
KYUSHU INSTITUTE OF TECHNOLOGY

Mixed-precision Weights Network for

Field-programmable Gate Array

FUENGFUSIN NINNART

18899039

A thesis submitted in partial fulfillment for the

degree of Doctor of Engineering

TAMUKOH - LABORATORY

DEPARTMENT OF LIFE SCIENCE AND SYSTEMS ENGINEERING

GRADUATE SCHOOL OF LIFE SCIENCE AND SYSTEMS ENGINEERING

KYUSHU INSTITUTE OF TECHNOLOGY

September 2021, Japan

University Web Site URL Here (include http://)
fuengfusin.ninnart553@mail.kyutech.jp
Faculty Web Site URL Here (include http://)
Department Web Site URL Here (include http://)
Department Web Site URL Here (include http://)

Declaration of Authorship

I, Ninnart Fuengfusin, declare that this thesis titled, ‘Mixed Precision Weight Network

for Field-Programmable Gate Array’ and the work presented in it are my own. I confirm

that:

� This work was done wholly or mainly while in candidature for a doctoral degree at

Kyushu Institute of Technology.

� Where I have consulted the published work of others, this is always clearly at-

tributed.

� Where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

i

KYUSHU INSTITUTE OF TECHNOLOGY

Abstract

DEPARTMENT OF LIFE SCIENCE AND SYSTEMS ENGINEERING

GRADUATE SCHOOL OF LIFE SCIENCE AND SYSTEMS ENGINEERING

KYUSHU INSTITUTE OF TECHNOLOGY

Doctor of Engineering

FUENGFUSIN NINNART 18899039

In this study, I introduced a mixed-precision weights network (MPWN), which is a

quantization neural network that jointly utilizes three different weight spaces: binary

{−1, 1}, ternary {−1, 0, 1}, and 32-bit floating-point. I further developed the MPWN

from both software and hardware aspects. From the software aspect, I evaluated the

MPWN on the Fashion-MNIST, CIFAR10, and ILSVRC 2012 datasets. I systematized

the accuracy sparsity bit score, which is a linear combination of accuracy, sparsity, and

number of bits. This score allows Bayesian optimization to be used efficiently to search

for MPWN weight space combinations. From the hardware aspect, I proposed XOR

signed-bits to explore floating-point and binary weight spaces in the MPWN. XOR signed-

bits is an efficient implementation equivalent to the multiplication of floating-point and

binary weight spaces. Using the concept from XOR signed bits, I also provide a ternary

bitwise operation that is an efficient implementation equivalent to the multiplication

of floating-point and ternary weight space. To demonstrate the compatibility of the

MPWN with hardware implementation, I synthesized and implemented the MPWN

in a field-programmable gate array using high-level synthesis. My proposed MPWN

implementation utilized up to 1.68-4.89 times less hardware resources depending on the

type of resources than a conventional the 32-bit floating-point model. In addition, my

implementation reduced the latency up to 31.55 times compared to 32-bit floating-point

model without optimizations.

Keywords: Deep Learning, Quantization Neural Networks, FPGA implementation.

University Web Site URL Here (include http://)
Faculty Web Site URL Here (include http://)
Department Web Site URL Here (include http://)
Department Web Site URL Here (include http://)
fuengfusin.ninnart553@mail.kyutech.jp

iii

Fig 1. Graphical abstract of this research

iii/62

Acknowledgements

First of all, I would like to express my appreciation to my supervisor, Professor

Hakaru Tamukoh, for advising on my research and study. This dissertation can not be

done without his comprehension.

I also would like to thank outstanding members of the Tamukoh laboratory especially,

Dinda Pramanta, for encouraging and helping many things related to Japan’s life and

assisting during the hard times; Yeoh Yoeng Jye for providing knowledgeable insight in

both researches and studies. This dissertation can not be done without his verification.

Last but not least, I would like to thank my family for providing suggestions, care,

and encouragement during the hard times.

Sincerely,

Ninnart Fuengfusin.

iv

Contents

Declaration of Authorship i

Abstract ii

Acknowledgements iv

List of Figures viii

List of Tables x

1 Introduction 1

1.1 Trend of Convolutional Neural Networks 1

1.2 Problems of Convolutional Neural Network in Edge Devices 1

1.2.1 Researches on Convolutional Neural Network for Edge Devices . . 2

1.3 Why Using Field-programmable Gate Array to Implement Neural Networks? 3

1.4 Goal of this research . 4

1.5 Outline of thesis . 5

1.5.1 Chapter 1 - Introduction . 5

1.5.2 Chapter 2 - Background . 5

1.5.3 Chapter 3 - Related Works . 5

1.5.4 Chapter 4 - Mixed Precision Weight Networks 5

1.5.5 Chapter 5 - Experimental Results and Discussion 5

1.5.6 Chapter 6 - Conclusion . 6

2 Background 7

2.1 Artificial Neural Network . 7

2.2 Elements within Artificial Neural Networks 7

2.2.1 Hyper-Parameters . 7

2.2.2 Fully-connected Layer . 8

2.2.3 Convolutional Layer . 8

2.2.4 Activation function . 9

2.2.4.1 Rectified Linear Unit . 9

2.2.5 Max-pooling . 10

2.2.6 Cost or Loss Function . 11

v

Contents vi

2.2.6.1 Softmax . 11

2.2.6.2 Cross-entropy . 11

2.2.7 Optimization . 12

2.2.7.1 Gradient Descent . 12

2.2.7.2 Gradient Descent with Momentum 12

2.2.7.3 Adam Optimization . 13

2.3 Regularization . 13

2.3.1 Dropout . 13

2.3.2 Batch Normalization . 14

2.3.3 L2 Weight Decay . 15

2.4 Learning Rate Decay . 15

2.4.1 Step Down Learning Rate . 16

2.5 Feed-Forward Neural Network Models . 16

2.5.1 Multiple Layers Perceptron . 16

2.5.2 LeNet-5 . 17

2.5.3 ResNet-18 . 17

2.6 Benchmark Dataset . 17

2.6.1 Fashion-MNIST . 17

2.6.2 CIFAR-10 . 18

2.6.3 ILSVRC 2012 . 19

2.7 Image Pre-processing . 19

2.7.1 Basic Image Normalization . 19

2.7.2 Normalization with Mean and Standard Deviation of Training
Dataset . 19

2.8 Quantization Neural Networks . 20

2.9 Field-programmable Gate Array . 20

2.10 High-level Synthesis . 21

2.10.1 Directives and Hardware Design in Vivado High-level Synthesis . . 22

3 Mixed Precision Weight Network and FPGA Design 23

3.1 Mixed-precision Weights Network . 23

3.1.1 1- and 2-bit Signed Integer . 27

3.1.2 Half-precision Floating-point . 28

3.1.3 XOR Signed-bits . 28

3.1.4 Ternary Bitwise Operation . 29

3.1.5 Overview of FPGA Implementation 31

4 Related Works 33

4.1 BinaryConnect . 33

4.2 Binarized Neural Networks . 34

4.3 Ternary Weight Networks . 34

4.4 Mixed-precision Model . 35

4.5 FPGA Implementation of Quantization models 36

4.6 Novelties . 37

5 Experimental Results and Discussion 38

5.1 Software Simulation . 38

vi/62

Contents vii

5.1.1 Fashion-MNIST . 38

5.1.1.1 Bayesian Optimization 43

5.1.1.2 Effect of float and half on MPWN model 44

5.1.2 CIFAR10 . 44

5.1.3 ILSVRC 2012 . 46

5.2 FPGA Synthesis and Implementation . 46

5.2.1 XOR signed-bit and ternary bitwise operation synthesis 47

5.2.2 Hardware Synthesis . 47

5.2.3 Hardware Implementation . 50

6 Conclusion 53

6.1 Future Works . 54

Bibliography 57

vii/62

List of Figures

1 Graphical abstract of this research . iii

2.1 Rectified Linear Unit outputs the input if the input is a positive value,
otherwise it will output a zero. 10

2.2 Max pooling with size 2× 2 and stride 2. Each color represents a region
for each max pooling operation. The output of each region represents a
maximum value within the input region. 10

2.3 Five neurons connected to each other with six weight values. Left: without
dropout. Right: with dropout p = 0.7. 14

2.4 The internal covariate shift occurs when distributions of each layer activa-
tion of NN are unstable. 14

2.5 The initial rate of 1 and it stepped down to 0.1 with δ = 10 at 50 epochs 16

2.6 10 randomly selected images from Fashion-MNIST dataset 18

2.7 CIFAR-10 images with classes in the left-to-right order from airplane,
automobile, bird, cat, deer, dog, frog, horse, ship, to truck 18

2.8 A image of a FPGA board, Zynq UltraScale+ MPSoC ZCU102 Evaluation
Kit . 21

3.1 The overview of utilization of MPWN with BO. At first, BO generates a
random MPWN combination. Then, the generated combination of MPWN
is trained to acquire an ASB score. This ASB is used as feedback to BO to
update its surrogate model. After the update, BO suggests a new MPWN
combination to train. These processes can be repeated until satisfied. . . 27

3.2 XOR signed bits. The top binary row presents a binary representation of
the half data type, which represents a value of −123. The second binary
row displays a binary representation of int1, which represents −1. By
XOR only the most significant bit from both rows, the result is 123, which
is the same as the answer to the general floating-point multiplication. . . 29

3.3 Ternary bitwise operation. The top binary row presents a binary represen-
tation of the half data type, which represents a value of −123. The second
binary row displays a binary representation of int2, which represents 0.
By using XOR and AND gates, the result is −0. 30

3.4 Overview of mixed-precision weights network implementation. All param-
eters of the MPWN are stored in BRAMs. Blue blocks indicate blocks
that are optimized with directives, while green blocks indicate blocks that
are not optimized with directives. 32

viii

List of Figures ix

4.1 GUINNESS Graphical user interface. The specifications of BNN model
can be selected for an extended. GUINNESS can train BNN with the
selected specification using Chainer backend. After training, the user can
utilize these weights to deploy with HLS. 36

5.1 Box plot of test accuracy and effect of layer type in the first layer. 39

5.2 Box plot of test accuracy and effect of layer type in the last or fifth layer. 40

5.3 Box plot of sparsity and effect of layer type in the third layer. 40

5.4 Distributions of accuracy, sparsity, and normalized bit from all possible
combinations of MPWN with LeNet-5. 41

5.5 Box plots of each elements in ASB after the min-max normalization. Left:
after the min-max normalization with estimated minimum and maximum
values. Right: after the min-max normalization with actual minimum and
maximum values. 42

5.6 Bayesian optimization search with ASB score. This graph displays the
best ASB in the current iteration search. The score changes when a higher
score is found. The orange dashed line indicates the normalized ASB
score of the heuristic rule (0.7289). 43

5.7 The slice plot from optuna shows the darker the color of data point the
higher number of search BO performed. w0 indicates a first layer of the
model, while w4 indicates the last layer of the model. On x-axis, f, b, and
t are type of weight space which equivalent to F, B, and T respectively. . 44

ix/62

List of Tables

3.1 Overview of properties of each mixed-precision weights network weight
space. 24

3.2 Latency and hardware resources for multiplication of two variables with
the same data type. 28

4.1 Truth table of XNOR gate operation, where inputs are A and B and the
output is Y . 34

5.1 Comparison between different combinations the mixed-precision weights
network. ASB before denotes ASB without the min-max normalization
and ASB denotes ASB with the min-max normalization. 41

5.2 Comparison between the min-max normalization from the random search
and the estimating rules. Proposed denotes the minimum and maximum
values from the estimating rules. GPU time indicates the total training
time with the same setting as the Fashion-MNIST section using NVIDIA
GeForce GTX 1080 and Intel Xeon CPU E5-1620 v3. 42

5.3 Comparison between float and half from FTTTF model. 44

5.4 Top-5 combinations from each BO search. Iteration denotes the number
of BO searches. Note that the a, s, and b are not normalized with the
min-max normalization and Iteration starts with 0. 45

5.5 ILSVRC 2012 results with the best ASB combination from CIFAR10
section. Note that the a, s, and b are not normalized with the min-max
normalization and Iteration starts with 0. 46

5.6 Comparison of latency and hardware utilization of multiplication between
two variables with data type 1 and 2, respectively. The latency unit is
a clock cycle. The two last row represents XOR signed bit and ternary
bitwise operation, respectively. 47

5.7 Comparison between different FPGA synthesis of LeNet-5 layer by layer
in terms of latency (ms). 49

5.8 Comparison between different FPGA synthesis in terms of hardware
utilization. The number inside parentheses indicates the percentage of
hardware utilization of Zynq UltraScale+ MPSoC ZCU102. In the Total
row, some layers may not be included, such as the flatten, max-pooling,
and batch normalization layers. 49

5.9 Comparison between baseline implementation of LeNet-5, my proposed
method, and related works in term of latency. 49

x

List of Tables xi

5.10 Comparison between FPGA implementations of LeNet-5 in the term of
hardware utilization. In an improvement factor column displays pairwise
comparisons between Baseline with Proposed and Baseline directives
with Proposed directives. All improvement factors from related works
are compared with Baseline directives. 51

5.11 Comparison between implementations of LeNet-5 in terms of total on-
chip power (W). The improvement factor column displays a pairwise
comparison between Baseline with Proposed and Baseline directives
with Proposed directives. All improvement factors from related works
are compared with Baseline directives. 52

6.1 Comparison of latency and hardware utilization of addition between two
variables with data type 1 and 2, respectively. The latency unit is a clock
cycle. 54

xi/62

Chapter 1

Introduction

1.1 Trend of Convolutional Neural Networks

The convolutional neural network (CNN) has attracted attention owing to its abilities to

achieve the state-of-the-art results in various computer vision tasks: image recognition

[1], semantic segmentation [2], and object detection [3].

One of the advantages of CNN is its scalability which allows it to increase its parameters

to operate with larger and more complex data. For example, LeNet-5 [4], one of first

CNN models, was proposed with around 60,000 learnable parameters to operate on

a handwritten digit dataset, MNIST [5]. The AlexNet [1] model, the winner of the

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2012 [6], increased this

number of parameters further to 62 million. This number has increased to 144 million

(549 MB) with VGG-19 [7], which was designed for ILSVRC 2014.

