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ABSTRACT

The step-up method is used to estimate the impulse breakdown voltages when the
electrical insulation is not usable after it is broken. This paper analyses the relia-
bility of the estimates of the underlying breakdown probability distribution in the
step-up method, when (1) the observed breakdown voltage itself is available and (2)
it is not available. The former case has many advantages compared to the latter
case such that (i) the confidence intervals of the estimates become smaller and (ii)
the estimates can be obtained with higher probability. Consequently, this paper
recommends using the estimates of the underlying distribution for the breakdown
voltages instead of the nominal breakdown voltages. Some illustrative examples are
given.

Index Terms — Impulse breakdown voltage, nominal breakdown voltage, step-

up test method, optimal test, electrical insulation, normal distribution.

1 INTRODUCTION

N impulse voltage tests, various test methods are used

according to the purpose of the test; (1) withstand test,
(2) 50% flashover test, (3) impulse test by increasing volt-
age and (4) V-t (voltage-time) test are among them. To
estimate the impulse breakdown voltage (or impulse
flashover voltage) for electrical insulation, which has a
self-restoring property such as air and SF; gas, multiple-
level tests and the up-and-down test methods are used
[1-3]. If the insulation does not have a self-restoring
property, e.g., the insulation will not be able to be used
when it is broken, such as epoxy resin, impulse test by
increasing voltage is used; we call this the step-up method
[4] in this paper.

The up-and-down test method is as follows: (1) the ini-
tial voltage is set around the mean breakdown voltage
level, say v,, and (2) if the insulation is not broken at
stress level vy, then the stress level will be set to a higher
level, v, = v, + d, otherwise the stress level will be set to a
lower level, v_,=wv,—d, and this up-and-down proce-
dure continues for prescribed number of times. If the im-
pulse breakdown voltage follows a normal distribution with
mean p and standard deviation o, (N( u,o)), Dixon and
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Mood [1] recommend to test under the condition that d is
set to around o and the number of up-and-down repeti-
tion times is larger than 40,

The step-up test method is as follows: (1) the initial
voltage is set to a sufficiently low stress level (e.g., v,)
where the insulation will hardly be broken, and (2) the
stress level will be set to a higher level, v, = vy +d if the
insulation is not broken at stress level v, in m times im-
pulse tests, this procedure continues until the insulation is
finally broken. If the impulse breakdown voltage follows
N( p,o), Hirose [4] recommends testing under the condi-
tion that (1) d is set to around o, (2) m=1, and (3) the
number of test specimens is larger than 20.

Both test methods explained above use only the infor-
mation that the breakdown occurred (indicator is 1) or did
not (indicator is () at stress level v;. Hirose and Kato [5]
recently proposed the new up-and-down method in which
the observed breakdown voltage itself is incorporated into
the estimation procedure because of recent improvements
of high speed voltage measuring instruments; Komori and
Hirose [6] showed an easy parameter estimation method
for the test. Using the proposed method, the estimated
error of @ is shown to be dramatically improved. In addi-
tion, we do not need to take care of the optimal value of
d unlike the conventional up-and-down method. When the
insulation does not have a self-restoring property, incor-
porating the observed breakdown voltage values into the
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estimation procedure in the step-up method may reduce
the estimated errors of the estimates similarly to the new
up-and-down method.

This paper proposes a new method to estimate the
breakdown voltages more accurately in the step-up method
not only using the information of breakdown occurrence
at a given stress level, but also using the observed break-
down voltage values themselves. The breakdown voltage
is, here, assumed to follow a normal distribution N( w0 ).
The proposed method is, here, referred to as the new
step-up method.

2 NOMINAL BREAKDOWN VOLTAGE

Suppose that an impulse voltage with peak value v is
applied to the insulation. We can assume that the insula-
tion will be broken if the random variable V' of the failure
of the insulation is smaller than v. That is, the breakdown
probability p by a single impulse strike is denoted by P(V
< v). By the assumption of the normal distribution for the
underlying distribution

E;ﬁl%&

1
exp{ —
V2o 202

p=P(Vsu):F(n):jw

(1)

The impulse breakdown test by the step-up method
starts at a very low stress level v, and continues until the
insulation is broken at some stress level v, = v, + id. If
each test piece is numbered as 1,2....,n, we obtain n sam-
pled values of v,(k), (k=1,...n).

