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ABSTRACT

Although the Weibull distribution is widely used in a variety of reliability applica-
tions, difficulties in its treatment, particularly in three parameter cases in the
maximum likelihood estimation, hinder us from using the distribution. The ex-
tended Weibull distribution proposed by Marshall and Olkin (1997) can avoid the
difficulties which appear in the conventional Weibull distribution models. This pa-
per shows the maximum likelihood estimation method in the extended Weibull dis-
tribution model. The paper also illustrates some typical applications for break-
down voltage estimation in which the extended models are superior to the conven-
tional Weibull models. The central discussion is whether the shape parameters in
the extended model accomplish the mass shifting effect of the distribution.

1 INTRODUCTION

ARAMETER estimation in the Weibull distribution is

widely used in a variety of reliability applications, e.g.,
in civil engineering, mechanical engineering, electrical en-
gineering, and medical and pharmaceutical fields. How-
ever, in three parameter models in particular, it is known
that computing the maximum likelihood estimates (MLEs)
is extremely difficult. This difficulty originates with the in-
clusion of the location parameter vy, of the distribution
when a conventional three-parameter Weibull cumulative
distribution (W3P) is expressed by

X~ Yw

Bw
Fw3p=l—cxp{—( ) },(nw>0,,6w>(l,xzyw).

(1)

Then, the likelihood function L p(7,,By,7%)s in com-
plete continuous data cases,

"By X Y Bw 1
LW3P(T}w’BW’TW)=n_( '1? )
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cxp{_(x, 'Yw] } @
oy

is unbounded for 8, <1, where 7, and B, are the scale
and shape parameters, respectively and n is the sample
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size. In the case B, > 1, the likelihood equation
Vlog L y;p =0 need not have a solution and the global
maximum of Ly p(7,, BysY.) may occur on the boundary
B, =1 [1]. The case B, <2 corresponds to the so-called
non-regular model, under which the asymptotic joint dis-
tribution of the MLEs is not normal and the asymptotic
variances are not inversely proportional to the sample size
[2]. Moreover, an estimate of B8, goes to infinity in some
data case, which corresponds to the case of Gumbel or
Fréchet distribution [3]. This is called the divergent case
here. These two (non-regular and divergent problems) are
fundamental problems which occur in the W3P model.
Thus, such issues lead us to use alternative methods; us-
ing the moment estimators [4], applying the Bayesian
method [5], and extending the Weibull model to a generak
ized extreme-value distribution model [6] are among them-
However, properties of the MLE, e.g., asymptotic effi-
ciency and etc., are still attractive.

Marshall and Olkin have recently proposed a new dis-
tribution family which has the property of geometric-e¥
treme stability which means that the minimum or the ma¥
imum of a geometric number of independent random
variables with common distribution in the family has a dis-
tribution again in the family [7]. They indicate that the
particular case that the distribution is an exponential _dls'
tribution yields a new two-parameter family of distr_lbu‘
tions which may sometimes be a competitor to the Wefb"l
and gamma families. Similarly, a two-parameter Wﬂ‘b.“
model yields a new three-parameter distribution which
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may be a competitor to the conventional Weibull models.
we abbreviate these extended distributions for the expo-
nential and Weibull models as the EE2P and EW3P, re-
speclivcly, but we mainly deal with the case of EW3P in
this paper.

In some data cases which appear in electrical engineer-
ing, €.g., breakdown voltage data, the extended models fit
quite well to the actual data, and therefore they may pro-
vide smaller confidence intervals for certain percentile
point estimators; electrical engineers often want to know
the reliability of lower percentile points. This tendency
appears in both the EE2P and EW3P for breakdown volt-
age data. More important point in the maximum likeli-
hood parameter estimation, in three parameter cases, is
the exclusion of non-regular cases caused by inclusion of
the location parameter. The problem of the blowup of the
likelihood function in the W3P model will vanish in the
EW3P model.

Since computing the MLEs of the extended models is
not straightforward, a method to estimate the MLEs using
the predictor-corrector method is briefly introduced.