1.2 Problems of Convolutional Neural Network in Edge

Devices

Although the increase in the weight parameters leads to a better performance of the CNN

model, this significantly increases the memory consumption to store weight parameters

into the device. In addition, storing or loading large models in the dynamic random

access memory (DRAM) consumes energy. In general, the information can be stored

in the DRAM. Within the DRAM, variables are encoded as bit information (either

charged or uncharged) in capacitors. This sequence of bits can be translated into

binary codes on demand. However, electric charges in capacitors are leaked constantly;

therefore, additional energy is required to maintain the DRAM state. The larger the

1

NINNART FUENGFUSIN - 18899039 2

model, the more memory access operations (e.g., read and store a variable in DRAM)

to perform. This 32-bit memory access operation to DRAM consumes 173 times more

energy comparing the 32-bit floating multiplication [8]. This indicates that applying a

large-scale CNN directly to edge devices may not be an optimal choice because the edge

device has limitations in both its energy and memory storage.

1.2.1 Researches on Convolutional Neural Network for Edge Devices

To solve these problems, various approaches have been proposed, including network prun-

ing [9], knowledge distillation [10], efficient architecture design [11, 12], and quantization

neural network (QNN) [13–15]. In this section, I will briefly discuss each approach.

The network pruning [9] was proposed to reduce the model size by zero-out weights that

have lower magnitudes than a pre-defined threshold. This causes a large proportion

between a number of zero-valued weights to all weights. This property of the distribution

biased toward zeros is called sparsity. Using this property with sparse matrix representa-

tions, i.e., compressed sparse row (CSR), coordinate list (COO), a 2-dimensional weight

array can be decomposed into smaller three one-dimensional arrays. The number of

variables in these arrays depends on the magnitude of sparsity. The higher sparsity, the

lower number of variables are stored in the memory.

The knowledge distillation [10] is to distill knowledge from a teacher model that has

a better performance compared with a student model. By feeding an input sample to

the teacher model and receive a prediction from the teacher model, the student learns

from the teachers prediction to reduce the error between its output and teachers outputs.

By learning how to imitate the teacher model, the student model performs better, and

it allows to deploy the student model that usually contains lesser parameters than the

teacher model.

The efficient architecture is to discover how to design an efficient neural network (NN)

with lesser latency, memory footprint, or multiply-accumulate operation (MAC) while

delivering high performance. For instance, SqueezeNet [11] reduces 50 times fewer

parameters to AlexNet [1] while provides same accuracy to AlexNet. SqueezeNet provides

three strategies to design its NN module. In general, this strategy is to modify its

structure by reducing or modifying the size of the filter, the number of input channels,

and size of activations.

Another research field is a quantization neural network (QNN). QNN reduces its 32-bit

into a fewer-bit representation. An immediate effect is to reduce the overall memory

footprint of the model. The conventional data type of a CNN is floating-point, which

2/62

NINNART FUENGFUSIN - 18899039 3

is not suitable for hardware implementation due to its complexity. QNN can restrict

the floating-point variables to a hardware-friendly datatype, such as the fixed-point.

However, to utilize these advantages, specialized hardware may be necessary to exploit

the specific data types as the commercial central processing unit (CPU), and graphics

processing unit (GPU) do not support fixed-point arithmetic or data types.

1.3 Why Using Field-programmable Gate Array to Imple-

ment Neural Networks?

General-purpose programming languages, i.e., C, C++, and Python, are commonly

used to construct CNNs. These programming codes are compiled or interpreted into

instruction set architectures and transfer to a CPU to perform the computation. CPU

has an advantage comparing with other computing devices (i.e., GPU) from its high clock

frequency. This indicates that sequential processing is performed faster with the CPU.

However, CPU has a disadvantage in processing data that contains rich information,

such as images or videos.

To fill CPU disadvantage, GPU has been created to process the graphical information.

With the independence between each image pixel, multi-thread parallelism can be utilized

to accelerate the visual information. However, the general-purpose programming language

cannot be directly used to control GPU. The additional modules to support the parallel

programming are necessary. To reduce overall complexity in parallel programming with

GPU and NN, many neural network frameworks, i.e., Chainer [16], PyTorch [17], and

TensorFlow [18] were created as Python wrappers of CUDA and C++ languages. This

decreases an overall development time and prototypes the NN algorithm. However, it

still contains some tradeoff in a bottleneck between the communication between the

Python wrapper, and C++ compiled binary.

One of the major problems of GPU is power consumption. The cutting-edge GPU can

consume up to 300 Watt; therefore, deploying a GPU in an edge device is problematic.

One alternative to the GPU is a field-programmable gate array (FPGA). FPGA supports

parallelism as same as GPU while provides better power efficiency than the GPU,

especially when the complexity of the pipelines grows [19]. Another advantage of an

FPGA is that it allows users to define and compute an arbitrary data type. The

disadvantage of FPGA over GPU is it requires domain knowledge of hardware to design

and utilize FPGA efficiently.

However, deploying floating-point CNN into FPGA is not optimum because the floating-

point operations consume a high amount of hardware utilization. A high amount of

3/62

NINNART FUENGFUSIN - 18899039 4

floating-point operations may cause a negative slack, or the FPGA design can not achieve

a targeted operating frequency. To utilize parallelism while able to maintains lower power

consumption and hardware resources, this research focuses on implementing QNN into

FPGA.

1.4 Goal of this research

To deploy QNN into FPGA is a suitable choice because QNN provides lower latency and

consumes fewer hardware resources. However, with lower precision, QNN comes with a

quantization error. The higher the quantization error, the lower the performance of QNN

becomes. To handle this QNN performance problem, I propose a mixed-precision weights

network (MPWN). The MPWN is designed to deliver a model with a performance close

to a conventional 32-bit floating-point model while maintaining a low-bit width and

properties of QNN. The MPWN is a QNN that consists of three different weight spaces:

binary {−1, 1}, ternary {−1, 0, 1}, and, 16-bit floating-point. With three possible weight

spaces per weight layer, the search range increases exponentially when the number of

layers increases. Each search is expensive, as it requires both time and resources to train

the model from scratch. Therefore, finding an optimal combination by random searching

may not be effective. In this work, I propose an accuracy sparsity bit (ASB) metric,

which quantifies the quality of the MPWN model in terms of three desired properties:

accuracy, sparsity, and a number of bit. Defining a scalar score enables searches with

Bayesian optimization (BO).

In this study, I utilized Xilinx Vivado HLS (VHLS) [20] for both hardware synthesis and

implementation. I demonstrated that by exploiting the weight spaces of the MPWN, the

hardware utilization of multiplication could be replaced with XOR-signed bits (XSB)

and ternary bitwise operation (TBO) [21]. XSB is a VHLS algorithm for XOR between

signed bits of operands. TBO is an XSB with an additional ability to detect a zero. If

TBO detects the zero, it will zero-out the output. I demonstrate that XSB, TBO, and

a specific data type can be used to significantly reduce overall latency and hardware

resources compared with directly implement a floating-point model.

The main contributions of this study are as follows:

• I evaluated the MPWN on the Fashion-MNIST [22], CIFAR10 [23] and ILSVRC

2012 [24] datasets.

• I provided an insightful analysis of MPWN weight spaces and heuristic rules with

grid search for all possible combinations of the MPWN.

4/62

NINNART FUENGFUSIN - 18899039 5

• I proposed the ASB score, which makes it possible to systematically search for the

optimal combination of the MPWN with BO.

• I designed XSB, a replacement for multiplication between floating-point and binary

values 1,−1 for VHLS implementation.

• I synthesized and implemented the MPWN in an FPGA and demonstrated its

effectiveness in terms of both latency and area.

1.5 Outline of thesis

This thesis consists of six chapters as follows: introduction, background, related works,

experimental results and discussion, and conclusion. Each chapter is detailed in the

below sections.

1.5.1 Chapter 1 - Introduction

The introduction section covers the trend of CNN, problems to deploy CNN to edge

devices, and the goals of this research.

1.5.2 Chapter 2 - Background

The background section covers fundamental elements of NN, CNN, and FPGA, which

will be applied in the experimental results and discussion section.

1.5.3 Chapter 3 - Related Works

The related works section discusses various QNNs and FPGA implementation of QNNs.

1.5.4 Chapter 4 - Mixed Precision Weight Networks

This section covers concepts of the proposed method, MPWN, in both software and

hardware directions.

1.5.5 Chapter 5 - Experimental Results and Discussion

The experimental settings and results are described in this section.

5/62

NINNART FUENGFUSIN - 18899039 6

1.5.6 Chapter 6 - Conclusion

This section covers the conclusion of this research.

6/62

Chapter 2

Background

2.1 Artificial Neural Network

Artificial Neural Network is a mathematical model created to imitate a biological neural

network. One of early the NN model can be traced back to 1958 when Perceptron was

published [25]. In general, NN consists of neurons. Each neuron connects to other neurons

through edges called weights. The weight determines the strength of the connection

between neurons. The neurons can receive an input signal and produces the corresponding

outputs to other neurons. The output of neurons can be calculated using a summation

of the input signal weighted with the weights. Then, these outputs are required to pass

through a non-linear activation function.

2.2 Elements within Artificial Neural Networks

This section will cover essential elements within the modern NN, especially in an image

classification task.

2.2.1 Hyper-Parameters

To train a NN, there are parameters to be considered to control the behavior of the

learning algorithm [26], for instance, learning rates, weight decay, etc. The optimal

values of hyper-parameters may be diverse across models and datasets. These parameters

are known as hyper-parameters. To discover hyper-parameters can be done via using

searching algorithms, such as Bayesian optimization.

7

NINNART FUENGFUSIN - 18899039 8

2.2.2 Fully-connected Layer

The fully-connected layer is one of the weight layers in NN that connects an input element

to all of its weight parameters. The operation of this layer can be represented as matrix

multiplication. The fully-connected layer can be summarized into Equation (2.1), where

W ∈ RR×C ,X ∈ RC , b ∈ RC , R denotes the number of rows of the weight, and C denotes

the number of columns of the weight.

F =
C∑

j=1

R∑
i=1

Wj,iXj + bj (2.1)

2.2.3 Convolutional Layer

CNN was first realized from Neocognitron [27]. Neocognitron was created to imitate the

primary visual cortex. LeCun et al. further modified Neocognitron into a modern CNN

structure which was introduced in the LeNet-5 model [4].

One of the most important elements of CNN is a convolutional layer. The convolutional

layer was motivated by the brain’s ability to recognize objects from images’ patterns and

features. Arranging convolutional layers allows CNN to extract low-level features in the

early convolutional layer and high-level features in the late convolutional layer. The convo-

lutional operation can be summarized into Equation (2.2), where W ∈ RCout×Cin×Kr×Kc ,

X ∈ RCin×Ir×Ic , Kr denotes the number of kernel rows, Kc denotes the number of kernel

columns, Cin denotes the number input channels, Cout denotes the number of output

channels, Ir is the input activation row, Ic is the input activation column, Or is the

output feature row, Oc is the output feature channel, and F is the feature map.

F =

Cout∑
n=1

Or∑
m=1

Oc∑
l=1

Cin∑
k=1

Kr∑
j=1

Kc∑
i=1

Wn,k,j,iXk,j+m,i+l (2.2)

By applying a convolutional operation, the output shape may not be the same as the

input shape. The output width and height can be found using Equation 2.3. Where Zout

can be either an output width or height, Zin can be either an input width and height,

C is a size of convolution filter, P is a number of zero paddings and S is a number of

strides.

8/62

NINNART FUENGFUSIN - 18899039 9

Zout =
Zin − C + 2P

S
+ 1 (2.3)

The main difference between the convolutional and fully-connected layer is the number of

weight parameters within the convolution layer is to a great degree less than the number

of weight parameters in a fully-connected layer. For instance, in the case of VGG-16 [7],

roughly 10 percent of all weight parameters in VGG-16 are in 13 convolutional layers.

The remaining 90 percent is in only three fully-connected layers.

2.2.4 Activation function

An activation function is mainly applied to an output signal of the weight layer. In view

of neuroscientific, the activation function is used to imitate the action potential signal

process or either to fire or not fire an electric spike into another neuron [28]. Moreover,

in the perception of machine learning practitioners, the activation function is required to

introduce a non-linear property to NN.

Without the non-linear property, NN makes no difference from a combination of linear

combinations. The linear function can approximate only a linear function; however,

the non-linear can replicate both linear and non-linear functions [26]. Thus, the linear

function is not robust enough to deploy in a real-world environment.

2.2.4.1 Rectified Linear Unit

The rectifier linear units (ReLU) is considered as one of the most widely used activation

function in NN. The ReLU can be defined as Equations (2.4) or (2.5). Where x is the

input signal, f(x) is an output of ReLU and max(a, b) is a function which returns a

maximum variable between a and b.

f(x) =

x, x >= 0

0, x < 0
(2.4)

f(x) = max(x, 0) (2.5)

The relation between an input variable x and output variable f(x) can be plotted as

shown in Figure 2.1.

9/62

NINNART FUENGFUSIN - 18899039 10

Fig 2.1. Rectified Linear Unit outputs the input if the input is a positive value,
otherwise it will output a zero.

The ReLU has advantages comparing with other activation functions. The first reason is

ReLU is not saturated from a gradient-vanish problem. The input variable of ReLU in

the range [0,∞) always contains gradients to update with. Compared with the Sigmoid

activation function, the gradient will have vanished when input variables are either very

positive or negative. This problem may occur when NN has been trained for a long time.

2.2.5 Max-pooling

Max-pooling layer is applied to down-sample or reduce number parameters of activation

or feature maps. This reduces overall the memory consumption and number of memory

access operations. With less parameters to compute, the training and inference of NN

also can be done faster. The max-pooling can be represented as Figure 2.2. In the figure,

max pooling with the size of 2× 2 and stride of 2 is applied. The output of max pooling

has less number of parameters than an input two times.

Fig 2.2. Max pooling with size 2× 2 and stride 2. Each color represents a region for
each max pooling operation. The output of each region represents a maximum value
within the input region.

10/62

NINNART FUENGFUSIN - 18899039 11

2.2.6 Cost or Loss Function

The cost function is an indicator for determining how well NN operates with a given task.

The different cost functions are designed for various tasks or situations. For example,

the L2-distance or Euclidean distance for multi-class image classification may not suit

this task. This is due to the range of L2-distance that can extend to out-of-range of the

number classes. Therefore, some priors are necessary to limit the range output. In this

case, softmax with cross-entropy is more preferred to the L2-distance loss.