Some electrical engineers use the mean and standard
deviation of v,(k) as the impulse breakdown voltage in-
dex. It can, however, casily be seen that the frequency
distribution of p,(k) depends on d; e.g., the smaller the d,
the smaller the distribution of v,(k). Figure 1 shows the
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Figure 1. Histogram of nominal breakdown voltage by the step-up
method.

Table 1. Simulated breakdown voltages by step-up method.

test piece number  final breakdown stress

final setup stress

1 2184 2650
2 2267 2600
3 2343 2950
4 2363 2600
5 2253 2400
6 2020 2950
7 2371 2450
8 1621 1900
9 2228 2600
10 1428 1450
11 2328 2350
12 2244 2350
13 2614 2700
14 2099 2100
15 2460 2550

The first stress is 500, and the step-up distance is 50,

histograms of v/(k) with d =0.100 —1.0¢ when the un-
derlying distribution is N( g, ). For instance, if we draw
random variables from N(3000,500) and simulate a step-up
test as shown in Table 1 (the step-up distance is 50), the
nominal mean and the standard deviation of the break-
down voltage are obtained to be 2440 and 390, respec-
tively. These values are apparently smaller than the pa-
rameter values of 3000 and 500, and this corresponds to
Figure 1. Thus, the use of the nominal estimates obtained
directly by v,(k) is not recommended (when the step-up
test is done) as the breakdown voltage index. Even if the
breakdown test is done by the new step-up method, this
tendency remains unchanged.

3 ESTIMATION METHOD

Suppose that the breakdown voltage test is done by the
conventional step-up method. Then, the likelihood func-
tion for the test sequence is denoted as

n
IF¥= 11, (2)
k=1
and
W i(k)—1 -
If = F(o){1= F(vi))™ ﬂu (1-F(v))", 3)
i
where m(k) denotes the number of strikes until the insu-
lation is broken at the final stage i(k) for sample k. The
expression /f can be considered as the probability of an
extended geometric distribution that the insulation is first
broken at stress level v,
Suppose that the breakdown voltage test is done by the
new step-up method. Then, the likelihood function for the
test sequence is denoted as

Li= T, (4)
k=1
where

Wk)—1
m

I = (Vi) (1= Fo)}™ " T1 {1=F(1)})", (5)

j=0

g
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and

1 V— )t
V)= @Uexp{*%}. ©)

The random variable V,,, is obtained under the condi-
tion that V., < v,

The estimates, i and ¢ for the conventional step-up
method, can be obtained by solving the log-likelihood
equations

dlog LT fop =0, dlogL:/do =0. (7)

Some iterative methods, e.g., the Newton method, can
be used to obtain the estimates of the parameters. Their
confidence intervals are computed using the observed
Fisher information matrix. However, (7) may not have so-
lutions in a mathematical sense when B-level <2, Here,
B-level is defined as the number of stress levels such that
breakdowns and no-breakdowns are mixed at the same
stress level.

For the new step-up method, the solution can be ob-
tained by solving the log-likelihood equations

dlogLY/agu =0, alogL /oo =0. (8)

It should be noted that (8) has the solutions with proba-
bility 1, unlike the log-likelihood equations in the conven-
tional step-up method. This is one of the beneficial prop-
erties in the new step-up test procedure.

3.1 EXAMPLE 1

Suppose that the breakdown voltages are obtained as
shown in Table 1. The starting stress level is 500, the step-
up stress is 50, and m = 1. Thus, test piece 1 is broken
after 44(={(2650—500)/50}+ 1) impulse strikes. We as-
sume that the breakdown voltage follows a normal distri-
bution N(3000,500).

The maximum likelihood estimates for the conventional

step-up method are such that ft=3244 and ¢ = 630. The

approximate 95% confidence intervals for i and & using
the observed Fisher information matrix are 2791 < p <
3698 and 354 < o < 906. In the case of the new step-up
method, the maximum likelihood estimates are &= 3090
and ¢ = 524 and their approximate 95% confidence inter-
vals are 2790 < pu <3390 and 353 < o <695. The confi-
dence intervals for the estimates in the new step-up
method seem to be smaller than those in the conventional
step-up method. This tendency is generally true as will be
shown in the next section. This is the sccond beneficial
property in the new step-up method.