2 EXTENDED MODELS FOR THE
EXPONENTIAL AND WEIBULL
DISTRIBUTIONS

If a survival function corresponding to a cumulative dis-
tribution function F(x;0) is denoted by F(x;#), a new
family of distributions G can be generated as,

aF(x;0)

G(x;a,0)=1-—-x——,
1—aF(x;0)

(3)

where @ =1— a(a > 0) and 6 is the parameter vector in
the distribution F [7). Then, the density function of the
extended model is

g(x;a,0)= ‘—ﬂ% (4)
[1 - aF(x;B)} _

where f(x;0) is the density of F(x;0).

2.1 EXTENDED TWO-PARAMETER
EXPONENTIAL (EE2P)

' If the cumulative distribution function for the exponen-
Ual model is expressed by

F(x:nc)=1‘cxp(‘%)’(WM))‘ )

e

then,lhc extended cumulative distribution function and the
ensity function are

av

G(xa, =]
Hriane) 1—(1-a)»

(6)
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and

av

nf{l-(1—a)v)*’

g(x;a,m,) = (7)

where v =exp(—y), y=x/n.; n. is the scale parameter.

2.2 EXTENDED THREE-PARAMETER
WEIBULL MODEL (EW3P)

The cumulative two-parameter Weibull distribution
model can be obtained by setting v, = 0 in (1), which is
abridged by W2P here. Then, the extended cumulative

distribution function and the density function for the W2P
are

aw
G(x;a,nc,Bc)ﬂ—m, (8)
aBEyﬁf‘w
g(x;“’n:‘ﬁc)= (9)

n{1—-(1- a)w}®’

where w=exp(—z), z=yP, y=x/; 7, and B, are the
scale and shape parameters.

23 IMPORTANT PROPERTIES OF THE
EW3P

The problem in the W3P model that the log-likelihood
becomes unbounded is caused by inclusion of the location
parameter, and such a problem will vanish in the EW3P
model if (9) is bounded to the above. This is easily ob-
tained because

(1-(1-a)w}’>0,(a>0,0<w<1),
0<yP'<m, (x,>0), (10)

to each observed value x,. If the regularity conditions [8]
hold, we can obtain the MLEs and their confidence inter-
vals by using the observed Fisher information matrix. Here,
we use the log-likelihood function in the EW3P as:

n

logL(a,m.,B.)= L logg(x;a.m.B.). (1)
—

i

We have not experienced the divergent cases so far in
the extended models in simulation studies, and thus we do
not believe that the divergent problem is serious in using
the extended models.

2.4 SHAPES OF THE DENSITY
FUNCTIONS OF THE EXTENDED MODELS

Typical shapes of the density functions of the EW3P
are shown in Figure 1. We can find a variety of shape
patterns of the density functions, which suggests the ap-
propriateness of fit to actual data cases with a small num-
ber of free parameters. Figure 2 shows a modified Pear-
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Figure 1. Typical shapes of the density functions for the EW3P.
son’s diagram where the ordinate and abscissa express the
skewness (skw) and kurtosis (krt), respectively, where
skw = ps/nd?,
ket = /13, (12)
' 132
po =y — (M),
' ’ ! 3
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’ ! ' r 2 {4 ' 4
py = o —4py s +6( 1)) 1 —3( ) s

,u3=f0xfg(x)dr(g(x);density,j=1,2,3,4). (13)

The figure reveals a wider applicability of the EW3P to
the field data than that of the W3P.

where w and o denote the mean and standard deviation,
respectively; (14) is obtained analytically but (15) is com-
puted by numerical integration. This phenomenon is called
here the mass shifting effect of the distribution. Figure 3
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Figure 3. Typical density functions for the EE2P. Shape paramet?
« varies exponentially with m, = 1.
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shows typical density functions when « varies exponen- 30 — 4. 1 1 .
tially with the fixed scale parameter 7, = 1. 25 i
In the case of EW3P, this phenomenon is not exactly 201 I
the same; however, the mass shifting effect of the distri- g ]
pution in the W3P model by the location parameter 7, g &) i
can roughly be realized by using the two shape parame- = 101 -
ters and scale parameter in the EW3P model as shown 5 B
later. 0 T T T —— i -
0 5 10 15 20 25 30 35
3 APPLICATIONS TO BREAKDOWN N
VOLTAGE ESTIMATION  Hingem
Typical examples to breakdown voltage estimations are "

introduced here to explain how applicable the extended
models are. In 3.1, an example of the mass shifting effect

in 2 parameter case (EE2P) is demonstrated, and the O
EE2P result is compared with the W2P result. In 3.2, B
EW3P fitting of five data sets are shown, which suggests a 0.2
typical shape pattern observed in breakdown voltage. Since

the data case is the same as in 3.1, this subsection extends 0.1

the discussion in 3.1 to the three-parameter cases. In 3.3,
a non-regular case in W3P is used, comparing the results
of the W3P with those of the EW3P. In 3.4, a divergent
case in W3P is examined in the EW3P. The parameter
estimation method is given in Appendix 6.1.