2.2.6.1 Softmax

The softmax activation function is usually applied in the last layer of NN, especially in

the multi-classification task. The softmax squeezes a real number array into the range

of [0, 1]. Therefore, the softmax output can be defined as probabilities to predict labels

correctly. The interpretation comes from a summation of softmax output array always

equal to one. The softmax function can be shown in Equation (2.6). Where x is inputs

with an order i, n is a number of classes, and f(x) is a output of softmax function.

f(x) =
exi∑n
j=1 e

xj
(2.6)

Using normalized exponential function encourages behavior that is the magnitude of one

confident class is significantly more than other classes. With this behavior, the softmax

function assumes that the input data contains only a class and that class is independent

of other classes. Otherwise, this may affect the model’s performance when objects come

from the same categories.

2.2.6.2 Cross-entropy

The cross-entropy was realized from an information theory. Cross-entropy is applied to

calculate the loss of information while transmitting and receiving a message. The cross-

entropy is assumed that the input is a probability distribution; therefore, it operates well

with a softmax activation function that provides the output as a probability distribution.

In general, the cross-entropy loss is high if the model wrongly predicts with high confidence

and correctly predicts with low confidence. Suppose the training dataset has almost the

same distribution as the test data. In that case, NNs can also minimize cross-entropy

loss of test data via only learning from the trend of training data.

11/62

NINNART FUENGFUSIN - 18899039 12

2.2.7 Optimization

After defining how well the model performs or the cost function, NN must adjust the

weight parameters to minimize the cost function. One algorithm to use for optimization

is gradient descent.

2.2.7.1 Gradient Descent

The gradient descent is a basic optimization algorithm for multi-layers NN. The gradient

descent is realized from the partial-derivatives with respect to learn-able parameters

to the cost function. The outcome of partial-derivative is a slope of the cost function

with learn-able parameters. This slope can be used to find a direction to tune learn-able

parameters to a local minimum of the cost function. This gradient descent can be

summarized into Equation (2.7). Where η is a learning rate, C is a cost function, W t−1

are weights or biases before updating, W t are weights or biases after updating.

W t = W t−1 − η ∂C

∂W t−1
(2.7)

The stochastic gradient descent [29] is similar to the gradient descent. The significant

difference is that NN is randomly fed with a batch image in each training iteration.

With this stochastic process, a converging to the local minimum can be done faster than

standard gradient descent.

2.2.7.2 Gradient Descent with Momentum

The gradient descent has a problem in which the gradient may oscillate back and forth in

orthogonal directions that are not related to the local minimum direction. This back and

forth reduces the overall magnitude of gradients reaching the local minimum direction

and consumes longer times to train NN. The gradient descent with momentum [30] was

proposed to address this issue. The oscillations can be canceled by averaging the noises

in opposite directions. This averaging can be done during training with exponentially

weighted averages. The gradient descent with momentum can be represented with

Equations (2.8) and (2.9). Where η is a learning rate, V is a global averaged gradient, β

is a hyper-parameter recommended as 0.9, C is a cost function, t is a current number of

forward propagate.

W t = W t−1 − ηV t−1 (2.8)

12/62

NINNART FUENGFUSIN - 18899039 13

V t = βV t−1 + (1− β)
∂C

∂W t−1
(2.9)

2.2.7.3 Adam Optimization

Adam optimization [31] combines two different type of optimizations together, RMSProp

[32] and gradient descent with momentum. In some cases, Adam optimization reduces

the convergence time comparing with SGD and SGD with momentum. There are still

some concerns related to Adam optimization that may be stuck in a local minimum.

Therefore, some implementations [33] may utilize with Adam first, then switches to SGD.

2.3 Regularization

The regularization is utilized to address an over-fitting problem when an NN model

learns both noise and data. This over-fitting also can be described as when the NN

model remembers inputs and corresponding outputs. The learning of both noise and

data patterns occurs when the NN has too high a capacity. Therefore, some limitations

are necessary to constraint NN.

2.3.1 Dropout

Dropout [34] is to randomly drop neurons or zero-out weights in a particular layer with a

probability 1− p in each training iteration, where p is a probability of neuron exists. To

give an example, a weight layer with a dropout p = 0.7 indicates that this weight layer

has a possibility of 30 percent drop weight elements. This can be illustrated in Figure

2.3. To ensure the expected value of the output layer remains the same with and without

dropping, the output of dropout is scaled with 1
p .

The dropout is designed to prevent the cooperation between neurons. For instance, a a

neuron may make a mistake; however, instead of a neuron reconfigured its own weights.

As a result, the b neuron adjusts itself to correct the a neuron output. This cooperation

between neurons costs the over-fitting because the b neuron remembers the mistake from

the a neuron. In general, the dropout should be applied with low amounts of p to the

first and last layer of NN.

13/62

NINNART FUENGFUSIN - 18899039 14

Fig 2.3. Five neurons connected to each other with six weight values. Left: without
dropout. Right: with dropout p = 0.7.

2.3.2 Batch Normalization

One of the problems within deep NN is an internal covariate shift problem. This problem

is defined as distributions of activation in each layer of NN are diverge in both mean and

variance during training. For example, since the input to output layers are connected, if

one layer activation is shifted, then the following activations are also shifted as shown in

Figure 2.4.

Fig 2.4. The internal covariate shift occurs when distributions of each layer activation
of NN are unstable.

Batch normalization (BN) [35] was proposed to solve this problem by normalizing the

mean and variance of activation layer-wise into 0 and 1, respectively. This process can be

shown in Equation (2.10), where x̂i is a normalized batch images, xi is an input batch,

µB is an mean of batch, σ2
B is a variance of a batch and ε is a hyperparameter that is

used to avoid zero as a denominator.

x̂i =
xi − µB√
σ2
B + ε

(2.10)

14/62

NINNART FUENGFUSIN - 18899039 15

BN further utilizes a linear transform using two learn-able parameters β and γ with

Equation (2.11). The NN can use these parameters to search for a suitable mean and

variance.

ŷi = γx̂i + β (2.11)

Since Equations 2.10 and 2.11 operate in the batch-wise direction, to track the mean and

variance of activation across of dataset requires a tracking method. This can be done

using an exponentially weighted average as shown in Equation (2.12), where µt is a global

mean after the update, µt−1 is a global mean before the update, β is a hyper-parameter

and µB is a mean from image batch which used to update the global mean.

µt = βµt−1 + (1− β)µB (2.12)

2.3.3 L2 Weight Decay

L2 weight decay or L2 regulation discourages magnitude weight parameters by adding a

norm L2 summation of weights into the cost function. This constraint causes NN not

able to focus on distributing the magnitude of weights to a certain neuron. It requires

distributing the magnitude across multi-neurons. This reduces the chance of over-fitting

of NN. L2 weight decay is defined as Equation 2.13, where W is all weights in NN and λ

is a hyper-parameter.

LR =
λ

2
||W ||2 (2.13)

By adding a weight decay term into the cost function, the gradient descent will minimize

the magnitude of weights. As a result, the weight distribution with L2 weight decay

condenses around zero compared without L2 weight decay.

2.4 Learning Rate Decay

The gradient becomes too large when a learning rate is too high, and the optimization

process may not reach a local minimum. However, if the learning rate is too low, the

training time will be too long. One of the solutions to solve this problem is to utilize the

learning rate decay. In general, the initial learning can be started with a high magnitude

15/62

NINNART FUENGFUSIN - 18899039 16

and decrease over time. There are many methods to reduce the learning rate. In this

section, I will cover the learning rate step down.

2.4.1 Step Down Learning Rate

After training for n epochs, the learning rate α is set to be reduced with factor of δ as

shown in Equation (2.14).

α =
1

δ
α0 (2.14)

The step-down learning rate can be visualized in Figure 2.5, where the y-axis is a learning

rate α and x-axis is an epoch.

Fig 2.5. The initial rate of 1 and it stepped down to 0.1 with δ = 10 at 50 epochs

2.5 Feed-Forward Neural Network Models

This section covers several feed-forward NN models that I utilized in Chapter 5: Experi-

ments and Discussion section.

2.5.1 Multiple Layers Perceptron

Multiple Layers Perceptron (MLP) is one of the basis NN models, a stack of fully-

connected layers. The MLP requires a 1-dimensional input; however, an input image

has 2- or 3-dimensions. Therefore, this image cannot be directly fed to MLP. Thus, the

input image must be flattened to a dimension to be able to fit in MLP.

16/62

NINNART FUENGFUSIN - 18899039 17

2.5.2 LeNet-5

LeNet-5 [4] originally consists of three layers of convolutional layers and two fully

connected layers. Therefore, LeNet-5 consists of five weight layers. In addition, there

are also spatial reduction layers or max-pooling layers. The LeNet-5 was created for a

hand-written digit classification task. In this research, I modified the LeNet-5 architecture

to two convolutional layers and three fully-connected layers to operate with the Fashion-

MNIST dataset without utilizing any padding.

2.5.3 ResNet-18

ResNet [36] is the CNN architectures that won ILSVRC 2015. The ResNet introduces a

skip- or shortcut-connection architecture that allows feature maps to skip a layer set.

This allows ResNet architecture to avoid the gradient vanishes problem, which occurs

when the NN is too large. One of the proposed ResNet architectures is ResNet-18 that

consists of 18 weight layers and two pooling layers without including residual connections.

In these 18 layers, there are 17 convolutional layers and one fully-connected layer.

2.6 Benchmark Dataset

Benchmark datasets are designed to measure the performance of NN models. In the field

of computer vision, one of the benchmark datasets is the image dataset. The dataset is

generally separated into two sections: training and test dataset. The training dataset

is for a model to learn, while the test dataset is used to check the ability of the model

to generalize. The hyper-parameters may also be causing the over-fitting. To solve this

problem, the image dataset may be separated into three sections: training, validation,

and test dataset. The validation set is used to tune hyper-parameters.

2.6.1 Fashion-MNIST

Fashion-MNIST [37] is a clothing image dataset that consists of 60,000 training images

and 10,000 test images. Each image is a gray-scale image that consists of 28x28 pixels.

The labels consist of t-shirt/top, trouser, pullover, dress, coat, sandal, shirt, sneaker,

bag, and ankle boot. Fashion-MNIST is created as an alternative to the MNIST dataset;

therefore, it is designed to have the same image size and amount of training and test

samples as the MNIST dataset. Fashion-MNIST addresses one of the MNIST problems:

17/62

NINNART FUENGFUSIN - 18899039 18

the MNIST dataset becomes an unchallenging task for the cutting edge models. Therefore,

Fashion-MNIST provides a more challenging task to able to benchmark these models.

Fig 2.6. 10 randomly selected images from Fashion-MNIST dataset

2.6.2 CIFAR-10

Canadian Institute For Advanced Research 10 (CIFAR-10) [38] is an image dataset that

consists of 60,000 images belonging to 10 different classes: airplanes, automobiles, birds,

cats, deer, dogs, frogs, horses, ships, and trucks. The data are separated into 50,000

training images and 10,000 test images. The size of each image is 32× 32× 3 pixels. The

main difference between Fashion-MNIST is the grayscale image dataset which has only a

channel. However, each CIFAR-10 image consists of three RGB channels. With more

information to process, this causes the CIFAR-10 to consume more time to train with

than Fashion-MNIST.

Fig 2.7. CIFAR-10 images with classes in the left-to-right order from airplane,
automobile, bird, cat, deer, dog, frog, horse, ship, to truck

18/62

NINNART FUENGFUSIN - 18899039 19

2.6.3 ILSVRC 2012

ImageNet Large Scale Visual Recognition Challenge 2012 (ILSVRC 2012) [6] or ImageNet

2012 is a large-scale image dataset that consists of 1,281,167 training images and 50,000

validation images. Each image belongs to one of thousand classes. The shape of images

is varied throughout the dataset; therefore, some of the image pre-processing is necessary

to feed these images to the model that requires a fixed shape of the image.

2.7 Image Pre-processing

Raw pixels from the image dataset can directly feed to a NN model, however with the

significant loss in terms of performance of the model. Therefore, image pre-processing

is necessary. Two basic pre-processing will be covered in this section. The first is a

basic image normalization, and the second is an image normalization with statistical

information from the training data.

2.7.1 Basic Image Normalization

Basic image normalization normalizes the input image to a range of [0, 1]. To normalize

the image to this range, maximum pixel intensity is required to be found. In this case,

each image is assumed to have a color depth of 8-bit. Hence, the highest value of pixel

is 28 − 1 = 255 and this process can be summarized to Equation (2.15), where x̂i is

normalized images, xi is input images and d is the color depth of image.

x̂i =
xi

2d − 1
(2.15)

2.7.2 Normalization with Mean and Standard Deviation of Training

Dataset

This normalization is to normalize the input image distribution to a zero-mean and

unit standard deviation. By assuming training, validation, and test distributions have

identical distributions, the mean and standard deviation of the training dataset can

be used to normalize the training, validation, and test datasets. This process can be

described using Equation (2.16), where x̂i is normalized test images, xi is input images,

µtrain is a mean of all training images, σ2
train is the standard deviation of all training

images and ε is a very small number which is used to protect a denominator as zero. If

19/62

NINNART FUENGFUSIN - 18899039 20

images contain three channels, the standard practice with the color image dataset is to

normalize in the channel-wise direction.

x̂i =
xi − µtrain√
σ2
train + ε

(2.16)

2.8 Quantization Neural Networks

Quantization Neural Network (QNN) is a NN whose weights are constrained with low-

bitwidth. This process causes the memory of NN less than usual and allows NN to deploy

into edge devices easier. However, the tradeoff of the quantization process is a drop in

the performance from quantization loss. Another quantization process is by constraint

weights into the hardware-friendly format (fixed-point or integer formats); this allows

NN’s operations can be done with fewer hardware resources and latency. I will cover

QNN in detail in Chapter 3: Related Works.

2.9 Field-programmable Gate Array

FPGA is a programmable integrated circuit consisting of reconfigurable logic blocks, such

as look-up tables (LUT) and switches. These logic blocks in FPGA can be re-configured

using either a hardware description language (HDL) or high-level synthesis (HLS). In

general, LUT can be used to replicate every logic function from its ability to remember

the mapping between input and output. By wiring LUT together, these combinations of

LUT can imitate an arbitrary digital circuit.

Zynq series is one of the recent series of FPGA provided by Xilinx. One of Zynq series,

Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit board, is shown in Figure 2.8. The

Zynq cooperates with a processor system (PS) and programmable logic (PL) together

[39]. In other words, Zynq has the built-in CPU ARM-Cortex and FPGA chip into

the board. This also provides an AXI connection between PS and PL to allow the low

latency connection and further accelerate the computing.

