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ABSTRACT

The estimation problems for the conventional step-up method (the observed break-
down voltages are not given at all) and the new step-up method (some of the ob-
served breakdown voltages are given) are analyzed when the underlying probability
distribution is assumed to be a Weibull model. This paper is a consecutive re-
search of the case that the underlying probability distribution is assumed to be a
normal model. Similarly to the normal model, the new step-up test method, in the
Weibull model, also has advantages compared to the conventional method: (1) the
confidence intervals of the estimates become smaller and (2) the estimates can be
obtained with higher probability. The bias observed when sample size is small can

be reduced by using the bootstrap method.

Index Terms — Impulse breakdown voltage, step-up test method, optimal test,
electrical insulation, Weibull distribution, bootstrap method.

INTRODUCTION

O estimate the impulse breakdown voltage

(or impulse flashover voltage) for electrical insulation
which does not have a self-restoring property, e.g., the in-
sulation will not be able to be used when it is broken,
such as epoxy resin, an impulse test by increasing voltage
is used (IEC Pub. 60-1 [1], JEC-0202 [2]). The step-up test
method is as follows: (1) the initial voltage is set to a suffi-
ciently low stress level (e.g., v,) where the insulation would
not be broken, and (2) the stress level will be set to a
higher level, v, = v + d if the insulation is not broken at
stress level vy in m times impulse tests, this procedure
continues until the insulation is finally broken. If the
breakdown voltage itself is obtained when the insulation is
broken, the test method is called the new step-up method,
while it is not obtained, the test method is called the (con-
ventional) step-up method (Hirose [3]).

When the impulse breakdown voltage follows a normal
distribution, N( y,o ?), with mean, u, and standard devia-
tion, or, Hirose [3] first reccommends the use of the param-
eters of the underlying probability distribution rather than
the use of the nominal breakdown voltage, and second to
use the new step-up method if the observed breakdown
voltage itself rather than the two-valued information of
breakdown and non-breakdown is available, from a view-
point of stable and accurate parameter estimation. This
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paper deals with a very similar problem to [3], but the
underlying distribution is assumed to be a two-parameter
Weibull model, which is much more realistic in impulse
breakdown of electrical insulation which does not have a
self-restoring property. Regarding the conventional step-
up test with the Weibull model, Hirose [4] is referred to;
this paper describes the comparison between the conven-
tional and new step-up methods in the Weibull model.

2 STEP-UP TEST WITH WEIBULL
MODEL

We assume that the underlying probability distribution
for the breakdown voltage follows a two-parameter
Weibull distribution

v B
p=P(Vs1')=F(V;TI,B)=1_EXP{—(;) } 2

where n and B are scale and shape parameters, respec-
tively. Then, mean, w, and standard deviation, o, are

p=mT(1+1/8), o =T (1+2/8)—(T(1+1/B))’
@)

The impulse breakdown test by the step-up method
starts at a very low stress level v, and continues until the
insulation is broken at some stress level v, = v, +id. If
each test piece is numbered as 1, 2, ..., n, we obtain n
sampled values of v,(k), (k=1, ..., n).
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By experience, we may assume that the coefficient of
variation (ratio of standard deviation to mean), cv, is lo-
cated to be 0.03 < cv < 0.20 for non-self-restoring insula-
tion. This range corresponds approximately to 6 < g < 40.
Thus, we deal with the cases here that g =6, 8,12, 25, 40
which corresponds approximately to c» = 0.20, 0.15, 0.10,
0.05, 0.03, respectively.