3.1 EPOXY RESIN BREAKDOWN
VOLTAGES A

A data case of 100 dielectric breakdown voltages of
epoxy resin test pieces in [9] is used to investigate the
two-parameter models: EE2P and W2P. Figure 4 shows
the histogram of the data; the distribution is easily scen to
be shifted away from the origin, which suggests the use of
the mass shifting effect of the EE2P. Table 1 shows the
fitted MLEs of the parameters and percentile points x,
along with the log-likelihood values, where

x,=F7'(p), (16)

fitnmes the breakdown voltage with breakdown probabil-'
lty p. The large difference of the two log-likelihood values
(larger than two, which corresponds to two additional free

(b) estimated density functions

Figure 4. Epoxy resin data. a, histogram; b, estimated density func-
tions.

parameter inclusion in a model [10]),

log L ggop —10g L yop = — 157.040 — ( —159.126) = 2.086
(17)

suggests that the EE2P model is a better fit to the data
than the W2P model. Although the mass of the distribu-
tion in the W2P can be shifted away from the origin by
using the larger value of B, the shape of the W2P tends
to that of the Gumbel distribution, i.e. skewed to the left.
The histogram of the data reminds us the large value of
kurtosis and symmetric distribution to the mean value,
which suggests that the EE2P model is a better fit.

The standard errors using the observed Fisher informa-
tion matrix shown in parentheses in Table 1 also suggest

Table 1. MLEs of parameters and percentile points for cpoxy resin breakdown voltages A (100 sampled data).
Estimates
\\M_(EC' o _ M B x,oosi ) i.m ) X s 7 ]70371- 7
EE2P  4609%10"% 6441 24.27 24.72 25.78 ~157.040
(1.683x 10') (.05453) (.314) (.279) (.200)
e [.353] [.316] [.230]
Wap - 28.14 2580 2.9 2354 2508 —159.126
' (.1152) (1.850) (.378) (.344) (.259)
‘ [.515] [.458] [.315]
Stang. :
S::‘lg:l;g errors using the observed Fisher information matrix are in parentheses.

€rrors using the bootstrap method are in brackets.
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the superiority of the EE2P over the W2P to this data
case. However, the approximate standard errors shown in
Table 1 are derived from each population model, e.g.,
EE2P errors are obtained from EE2P distribution; we
cannot straightforwardly compare their values to each
other. Therefore, a bootstrap method which mimics the
non-parametric bootstrap [11] is used here to compare the
standard errors of the percentile points; 100 data are sam-
pled from the original 100 data with equal probability (.01)
with replacement for 1000 trails, and estimates are ob-
tained from each distribution model. In Table 1, the stan-
dard errors using the bootstrap are shown in brackets, and
the results again support the superiority of the EE2P over
the W2P. Figure 4 shows the density functions of the EE2P
and W2P models fitted to the data.

This is only just one case comparison. It should be men-
tioned that we cannot simply address the superiority of
the EE2P model over the W2P model. However, typical
data cases observed in electrical breakdown voltage tests
reveal that such a phenomenon is not rare, as will be shown
later. It is worth noting that a remarkable difference be-
tween the two log-likelihood values (with the same num-
ber of free parameters) is not so common.

3.2 EPOXY RESIN BREAKDOWN
VOLTAGES B

Five data sets of twenty samples [9] obtained by the
epoxy resin insulation breakdown voltage tests are used
here. First, we look at the shapes of the empirical distri-
butions. Table 2 shows the mean, standard deviation, co-
efficient of variation, skewness, and kurtosis for five data
sets as well as for 100 samples of all data sets. Typically,
the table shows that the values of coefficient of variation
(ratio of standard deviation to mean) are located around
0.05 and that distributions are negatively skewed and
sharp. Table 3 shows the likelihood values fitted by the
EW3P and W3P models. The table indicates that the ex-
tended model shows superior fit to the data.