20/62

NINNART FUENGFUSIN - 18899039 21

Fig 2.8. A image of a FPGA board, Zynq UltraScale+ MPSoC ZCU102 Evaluation
Kit

2.10 High-level Synthesis

One advantage of an FPGA over the conventional software language is it enables bitwise

manipulation. Another advantage is that it allows the user to define, store, and compute

an arbitrary data type. However, the disadvantage of an FPGA design over a conventional

software design is the long development time. To gain advantages from both software and

hardware, high-level synthesis (HLS) has been developed. HLS is a development platform

that converts C-like languages (C, C++, and System C) to the hardware description

language (HDL) (Verilog and VHDL) language. This allows users to rapidly develop

applications with an interface of a C-like language with fewer constraints from the HDL

language. With this property, HLS is especially useful when applies HLS with the deep

learning algorithm that its state-of-the-art algorithm has been rapidly changed. On

the other hand, a drawback of HLS compared to optimized handcrafted HDL is that

HLS-generated HDL code may cause a higher latency and hardware utilization. For

instance, Ordaz et al. [40] compared between HDL and HLS implementations of cyclic

redundancy check (CRC) and found out that HDL implementation consumes less than

LUT by 1.58 times and less amount of latency by 2.63 times.

21/62

NINNART FUENGFUSIN - 18899039 22

2.10.1 Directives and Hardware Design in Vivado High-level Synthesis

Several metrics for hardware synthesis and implementation include latency, hardware

utilization, and power consumption. In terms of hardware resources in recent FPGAs,

four fundamental hardware resources are block RAM (BRAM-18K), DSP48F block,

flip-flop (FF), and look-up table (LUT).

One advantage of an FPGA over a CPU is that it can be designed to perform large-scale

parallelism. Although parallelism dramatically reduces the latency, the trade-off is that it

also significantly increases hardware resources. Since Vivado High-level Synthesis (VHLS)

receives a C-likes language as input and C-like languages are not designed for hardware

implementation, VHLS solves this problem by providing users with hints regarding

converting C-type functions into hardware. VHLS provides directives or pragma in

C-like languages as hints. We can use the directives to VHLS how to manage parallelism,

memory, and other aspects.

There are three directives that we utilize throughout this study. The first two directives

are related to parallelism, while the third directive is related to memory management.

The first directive is the PIPELINE directive. Placing PIPELINE directives after

a for loop indicates to VHLS that the for loop can be accelerated by data pipeline

parallelism. The second is the UNROLL directive, which indicates that the computation

in the for loop can be executed in parallel across the for loop. The third directive,

the ARRAY PARTITION directive, is mostly applied with either PIPELINE or

UNROLL. Performing parallel computing requires accessing multiple data at the same

time. By using ARRAY PARTITION , a large memory is divided into multiple smaller

blocks of memory. Therefore, it can access smaller memory in the same clock cycle without

access conflict. With these directives, we can apply parallel computing throughout our

model to accelerate computation and reduce latency.

22/62

Chapter 3

Mixed Precision Weight Network

and FPGA Design

In this chapter, I describe my proposed method, MPWN, in terms of algorithm and

hardware design. This includes the MPWN algorithm and its effective design in hardware.

3.1 Mixed-precision Weights Network

Mixed-precision weights network (MPWN) is designed to utilize the advantages of the

weight spaces from BC, TWN, and 32-bit floating-point. The MPWN is partly motivated

by dropout [34], which is a regularization method that randomly drops weight connections

of a neural network in each batch training. Randomly dropping weights reduces the

tendency of neurons to cooperate with other neurons. This cooperation between neurons

may lead to over-fitting. The optimal dropout rate is not always equal throughout the

weight layers. The optimal rate depends on the layer order and the type of weight

layer (e.g., convolutional layer, fully-connected layer). The difference in the optimal

dropout rate reveals the sensitivity of the weight layer to the constraint. Disturbing a

high sensitivity weight layer causes a greater negative effect in terms of performance

than disturbing a low-sensitivity layer. Using this concept, the MPWN places different

constraints depending on the sensitivity of the weight layers.

For hardware implementation, the performance of the TWN is still acceptable without

the scaling factor Si. Therefore, I utilize the TWN without the scaling factor, which

also reduces the overall complexity of the hardware implementation. During inference,

the 32-bit floating-point model can be reduced to the 16-bit floating-point without

23

NINNART FUENGFUSIN - 18899039 24

decreasing in performance. Therefore, I utilize with 16-bit floating-point instead of 32-bit

floating-point.

I define the notations for representing MPWN layers as follows: F indicates that the

layer with 16-bit floating-point or full-precision, B indicates that the layer with BC, and

T indicates that the layer is TWN without the scaling factor. FBT refers to a CNN

with three layers where the first layer is 16-bit floating-point, the second layer is BC,

and the third layer is TWN. The advantage of each weight space is summarized in Table

3.1. Overall, F is correlated with the performance of the model. B reduces the bit width

of model the most, and T introduces sparsity into the model.

Table 3.1. Overview of properties of each mixed-precision weights network weight
space.

Accuracy Sparsity
Bits per

Weight (bit)
Weight space

Full precision
weights (F)

High None 16 R

Ternary weights (T) Mid High 2 {−1, 0, 1}
Binary weight (B) Low None 1 {−1, 1}

With several metrics to optimize in the MPWN, I reduce these scores to a single score

called the accuracy sparsity bit (ASB) score. The ASB score is a linear combination

of accuracy, sparsity, the number of bits, as expressed in Equation (3.1), where a is the

model test accuracy, s is the sparsity of the model, and bnor is 1 minus the normalized

number of bits. bnor is defined in Equation (3.2), where bmax is the number of bits

from the 16-bit floating-point model and b is the number of bits of given MPWN. Using

Equation (3.2) instead of b
bmax

, the optimization direction reverses from minimization to

maximization which is the same direction as a and s.

ASB =
a+ s+ bnor

3
(3.1)

bnor = 1− b

bmax
(3.2)

In Equation (3.1), a, s, and bnor does not contribute equally due to different in dis-

tributions. One of the metrics in ASB may distribute with a low variance relative to

other metrics. Therefore, the metric with low variance contributes to ASB less than

others. One of the factors of this low variance issue is a narrow range between the

minimum and maximum values of the metric. To solve this issue, I introduce a min-max

24/62

NINNART FUENGFUSIN - 18899039 25

normalization to re-distribute each metric of ASB into the same range [0, 1]. The

min-max normalization is defined in Equation (3.3) where x is an original value, xmax is

a maximum value in the distribution, xmin is a minimum value in the distribution, and

xn is a normalized value.

xn =
x− xmin

xmax − xmin
(3.3)

Finding maximum and minimum values in the worst-case is required to train all possible

combinations of MPWN which is not feasible with a large model. Therefore, I introduce

a method to estimate the maximum and minimum values of a, s, and bnor instead. This

method is called as estimating rules, which are formulated from properties from Table

3.1 and observations from grid-search with all possible combinations of MPWN with the

LeNet-5 model. From this grid-search, the F model contains the highest amount of a

and the lowest amount of bnor and s. The B model contains the highest amount of bnor

and close to the lowest amount of a. The T model contains almost the highest amount

of s. With these properties, I formulate the estimation rules are as follows:

• F model contains a maximum value of a while B model contains a minimum value

of a.

• B model contains a maximum value of bnor while F contains a minimum value of

bnor.

• T model contains a maximum value of s while F contains a minimum value of s.

By using these estimation rules, I can estimate the maximum and minimum values for

a, s, and bnor by only using information from F, B, and T models. Using the min-max

normalization improves the variance issue to an extent by improving the range of the

metric with low variance. To further improve on the variance situation, one of the

methods to increase or decrease the variance of a distribution is to multiply with a

constant. Therefore,the variance of each metric of ASB can be balanced via modifying

Equation (3.1) to a weighted average as shown in Equation (3.4) using with weights: α,

β, and γ. Equation (3.4) is equal to Equation (3.1) when α = 1, β = 1, and γ = 1. α, β,

and γ can be adjusted to indicate which degree the a, s, and b contribute to ASB.

ASB =
αa+ βs+ γbnor

α+ β + γ
(3.4)

25/62

NINNART FUENGFUSIN - 18899039 26

The goal of the MPWN is to maximize the vector of quantization layers l, as shown in

Equation (3.5), where l ∈ ln, l ∈ {F ,B,T }, and n denotes the number of weight layers.

l∗ = argmax
l

ASB (3.5)

The computational complexity of identifying the global maximum of the MPWN is O(3n).

Each iteration of the search is expensive in terms of training time. To avoid examining

all possible combinations of layers, in a previous study [41], I proposed human-based

knowledge rules or three heuristics rules to identify a reasonable optimized l. The

heuristic rules are as follows:

1. Layers that contain a large number of weight parameters should be T.

2. Layers that contain a small number of weight parameters should be B.

3. The first and last layers should be F.

In this case, I define a large number as a number that has more than one positive

standard deviation from a mean, and I define a small number as a number that is less

than or equal to one positive standard deviation from the mean. To provide an example,

I apply these heuristic rules to LeNet-5 [4]. The result is the FBTBF model since

the third layer of LeNet-5 is a fully-connected layer with the number of weights that

exceeds one standard deviation from the mean. These heuristic rules originate from

several observations. For the first rule, placing T into a layer with the largest number of

weight parameters causes the high sparsity in the model. Therefore, by only fixing T to

certain layers, I can optimize other layers with other types of weight spaces. The second

rule states that the default weight layer should be B to optimize the number of bits. B

is the most suitable in terms of hardware implementation. The third rule states that

placing F into the first layer significantly improves the accuracy. The last layer affects

the confidence of the prediction; therefore, I also select the last layer as F.

The three heuristic rules allow the MPWN to perform a single search to find a suitable

combination for the ASB score; however, the heuristic rules do not guarantee a global

maximum. Systematizing the search process using the ASB score allows Bayesian

optimization (BO) to be used. In general, BO is conventionally applied to search the

optimal hyperparameters. BO is summarized in [42]. In general, BO optimizes a given

cost function with two objectives. The first objective is to explore the function and map

the surrogate model from the obtained information. The second objective is to search for

a local optimal location of the given function. BO is suitable for my layer search from

the two following aspects:

26/62

NINNART FUENGFUSIN - 18899039 27

• BO does not require gradient; therefore, I can optimize my MPWN model with the

sparsity and number of bits, which are not differentiable metrics.

• BO has defined with the constraint that each iteration is expensive to evaluate,

which meets the requirements of the problem [42].

The utilization of BO with MPWN can be summarized in Figure 3.1.

Fig 3.1. The overview of utilization of MPWN with BO. At first, BO generates a
random MPWN combination. Then, the generated combination of MPWN is trained to
acquire an ASB score. This ASB is used as feedback to BO to update its surrogate
model. After the update, BO suggests a new MPWN combination to train. These
processes can be repeated until satisfied.

3.1.1 1- and 2-bit Signed Integer

To fully utilize an FPGA with the MPWN, VHLS provides support to access arbitrary

data types, such as signed integer (int), unsigned integer (uint), and the fixed-point

(fixed) data type. To optimize the data type of B and T, I utilize 1-bit (int1) and 2-bits

signed integer (int2), respectively. However, the range of int1 can contain only in the

set of {−1, 0}, which does not cover 1 in the B weight space. To address this problem, I

replace 1 with 0. This does not affect the performance of the MPWN implementation,

as the replacement still holds the same signed bit information used in XSB. Reducing

the number of bits with a specific data type substantially reduces memory resources in

my FPGA implementation.

27/62

NINNART FUENGFUSIN - 18899039 28

3.1.2 Half-precision Floating-point

VHLS supports another data type: a half-precision floating-point or 16-bit floating-point

(half). A QNN displays the robustness of a CNN against reducing precision, and I exploit

this property by assigning the half data type to my MPWN model. Compared with

32-bit floating-point (float) and 64-bit floating-point (double) in terms of multiplication

of two variables with of the same data type, half has the potential to reduce both the

hardware resources and latency, as illustrated in Table 3.2. Table 3.2 presents the results

of the implementation generated by VHLS, where the target device is Zynq UltraScale+

MPSoC ZCU102 or xczu9eg-ffvb1156-2-i. Table 3.2 demonstrates that half can reduce

the resources to roughly half of those of float to one-fifth of those of double.

Table 3.2. Latency and hardware resources for multiplication of two variables with
the same data type.

Data type
Latency

(Clock cycle)
Hardware Resource
DSP48E FF LUT

double 4 11 304 236

float 1 3 130 150

half 1 2 66 49

3.1.3 XOR Signed-bits

The MPWN may consist of multiple B. Therefore, it is necessary to optimize the

computation in the weight space further. The multiplication between float and binary

values {−1, 1} causes a sign to be changed. However, without a specific design, the

multiplication between them is treated as a floating-point multiplication that consumes

more resources than necessary. XOR signed bits (XSB) is designed as a replacement for

multiplication between float and binary values. Multiplication between these variables is

reduced with the XOR operation between the sign bits of the two operands, as illustrated

in Figure 3.2.

In general, implementing XSB in HDL is simple, whereas implementing it in VHLS is

complicate. I present an XSB algorithm in C++ for VHLS, as illustrated in Listing

3.1. VHLS provides C++ libraries that support bitwise manipulation; however, the

manipulation is constructed as methods within a built-in data type in VHLS. The

problem is that I cannot apply these methods directly with an unsupported data type

(double, float, and half). Therefore, it is required to convert an unsupported data type

to bitwise supported data type. Then, I perform bitwise manipulation of the selected bit

and convert it back to the unsupported data type.

Listing 3.1. XOR signed-bits for Vivado high-level synthesis.

28/62

NINNART FUENGFUSIN - 18899039 29

Fig 3.2. XOR signed bits. The top binary row presents a binary representation of the
half data type, which represents a value of −123. The second binary row displays a
binary representation of int1, which represents −1. By XOR only the most significant
bit from both rows, the result is 123, which is the same as the answer to the general
floating-point multiplication.

void xor_signed_bits(int1 w, half x, half &out)

{

#pragma HLS INLINE OFF

int16 tmp_x;

int16 tmp_out;

// Convert half floating point to int16 -

// to access ap_int built -in method.

// Use uint1 because to cover {0, 1}.

tmp_x = *reinterpret_cast <int16 *>(&x);

// XOR between signed -bit between weight and activation .

uint1 sign = tmp_x.sign ()^w.sign ();

// Get bits from 14 to 0, not include the signed bit.

int15 notsign = tmp_x.range(14, 0);

// Concate between XOR result and concatenate -

// between the rest of activation bits.

tmp_out = sign.concat(notsign);

out = *reinterpret_cast <half*>(& tmp_out);

}

Here, fixed is considered to apply instead of half. However, VHLS provides the fixed

implementation with a binary representation as 2’s complement, which is not compatible

with the XSB algorithm. Toggling the sign of fixed requires reversing all the bits of fixed

and subtracting by 1, which is an expensive process. Therefore, I apply my MPWN with

half instead of fixed.