3 ESTIMATION METHOD

Suppose first that the breakdown voltage test is done by
the conventional step-up method. Then, the likelihood
function for the test sequence is denoted as

LF= 11 (3)

and

ik)—1
1F = F(v) (1= F(wg))™ ! I:ID (1-F(»)} (4

where m(k) denotes the number of strikes until the insu-
lation is broken at the final stage i(k) for sample k& . The
expression [[,, can be considered as the probability of an
extended geometric distribution that the insulation is first
broken at stress level v,

Suppose next that the breakdown voltage test 1s done
by the new step-up method. Then, the likelihood function
for the test sequence is denoted as

Lf=lill[ (5)
k=1

where

ilk)—1
!ir:f(Vuk)){l“F(”itkl)]mm—‘ _1—[0 {]_F("J)} (6)
=
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and

B V B-1 V B
w=(G)E) =G}
nj\n . n )
The random variable V,,, is obtained under the condition
that V:(k] < l"(k).

The estimates, ) and § for the conventional step-up
method, can be obtained by solving the log-likelihood
equations

dlog Lf/om =0, dlog Lf/ap =0 (8)

Some iterative methods, e.g., the Newton method, can
be used to obtain the estimates of the parameters. Their
confidence intervals are computed using the observed
Fisher information matrix. However, equations (8) may not

have solutions in a mathematical sense when B-level <2
(see [3]).

For the new step-up method, the solution can be ob-
tained by solving the log-likelihood equations

dlog LT/am =0, dlog L'/ag =0 (9)

It should be noted that equation (9) has the solutions
with probability 1, unlike the log-likelihood equations in
the conventional step-up method. This beneficial property
in the new step-up test procedure is also true, similarly to
the case that the underlying distribution is a normal type.

3.1 EXAMPLE

Suppose that the breakdown voltages obtained are ex-
actly the same as in Table 1 in [3]. The starting stress level
is 500, the step-up stress is 50, and m = 1. Then, the maxi-
mum likelihood estimates for the conventional step-up

Table 1. Bias () and sue(8) of the estimates in the conventional step-up method.

dfor n M

bias (7) sue() bias (3) sue( )

0.1 o 2.30091 0.84631
0.1 100 1000 —0.00165 2.23232 0.14975 0.85135
0.1 , 50 1000 —0.00354 2.24003 0.38076 0.88159
0.1 20 - 1000 —0.00839 2.29782 1.04632 1.11640
0.1 10 1000 —0.01870 2.37595 2.23754 1.31754
0.2 ® 1.84332 0.85044
2 100 1000 —0.00178 1.81628 0.18047 0.89122
0.2 50 1000 —0.00410 1.78672 0.45964 0.93140
02 20 1000 —0.00766 1.86983 1.05378 1.05423
.2 10 1000 —0.01331 1.92336 2.22566 1.40514
0.5 © 1.36152 0.87402
0.5 100 1000 —0.00090 1.39111 0.25273 0.94026
0.5 50 1000 —0.00152 1.41080 0.32548 0.97898
0.5 20 1000 —0.00424 1.33710 (0.98870 1.07432
0.5 10 999 —0.01057 1.84750 2.35929 1.40251
1.0 ] 1.18999 0.93580
1.0 100 1000 0.00027 1.17584 0.18874 0.99598
; 1.0 50 1000 —-0.00127 1.21979 0.45542 1.08086
1.0 20 999 —=0.00272 2.10092 1.21335 1.29269
1.0 10 951 —0.00468 8.70250 2.03163 1.41997

3), st v, = p, M: number of estimates successfully computed.
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method are such that #=23290 and g = 7.523. The ap-
proximate standard errors for 7 and B using the observed
Fisher information matrix are 269.8 and 1.787. In the case
of the new step-up method, the maximum likelihood esti-
mates are 7= 3157 and 8 =8.625 and their approximate
standard errors are 170.6 and 1.486. The standard errors
for the estimates in the new step-up method seem to be
smaller than those in the conventional step-up method.
This tendency is generally true as will be shown in the
next section. This is the second beneficial property in the
new step-up method.

