommunication system
may not be clear. However, it is possible if the mecha-
nism is assumed.

In this paper, we assume that the differential-mode
signal converted from the common-mode signal disturbs
the telecommunication signal. This is one of the main
causes of malfunction in high-speed telecommunication
systems [1], [2]. Therefore, the cost of implementing co-
untermeasures can be reduced if the number of malfunc-
tions due to this mechanism is reduced. Imitation equip-
ment constructed with a balun was used for the inves-
tigation. The immunity levels by the electrical fast tran-
sient/burst (EFTB) waveform and the radio frequency (RF)
conductive test waveform were tested using the bit error
rate (BER). The common-mode signal waveform was
measured using a capacitive voltage probe (CVP), and
the longitudinal conversion loss (LCL) of the imitation
equipment was also measured. The correlation is dis-
cussed based on the investigation results.

Manuscript received May 16, 2011 ; revised November 14, 2011. (ID No. 20110516-02J)
1Dept. of Electrical Engineering and Electronics, Kyushu Institute of Technology, Japan.

2Energy and Environment Systems Laboratories, Nippon Telegraph and Telephone Corporation(NTT), Japan.

Corresponding Author : Nobuo Kuwabara (e-mail : kuwabara.nobuo@buddy.elcs.kyutech.ac.jp)

274



KUWABARA et al. : INVESTIGATION OF RELATION BETWEEN EFTB TEST AND RF CONDUCTIVE IMMUNITY TEST USING BER---

IT. Induction Mechanism and Experimental Set-up

2-1 Induction Mechanism

The induction mechanism assumed in this paper is
shown in Fig. 1(a). A disturbance appears between the
wires and the ground as the common-mode current, and
the current is converted to the differential-mode due to
the unbalance of the telecommunication equipment, the
telecommunication line, and the associated equipment
(AE). The malfunction is generated by an overlap of the
telecommunication signal with the differential-mode cu-
rrent.

The induction mechanism from the common-mode to
the differential-mode are shown in Fig. 1(b). In this fi-
gure, Zi, Z», and Z3 represents telecommunication equip-
ment. The common-mode current, /., can be expressed
by the currents on the conductors, /; and L.

I =1+1, (1)

Differential mode current, /;, can also be expressed by
I, and I, and this is given by

I, = 1, 212
(2)

When the telecommunication port of the equipment have
an unbalance, the 7, is not equal to /. In that case, the
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Fig. 1. Assumed induction mechanism of malfunction and
induction mechanism from common-mode to differ-
ential mode.

differential-mode current is induced as presented by
equation (2).

The immunity tests considered for the induction me-
chanism in Fig. 1(a) are the EFTB test [7], surge im-
munity test [8], and RF conductive immunity test [9]. Of
these, the surge immunity test is not described in this pa-
per because the bandwidth of the frequency spectrum is
not wide enough and the occurrence of disturbance is not
high enough. Therefore, we investigated the immunity
using the EFTB and RF conductive immunity tests.

2-2 Experimental Set-up for EFTB Test

Fig. 2 shows the experimental set-up for measuring
the immunity when the EFTB test waveform is applied.
The imitation equipment and the associated equipment
were constructed with a balun. An EFTB test waveform
generator (NoiseKen FNS-AXII) and the capacitive cou-
pling cramp (NoiseKen 15-00001A) were used to apply
the common-mode voltage. The applied common-mode
voltage was measured using a CVP (NTT AT, CVP-20S)
[10], [11] and an oscilloscope (Yokogawa, DL9040L).

The attenuator (ATT) in Fig. 2 provides the trans-
mission loss of the telecommunication line. Although the
loss of an actual telecommunication line changes depen-
ding on the frequency, we assume that this loss is in-
dependent of the frequency because it is difficult to pro-
vide the insertion loss of the telecommunication line. The
immunity was evaluated by using a BER measuring in-
strument (TTC, FIREBERD4000) that uses a baseband
signal.