3.1.4 Ternary Bitwise Operation

Ternary bitwise operation (TBO) was proposed by Honda et al. [21] as a replacement of

multiplication with a ternary weight. TBO utilizes only an XOR and 15 AND gates as

illustrated in Figure 3.3. TBO utilizes AND gates to detect whether the ternary weight

29/62

NINNART FUENGFUSIN - 18899039 30

is a zero or one (both positive and negative). If the weight is zero, the AND gates reset

the variable to zero. Otherwise, it lets the variable pass through. Using the same concept

of XSB, I can implement TBO in VHLS as shown in Listing 3.2 below.

Fig 3.3. Ternary bitwise operation. The top binary row presents a binary
representation of the half data type, which represents a value of −123. The second
binary row displays a binary representation of int2, which represents 0. By using XOR
and AND gates, the result is −0.

Listing 3.2. Ternary bit-wise operation for Vivado high-level synthesis.

void ternary_bitwise(int2 w, half x, half &out)

{

#pragma HLS INLINE OFF

int16 tmp_x;

int16 tmp_o;

tmp_x = *reinterpret_cast <int16 *>(&x);

// XOR between signed -bit between weight and activation .

uint1 b15 = tmp_x.sign ()^w.sign ();

uint1 w0 = w.range(0, 0);

// AND between OR results and rest of activation bit.

uint1 b0 = w0 && tmp_x.range(0, 0);

uint1 b1 = w0 && tmp_x.range(1, 1);

uint1 b2 = w0 && tmp_x.range(2, 2);

uint1 b3 = w0 && tmp_x.range(3, 3);

uint1 b4 = w0 && tmp_x.range(4, 4);

uint1 b5 = w0 && tmp_x.range(5, 5);

uint1 b6 = w0 && tmp_x.range(6, 6);

uint1 b7 = w0 && tmp_x.range(7, 7);

uint1 b8 = w0 && tmp_x.range(8, 8);

uint1 b9 = w0 && tmp_x.range(9, 9);

uint1 b10 = w0 && tmp_x.range(10, 10);

uint1 b11 = w0 && tmp_x.range(11, 11);

uint1 b12 = w0 && tmp_x.range(12, 12);

uint1 b13 = w0 && tmp_x.range(13, 13);

uint1 b14 = w0 && tmp_x.range(14, 14);

// Concatenate between all resultant bit.

uint15 b_con = (

b14 , b13 , b12 , b11 , b10 , b9 , b8 ,

b7, b6 , b5 , b4, b3, b2, b1, b0);

tmp_o = b15.concat(b_con);

out = *reinterpret_cast <half*>(&tmp_o);

30/62

NINNART FUENGFUSIN - 18899039 31

}

3.1.5 Overview of FPGA Implementation

Using the ASB with BO allows us to find more optimized MPWN combinations than

a combination from heuristic rules. Therefore, I implemented the model FTTTF that

achieves the highest ASB. My implementation of T was implemented with TBO instead

of sparse matrix multiplication and convolutional operation due to the high overhead of

sparse matrix format. For instance, to decompose a weight of a fully-connected layer, Wf

with a coordinate format (COO), if Wf does not contain any sparsity, COO decomposes

Wf with three times the number of parameters comparing to Wf . In the case of the

convolutional layer with the weight, Wc, this overhead becomes worse. The number of

parameters becomes five times comparing to Wc. With FTTTF model, the sparsity in

each T layer is roughly 0.5. Using COO format consumes 1.5 times the amount of origin

parameters in the case of the fully-connected layer. This becomes worse in the case of

the convolutional layer that consumes 2.5 times the original amount of parameters.

My implementation of the MPWN is designed layer by layer. I also optimized the layer

by placing directives into it. Figure 3.4 shows an overview of the MPWN design on

an FPGA. Since quantization is applied to convolutional and fully-connected layers

only, I only evaluate the performance and apply directives in these layers. In Figure

3.4, I defined my notation as follows: Conv#N indicates a convolutional layer, Fully

connected#N indicates a fully-connected layer, BN#N indicates a batch normalization

layer [35], Flatten indicates a rearranging layer to convert the shape activation to operate

in the fully-connected layer, and N indicates the order of the weight layer.

To explain how I place the directives, I must first define a convolutional and fully-

connected layer. The convolutional layer is defined in Equation (2.2) The convolutional

layer operation consists of six for loops that can be accelerated with parallelism. It

should be noted that the bias term is ignored because the convolutional layer is followed

by batch normalization [35], which consists of a term that acts as a bias.

In the convolutional layer function in VHLS, I utilize parallelism by placing the UNROLL

directive inside the Oc in Equation (2.2), loop which hints that all loops below should be

computed in parallel. In addition, I also place the PIPELINE directive inside the Or

loop to further accelerate the operation that unrolled. Finally, in the convolutional layer,

I apply ARRAY PARTITION with a factor of 8 to both W and X.

31/62

NINNART FUENGFUSIN - 18899039 32

Fig 3.4. Overview of mixed-precision weights network implementation. All parameters
of the MPWN are stored in BRAMs. Blue blocks indicate blocks that are optimized
with directives, while green blocks indicate blocks that are not optimized with
directives.

In the matrix multiplication function in VHLS, I place PIPELINE inside C in Equation

(2.1), for data pipelining of the process. I also apply ARRAY PARTITION with a

factor of 16 to both W and X. It should be noted that the first two fully-connected

layers do not include the bias term b.

32/62

Chapter 4

Related Works

In this section, I will discuss related works and literature reviews of mixed-precision

models and FPGA implementations of QNN.

4.1 BinaryConnect

BinaryConnect (BC) [13] is a QNN that binarizes its weights to the set {−1, 1}. With 2

possibilities, a binarized weight can be represented with a 1-bit. The BC quantization

equation is expressed as Equation (4.1), where i is the index of the weight layer, W is

the floating-point weight, and W b is the binarized weight:

W b
i =

1, Wi ≥ 0,

−1, Wi < 0
(4.1)

However, Equation (4.1) cannot be used for back-propagation. Equation (4.1) causes

the gradient become zeros everywhere. To modify this function to be trainable, BC

overwrites the back propagation of Equation (4.1) to Equation (4.2), where L is the loss

function. Equation (4.2) allows gradients to be able to pass through Equation (4.1) in

the same manner as an identity function:

∂L

∂Wi
=

∂L

∂W b
i

(4.2)

33

NINNART FUENGFUSIN - 18899039 34

In BC, there is an additional modification known as weight clipping to the updating

equation as illustrated in Equation (4.3), where η is the learning rate. Equation (4.3)

clips the updated weights into the range of [-1, 1]. This pushes the weights back into the

active region [13].

Wi = min(max(Wi − η
∂L

∂Wi
,−1), 1) (4.3)

4.2 Binarized Neural Networks

To further improve hardware friendliness to BC, Binarized neural network [14] (BNN)

was proposed. Both weights and activation were quantized using Equation 4.1 instead of

only weights comparing with BC. With both weights and activation of BNN are {−1, 1},
the multiplication between them can be replaced with XNOR logic operation, which is

represented in Table 4.1.

Table 4.1. Truth table of XNOR gate operation, where inputs are A and B and the
output is Y .

A B Y = A⊕B

0 0 1

0 1 0

1 0 0

1 1 1

After XNOR operations, the results can be accumulated using the bincount operation

which counts a number of differences between 1 and −1. This also further reduces the

amount of hardware utilization. This quantization of activation cannot be directly done.

BNN modifies the back propagation function of the activation quantization with the

straight-through estimator [43].

4.3 Ternary Weight Networks

Ternary weight network (TWN) [15] is a QNN that quantizes its weights in each layer

to the set {−Si, 0, Si}, where Si ∈ R, W t represents the ternarized weights, and i is

the order of layer. Si can be determined using Equation (4.4). The TWN quantization

equation is presented in Equation (4.5), where ∆ is a threshold that can be determined

by using Equation (4.6).

34/62

NINNART FUENGFUSIN - 18899039 35

Si = Ei∈{i||Wi|>∆}(|Wi|) (4.4)

W t
i =

Si, Wi > ∆i,

0, Wi ≤ ∆i,

−Si, Wi < −∆i

(4.5)

∆i = 0.7× E(|Wi|) (4.6)

In Equation (4.6), a constant 0.7 is realized by assuming the weight Wi are generated by

a normal distribution with zero mean and σ2 variance. By using a discrete optimization,

the optimal threshold ∆i can be found in this case the optimal threshold is 0.6σ that is

equal to 0.75× E(|Wi|). To compute easily, the authors simplify down to 0.7× E(|Wi|)
instead.

Compared to BC, with an additional zero in the weight space, the TWN has higher

performance. However, by excluding scaling factors, this doubles the number of bits to

represent its weight. With an additional zero, TWN introduces the concept of sparsity.

Sparsity is defined as the number of zeros in a given array divided by the number of

parameters in the array. Back-propagation of the TWN faces the same problem as

back-propagation of BC. The TWN solves this problem with the same method as BC,

which is using the redefined back-propagation of the quantization equation, as expressed

in Equation (4.7):

∂L

∂Wi
=

∂L

∂W t
i

(4.7)

4.4 Mixed-precision Model

In prior works, there are at least two cases to deploy a mixed precision model. The

first case is due to a limitation of low-precision models; for instance, Nakahara et al.

[44] proposed a binarized YOLOv2 [45] designed for FPGA implementation. However, a

binarized neural network (BNN) [14], or a QNN with both binary weights and activations

35/62

NINNART FUENGFUSIN - 18899039 36

does not perform a bounding box prediction or regression task effectively. Nakahara et al.

assigned the last layer of binarized YOLOv2 as the floating-point instead to address this

problem. Another case is to improve the performance of the low-precision model as close

as a 32-bit floating-point model. For instance, Chu et al. [46] proposed a quantization

method to progressively reduce the bit-width from the input to the last layer. This

method is realized from an observation that the feature distributions in the shallow layer

contain a low quantity of class separability while in the deeper layers, the distributions

have a high quantity of class separability. Wang et al. [47] proposed a method using

reinforcement learning to search suitable bit-widths in the layer-wise direction. Using

a hardware simulator, the energy and latency of the quantized model were utilized as

direct feedback to the reinforcement learning controller.

4.5 FPGA Implementation of Quantization models

In terms of prior works in the FPGA, several works focus on QNNs with both weights

and activations as either binary, fixed-point, or floating-point. For instance, FINN [48]

and GUI-based binarized Neural NEtwork SyntheSizer toward FPGA (GUINNESS) [49]

are frameworks to construct BNN to the FPGA. Both FINN and GUINNESS utilizes

HLS as a backend component to deploy BNN models into FPGA. GUINNESS GUI can

be shown in Figure 4.1. Rongshi et al. [50] and Cho et al. [51] also utilized HLS to

construct a floating-point and fixed-point CNN, respectively.

Fig 4.1. GUINNESS Graphical user interface. The specifications of BNN model can
be selected for an extended. GUINNESS can train BNN with the selected specification
using Chainer backend. After training, the user can utilize these weights to deploy with
HLS.

36/62

NINNART FUENGFUSIN - 18899039 37

4.6 Novelties

This study aims to achieve the performance of a 32-bit floating-point model while

maintaining the properties of QNNs. To the best of my knowledge, comparing to

previous researches in the mixed-precision network field, my novelty is I utilized a BO

to search a suitable quantization layer instead of using the reinforcement learning, or

differentiable architecture search [52]. I provide the ASB score that I specifically designed

for the weight spaces. I included a sparsity as a part of ASB, and I also left a choice to

not quantization into the search space.

Compared with prior works in the FPGA field, to the best of our knowledge, my novelty

is to provide a first FPGA implementation of binary or ternary weights model with

floating-point activation. Furthermore, to effectively deploy binary or ternary weights

and floating-point activations, I also introduce XOR-signed bit (XSB) and ternary-bitwise

operation (TBO) to replace floating-point multiplications with bitwise operations.

37/62

Chapter 5

Experimental Results and

Discussion

5.1 Software Simulation

In this section, I separated into three sections: Fashion-MNIST, CIFAR10, and ILSVRC

2012 datasets. In the Fashion-MNIST section, I further evaluated my heuristic rules by

running a grid search covering all possible combinations of the MPWN with the LeNet-5

model. Then, I applied BO to search for optimal MPWN combinations in terms of the

ASB score. I evaluated a number of search iterations necessary to obtain a model with

better ASB than heuristic rules. I also experimented to examine the effect of converting

half to float. In the CIFAR10 section, I evaluated the robustness of my proposed methods

by performing BO searches with ResNet-18 [36] model and CIFAR10 dataset. Finally, in

ILSVRC 2012, I utilized the best MPWN combination from the CIFAR10 section and

evaluated the generalization to ILSVRC 2012.

5.1.1 Fashion-MNIST

To evaluate the MPWN model, I used the Fashion-MNIST dataset [22] as a benchmark

image dataset. Fashion-MNIST is a clothing image dataset that consists of 60,000

training images and 10,000 test images. Each image is a grayscale image consisting of

28x28 pixels. I preprocessed each pixel value to the range [0, 1] by dividing each pixel

by the maximum pixel intensity, 255. In this part, my MPWN model was programmed

using PyTorch [17], a deep learning framework. The base structure of the CNN that I

applied to the MPWN was LeNet-5 [4] with the structure: 6C5−MP2− 16C5−MP2−
120FC − 84FC − 10Softmax, where C5 is a 5× 5 convolutional layer, MP2 is a 2× 2

38

NINNART FUENGFUSIN - 18899039 39

max-pooling layer, FC is a fully-connected layer and Softmax is an output layer. I

used the rectified linear unit (ReLU) as the activation function and applied dropout

[34] in the fully-connected layers with p = 0.5 except in the last layer. I utilized batch

normalization [35] to stabilize my training process, and my model was optimized with

Adam [31] with initial learning of 10−3. I trained all models for 200 epochs and stepped

down the learning rate to one-tenth every 75 steps. I set the training batch size to 128

and I utilized ASB with α = 1, β = 1, and γ = 1 in this experiment.