4 OPTIMAL TEST PROCEDURE

Let us define, similarly to [3], the asymptotic errors, s(n)
and s( 8), for n and B by the square root of each diago-
nal element of the inverse matrix of I, where

77 log L 7% log L
e 5] =)
an” pan

== a% log L a log L (10)
2 lop 2
E(‘-——E ) E(—g, )
amap B>

If the insulation is not broken at level i, the expectation
of surviving at level i for 1 test piece is

E(w?)= ]‘[’[1~F(u,)}’" (11)

f=1

If the insulation is broken at level i, the expectation of
failure at level i for 1 test piece is

i—1

E(w!)=F(u){1-F(e)})"" "' TI 1= F(»)}" (12)

j=0

Therefore, each element of I for the conventional step-
up test is expressed as

a%log LF
36, 36,

)=¥,E(W}')E

7 log(1- F(1)
6,00,

+ L E(w!)E

a* log F(v,)
a0, 8,

and that for the new step-up test is expressed as

a*log L' a*log(1—F(v))
E| ——— | =Y E(w}
( a6,0, ) ,E (W' )E( a6, a0,
a* log f(V)
+ LE(WHE| —————=V, <,
F a6,00,
(14)

where #, or @, denotes n or B. More specifically

" a° log F( ;) ) 1 By,z; )2
an’ pi 1

Ll B
—| =z, (1- B(yi=1))|,
"'p[n,)r ( § ))]

L}

E( (-}zl('lgF(V,)] l_'( Bylz.l
Pi

P —T)(yizilogxr)

|

P;

E( a? Iogf(”i))
B~

1
+ [—;y,-z,—(l—B(y,——l)logx,)] (15)

1 2
7 (yizilog x;)
P..

i

1 2
& — [ _yl'zl(yi B l)(‘og I'—)h] d
Pi

% log(1-F(v,)) L Byz)
B\ 22 g *ﬁ]
n q, L

%{Eyl'zl(l 718(.‘}1 ]))]’

L’
ﬁzlog(l—F(v,))) l( By,z.)
E =——|———|(y;z;log x;
( 37?(),8 q; n (y ¢ )
1 1
—_—[——y,-’.(l—ﬁ(}‘.—l)lt’sl;)]v
[ m
a*log(1—F(w,)) 1 2
E( c;ﬁl ):_q_iz(yfzrlogxl)
1 2
—qf[—y.Z.(y.-l)(log-r.)'] (16)
a* log f(V}) 1 v a7 logf(v)
E(__u—ﬂﬁl V. <y :Ef_rTf(l‘)d"-
,jll V. 1 v (:l )
E( ST e [ B
dndn Pit = andp
(17)
a2 log f(V)) L v % logf(v)
E(T V.<uy =Ef_wa—nzf(”)d"-
alog f(v) _B(-(1+B)y)
r7'r]2 le '
a*log f(v) —1+y(1+Blogx,)
miB 7 S
d*log f(v)

{;BI _F“}’,(logx,)” L]
where x, = v,/m, y, = xF, z;=exp(— y,), and p, = F(v,)=
1=4,.
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Figure 1. Asymptotic unit error, e(n), in the new and conventional
step-up method. Thick line, %, s.t. v, = p; Thin line, 3, s.t. (3, +
vY2=p.
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Figure 2. Asymptotic unit error, e( 8), in the new and conventional
step-up method. Thick line, ], s.t. v, = ; Thin line, Ao (v 4+

v)/2=p

Here, we define the asymptotic unit errors, e(n) and

e( B) as
e(n)=pB-s(n)/m,e(B)=s(B)/B (19)

These errors are not affected much even if B varies.
Figures 1 and 2 show e(y) and e( B) against d/o when
m =1 for both the conventional and new step-up meth-
ods; the solid line expresses the case when some level v,
is equal to u, and the dotted line expresses the case when
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p s located in the middle of v,_, and v, These figures
suggest the following.

(1) The asymptotic unit error in the new step-up
method, ¢,(7n), becomes smaller than that in the conven-
tional step-up method, e (n).

(2) The optimal test for e (n) can be realized around
d/o = 1.0, but that for ¢, (n) can be realized for larger
d/o.