4 OPTIMAL TEST PROCEDURE

We first define the asymptotic unit errors el p) and e(o)
by the square root of each diagonal element of the inverse

Vol. 10, No. 3; June 2003 477
matrix of I, where

d”log L a*log L
A dadu
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2

dpda da -

If the insulation is not broken at level i, the expectation
of surviving at level i for 1 test piece is

i
=0

E(w,°)=}l:l {]¥F(u})]m. (10)

If the insulation is broken at level i, the expectation of
failure at level i for 1 test piece is
i-1

E(w!)=F(v){1—-F(v)}""" _]‘[0{1 - F(up)”. (11)
-3

Therefore, each element of 1 for the conventional step-
up test is expressed as

E( 6210gLF) B }:E(w,“)E( 3log(1- F(v,)) )

36,30, 36,30,
d*logF(v,)
+ Y E(wWE| ————]. (12
);‘ () ( 30,00, (12)
and that for the new step-up test is expressed as
d*log L/ a%log(1— F(v
0,90, ; 30,30,
d*log f(V)
+ Y E(W)E| —————V;<vy,|, (13
‘L:a (wr) ( !99“56,., i by ( )

where 6, or 6, denotes p or o. More specifically

2 @*log(1—-F(v,)) 1 [ =xz7  (x}—2x;)z
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3 show el p) and e( o) against d/o when

m = 1; the thick line expresses the case when some level v,
is equal to w, and the thin line expresses the case when p
is located in the middle of v; , and v;. These figures sug-

gest the following.

(1) The asymptotic unit error e, (o) in the new step-up
method becomes smaller than e (u) in the conventional

step-up method.

(2) The optimal test for e(o) can be realized around

0.5 <d/fo <1.0.

(3) The asymptotic unit error e, (o) in the new step-up
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Figure 3. e,( 1), e,(o) against d/gr in the new step-up method.
Thick line, f s.t. v; = p; Thin line, 7 s.t. (v, +0;)/2 = p.

means that the samples in the conventional step-up
method requires samples about twice as large as in the
new step-up method to obtain the equivalent confidence
interval.

(4) The optimal test for ¢,(¢ ) does not depend on d/o,
while the optimal test for e (o) can be realized at smaller
djo.

In short, the new step-up method markedly improves
the reliability of the estimates of p and o compared to
the conventional step-up method. It is desirable to set d/o
such that 0.5 <d/o < 1.0 to obtain the smaller errors of
the estimates. For the estimate of o, about a half of the
sample size in the new step-up method is sufficient for
obtaining the equivalent reliability to the conventional
method. This is the result for the case of m = 1, but this
tendency is also true for m > 1.

5 MONTE CARLO SIMULATION

A Monte Carlo simulation study is done in order to in-
vestigate the asymptotic properties of the estimates for the
conventional and new step-up methods. The simulation
conditions are as follows:

(1) The very first stress step is set to around pu—60,
and some stress level is set just to (a) p= v, and (b) p=
(v;-+v,)/2.

(2) The number of samples, n, is 100, 50, 20, 10.

(3) The step-up distance to o, d/o, is 0.1, 0.2, 0.5, 1.0.

(4) The parameter values are p=0and o = 1.

(5) The number of repetition times of strikes at the same
stage is m=1.

(6) The number of trial times is 1000.

Figures 4 and 5 show the scatter plots of the estimates

method becomes considerably smaller than e (o) in the
conventional step-up method. For example, the difference
between e,(o)=0.6586 and ¢ (o)=09619 at d/o =1.0

it and & for the conventional and new step-up methods,
respectively, when n =100, d/o =1, p=v; for some J.
We can see the reduction of the confidence region of the




IEEE Transactions on Dielectrics and Electrical Insulation

04 T T~ T
03 | .
02 + & E
°,° - :°
0.1 s .
. o & cho
o o °
o I B K L b
o & ® .::;’ of
° o
i o °‘ :8 2 < [
o ° e
0.2 | o, - -
o
03 | -
04 L 1 1
06 08 1.0 12 14
g

Figure 4. Scatter plot of estimates in the conventional step-up
method.
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Figure 5. Scatter plot of estimates in the new step-up method.

new step-up method compared to that of the conventional
one. In addition, a correlation between i and & is ob-
served to be much stronger in the new step-up method
than in the conventional step-up method. Tables 2 and 3
show the bias and Vn - RMSE of the estimates ji and &,
where RMSE denotes root mean square error. The value
Vn - RMSE corresponds to the unit asymptotic error e( p)
or e( o). Comparing the unit asymptotic errors in Figures
2 and 3, the mean and standard error in the simulation
correspond to the asymptotic values.