To visualize the heuristic rules, I performed a grid-search across all possible combinations

of the MPWN; in other words, I trained 35 = 243 combinations of the model. I

summarized all metrics from these combinations into three box plots. In Figs 5.1 and 5.2.

present box-plots that display the test accuracy on the y-axis and the type of weight

layer on the x-axis. By running all possible combinations, F in the first and last layer

correlates with the test accuracy compared with other weight layers. However, F in

the last layer has an excessively high variance compared with F in the first layer. This

reveals that I can update the last heuristic rules by changing the last layer of the CNN

from F to other types of layers. However, the first should remain F.

Fig 5.1. Box plot of test accuracy and effect of layer type in the first layer.

The third layer of LeNet-5 contains the highest number of parameters compared with

other weight layers. From the first heuristic rule, setting the third layer as T affects the

sparsity of the model, as illustrated in Figure 5.3. Note that the T layer in FBTBF

contains sparsity within the layer as 0.4974. This amount of sparsity can be counted as

0.3495 sparsity of the model. This first heuristic rule contains another advantage. Placing

T only in layers that contain a large number amount of parameters (fully-connected layer)

eases the hardware implementation relative to the convolutional layer, which contains a

large number amount of for loops.

39/62

NINNART FUENGFUSIN - 18899039 40

Fig 5.2. Box plot of test accuracy and effect of layer type in the last or fifth layer.

Fig 5.3. Box plot of sparsity and effect of layer type in the third layer.

The results of MPWN, TWN, BC, and BNN are presented in Table 5.1. In Table 5.1, I

defined the ASB before as ASB without the min-max normalization and I also defined

ASB as ASB with the min-max normalization. I report metrics in the training epoch

that achieved the highest test accuracy. It should be noted that to scale with other

methods; I did not apply the scaling factor Si in Equation (4.4) to the TWN. I also did

not clip weights in B layer with Equation (4.3). With heuristic rules, the FBTBF model

is the optimized model. As displayed in Table 5.1, FBTBF obtains the advantages (i.e.,

accuracy, sparsity, and the number of bits) from the 16-bit floating-point, TWN, and BC

models in a single model. However, by running all possible combinations of the MPWN,

I found that the best ASB model without the min-max normalization was FTTTT

with ASB as 0.7558. Comparing MPWN, TWN, and BC with BNN, BNN with binary

activations promises a better hardware friendliness where its feature maps accumulation

40/62

NINNART FUENGFUSIN - 18899039 41

can be replaced with popcount operation. However, its test accuracy is significantly

dropped comparing with other methods.

Table 5.1. Comparison between different combinations the mixed-precision weights
network. ASB before denotes ASB without the min-max normalization and ASB
denotes ASB with the min-max normalization.

Type of layers Test accuracy Sparsity Amount of bit ASB before ASB

Full Precision 0.9109 0.0 707,040 0.3036 0.3333
TWN [15] 0.8928 0.4852 88,380 0.751 0.7551
BC [13] 0.8798 0.0 44,190 0.6057 0.3477
BNN [14] 0.8475 0.0 44,190 0.595 0.0164
FBTBF 0.8984 0.3495 89,760 0.7069 0.7289
FTTTT 0.9036 0.4919 90,480 0.7558 0.8689
FTTTF 0.9071 0.4911 102,240 0.7512 0.8984

I plotted a box-plot of distributions of each element in ASB score as illustrated in Figure

5.4. In Figure 5.4, there are differences in mean and variance between each metric.

Therefore, each metric contributes differently to ASB. I applied the Pearson correlation

to measure the contributions of a, s, and b to ASB. I found that the Pearson correlation

between a, s, and b to ASB are -0.2249, 0.5575, and 0.8493, respectively. The main issue

in this ASB is the correlation between a and ASB is negative. I expected this issue is

caused from the variance of a is insignificant or 5.36× 10−5 comparing with s and bnor

that is 0.09865 and 0.03881, respectively.

Fig 5.4. Distributions of accuracy, sparsity, and normalized bit from all possible
combinations of MPWN with LeNet-5.

One of main contribution of the small variance of a is that it contains a narrow range of

distribution from the minimum value at 0.8784 and maximum value at 0.9109. To improve

the variance issue of a, I can rescale all element in ASB into the same scale by using

a min-max normalization. By applying with the min-max normalization, normalized

metrics are illustrated in Figure 5.5. The Pearson correlation between a, s, and bnor

41/62

NINNART FUENGFUSIN - 18899039 42

to ASB became 0.2816, 0.7743, and 0.5153, respectively and the variance of a, s, and

bnor becomes 0.05074, 0.1302, and 0.0112, respectively. The best combination in term

of ASB is changed from FTTTT to FTTTF. I expected by rescaling the range of a,

this signified the correlation between the F layer to ASB score, therefore the FTTTF

becomes more important than FTTTT.

The min-max normalization requires minimum and maximum values of a, s, and bnor

to perform the normalization. However, to find the actual minimum and maximum

values, in the worst case, this requires training all possible MPWN combinations, which

is not feasible with the large model. Therefore, I estimated the minimum and maximum

values by using the estimating rules that I mentioned in the mixed-precision weights

network section instead. I compared the mean square error (MSE) between normalized

values from the estimating rules to the normalized values from the actual maximum and

minimum values to evaluate the estimating rules. I also compared normalized values

from maximum and minimum values that were known from the random search. These

comparisons are shown in Table 5.2. The box-plot of ASB after min-max normalization

with actual and estimated values are illustrated in Figure 5.5.

Table 5.2. Comparison between the min-max normalization from the random search
and the estimating rules. Proposed denotes the minimum and maximum values from
the estimating rules. GPU time indicates the total training time with the same
setting as the Fashion-MNIST section using NVIDIA GeForce GTX 1080 and Intel
Xeon CPU E5-1620 v3.

Round of
random search

MSE of a MSE of s MSE of b MSE ofASB
GPU time
(minute)

10 0.0251 0.0119 1.377× 10−3 4.496× 10−3 208
30 2.71× 10−3 3.307× 10−3 0.2697× 10−3 0.6016× 10−3 603

50 2.01× 10−3 0.0 2.769× 10−6 0.211 × 10−3 991

Proposed (3) 0.524 × 10−3 4.827× 10−3 0.0 0.366× 10−3 59

Fig 5.5. Box plots of each elements in ASB after the min-max normalization. Left:
after the min-max normalization with estimated minimum and maximum values. Right:
after the min-max normalization with actual minimum and maximum values.

From Table 5.2, by using the random search for 50 iterations or approximately one-fifth of

all possible combinations, the random search achieved the lower MSE of ASB comparing

with the estimating rules or Proposed. These results indicate that my estimating rules

42/62

NINNART FUENGFUSIN - 18899039 43

did not perfectly estimate the minimum and maximum values. However, my estimating

rules still provide a better alternative if I do not wish to train for 50 different models.

5.1.1.1 Bayesian Optimization

I conducted an experiment with BO and the ASB score with α = 1, β = 1, and γ = 1. I

evaluated the effectiveness of BO in finding optimal combinations of the MPWN. I applied

BO from an implementation from hyperopt [53], and used BO to search for optimized

MPWN models for 100 iterations. I searched with BO for 100 different combinations

of the MPWN. In each iteration, BO received feedback or the ASB score and learned

the subsequent combination of MPWN should be. Figure 5.6 presents the ASB score

improvement of BO in each iteration. The ASB score on the y-axis changed only when

BO found a new combination that produced a higher ASB score. I determined that BO

was able to find the global maximum FTTTF after 79 iterations (i.e., approximately

one-third of all possible search numbers). BO was able to find a better alternative to

FBTBF or a model with an ASB score higher than 0.7289 after 5 iterations of searching.

Therefore, heuristic rules still provide a better alternative if I do not wish to spend the

time and resources to train 5 different models.

Fig 5.6. Bayesian optimization search with ASB score. This graph displays the best
ASB in the current iteration search. The score changes when a higher score is found.
The orange dashed line indicates the normalized ASB score of the heuristic rule
(0.7289).

To visualize how this BO operates, I performed 100 iterations of BO with optuna [54].

By using BO with optuna, an optuna slice plot can be accessed and used to visualize as

shown in Figure 5.7. This figure indicates that BO treads to discover high ASB scored

combinations after BO had trained for certain iterations. In addition, this plot also

indicates how ASB correlates with each weight space. For instance, in w0 section, weight

space f or F treads to out-performs all other combinations in term of ASB. This suggests

43/62

NINNART FUENGFUSIN - 18899039 44

that F should be utilized in the first layer to maximize ASB scores. With a same concept,

in term of w1, the suggested weight space can be either F, B and T. In w4, the weight

space can be either F and T. In w2 and w3, the suggested weight spaces are T.

Fig 5.7. The slice plot from optuna shows the darker the color of data point the
higher number of search BO performed. w0 indicates a first layer of the model, while
w4 indicates the last layer of the model. On x-axis, f, b, and t are type of weight space
which equivalent to F, B, and T respectively.

5.1.1.2 Effect of float and half on MPWN model

After training the FTTTF model for 200 epochs, I measured the effect of converting all

parameters in the MPWN from float to half. I conducted this experiment in the PyTorch

environment. The results are presented in Table 5.3. The performance of the FTTTF

does not change. Therefore, in this case, I was able to convert float to half without

performance loss.

Table 5.3. Comparison between float and half from FTTTF model.

Test accuracy Difference with float

float 0.9053 0.0

half 0.9053 0.0

5.1.2 CIFAR10

In this section, I further evaluated my proposed methods by applying BO with ResNet-18

[36] and CIFAR10 [23] dataset. ResNet-18 is a CNN consisting of 18 weight layers with

several residual connections that allow both feature maps and gradients to flow. CIFAR10

is an image dataset that consists of 50,000 training images and 10,000 test images. Each

image is an RGB image consisting of 32x32 pixels. I preprocessed each image in a

channel-wise direction with means and standard deviations of the training dataset. To

modify ResNet-18 to operate with CIFAR10, I adjusted the first convolutional layer of

ResNet-18 to 64C3 with a stride of one and removed the max-pooling layer. To avoid

overfitting, I applied data augmentations by random padding border pixels of an image

44/62

NINNART FUENGFUSIN - 18899039 45

with four pixels and random crop the image back to the original 32x32 pixels. The image

was further augmented by random horizontal flipping. I trained the ResNet-18 with 256

batch size for 150 epochs with Adam [31]. I set an initial learning rate with 10−3 and

step down to one-tenth every 50 epochs. I quantized all weight layers within ResNet-18,

including weights from residual connections. For the notation, I denote weights from

residual connections after the underscore. For instance, FFFFF FFF indicates a neural

network with five F weight layers and three residual connections with F weights.

I performed 70 rounds of BO search with ASB (α = 1, β = 1, and γ = 1). Each metric of

ASB was normalized with the estimating rules. Since there are 318 possible combinations

of MPWN, outcomes of this BO search are not expected to contain a global maximum of

ASB. I displayed the top-5 ASB combinations from BO search in Proposed section of

Table 5.4. I also included a Baseline section that consists F, B, and T models. Note

that in Baseline, I also calculated ASB with the estimating rules.

Table 5.4. Top-5 combinations from each BO search. Iteration denotes the number
of BO searches. Note that the a, s, and b are not normalized with the min-max
normalization and Iteration starts with 0.

Combinations ASB a s b Iteration

Baseline
FFFFFFFFFFFFFFFFFF FFF 0.3333 0.9366 3.584× 10−6 178,629,632 -
TTTTTTTTTTTTTTTTTT TTT 0.7852 0.9221 0.93557 22,328,704 -
BBBBBBBBBBBBBBBBBB BBB 0.3333 0.9209 6.27× 10−7 11,164,352 -

Proposed
FFFTTTFTBBBFTTTTTF TBT 0.8156 0.9276 0.8086 32,713,728 64
FFTBTTFTFBFFTTBTTF TBT 0.8092 0.935 0.5996 40,860,672 37
BFFTFTFBFBTFTTTTTF TBT 0.7915 0.9248 0.8486 35,858,112 4
FFFTTTFFBBTFTTTTTF TBB 0.7717 0.9232 0.8413 35,236,864 22
FFTTTTFBFBTFTTTBTF TTB 0.7504 0.9286 0.5945 32,394,240 55

In Table 5.4, I discovered patterns of heuristic rules in the top-5 combinations. In

ResNet-18, the number of weight parameters increases gradually from the first to the last

convolutional layer. Therefore, the last three convolutional layers of ResNet-18 contribute

63.34 percent of all weight parameters. Using the first heuristic rule (layers that contain

a large number of weight parameters should be T), these last three convolutional layers

should be T to maximize the sparsity. This pattern of first and third heuristic rule (the

first and last layers should be F) can be identified throughout Proposed. With patterns

of heuristic rules appeared in top-5 combinations, this signified a correlation between the

heuristic rules and optimal ASB combinations.

Using BO with ASB allows searching a better alternative to models from Baseline.

For example, FFFTTTFTBBBFTTTTTF TBT or the top-1 model in Proposed

contains all desired properties of ASB or high test accuracy, sparsity while maintaining

a low amount of bits in a single model.

45/62

NINNART FUENGFUSIN - 18899039 46

5.1.3 ILSVRC 2012

I utilized the best combination or FFFTTTFTBBBFTTTTTF TBT from CIFAR10

section and utilized with ILSVRC 2012 dataset. In contrast to CIFAR10 section, I

used with original ResNet-18 with this dataset. I resized all images to 256x256. During

training, I cropped the images to 224x224, randomly horizontal flipped images, and

channel-wise normalization with a mean and standard deviation from the training dataset.

During validation, I center-cropped images to 256x256 and resized the cropped images

to 224x224. I trained the ResNet-18 with 256 batch size for 100 epochs with Adam [31].

I set an initial learning rate with 10−3 and step down to one-tenth every 30 epochs. I

did not use weight decays with QNNs and MPWN while F model was utilized with a

weight decay of 1× 10−4. The results are shown in Table 5.5. In this experiment, I set a

as the top-1 accuracy.

Table 5.5. ILSVRC 2012 results with the best ASB combination from CIFAR10
section. Note that the a, s, and b are not normalized with the min-max normalization
and Iteration starts with 0.

Combinations ASB a s b

Baseline
FFFFFFFFFFFFFFFFFF FFF 0.3333 0.621 1.773× 10−5 178,752,512
TTTTTTTTTTTTTTTTTT TTT 0.8944 0.6058 0.4708 22,344,064
BBBBBBBBBBBBBBBBBB BBB 0.3333 0.5602 0.0 11,172,032

Proposed FFFTTTFTBBBFTTTTTF TBT 0.9631 0.6335 0.3828 32,836,608

In term of accuracy and ASB, our combination FFFTTTFTBBBFTTTTTF TBT

provides the best performance comparing with other baseline models. However, due to

the long training time of this dataset, I cannot perform the hyper-parameter searches

carefully for each model. These results in each combination may not be fully optimized.