(3) The asymptotic unit error in the new step-up
method, e,( B), becomes considerably smaller than that in
the conventional step-up method, e ( ). For example, the
difference between ¢, ( 8)=0.6724 and e )= 0.9358
means that the samples in the conventional step-up
method requires samples about twice as large as in the
new step-up method to obtain the equivalent confidence
mterval, when B =12, some level »; is equal to p, and
d/o =1.0.

(4) The optimal test for ¢,( B) does not depend on d/o,
while the optimal test for ¢ ( 8) can be realized at smaller
d/o.

(5) The asymptotic unit errors, ¢,(n), ¢,( B), e(n), and
e ( B) do not depend on the starting point x,, when d/o
<1.0.

In short, the new step-up method markedly improves
the reliability of the estimates of % and B compared to
the conventional step-up method. The larger the d/o, the
smaller the asymptotic unit errors as long as d/o < 2.0.
For the estimate of B, about a half of the sample size in
the new step-up method is sufficient for obtaining the
equivalent reliability to the conventional method. This is
the result for the case of m =1, but this tendency is also
true for m > 1.

5 MONTE CARLO SIMULATION

A Monte Carlo simulation study is done in order to in-
vestigate the asymptotic properties of the estimates for the
conventional and new step-up methods. The simulation
conditions are as follows:

(1) The very first stress step, x,, is set to around the
point that satisfies F(x,)=10"7, and some stress level is
set just to m=p; because the errors are not affected by
the starting point as long as d/o <1.

(2) The number of samples, n, is 100, 50, 20, 10.

(3) The step-up distance to o, d/o, is 0.1, 02, 0.5, 1.0.

(4) The parameter values are =1 and 8 = 6,8,12,25,40.

(5) The number of repetition times of strikes at the same
stage is m = 1.

(6) The number of trial times is 1000.

Here, we define the biases and standardized unit errors
as

B 1 M ' 5 B
a=(H{‘,9‘), bias(6) =0 — 8 (20)

=1
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| (. S 2
— Y (6-18Y ,
ME( )

nSs(B)
B

where, M denotes the number of successful estimation
cases. Table 1 and 2 show the bias(6) and sue() for the
estimates %) and B when B =12. Comparing the unit
asymptotic errors in Figures 1 and 2 with the simulation
results, mean and standardized error in the simulation
agree well with the asymptotic values as long as n is larger
than 20. It can be seen that the cases in which we cannot
obtain the estimates (not numerically, but mathematically)
are not rare in the conventional step-up method when n
is small such as n <10. When d/o = 1.0 and n= 10 in the
conventional step-up test, sue(n) differs far from e(xn)
due to very little information at w— o or p—2o; this
lack of information can be compensated for by using the
explicit breakdown voltage values in the new step-up
method, and thereby sue(n) is approximately the same as
e(n).

To reduce the bias(f) and sue(f) when n is small,
the bootstrap method (Efron [5]) may be applicable. Table
3 shows the bootstrapped results for the bias(A) and
sue(6) when n=10 and d/o = 1.0. The number of draw-
ings in the bootstrap procedure is set to 100 to each esti-

(21)

. VnBS(#)
sue(n) = —“n—

 sue( é) =

mate. The bootstrap procedure is as follows: To cach esti-

mate 6, we obtain 6, , (j=1, ..., B), using the random
variables generated from F(v;7, ;). If we define

1L & w
Bi* = E E 6.‘.[ (22)
j=1
then, the bias reduced estimate 6,  is computed by
6, =26, — 0 (23)
The bootstrapped sue(@) is computed by substituting 0
to € in (21). The bootstrap method works well.
The properties described above are also true when =
6, 8, 25, 45.