It should be noted that the cases in which we cannot
obtain the estimates (not numerically, but mathematically)
are not rare in the conventional step-up method when n
is small such as n < 10. In the tables, M denotes the num-
ber of successfully computed estimates. This is one of the
reasons we recommend the use of the new step-up method.
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Table 2. Bias and Y - RMSE of the estimates in the conventional
step-up method.

{a),u=uJ

dfe n M biastu) Vi -RMSE(u) bias(o) Vn - RMSE(o)
01 w 1.33883 0.85820
0.1 100 1000 —0.01565 131505  —0.01033  0.83696
0.1 S50 1000 —0.02535 135425  —0.01754  0.86715
0.1 20 1000 —0.06068 132464  —0.04674  0.86408
0.1 10 999 —0.09605 140147  —007132  0.92080
02 o 1.16763 0.87334
0.2 100 1000 —0.00541  1.19667  —0.00452  0.90923
0.2 50 1000 —0.00972  1.14082  —0.00750  0.86883
02 20 1000 —0.06702 117483  —0.05297  0.88114
0.2 10 1000 —0.09592 1.18525 — 0.08995 0.90371
0.5 o 0.99371 0.90737
0.5 100 1000 —0.00311 099546  —0.00580  0.92966
0.5 50 1000 —0.00547 096530  —0.01449  0.91845
05 20 1000 —0.03734 098349  —0.05845  0.89573
05 10 998 —005822 096757  —008851  0.92603
10 = 0.96975 0.96190
1.0 100 1000 —0.00888 097953  —0.00974 095370
1.0 50 1000 —0.01172 0.98726 —0.02458 0.97271
1.0 20 997 -0.02043 0.97285 —0.04165 1.00539
1.0 10 934 —0.02356 097229  —0.05966

1.21542

) p=(v,_, + 02

dfe n M bias( ) i -RMSE( ) bias(e) v -RMSE(¢)
01 = 133883 0.85820
0.1 100 1000 —0.01068 1.38688 —0.00822 0.87317
0.1 50 1000 —0.02565 132665 —0.01832 085871
0.1 20 1000 —0.05886 132150  —0.04839  0.87245
0.1 10 1000 —0.1211 131681  —007708  0.86031
02 o 1.16763 0.87334
0.2 100 1000 —0.00126 1.16286 —-0.00272 0.86909
0.2 50 1000 —0.02148 1.16130 —0.01592 0.87124
02 20 1000 —0.04787 112645  —003977  0.84833
02 10 1000 —0.08908  1.13111  —008386  0.90046
05 o 0.99371 0.90737
0.5 100 1000 —0.00128 0.97771 —0.00611 0.90194
05 S0 1000 —0.00706 097784  —001595  0.91662
05 20 1000 —0.02518 092641  —005540  0.87286
05 10 994 006459 099400  -008936  0.95084
10 = 0.96985 0.96225
1.0 100 1000 —0.00498  1.00257  —0.01004 098712
1.0 50 1000 —0.01005 099450  —0.02239  0.96821
10 20 997 —002182 097482  —0.04150 099532
10 10 926 —001451 094294  —007614  1.26010

M: number of estimates successfully computed.

6 DISCUSSION

6.1 WEIBULL UNDERLYING
PROBABILITY DISTRIBUTION

In fitting the probability distribution model to the data
obtained from increasing voltage tests, the Weibull model
is often applied. It would, thus, be natural to assume a
Weibull distribution for the breakdown voltage probability
distribution. However, the results obtained in this paper
will also be useful in some Weibull models, since the
Weibull distribution in which the shape parameter is set
to around 3.4 can be approximated to a normal distribu-
tion. 1 will continue the research for the optimal test
method in the case of the Weibull distribution in the fu-
ture.
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Table 3. Bias and ‘ﬂ: *RMSE of the estimates in the new step-up
method.