Figure 5 shows the cumulative distribution function (cdf)
for 100 samples with the superimposition of the empirical
distribution. It appears that the cdfs of the extended mod-
els are closer to the empirical distribution. The values of

Table 2. Shape of the empirical distribution for €poxy resin
breakdown voltages.

Case Mean s.d. cv skw krt
1 27.27 1.205 0.04417 —1.032 3.294
2 27.80 1.462 0.05260 —0).2488 3.210
3 27.57 1.057 0.03833 —0.3111 2.580
4 27.51 1.174 0.04269 - 1.501 5.075
5 27.85 1.057 0.03795 -0.2377 2.830

all 27.60 1.194 0.04327 —0.6040 3.845

- when increasing voltages were applied to transform

Table 3. Log-likelihood values of EW3P and W3P fitted to
epoxy resin breakdown voltages.

Case EwW3p W3p
1 — 28.8501* > —28.9799
2 —35.2000 > —35.3747
3 —28.7608 < —-28.6517
4 —26.9227* > —276132
5 —28.7234 > ~28.8236
all ~155.096 > —157.073

*Limiting values are used because of the divergent cases.
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Figure 5. Cumulative distribution function and empirical distribu-
tion function. Solid line, empirical distribution; dashed line, CDF.

the Kolmogorov statistic [11], D,, defined by

D, = sup | F,(x) = F(x)] (18)
xz=0

for EW3P and W3P as well as EE2P and W2P are 0.04%,
0.072, 0.058, 0.091, respectively, where F, expresses the
empirical distribution. Since the critical value D, for the
significance level 0.05 for 100 samples is 0.134, we cannot
reject all the hypothetical models, but we should note that
the values of Dy, in the extended models are smallef
than those in the W3P or W2P.

3.3 OIL INSULATION BREAKDOWN
VOLTAGES

Table 4 represents a data set of 20 breakdown VOHag:.s
er

5 : . t
in a test tank at the Hitachi Research Laboratory [:;nin
insulation broke down. This corresponds to Test #
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Table 4. Oil insulation breakdown voltages.

Data

Case Data

—2 30 42 38 38 33 27 27 33 32 35
35 26 31 34 28 29 31 31 36 34

(x 100 kV)

Table 1 in [13]. Table 5 shows the fitted MLEs of the
parameters, percentile points x, and the log-likelihood
values. As seen in Table 5, this data case corresponds to
the non-regular case in the W3P model (since the esti-
mate of the shape parameter is less than two in the W3P
model, the asymptotic joint distribution of the MLEs is
not normal and the asymptotic variances are not inversely
proportional to the sample size); we cannot obtain the
standard errors by using the observed Fisher information
matrix if we adopt the W3P model as the underlying dis-
tribution. Provided that the regularity conditions hold in
the EW3P, the standard errors using the observed Fisher
information matrix are shown in the Table.

Although the log-likelihood value in the EW3P is slightly
smaller than that in the W3P, standard errors in the EW3P
obtained by using the mimicked non-parametric bootstrap
show superiority over those in the W3P when percentile
points are x 55 and x ;.

The values of the Kolmogorov statistic for the EW3P
and W3P are 0.083 and 0.088 respectively, which means
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that the EW3P is a little bit closer to the empirical distri-
bution. Both the models are not rejected because the crit-
ical value of D, is 0.294.

3.4 EPOXY RESIN BREAKDOWN
VOLTAGES C

Table 6 shows the fitted MLEs of the parameters, per-
centile points x,,, and the log-likelihood values to the data
case 1 in Table 1 in [9]. As is explained in [9], this data
case corresponds to the divergent case in the W3P model;
we can neither obtain the estimates of the parameters nor
their standard errors by using the observed Fisher infor-
mation matrix if we adopt the W3P model as the underly-
ing distribution. Only the percentile points can be ob-
tained by adopting the extended maximum likelihood esti-
mates [14]. Provided that the regularity conditions hold in
the EW3P model, the standard errors using the observed
Fisher information matrix are computed as shown in the
table. The log-likelihood value in the EW3P is slightly
larger than that in the W3P; the standard errors in the
EW3P obtained by using the mimicked non-parametric
bootstrap show superiority over those in the W3P; note
that the extended MLEs are used in this bootstrap proce-
dure in the divergent cases in the W3P model.