2-3 Experimental Set-up for RF Conductive Immunity
Test

Fig. 3 illustrates the experimental set-up for the RF
conductive immunity test. A 2-W coupling decoupling
network (CDN) (Hand made) [9], signal generator (R&S,
SMBI100A), and amplifier (R&K, A009K080-5050-R)
were used to apply the waveform between the wires and
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T B
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T —— T
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Fig. 2. Experimental set-up for measuring immunity to EF-
TB test waveform.
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Fig. 3. Experimental set-up for measuring immunity to RF
conductive immunity test waveform.

the ground. The amplifier was used to apply a sufficient
common-mode level. Its maximum output power was
100 W.

The common-mode voltage was measured by using a
CVP and an oscilloscope. A resistance, Ry, was inserted
between one wire of the balun and the ground to reduce
the longitudinal conversion loss (LCL) [12] of the imi-
tation equipment. LCL means the conversion loss from
the common-mode voltage to the differential-mode vol-
tage and this is a parameter to represent a telecommu-
nication system’s unbalance about earth.

IIl. Investigation Results

The BER was measured using the experimental set-up
shown in Figs. 2 and 3. The layout of the EFTB test is
shown in Fig. 4. The EFTB generator, imitation equip-
ment, CVP, and capacitive coupling cramp were placed
on the conductive ground plane. A balun whose band-
width was from 10 kHz to 4 MHz was used as the imi-
tation equipment. The baseband digital signal, whose clo-
ck frequency was 2,048 kbps, was used as the teleco-
mmunication signal. The waveform of the signal was
square.

3-1 Common-mode Voltage

Imitation equipment

Fig. 4. Layout of experimental set-up for EFTB test.

276

200

T
|

EFTB generator

Imitation equipment

100

Level [V]

Time [ns]

Fig. 5. Measured waveform appearing between wires and
ground in EFTB test.

The measured waveform that appeared between the
wires and ground in the EFTB test is shown in Fig. 5.
In this figure, the “EFTB generator” means the wave-
form at the EFTB generator output terminal. The wave-
form is measured by setting the special attenuator at the
output terminal in accordance with the IEC publication
[7]. “CDN” in Fig. 5 means the waveform measured by
the CVP. In this case, the imitation equipment was re-
placed by the CDN, and the port between the wires and
the ground (common-mode port) was terminated by an
impedance of 150 Q. This value is lower than that of the
imitation equipment. The common-mode voltage wave-
form of the imitation equipment is similar to the wave-
form of the EFTB generator. However, the waveform in
the case of the CDN is different. This means that the te-
lecommunication line is terminated by a high impedance
when the line is terminated by the imitation equipment.

The peak value is reduced by half of the peak value
of the EFTB generator when the line is connected to a
CDN. In addition, the pulse width of the waveform de-
creased to one third. These results indicate that the ap-
plied waveform is influenced by the common-mode port
impedance of the equipment under test (EUT).

Fig. 6 shows a comparison between the common-mode
waveform and the differential-mode waveform. The dif-
ferential-mode waveform was measured at the asym-
metrical port of the balun using an oscilloscope. The le-
vel of the EFTB generator was 250 V.

The graph shows that a large deviation appears be-
tween the common-mode and differential-mode wavefo-
rms. This means that the conversion factor from the co-
mmon-mode voltage to the differential-mode voltage has
large frequency dependence.

The measurement results of the LCL for the imitation
equipment are plotted in Fig. 7. The LCL was measured
according to the definition in the ITU-T recommendation
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Fig. 6. Comparison between common-mode waveform and
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[12]. The probe developed by Macfarlane [13] was used
for the measurement.

In this figure, the “LCL probe” means the LCL when
the LCL probe port connected to the device under test
(DUT) was terminated by a resistance of 100 &. When
the measured value is about the same as the LCL probe
value, the measured value is less accurate due to the ca-
pacity of the LCL probe. The “imitation equipment (500
Q)7 refers to the LCL when one of the wires of the imi-
tation equipment was terminated by a resistance of 500
Q as represented in Fig. 3.

With the imitation equipment, the LCL value is ar-
ound 50 dB in the frequency range from 0.2 MHz to 30
MHz. In the case of the imitation equipment (500 Q),
the LCL is has almost the same value in the measure-
ment frequency range. This means that the LCL is de-
termined by the resistance of 500 Q.