(@) =,
dic n M Dbias(u) n -RMSE(u) bias(o) i -RMSE(o)
01 o 1.11440 0.63546
0.1 100 1000 —0.00963 1.08275  —0.00511 0.61369
0.1 50 1000 —0.01643 L10707  —0.00972 0.62618
0.1 20 1000 —0.03647 111234 —0.02567 0.64478
0.1 10 999 —0.06839 118494 —0.04311 0.68755
02 = 1.01717 0.64114
0.2 100 1000 —0.00670 101013 —0.00494 0.65019
0.2 50 1000 —0.01044 0.99752  —0.00596 0.64280
0.2 20 1000 —0.05309 1.02456  —0.03327 0.64341
0.2 10 1000 —0.06653 102672 —0.05054 0.65316
05 = 0.92269 0.65030
0.5 100 1000 —0.00531 0.91557  —0.00665 0.66281
0.5 50 1000 —0.03231 092322  —0.03398 0.63499
0.5 20 1000 —0.03231 092322  —0.03398 0.63499
0.5 10 998 —0.05540 0.91112  —0.06020 0.65536
1.0 = 0.89007 0.65857
1.0 100 1000 —0.00838 0.89254  —0.00606 0.67670
1.0 50 1000 —0.01235 0.88715  —0.01421 0.64960
L0 20 997 —0.02139 0.91663  —0.02264 0.67348
1.0 10 934 —0.03615 0.89258  —0.05351 0.67783

by p=(v;,_, + u;)/2

d/e n M biasCu) n -RMSE(u) bias(e) vn - RMSE(o)
01 = 1.10144 0.61693
0.1 100 1000 —0.00783 113302 —0.00535 0.63344
0.1 50 1000 —0.01647 112203 —0.01031 0.64193
0.1 20 1000 —0.05886  —0.03365 109740 —0.02638
0.1 10 1000 —0.1211  —0.09275 112715 —0.05077
02 o 1.01277 0.61210
0.2 100 1000 —0.00216 099116  —0.00270 0.62303
0.2 50 1000 —0.02148 —0.01606 1.01032 —0.00827
0.2 20 1000 —0.04787  —0.03792 LOLI08  —0.02440
02 10 1000 —0.08908  —0.06174 0.98009  —0.04642
05 0.95738 0.60375
0.5 100 1000 —0.00305 091099  —0.00529 0.90194
0.5 50 1000 —0.00706  —0.00563 090486 —0.00850
0.5 20 1000 —0.02518 —0.01991 0.87475 —-0.03076
0.5 10 994 —0.06459  —0.06115 093542 —0.05844
1.0 o 0.98486 0.59879
1.0 100 1000 —0.00673 091309 -~ 0.00504 0.98712
1.0 50 1000 —0.01005  —0.01158 089719 —0.01170
L0 20 997 —0.02182  —0.02360 0.88801  —0.02532
L0 10 926 —0.01451  —0.04143 091529 —0.06435

M: number of estimates successfully computed.

6.2 MATHEMATICAL AND PHYSICAL
MODELS

This paper considers an impulse breakdown voltage es-
timation method from a mathematical point of view. The
physical impulse waveform is not taken into account of,
i.e., the impulse waveform is assumed to simply be a rect-
angular form (see Figure 6a). In actual tests, a time to
reach the peak value (¢, in Figure 6b), e.g., 1.2 u sec,
is required. It is known that the breakdown voltages de-
pend on the tangent of the wave rise even if ., is the
same, Le., the steeper the tangent, the higher the break-
down voltage. This phenomenon is known to as the V-t
curve (dashed curve in Figure 6b). The V-t curve consists
of the points of (V},t,) where V, =1/, in Figure 6b if the

V2(=V0+i2d)

Vl (=v0+i|d)
$V,,v2

) t

(a) Mathematical wave form

*V2(=Vo+i2d)

(b) Physical wave form

Figure 6. Physical and mathematical impulse voltage breakdown
wave forms. a, mathematical wave form; b, physical wave form.

breakdown occurs at the wave head, ie., T} <t,,,, and
V, « v, if the breakdown occurs at the wave tail, ie., T}
> Itp\*:ak'

We assume in this paper that p and o are independent
of impulse voltage value in the mathematical model, but
actually they depend on it. Because of this, the estimated
it (50% impulse breakdown voltage) in the mathematical
model is smaller than actual u(v) in the physical model;
i, therefore, can be used in a safety side, since j be-
comes conservative.

6.3 BATCH PURITY AND
STANDARDIZATION FOR INSULATION
SAMPLES

Since the test samples cannot be made exactly the same
size, the breakdown voltage itself cannot be used as 2
standard index. Instead, the breakdown strength of each
sample can be used for standardization. The electric field
of the insulation in each sample is computed in advance,
and is taken into account in the estimation procedure.
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6.4 INSTRUMENTATION ERROR
EFFECTS

Even if the impulse system is set to give the same wave-
form, we cannot avoid the fluctuation of the waveform
caused by the test instrument system; peak value v varies
each time. However, recent improvements of thie high-
speed voltage-measuring instrument enable us to provide
the exact peak value v when no breakdown occurs, and
the maximum likelihood method enables us to utilize these
exact values in the estimation procedure; we only have to
change v; in equations (3) and (5) to v, ; which depends
on test samples and test times.