The values of the Kolmogorov statistic for the EW3P
and the limiting distribution for the W3P are 0.088 and
0.126 respectively.

Table 5. MLEs of parameters and percentile points for oil insulation breakdown voltages.

Estimates
Model o M B X gos X0 X s log L
EW3P 05039 4.064 13.11 2.160 2.279 2.584 —10.2972
(.1109) (.5193) (.2940) (.196) (.181) (.141)
[.148] [.138} [.114]
wap 8351 1.877 2.557 2.579 2679 —9.45101
[.200] [.160] [.093]
Standard errors using the obscr'\md Fisher information matrix are in parentheses.
Standard errors using the bootstrap method are in brackets.
Table 6. MLEs of parameters and percentile points for epoxy resin breakdown voltages B (20 sampled data).
Estimates
—_Model a n B X 005 X0 X o5 log L
EW3p 3314 2712 2498 23.01 23.66 25.21 28.8501
(5.825) (1.130) (11.44) (1.29) (1.06) (.599)
- (.908] (.815) [.598]
wip — — — 23.30 23.89 2527 —28.9799
S (1071 [.930] [.625]
Sta“dal’d errors using the observed Fisher information matrix are in parentheses.
andarg e .

rrors using the bootstrap method are in brackets.
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4 HOW EW3P COMPETE WITH W3P

As seen in the previous section, there are cases that the
EWS3P fits better to the breakdown voltage data than the
W3P does from a view-point of the log-likelihood, confi-
dence interval, or the Kolmogorov statistic. In this section,
we show when and how the EW3P behaves better than
the W3P does, and discuss whether the EW3P can be a
competitor for the W3P. In the discussion, we limit the
application field to the breakdown voltage phenomena. By
experience in breakdown voltage tests, we know a priori
that the coefficient of variation (cv) of the breakdown
voltage data is typically around 0.05 (more specifically,
from 0.03 to 0.1); e.g. see Table 2. Thus, we first assume
that the co is 0.05.

The central discussion here is whether the shape pa-
rameters in the extended model accomplish the mass
shifting effect of the distribution, because the raison d’étre
of the W3P is that it has the positive endpoint to the left
in engineering applications, while the EW3P does not.

If the cv is fixed and the endpoint 1y, is determined,
then the shape of the W3P can completely be established
(ie., B, is defined uniquely) by solving the equation,

o w[rarem)-(ra+is)y]”
S %+ T(1+1/8,)

[ra+2s-ra+ysy]” -
Wi A T+ /B

Thus, B, is a function of y,/7,. We can determine the
shape of the distribution as:

Similarly, the shape of the EW3P can also be confirmed
by solving the simultaneous equations,

g Oy

Clp=—=—=cu
He My

He = py,, (0r equivalently, o, = o) (20)

where p, and o, are obtained numerically as

— fn xg(x)dx,

q{];] ng(x)dxf(]” xg(x)dr) } .2

Then, a and B, are a function of v, /m,. We can deter-
mine the shape of the distribution as:

Yw/nw =2 ( )u'w/nw’(‘rw/nw) = P‘C’(rc = a"DGt:‘
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Figure 6. Skewness and Kurtosis of the distributions. A, € =0.03;
b, cv =0.05; ¢, co = 0.10.
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Since the solutions of equations (19) and (20) cannot be
expressed in closed forms, they have to be solved numert
cally. A method to find the solutions is shown in AP
pendix 6.2,

Suppose that co = 0.05. Figure 6 shows the skw 'de fert
(equation (12)) for the W3P and EW3P pzlramﬂtﬁrfzed by
Yo/ I (Yu/m, becomes a function of v,/n,). Figure
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shows the probability of f ng(x)dx which is expected to
0
pe very small.