The peak value of the common-mode voltage was 176
V in Fig. 6, and that of the differential-mode voltage was
0.58 V in Fig. 6. The ratio of these voltages was 50 dB.
This value is near the LCL value of the imitation equip-
ment in Fig. 7. This means that the waveform appearing
at the differential-mode port is influenced by the LCL of
the equipment.

The measurement results for the RF conductive im-
munity waveform are shown in Fig. 8. In this figure, the
left vertical axis shows the peak-to-peak voltage level of
the waveform. The right vertical axis shows the LCL and
the ratio of the common-mode voltage to the differ-
ential-mode voltage. The level of the disturbance source
18 10 Vips.

This shows that the differential-mode voltage level, V,,
increases depending on the frequency increase. On the
other hand, the common-mode voltage level, V., does not
show a large change. This graph also shows that the ratio
of the common-mode voltage to the differential-mode
voltage has a similar dependence on the LCL. This means
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Fig. 8. Measurement results for RF conductive immunity
waveform.

that the conversion from the common-mode voltage to
the differential-mode voltage is closely related to the
LCL.

3-2 Investigation Result of EFTB Test Waveform

Fig. 9 plots the results of measuring the immunity to
the EFTB waveform. In this figure, the horizontal axis is
the signal level in dBV, which is represented by the peak
value. The vertical axis is the BER. The circles indicate
the burst frequency of 100 kHz, and the triangles in-
dicate the burst frequency of 5 kHz. The squares indicate
the BER when no disturbance was applied. Here, the
burst frequency means the period of the surge waveform.
The white circles and triangles represent the peak value
of 250 V, and the solid circles and triangles represent the
peak value of 500 V.

First, we consider the case where the peak value is
250 V. When the signal level was less than —13 dBV,
the BER mainly depended on the system noise of the in-
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Fig. 9. Measured BER for EFTB waveform.

strument used to measure BER. On the other hand, when
the signal level was more than —13 dBV, the BER
mainly depended on the applied disturbances. The BER
initially decreased, which is shown as a gentle slope; it
decreased rapidly when the signal level was more than
—7 dBV. This value almost agrees with the peak value
of the disturbances between wires.

We next consider the case where the peak value is 500
V. When the signal level was less than —13 dBV, the
BER mainly depended on the system noise of the BER
measuring instrument, similar to the 250 V case. The BER
decreased, represented as a gentle slope, when the signal
level was more than —13 dBV, and then it decreased
rapidly when the signal level was more than 1 dBV. This
value is 8 dB larger than the 250 V case and is similar
to the ratio of 500/250 (6 dB).

No significant difference appears between the burst
frequency of 100 kHz and the burst frequency of 5 kHz.
Fig. 10 shows the differential-mode waveform measured
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Level [V]

) . I . . . I .
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Time [ps]

Fig. 10. Measured BER for EFTB waveform.
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at the unbalance port of the balun. The black line indi-
cates the waveform when the peak value is 250 V, and
the gray line indicates the waveform when the peak val-
ue is 500 V. This shows that the level of the EFTB pulse
is larger than the signal level. This means the bit error
appears when the disturbance is applied to the tele-
communication signal.

The investigation result in Fig. 10 suggests that the
BER can be calculated from the probability where the
peak value exceeds the signal level. Based on that as-
sumption, the BER can be calculated from the following
equation.

BER=0.5—=05—"
N fI/T (3)

Here, n is the number of bursts, f is the clock fre-
quency of the signal, and T is the burst period. The value
of 0.5 indicates the probability that the bit error will oc-
cur when the signal level is low.

When n is 75, f'is 2,048 kHz, and T is 300 ms, the
BER is 6x10 . This value is also shown in Fig. 9. This
means that the BER can be roughly estimated from the
probability where the disturbance level exceeds the sig-
nal level. In addition, the BER is less than 6x10"> when
the peak value is any large value. Equation (1) suggests
that the BER is dependent on the number of bursts.

3-3 Investigation Results of RF Conductive Immunity
Test

Fig. 11 shows the investigation results for the RF con-
ductive immunity test. Carrier frequencies of 0.15 and 1,
5, 10, 15, 20, 25, and 30 MHz were selected for the
experiment. The level of the disturbance source was 20
Vims (the peak-to-peak value was 100 V). “N. D.” means
the measurement results when the disturbance level was
ZEeTo.