I think that these results can be improved with more hyper-parameter searches.

5.2 FPGA Synthesis and Implementation

In this section, I synthesized a FTTTF model with Vivado HLS version 2019.02 and

implemented this model with Xilinx Vivado 2019.2 [55]. I evaluated the model in terms

of latency and hardware area compared with a conventional 32-bit floating-point model.

I also performed comparisons between models with directives and without directives.

All hardware synthesis results were obtained by using VHLS with the option of C

synthesis. The target FPGA was Zynq UltraScale+ MPSoC ZCU102 (ZCU102) or

xczu9eg-ffvb1156-2-i. ZCU102 consisted of the following hardware resources: 1824

BRAM 18K, 2520 DSP48E, 548,160 FF, and 274,080 LUT. Our FPGA operated with a

target clock frequency of 100 MHz, and my implemented model used weights and biases

from training in the software simulation part.

46/62

NINNART FUENGFUSIN - 18899039 47

5.2.1 XOR signed-bit and ternary bitwise operation synthesis

I synthesized XSB and TBO as a replacement for multiplication between half and int1

and half and int2, respectively. Therefore, I compared hardware resources and latency

with multiplication between other data types, as illustrated in Table 5.6.

Table 5.6. Comparison of latency and hardware utilization of multiplication between
two variables with data type 1 and 2, respectively. The latency unit is a clock cycle.
The two last row represents XOR signed bit and ternary bitwise operation, respectively.

Data type 1 Data type 2 Latency
Hardware Resource
DSP48E FF LUT

double double 4 11 304 236

float float 1 3 130 150

half half 1 2 66 49

half int1 0 0 0 2

half int2 0 0 0 32

Using XSB instead of floating-point arithmetic significantly reduced the latency and

hardware resources. XSB consumed only two LUTs to perform multiplication, while

TBO consumes 32 LUTs. Each pair of LUTs is used to construct a logic gate. Therefore,

XSB utilizes a logic gate, while TBO utilizes 16 logic gates. Note that in both XSB and

TBO, the latency cannot be zero in practice. I only displayed the results from VHLS C

synthesis.

In terms of behavior, XSB should perform in the same manner as Listing 5.1. Listing 5.1

detects the most significant bit (MSE) of the binary weight and flips the MSE of float.

However, detecting requires a control logic which is expensive VHLS. For example, by

using Listing 5.1 to C synthesis with Vivado HLS 2019.2, it consumes 2 cycles at 100

MHz, 2 DSP48Es, 97 FFs, and 150 LUTs. Compared with XSB that consumes only 2

LUTs and 0 latency, XSB is more efficient in hardware utilization and latency.

Listing 5.1. XOR signed-bits using a control logic.

void xor_signed_bit_using_control_logic(int1 w, half x, half &o)

{

#pragma HLS INLINE OFF

o = w.sign() == 0 ? x : -x;

}

5.2.2 Hardware Synthesis

I synthesized the MPWN with FTTTF into an FPGA with VHLS. I performed several

comparisons with the model with float and with and without directives. I used the

47/62

NINNART FUENGFUSIN - 18899039 48

following notations. Proposed signifies that all float data type were replaced with

half ; in T, the multiplication was replaced with TBO. Base-line signifies that all data

types were float and that all operations in the model were the floating-point arithmetic.

Directive signifies that I applied optimization directives in VHLS to optimize the latency

of the model with parallelism. However, this resulted in a trade-off of higher hardware

utilization.

A comparison of the latency and resources using these methods is presented Tables 5.7

and 5.8, respectively. Table 5.7 includes comparisons with ARM Cortex-A53. I utilized

ARM Cortex-A53 in Zynq UltraScale+ MPSoC ZCU102. To use this CPU, I generated

a PetaLinux image [56] and executable files from C++ files using SDSoC 2018.3 [57].

The setting of these C++ files was the same as Base-line. I ran executable files three

times and reported the latency mean and interval of two standard deviations.

I observed that the convolutional layers had a longer latency than the fully-connected

layers even though there were fewer parameters. I hypothesized that this was due

to the complexity of the convolutional layer, and the VHLS performed worse when

dealing with a large number of for loops in the convolutional layer. With the directives,

both Proposed and Base-line significantly improved the latency; however, they also

significantly increased the hardware utilization. Compared with ARM Cortex-A53, I

reduced the latency by 2.0 to 11.77 times depending on the type of layer.

Table 5.9 includes comparisons in term of latency of MPWNs, Rongshi et al. [50],

GUINNESS [49], and Cho et al. [51]. Rongshi et al. proposed a 32-bit floating-point

LeNet-5 on Xilinx Zybo Z7 board (zynq7020). Cho et al. proposed a fixed-point LeNet-5

model that targets xczu9eg-ffvb1156-2-i. Cho et al. utilized 20-bit fixed-point on the first

layer and 16-bit fixed-point on the latter layers. GUINNESS is a graphical user interface

for training BNN on a GPU and deploying BNN on an FPGA. I utilized the GUINNESS

from [58] to construct a BNN with a default LeNet-5 configuration of GUINNESS. This

BNN was set to target Zynq UltraScale+ MPSoC ZCU102 (xczu9eg-ffvb1156-2-i). All of

the related works operate with the same 100 MHz frequency.

Note that there are several differences between my and related models. The first difference

is Rongshi et al. , and Cho et al. applied the third layer as a convolutional layer instead of

a fully-connected layer that I utilized. The second one is the default setting of GUINNESS

for LeNet-5 is 64C3− 64C3− 64C3− 32AP − 10FC, where 32AP is a global average

pooling that averages feature maps in width and height directions. The third one is

Rongshi et al. , and Cho et al. did not apply batch normalization layers. The fourth

difference is Cho et al. replaced max-pooling layers with average pooling layers and

utilized a Tanh activation function instead of ReLU. The last one is GUINNESS, and

Cho et al. expect grayscale 32x32 images as inputs instead of grayscale 28x28 images that

48/62

NINNART FUENGFUSIN - 18899039 49

I used. Our Proposed directive performed 11.62, 10.03, and 4.556 times less latency

comparing Rongshi et al. , GUINNESS, and Cho et al. , respectively.

Table 5.7. Comparison between different FPGA synthesis of LeNet-5 layer by layer in
terms of latency (ms).

Layer Base-line Proposed
Base-line
directive

Proposed
directive

CPU ARM
Cortex-A53

Comparing Proposed
directive and CPU

Conv#1 7.364 4.738 0.027 0.0264 0.148± 0.009 5.61x
Conv#2 13.059 5.369 0.122 0.119 0.684± 0.009 5.75x
Fully connected#3 2.460 0.924 0.020 0.0147 0.173± 0.002 11.77x
Fully connected#4 0.808 0.304 0.009 0.006 0.066± 0.006 11.0x
Fully connected#5 0.067 0.042 0.004 0.002 0.004± 0.0 2.0x

Table 5.8. Comparison between different FPGA synthesis in terms of hardware
utilization. The number inside parentheses indicates the percentage of hardware
utilization of Zynq UltraScale+ MPSoC ZCU102. In the Total row, some layers may
not be included, such as the flatten, max-pooling, and batch normalization layers.

Layer Components Base-line Proposed
Base-line
directive

Proposed
directive

Conv#1
BRAM-18K 0 (0%) 0 (0%) 0 (0%) 0 (0%)
DSP48E 5 (0%) 4 (0%) 170 (7%) 136 (5%)
FF 591 (0%) 317 (0%) 71,343 (13%) 24,194 (4%)
LUT 814 (0%) 589 (0%) 45,469 (17%) 24,858 (9%)

Conv#2
BRAM-18K 0 (0%) 0 (0%) 0 (0%) 0 (0%)
DSP48E 5 (0%) 2 (0%) 70 (3%) 28 (1%)
FF 598 (0%) 254 (0%) 120,868 (22%) 47,089 (8%)
LUT 894 (0%) 668 (0%) 69,094 (25%) 43,888 (16%)

Fully
connected#3

BRAM-18K 0 (0%) 0 (0%) 0 (0%) 0 (0%)
DSP48E 5 (0%) 2 (0%) 160 (6%) 64 (2%)
FF 542 (0%) 161 (0) 44,342 (8%) 24,294 (4%)
LUT 538 (0%) 302 (0%) 38,933 (14%) 21,869 (8%)

Fully
connected#4

BRAM-18K 0 (0%) 0 (0%) 0 (0%) 0 (0%)
DSP48E 5 (0%) 2 (0%) 150 (6%) 60 (2%)
FF 566 (0%) 185 (0%) 31,682 (6%) 13,486 (2%)
LUT 544 (0%) 302 (0%) 27,134 (10%) 14,874 (5%)

Fully
connected#5

BRAM-18K 0 (0%) 0 (0%) 0 (0%) 0 (0%)
DSP48E 5 (0%) 4 (0%) 140 (6%) 112 (4%)
FF 526 (0%) 227 (0%) 26,240 (5%) 12,891 (2%)
LUT 530 (0%) 304 (0%) 19,937 (7%) 11,570 (4%)

Total
BRAM-18K 40 (2%) 25 (1%) 51 (3%) 29 (1%)
DSP48E 54 (2%) 43 (1%) 719 (29%) 429 (17%)
FF 8,228 (2%) 3,831 (0%) 302,914 (55%) 126,198 (23%)
LUT 14,360 (5%) 9,232 (3%) 214,386 (78%) 126,787 (46%)

Table 5.9. Comparison between baseline implementation of LeNet-5, my proposed
method, and related works in term of latency.

Latency (ms) Comparison with Baseline

Baseline 24.799 1x

Proposed 11.995 2.07x

Baseline directive 1.222 20.29x

Proposed directive 0.786 31.55x

Rongshi et al. [50] 9.135 2.715x

Cho et al. [51] 3.581 6.925x

GUINNESS [49] 7.882 3.146x

49/62

NINNART FUENGFUSIN - 18899039 50

5.2.3 Hardware Implementation

To implement the model, I exported my model in VHLS as intellectual property (IP).

I used Vivado 2019.2 to implement the exported IP to ZCU102. The results of the

implementation are provided in Tables 5.10 and 5.11. In Table 5.10, there is an addi-

tional hardware resource which is the look-up table random-access memory (LUTRAM).

Comparing Tables 5.8 and 5.10, the synthesis and implementation displayed a different

amount of hardware utilization. Note that in Table 5.10, Cho et al. did not provide

the hardware utilization from the implementation. Therefore, I reported the Cho et al.

synthesis results in Table 5.10. In terms of Proposed and Proposed directive, the

implementation exhibited significantly reduced hardware utilization than the synthesis.

Our Proposed reduced LUT 2.31 times, LUTRAM 11.25 times, FF 2.89 times, BRAM

1.6 times, and DSP 1.25 times compared to Baseline. Proposed directive further

reduced LUT 2.59 times, LUTRAM 4.89 times, FF 2.92 times, BRAM 1.76 times, and

DSP 1.68 times compared with Baseline directive. Comparing with Rongshi et al. ,

GUINNESS, and Cho et al. , my Proposed directive utilizes more hardware utilization

except for BRAMs.

Both Baseline directive and Proposed directive utilizes higher overall hardware

resources than other methods due to my FPGA implementation designed to minimize the

latency by using a higher degree of parallelism comparing with other methods. Comparing

between our Proposed directive with GUINNESS in term of hardware utilization

indicates that our Proposed directive significantly consumes a lot of resource than

GUINNESS. I hypothesized that one of the factors is this FPGA implementation still

utilizes the floating-point accumulations.

Table 5.11 presents a comparison in terms of power utilization. Proposed reduced the

power consumption of Baseline 1.18 times. However, Proposed directive further

reduced the power consumption 2.05 times compared to Base-line directive. Although

my Proposed directive consumed more hardware resources than Rongshi et al. ,

my power consumption of Proposed directive is less than Rongshi et al. 1.27 times.

However, my Proposed directive still consumes 2.142 times more power consumption

than GUINNESS.

50/62

NINNART FUENGFUSIN - 18899039 51

Table 5.10. Comparison between FPGA implementations of LeNet-5 in the term of
hardware utilization. In an improvement factor column displays pairwise comparisons
between Baseline with Proposed and Baseline directives with Proposed
directives. All improvement factors from related works are compared with Baseline
directives.

Components Total amount
Improvement

factor

Baseline
LUT 8,305 1.0x
LUTRAM 180 1.0x
FF 6,787 1.0x
BRAM 20 1.0x
DSP 55 1.0x

Proposed
LUT 3,599 2.31x
LUTRAM 16 11.25x
FF 2,345 2.89x
BRAM 12.5 1.6x
DSP 44 1.25x

Baseline
directive

LUT 209,720 1.0x
LUTRAM 49,477 1.0x
FF 243,540 1.0x
BRAM 25.5 1.0x
DSP 719 1.0x

Proposed
directive

LUT 81,050 2.59x
LUTRAM 10,142 4.88x
FF 83,266 2.92x
BRAM 14.50 1.76x
DSP 429 1.68x

Rongshi
et al. [50]

LUT 14,659 14.31x
FF 14,172 17.18x
BRAM 119.5 0.2134x
DSP 125 5.752x

Cho
et al. [51]

LUT 32,589 6.435x
FF 33,585 7.251x
BRAM 95 0.2684x
DSP 143 5.028x

GUINNESS
[49]

LUT 5,034 41.66x
LUTRAM 278 178x
FF 4,417 55.14x
BRAM 23.5 1.085x

51/62

NINNART FUENGFUSIN - 18899039 52

Table 5.11. Comparison between implementations of LeNet-5 in terms of total on-chip
power (W). The improvement factor column displays a pairwise comparison between
Baseline with Proposed and Baseline directives with Proposed directives. All
improvement factors from related works are compared with Baseline directives.