At a point of y,/p, where skw and Art in the W3P
differ most from those in the EW3P, the shapes of the
(WO distributions can be considered to differ most from
cach other. This point is ¥, /k,, = 0.211 (y,/m, = 0.26),
and

skw,, = —0.862, krt, =4.25,
skw, = —1.84, krt, =12.0 (22)

The density functions at the point are shown in Figure 8;
at first glance we cannot distinguish the difference be-
wween the two distributions around the endpoint of the

W3P. Actually, the probability of [ ng(x)dx is very small
0

as Figure 8 indicates; numerical integration tells us that it
is 1.18 X 107>, The EW3P seems to accomplish the mass
shifting effect of the distribution by the two shape param-
eters in the EW3P as the location parameter in the W3P
shifts the distribution. We will see if this is true by using
Monte Carlo simulations from two viewpoints: the likeli-
hood value and the percentile point estimator.

4.1 COMPARISON BY LIKELIHOOD

Preserving the cv value as 0.05, we use two kinds of
distribution function as a mother distribution for random
number generation; one is the EW3P (a, =225, n.=1,
B.=7.82) and the other is the W3P (n, =1, B, = 19.5,
¥, =0.211); these parameter values are determined when
the shapes of the two distributions differ from each other
most, ie., v,/n, = 0.211. Then, we fit the distribution
functions of the EW3P and W3P to the generated data.
The sample size is 100 and the number of trials is 1000.

Figure 9 shows the difference of the two likelihood val-
ues between the EW3P and the W3P. The random num-
bers are gencrated from the EW3P and from the W3P.
Figure 9(a) suggests the high superiority of the EW3P over
the W3P, while Figure 9(b) indicates that the EW3P is
much the same to the W3P. In short, the EW3P can be a
formidable competitor to the W3P.

4.2 COMPARISON BY PERCENTILE
POINT

The major flaw of the W3P in maximum likelihood esti-
Mation occurs when the location parameter estimator is
used: 1. non-regular problem may prohibit to exist the
Maximum likelihood estimates in some cases, 2. the loca-
tion parameter estimate may go to minus infinity, 3. the
Standard deviation of the estimate of the location parame-
ter is usually very large (it may include negative value).

hus, Hirose and Lai [3) proposed to use the low per-
tentile point as a substitution of the endpoint of ‘the dis-
Uribution. Therefore, using the low percentile point in the
EW3P also seems to be natural. :

3
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0

0.10.

Using the same random numbers generated in 4.1, we
compared the estimates of the low percentile points, X,
and x; g5, in the EW3P, along with those in the W3P.
Figure 10, the scatter points of these estimates by each
distribution fitting, suggests that there is no remarkable
difference of the estimates between the EW3P and W3P.
The bias and RMSE (root mean square error) are shown
in Table 7, which confirms that the EW3P is much the
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same to the W3P. In short, the EW3P can be a competitor
to the W3P.

4.3 OTHER CASE STUDIES

We have been discussing so far the difference of the
two distributions only on the case that cv is 0.05 and ¥, /7,
is 0.211 where the shapes of the two distributions differ
from each other most. The properties obtained in that case
are also almost true in other cases as far as v, /u,, <0.5.
If we assume that the value of cv varies from 0.03 to 0.1
in electrical insulation breakdown voltage data as stated
before, then (u —50 )/u which would cover almost all the
breakdown voltages varies from 0.5 to 0.85. Even if the
condition is worst for the EW3P (this would be the case
that cv = 0.1 and v, /u,, = 0.5) in percentile point estima-
tions, the results of the comparison are much the same as
discussed in subsections 4.1 and 4.2. From Figures 6 and
7, we can easily imagine that the EW3P behaves better
than the W3P does even when cv < 0.03. Figure 11 and
Table 8 show the simulation results when cv=0.1 and
Yo/t = 0.5. As a result, the EW3P can be a competitor
to the W3P as far as co <0.1.

5 CONCLUDING REMARKS

Marshall and Olkin predict that the extended exponen-
tial and Weibull distribution may be competitors to the
family of Weibull and gamma models (see [7]). In electri-
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Figure 9. Difference of the two log-likelihood values between the
EW3P and the W3P. cv = 0.05, ¥, /1, = 0.211. a, Random numbers
are generated from the EW3P; b, random numbers are generated
from the W3P.

cal engineering fields, the extended model sometimes is a
better fit to the actual breakdown voltage data than the
conventional Weibull model in the sense of the likelihood
and confidence intervals of the percentile point estimates.
Since the three-parameter Weibull distribution has mainly

Table 7. Bias and RMSE of x,, fitted by the EW3P and W3P. cv = 0.05 and y,, /j,, = 0.211 (v, /i, = 0.26).