The BER maintains a value around 1x10 * when the
signal level is lower than a threshold value. The BER de-
creases rapidly when the level exceeds the value. The
threshold level changes depending on the carrier frequ-
ency. It is low at a low carrier frequency. This means
that the converted differential mode is low as shown in
Fig. 11. The maximum level is at 5 MHz, and this de-
creased depending on the increase in frequency. This is
caused by the frequency characteristics of the balun be-
cause the frequency bandwidth is from 10 kHz to 4
MHz.

Fig. 12 shows the BER when one of the imitation
equipment terminals is connected to the ground via the
resistance R,. The R, of 500 Q was selected for the ex-
periment. The disturbance source level was 10 Vi (the
peak-to-peak value was 50 V).
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Fig. 11. Measured BER for RF conductive immunity test.
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The threshold level to which the BER drops rapidly is
increased by inserting resistance. For example, the value
increases from —11 to 3 dBV at 0.15 MHz. This causes
that the LCL of the imitation equipment decreases when
resistance is inserted.

When the carrier frequency is more than 20 MHz, the
threshold level is smaller than that when the frequency is
less than 5 MHz because of the frequency characteristics
of the balun.

3-4 Correlation between EFTB Test and RF Conduc-
tive Immunity Test

With the EFTB test, the BER is affected when the sig-
nal level is less than 1 dBV. In this case, the peak value
of the differential-mode voltage (telecommunication sig-
nal) is estimated to be 1.16 V from Fig. 6. With the RF
conductive immunity test, the BER is affected when the

signal level is less than —10 dBV for the frequency of
5 MHz. At that time, the differential-mode voltage of
disturbances is determined to be —21 dBV ((—27+6)
dBV) from Fig. 8, where the value of 6 is the conversion
factor from the unbalance port of the balun to the ba-
lance port. In this case, the zero-peak value of tele-
communication signal is 0.045 V and the ratio of 1.16 V
to 0.045 V is 28 dB.

The investigation results indicate that the BER in-
creases when the disturbance appears at the differential-
mode. Based on this result, the RF conductive immunity
test is more severe than the EFTB test if the zero-peak
value is the same. However, the test level of the EFTB
test was higher than that of the RF conductive immunity
test. Therefore, the EFTB test is more severe than the RF
conductive immunity test.

However, the maximum BER of the EFTB test was
less than 6x10°. Therefore, the RF conductive immu-
nity test was found to be more severe than the EFTB test
if the telecommunication system is not affected by the
BER value.

IV. Conclusion

The correlation between the EFTB test and the RF
conductive test was investigated. In the investigation, we
assumed that a malfunction of the telecommunication
system occurs due to differential-mode disturbance that
is converted from common-mode disturbance.

The BER was used to evaluate the degree of immunity
level to the disturbances. The common-mode waveform
was measured using a CVP. The measurement results of
the common-mode waveform by the EFTB test show that
the waveform changes in the telecommunication equip-
ment. The LCL of the imitation equipment was mea-
sured, and the results showed that the LCL was around
50 dB, and this is decreased by connecting one wire to
the ground via a resistance.

The investigation showed that the ratio of the com-
mon-mode voltage to the differential-mode voltage was
influenced by the LCL. The results of measuring the
common-mode voltage in the RF conductive immunity
test also showed that the ratio of the common-mode vol-
tage to the differential-mode voltage had a similar value
to the LCL.

The investigation using the EFTB test indicated that
the maximum BER was less than 6x10 °. The inves-
tigation using the RF conductive immunity test indicated
that the BER was closely related to the LCL. These re-
sults suggest that the EFTB test is more severe than the
RF conductive immunity test if a malfunction occurs due
to the mechanism assumed in this paper.
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In this paper, we assumed that the telecommunication
signal was disturbed by the induced differential-mode
current from common-mode current. However, the evalu-
ation to many telecommunication equipment are required
to clarify the correlation between immunity tests because
another induction mechanism may exist.

The authors thank Dr. M. Matsuoka for his support
of this study.
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