6.5 EXAMPLE2

To understand the actual estimation procedure more
precisely, we provide a second example. The testing mate-
rial is a solid insulation. The final impulse voltage v,, cor-
responding strength u,, and breakdown voltage V, (k=
1,....,1.5) are shown in Table 4. The thickness of each insu-
lation is calculated by d, =uv,/u,. For example, d,=
0.0869 for test sample 1. The very first impulse voltage is
vy =45 and the step-up voltage is 1.5; the impulses ap-
plied three times at each stage (m = 3). The insulation is
broken by the first impulse at the final stage v, 4 =139.5
with V| 3 =138.9; then, u, ;; =1647.28 and U, ¢; = 1637.84.
We denote U, as the breakdown strength. Therefore, the
impulses are applied 190 times by the stcp-up method
(190 =633 +1). In this example, we did not use each
observed v, .

In Table 4, there are samples that have the same values
of impulse and breakdown voltages; these samples are
broken at wave tail or peak (we say group TP), while oth-
ers at wave head (we say group H); see Figure 6b and the
reference [7]).

If we regard all the data of group TP as the wave tail
broken data, the corresponding likelihood part for these
data may be treated as a case of incomplete data as is

Table 4. Actual step-up test data,
test piece final impulse final impulse final breakdown Breakdown

number voltage strength voltage point
1 139.5 1647.28 138.8 head
2 135.0 172598 135.0 tail /peak
3 1275 1596.82 123.8 head
- 148.5 223424 135.1 head
5 151.5 1957.32 142.8 head
6 148.5 1878.81 142.6 head
4 150.0 1980.18 131.1 head
8 121.5 1678.08 121.5 tail /peak
9 1425 1766.56 1425 tail /peak
10 157.5 2174.88 157.5 tail /peak
11 148.5 2074.78 148.5 tail /peak
12 145.5 1963.9 145.5 tail /peak
13 160.5 2383.86 160.5 tail /peak
14 123.0 1698.78 119.2 head
15 141.0 1841.36 141.0 tail /peak

The first impulse voltage is 45, and the step-up voltage is 1.5. The im-
pulses are applied three times at each stage, and the insulation is broken
at by the first impulse at the final stage.
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described in [7] (ie., F(v,)) is used for the likelihood
function like equation (3)), unlike the likelihood part for
the wave head broken data in which they are treated as
complete data (i.e., f( Vi) is used for the likelihood func-
tion like equation (5)). It looks as if equations (3) and (5)
are mixed in the mathematical formulation. Using this es-
timation procedure, p and o are estimated to be =
2841.3 and ¢ =470.5 in breakdown strength. The nomi-
nal mean of the breakdown strength is 1906.86 from a di-
rect calculation using Table 4. If a single impulse of u=
1906.86 is applied to the insulation, then the probability
that the insulation is broken is 0.02351 which is far smaller
than 0.5, if a normal distribution is assumed as the under-
lying probability distribution function.

If we regard all the data of group TP as the wave peak
broken data, 4= 2678.0 and & =382.8 are estimated in
the breakdown strength. If a single impulse of u = 1906.86
is applied to the insulation, then the probability that the
insulation is broken is 0.02197.

7 CONCLUDING REMARKS

To estimate the impulse breakdown voltages for non-
self-restoring electrical insulation, the step-up method
has been used. Since the nominal breakdown voltages us-
ing the data of the step-up method do not express the
consistent values or invariant values of the step-up dis-
tance, this paper first recommends the use of the parame-
ters of the underlying probability distribution, e.g., mean
and standard deviation in a normal distribution. Second,
it is advantageous to use the new step-up method if the
observed breakdown voltage itself rather than the two-val-
ued information of breakdown and non-breakdown is
available. Using the new step-up method, the number of
test specimens can be reduced to half of that used in the
conventional step-up method for the estimate of o. The
optimal test procedure is to set d/o such that 0.5 <d/o
< 1.0. Third, even if there exists cases in which the esti-
mates cannot be obtained mathematically in the conven-
tional step-up method, the new step-up method has the
solutions with probability 1. Some examples are given for
easy understanding of the estimation procedure.
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