Random number is generated from the EW3P

Distribution p Bias RMSE
EW3P 0.01 1.022 0.01998 0.04264
0.005 0.9650 0.03448 0.06053
w3p 0.01 1.022 T 0.03971 0.04943
0.005 0.9650 0.07036 0.07912
Random number is generated from the W3P ;
Distribution ' p Bias RMSE B
EW3P 0.01 1.050 ~0.001008 0.02643
0.005 1023 —0.003625 0.03323 B
W3P 0.01 1.050 0.06102 0.02611
0.005 1.023 0.07238 0.03244
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generated from the EW3P; b, random numbers are generated from
the W3P.

T

two major problems due to the inclusion of the location
parameter, many researchers propose alternative estima-
tion methods to circumvent these problems. However,
these problems may vanish if we adopt the extended
three-parameter Weibull model. Thus, the Marshall and

Table 8. Bias and RMSE of x,, fitted by the EW3P and W3P. co = 0.1 and v, /i, = 0.5.

Random number is generated from the EW3P

~ Distribution P x, Bias RMSE

EW3P i 0.01 1.271 0.03762 0.1089

N 0.005 1.139 0.06670 0.1476

W3p 0.01 1.271 0.07027 0.1203

0.005 1.139 0.1344 0.1793

) o ~ Random number is generaled from the W3P

_ Distribution p X, Bias RMSE
EW3P 0.01 1373 ~0.02207 0.05693
N 0.005 1322 —0.03911 0.07282
- we 0.01 1373 0.009688 0.06077
0.005 1322 0.01003 0.07430
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Olkin’s extended models are particularly useful under such
conditions. This paper has discussed whether the shape
parameters in the extended model accomplish the mass
shifting effect of the distribution, and it has been posi-
tively clarified when the value of coefficient of variation is
small.

6 APPENDIX
6.1 PARAMETER ESTIMATION METHOD
6.1.1 THE MAIN IDEA

In solving the likelihood equations, iterative methods
are used because of the nonlinearity of the equations. The
Newton-Raphson method and the continuation method
[15-18] are among the iterative methods, and they work
well in finding the solutions.

Figure 2 indicates that a solution of the likelihood
equations may not be uniquely determined; for example,
the curves when a = 0.1 and « = 10 have an intersection
point around skw = 0. Actually, the multiple local maxi-
mum points are obtained in an epoxy resin breakdown
voltage data case, and such a case is not rare. Therefore,
we have to search for solutions carefully. Here, a search
method using the profile log-likelihood is recommended.
This method can be considered as one of the predictor-
corrector methods; the central idea is similar to the litera-
ture [19].

6.1.2 ESTIMATION PROCEDURE

Step 1: Obtain the MLE of the W2P, fy.p and fyap.
This solution is the case of a =1 in the extended model,
we set 7, = Tyop and Bn Bva The solution is the
starting point, k = 0.

Step 2: Define a multiplier m, > 1.

Step 3: Set a, = m X a,. Using 1), and ,BR as a start-
ing point, find the S()ll,l[lOn of the Lquatlon‘; (25) and (26),
by the Newton method, and set s =1, -Bk+l B, and
logl,,,=logL. Here, 7, and ,GA are considered to be
simple predictors and 4, ., and ,8“, are correctors. Iter-
ate this procedure until «,,, > M,.

Step 4: Define a multiplier 0 <m, < 1.

Step 5: Set a;_;=m, X a;. Using 7, and ﬁk as a
starting point, find lhe solution of the equations, (25) and
(26), and set %, _, =17, ,8,(_, B, and logl, |, =logL. It-
erate this procedure until a,_, < M,.

Srep 6: Search k such that logL, is maximum. Using

ay, 7, and ,BA as a starting point, find the solution of the
equations, (24)-(26), by the Newton method.