6 DISCUSSION

6.1 THREE PARAMETER WEIBULL
MODEL '

Hirose [4] treats the three-parameter Weibull model
which includes the location parameter, y, and he con-
cludes "that the three-parameter case cannot be used in
general because of the substantial estimation errors. If we
define the asymptotic unit errors for the three-parameter
model as,

e(n)=s(m)/(nB),e( B)=s(B)/B>
e(y)=s(y)/(mB), (24)

Table 2. Bias () and sue(8) of the estimates in the new step-up method.

d/o n M bias (7)) sue(n) bias( B) sue( B)
0.1 g 1.89451 0.64887
0.1 100 1000 —0.00108 1.88359 0.08180 0.66970
0.1 50 1000 —0.00131 1.84142 0.16056 0.63958
0.1 20 1000 —0.00481 1.89206 0.51491 0.71882
0.1 10 1000 —0.01263 1.89336 1.10730 0.80784
0.2 ® 1.57761 0.65199
0.2 100 1000 —0.00142 1.57974 0.10897 0.68525
0.2 50 1000 —0.00304 1.58756 0.28375 0.70040
0.2 20 1000 —0.00620 1.62220 0.65963 0.76104
0.2. 10 1000 —-0.01067 1.64503 1.28692 0.89442
0.5 © 1.24063 0.66040
0.5 100 1000 —0.00048 1.25926 0.11384 0.66092
0.5 50 1000 —0.00125 1.25380 0.15058 0.69824
0.5 20 1000 —0.00319 1.24325 0.52642 0.75465
0.5 10 1000 —0.00928 1.27175 1.12535 0.81002
1.0 o 1.07840 0.67237
1.0 100 1000 0.00017 1.09685 0.10127 0.65522
1.0 50 1000 —0.00125 1.10419 0.24846 0.71033
1.0 20 1000 —0.00282 1.08290 0.64356 0.77980
1.0 10 1000 —0.00536 1.14768 1.38034 0.96501
3j, sty = p, M: number of estimates successfully computed.
Table 3. Bias (6) and sue(6) of the bootstrapped estimates in the new step-up Method.
dfor n M bias (7)) sue(d) bias( #) sue( )
0.1 10 1000 0.00135 2.03216 —0.29660 0.704733
0.2 10 1000 —0.00143 1.69528 —0.18206 0.709945
0.5 10 1000 —0.00090 1.30094 —0.00705 0.747083
1.0 10 1000 0.00110 1.12561 —0.23508 0.747230

aj, s.t. v, = w, M: number of estimates successfully computed.
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these errors are not affected much when B varies in the
conventional step-up test. As for the numerical example,
e( B)=0.8 when S =8, which means that more than 4000
samples are needed if we require the 10% standard error
for B ([4)). This tendency is considered to be true in the
new step-up test method. Thus, we do not go deeply into
the three-parameter case in this paper.

6.2 IN THE CASE OF FIXED LOCATION
PARAMETER

This paper deals with the case that y = 0, which is often
discussed in fitting the probability distribution model to
the data obtained from increasing voltage tests. If cv is
located in 0.03 < cv < 0.20, the shape parameter varies 6
< B < 40 as stated above. However, if we know the strictly
positive location value a priori, the value of 8 may vary
even when 0.03 < cv < 0.20. However, the reliability of the
estimate in such a case can be guessed in general by using
the results obtained by this paper and [3] in which the
case of shape parameter of around 3.4 is dealt with.

7 CONCLUDING REMARKS

O estimate the impulse breakdown voltages accur-

ately for non-self-restoring electrical insulation, the
new step-up test method is recommended when the un-
derlying probability distribution is assumed to be a Weibull
model. This paper first recommends the use of the param-
eters of the underlying probability distribution, e.g., the
scale and shape parameters. Second, it is advantageous to
use the new step-up method if the observed breakdown
voltage itself rather than the two-valued information of
breakdown and non-breakdown is available. Using the new
step-up method, the number of test specimens can be sub-
stantially reduced comparing to that in the conventional
step-up method for the estimate of shape parameter. The
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optimal test procedure is obtained with larger d/o. When
sample size is small, the bootstrap method reduces the
bias of the estimate, particularly for the shape parameter.
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