6.1.3 LIKELIHOOD EQUATIONS AND
HESSIANS

The concrete formulae of the first and second deriva-
tives of logL for the extended Weibull model are pre-
sented here for readers’ convenience in programming.
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The log-likelihood function for the EW3P is

logL = n(loga +log B —logn)

F 'E [( B —1)logy; +logw; —2log{1—(1— a)wi}]‘

1 10" 102 10% 10* 10° 106 107 108

(23)
i=1
The corresponding likelihood equations are
dlogl n i w;
_g =—=2) ———— =, (24)
de a T 1-(1-a)w
dlogl. np n 1+(1— a)w,
- =—-3 Ifz,*f(% =0, (25)
an ) L=(1-a)w,
dlogl n i 1+(1- a)w,
=—+ ) logy{l—z;————1=0. (26
BB ,-221 Ogy'{ T—(1- a)w, (20)

The second derivatives of the log-likelihood function

(23) are
ﬁzlogL n = ;
P Z a7
Ja » {]~(i—(x)w}
d*logL  *logl 28 zW;
Imda dadn N i {lé(lfa)w,}r
a*logl.  9*logL n z;w;logy,
dfda dadp i {[—(l*a)wj}z’
d*log L nB B
FT e 2
m M TI' =1

z,—{(lf (x)z(l-l— BIw> +2B(1— a)zw,

{1-(1-a)w)?

~(1+ )}

(27)

(28)

(29)

(30)
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7llogl  d7loglL n 4 .8 z,-{—(l——a)z(1+Blogyr-)w;"—218(1—cr)z,-w,logy,+(l+,Blogy,)} (31)
== — 4 — 2 v S

apom anap L {(1-(1-a)w)”
logl 1 2 —(1-a){1- Bz,(logy,) W +2(1- a){1+ B?2}(logy,)"}w, — 1 - B?z,(logy,)’ -

(;EB le,l {]L(l—ﬂ)wr-}z ( )

The first and second derivatives of log L for the EE2P
model are treated as the special case in the EW3P model.

6.1.4 NUMERICAL EXAMPLE IN THE
ESTIMATION

A numerical example is demonstrated here for 100 sam-
ples in [9]. The MLE of the W2P, 7jy,p = 28.14 and By.p
=25.80, are obtained by an iterative method, e.g., by [14].
We define m, = 2. Then, 7, =27.63 and £, =22.12 with
a, = 2 arc obtained by the Newton-Raphson method. This
procedure is continued until a, >5x10"". Similarly, by
defining m, =2/3, %), = 2841 and B_, = 28.02 with «_,
=2/3 are obtained, and this procedure is continued until
a, <1077, Figure 12 shows the profile log-likelihood
where local maximum values are seen around « = 0.04 and
2000. Using a,;, 7y, and f,, as a starting point, the solu-
tion can be found to be,

& =2772, 7=19.18, B =5.622, (33)

with log L.,
timate for a percentile point, x;, is 23.80.

The observed information matrix for the EW3P is,

i dlogl.  d%logl.  a*logl 1
do? dudo e dor
. d*logl.  d%logL  d%logl
dodp au® dledp
d*logl.  d%logL  ”logl
daak dpdk ak?
4376x107° 0.02832 —0.03583
= 0.02832 195.3 -254.0 |, (34)
—0.03583 —254.0 334.6
and 71 s,
1.045x10%  —49460 26360
V=l=| —49460  23.82 1279 |- (39)

—26360 12.79 6.893

If we can use the asymptotic normality and the delta
method, approximated 90% confidence intervals for £,
I8 computed as [22.31, 25.30].

6.2 AMETHOD TO SOLVE THE
NONLINEAR EQUATIONS
Since (20) is a system of nonlinear equations, we often
Us¢ a Newton-type iterative method to solve the equa-

= —155.096 by the Newton method. The es-

tions, such as:

X =X,-J'F(X), (i=01,...), (36)

where,
X =(x,x5, ...,x,,)T,
F=(fil(X).f2(X), ...f(X))T,
T=(af(X)/ox,). (37)

However, the computation of the Jacobian is extremely
difficult because f(X) is expressed by integration forms
as in (21) and they cannot be expressed explicitly. The
computational difficulty for the quasi-Newton method is
much the same. Therefore, a simple optimization method
is used here to solve the system of nonlinear equations.

Since
hi=l= ==, =4 (38)

is equivalent to

f=f+fi+-+f2=0, (39)

We need to find the optimum (minimum) point of X such
that f(X)=0. The Nelder-Mead simplex method [21] is
handy, and the solutions are obtained by examining only
the function values.
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