Total on-chip
power (W)

Improvement
factor

Baseline 0.852 1.0x

Proposed 0.72 1.18x

Baseline directive 2.901 1.0x

Proposed directive 1.414 2.05x

Rongshi et al. [50] 1.8 1.612x

Cho et al. [51] - -

GUINNESS [49] 0.66 4.395x

52/62

Chapter 6

Conclusion

In this study, I introduced MPWN, a QNN that jointly utilizes three weight spaces:

floating-point, binary, and ternary. I proposed a systematized search to find optimal

MPWN combinations with BO and the ASB score. To ensure that each metric of

ASB has a positive correlation with ASB, I introduced a min-max normalization to

rescale each metric of ASB. To accelerate the min-max normalization process, I provided

estimating rules to estimate the minimum and maximum values of each ASB metric

using information from only three models. I further evaluated previously proposed

heuristic rules and the trade-off between heuristic rules and BO search. Finally, my

hardware implementation exploited the MPWN’s weight space in the MPWN with

TBO and a specific data type. These elements demonstrated that the MPWN could be

implemented in an FPGA with significantly fewer hardware resources and lower on-chip

power consumption and latency than a conventional 32-bit floating-point neural network.

This work provides a pipeline to deploy a mixed-precision model to an edge device

in terms of application. The user can indicate which metrics in ASB to prioritize by

adjusting α, β, and γ weights. By optimizing the user-defined ASB score with BO,

the user may discover a suitable combination for a given task. This work also provides

a replacement of multiplication between floating-point weights and ternary or binary

weights. The user can utilize these TBO and BO to efficiently deliver low latency and area

operations to the user model. Using this pipeline, the deployment of the mix-precision

model should be simplified in both hardware and software directions.

In general, the performance and amount of bit of a model can be adjusted by another

approach, the neural architecture search. This neural architecture search can adjust the

type of layer, the number of weights, others. Our final goal in this research is to search

for the best neural architecture and bit-width precision given the task and computing

resource. Unifying both the neural architecture and mixed-precision search spaces allows

53

NINNART FUENGFUSIN - 18899039 54

more possibilities. This may enable finding interesting bit-width combinations and novel

models

6.1 Future Works

This work can be extended in both software and hardware directions. In the software

section, floating-point accumulations in MPWN consume a significant proportion of

overall hardware resources. To reduce this hardware requirements, one of possible

solutions is an int8 or 8-bit integer quantization [59]. The int8 quantization provides an

estimation of floating-point array using an int8 array, floating-point scaling factor values

and bias values. In general, converting 16-bit floating-point activation to int8 activation

should reduce overall hardware usages in accumulation operations.

To explore this possibility, I conducted an initial Python simulation experiment with

int8 quantization and MPWN. This int8 was replicated from PyTorch implementation

of int8 quantization. Note that my replication still has some mismatches with PyTorch

int8 quantization. In this replication, I found that with FTTTF combination, the test

accuracy is dropped by only 0.0002. I also experimented with Vitis HLS 2020.2 to check

resource utilization and latency from int8 addition. The result is shown as in Table

6.1. Comparing between int8 addition and float, by replacing int8 promises significant

lower hardware utilization. With both experiments, I think this shows an interesting

promise to int8 quantization to MPWN; however more experiments are required to check

to scalability and corrections.

Table 6.1. Comparison of latency and hardware utilization of addition between two
variables with data type 1 and 2, respectively. The latency unit is a clock cycle.

Data type 1 Data type 2 Latency
Hardware Resource
DSP48E FF LUT

double double 4 3 450 813

float float 3 2 231 240

half half 2 2 96 127

int8 int8 1 0 0 15

As mentioned in the conclusion section, I would like to add more search spaces from

the neural architecture search to the MPWN search space. Currently, I did not know

how to implement a model that can utilize both search spaces. Because the search space

becomes significantly larger, for instance, the solutions for a low-bit-width model can be

both a high-precision compact model or a low-precision large model.

In the hardware direction, my current FPGA implementation still does not support

sparsity. To effectively utilize the sparsity, it requires a sparse matrix format as the

54/62

NINNART FUENGFUSIN - 18899039 55

input to the layer. To support that, I implemented the COO (Coordinate list) format

of the sparse matrix. COO provides a fixed number of variables across all arrays;

therefore, COO is suitable for the hardware implementation comparing with other

formats. However, without the time, my implementation of COO with a convolutional

operation or matrix multiplication can be done for sequential processing only. Therefore,

the parallel processing of COO should be considered in future works.

55/62

Publications

Journal

• Ninnart Fuengfusin, Hakaru Tamukoh, “Mixed-precision weights network for field-

programmable gate array,” PLoS ONE. 2021; 16(5):e0251329.

https://doi.org/10.1371/journal.pone.0251329

• Ninnart Fuengfusin, Hakaru Tamukoh, “A Sub-Model Detachable Convolutional

Neural Network,” Journal of Robotics, Networking and Artificial Life, Accepted,

2021.

• Ninnart Fuengfusin, Hakaru Tamukoh, “Network with Sub-networks: Layer-wise

Detachable Neural Network,” Journal of Robotics, Networking and Artificial Life,

Vol. 7, No. 4, pp. 240-244, March 2021.

Interational Conference Proceeding

• Ninnart Fuengfusin, Hakaru Tamukoh, “Convolutional Network with Sub-Networks,”

The 2021 International Conference on Artificial Life and Robotics (ICAROB2021),

OS19-1, Online, January 21- 24 (22), 2021.

• Ninnart Fuengfusin, Hakaru Tamukoh, “Multi-Sampling Classifiers for the Cooking

Activity Recognition Challenge,” Activity and Behavior Computing (ABC 2020),

ABC 264, Kitakyushu, Japan, August 26-29 (29), 2020.

• Ninnart Fuengfusin, Hakaru Tamukoh, “Network with Sub-Networks,” The 2020

International Conference on Artificial Life and Robotics (ICAROB2020), OS20-2,

Oita, Japan, January 13-16 (14), 2020.

• Ninnart Fuengfusin, Hakaru Tamukoh “Mixed Precision Weight Networks: Training

Neural Networks with Varied Precision Weights,” 25th International Conference on

Neural Information Processing (ICONIP2018), Siem Reap, Cambodia, December

13-16(15), 2018.

56

https://doi.org/10.1371/journal.pone.0251329

Bibliography

1. A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep

convolutional neural networks,” in Advances in neural information processing

systems, pp. 1097–1105, 2012.

2. L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking atrous con-

volution for semantic image segmentation,” arXiv preprint arXiv:1706.05587,

2017.

3. M. Tan, R. Pang, and Q. V. Le, “Efficientdet: Scalable and efficient object

detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pp. 10781–10790, 2020.

4. Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied

to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324,

1998.

5. Y. LeCun, C. Cortes, and C. Burges, “Mnist handwritten digit database,” AT&T

Labs [Online]. Available: http://yann.lecun.com/exdb/mnist, vol. 2, p. 18, 2010.

6. O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-

thy, A. Khosla, M. Bernstein, et al., “Imagenet large scale visual recognition

challenge,” International journal of computer vision, vol. 115, no. 3, pp. 211–252,

2015.

7. K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale

image recognition,” arXiv preprint arXiv:1409.1556, 2014.

8. M. Horowitz, “Energy table for 45nm process.” Stanford VLSI wiki.

9. S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and connections

for efficient neural network,” in Advances in neural information processing systems,

pp. 1135–1143, 2015.

10. G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,”

arXiv preprint arXiv:1503.02531, 2015.

57

NINNART FUENGFUSIN - 18899039 58

11. F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer,

“Squeezenet: Alexnet-level accuracy with 50x fewer parameters and less than 0.5

mb model size,” arXiv preprint arXiv:1602.07360, 2016.

12. A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. An-

dreetto, and H. Adam, “Mobilenets: Efficient convolutional neural networks for

mobile vision applications,” arXiv preprint arXiv:1704.04861, 2017.

13. M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Training deep

neural networks with binary weights during propagations,” in Advances in neural

information processing systems, pp. 3123–3131, 2015.

14. M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio, “Binarized

neural networks: Training deep neural networks with weights and activations

constrained to +1 or-1,” arXiv preprint arXiv:1602.02830, 2016.

15. F. Li, B. Zhang, and B. Liu, “Ternary weight networks,” arXiv preprint

arXiv:1605.04711, 2016.

16. S. Tokui, K. Oono, S. Hido, and J. Clayton, “Chainer: a next-generation open

source framework for deep learning,” in Proceedings of workshop on machine

learning systems (LearningSys) in the twenty-ninth annual conference on neural

information processing systems (NIPS), vol. 5, pp. 1–6, 2015.

17. A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,

N. Gimelshein, L. Antiga, et al., “Pytorch: An imperative style, high-performance

deep learning library,” in Advances in Neural Information Processing Systems,

pp. 8024–8035, 2019.

18. M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,

G. Irving, M. Isard, et al., “Tensorflow: A system for large-scale machine learning.,”

in OSDI, vol. 16, pp. 265–283, 2016.

19. M. Qasaimeh, K. Denolf, J. Lo, K. Vissers, J. Zambreno, and P. H. Jones, “Compar-

ing energy efficiency of cpu, gpu and fpga implementations for vision kernels,” in

2019 IEEE International Conference on Embedded Software and Systems (ICESS),

pp. 1–8, IEEE, 2019.

20. Xilinx, Vivado-HLS, “Vivado design suite user guide-high-level synthesis,” 2019.

21. K. Honda and H. Tamukoh, “A hardware-oriented echo state network and its

fpga implementation,” Journal of Robotics, Networking and Artificial Life, vol. 7,

pp. 58–62, 2020.

58/62

NINNART FUENGFUSIN - 18899039 59

22. H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image dataset for

benchmarking machine learning algorithms,” 2017.

23. A. Krizhevsky, V. Nair, and G. Hinton, “The cifar-10 dataset,” online:

http://www.cs.toronto.edu/kriz/cifar.html, 2014.

24. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-

scale hierarchical image database,” in Computer Vision and Pattern Recognition,

2009. CVPR 2009. IEEE Conference on, pp. 248–255, IEEE, 2009.

25. F. Rosenblatt, “The perceptron: a probabilistic model for information storage and

organization in the brain.,” Psychological review, vol. 65, no. 6, p. 386, 1958.

26. I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning. MIT press

Cambridge, 2016.

27. K. Fukushima and S. Miyake, “Neocognitron: A self-organizing neural network

model for a mechanism of visual pattern recognition,” in Competition and cooper-

ation in neural nets, pp. 267–285, Springer, 1982.

28. A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane cur-

rent and its application to conduction and excitation in nerve,” The Journal of

physiology, vol. 117, no. 4, pp. 500–544, 1952.

29. H. Robbins and S. Monro, “A stochastic approximation method,” in Herbert

Robbins Selected Papers, pp. 102–109, Springer, 1985.

30. N. Qian, “On the momentum term in gradient descent learning algorithms,” Neural

networks, vol. 12, no. 1, pp. 145–151, 1999.

31. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv

preprint arXiv:1412.6980, 2014.

32. T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop: Divide the gradient by a

running average of its recent magnitude,” COURSERA: Neural networks for

machine learning, vol. 4, no. 2, pp. 26–31, 2012.

33. Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun,

Y. Cao, Q. Gao, K. Macherey, et al., “Google’s neural machine translation sys-

tem: Bridging the gap between human and machine translation,” arXiv preprint

arXiv:1609.08144, 2016.

34. N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,

“Dropout: A simple way to prevent neural networks from overfitting,” The Journal

of Machine Learning Research, vol. 15, no. 1, pp. 1929–1958, 2014.

59/62

NINNART FUENGFUSIN - 18899039 60

35. S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training

by reducing internal covariate shift,” arXiv preprint arXiv:1502.03167, 2015.

36. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”

in Proceedings of the IEEE conference on computer vision and pattern recognition,

pp. 770–778, 2016.

37. H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image dataset for

benchmarking machine learning algorithms,” arXiv preprint arXiv:1708.07747,

2017.

38. A. Krizhevsky, V. Nair, and G. Hinton, “Cifar-10 and cifar-100 datasets,” URl:

https://www.cs.toronto.edu/kriz/cifar.html, vol. 6, 2009.

39. L. H. Crockett, R. A. Elliot, M. A. Enderwitz, and R. W. Stewart, The Zynq

Book: Embedded Processing with the Arm Cortex-A9 on the Xilinx Zynq-7000 All

Programmable Soc. Strathclyde Academic Media, 2014.

40. J. R. G. Ordaz and D. Koch, “On the hls design of bit-level operations and custom

data types,” in FSP 2017; Fourth International Workshop on FPGAs for Software

Programmers, pp. 1–8, VDE, 2017.

41. N. Fuengfusin and H. Tamukoh, “Mixed precision weight networks: Training neural

networks with varied precision weights,” in International Conference on Neural

Information Processing, pp. 614–623, Springer, 2018.

42. A. Agnihotri and N. Batra, “Exploring bayesian optimization,” Distill, 2020.

https://doi.org/10.2991/jrnal.k.200512.012.

43. G. Hinton, N. Srivastava, and K. Swersky, “Neural networks for machine learning,”

Coursera, video lectures, vol. 264, no. 1, 2012.

44. H. Nakahara, H. Yonekawa, T. Fujii, and S. Sato, “A lightweight yolov2: A

binarized cnn with a parallel support vector regression for an fpga,” in Proceedings

of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate

Arrays, pp. 31–40, ACM, 2018.

45. J. Redmon and A. Farhadi, “Yolo9000: better, faster, stronger,” in Proceedings of

the IEEE conference on computer vision and pattern recognition, pp. 7263–7271,

2017.

46. T. Chu, Q. Luo, J. Yang, and X. Huang, “Mixed-precision quantized neural

networks with progressively decreasing bitwidth,” Pattern Recognition, vol. 111,

p. 107647, 2021.

60/62

NINNART FUENGFUSIN - 18899039 61

47. K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, “Haq: Hardware-aware automated

quantization with mixed precision,” in Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pp. 8612–8620, 2019.

48. Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre,

and K. Vissers, “Finn: A framework for fast, scalable binarized neural network

inference,” in Proceedings of the 2017 ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays, pp. 65–74, 2017.

49. H. Nakahara, H. Yonekawa, T. Fujii, M. Shimoda, and S. Sato, “Guinness: A gui

based binarized deep neural network framework for software programmers,” IEICE

TRANSACTIONS on Information and Systems, vol. 102, no. 5, pp. 1003–1011,

2019.

50. D. Rongshi and T. Yongming, “Accelerator implementation of lenet-5 convolution

neural network based on fpga with hls,” in 2019 3rd International Conference on

Circuits, System and Simulation (ICCSS), pp. 64–67, IEEE, 2019.

51. M. Cho and Y. Kim, “Implementation of data-optimized fpga-based accelerator for

convolutional neural network,” in 2020 International Conference on Electronics,

Information, and Communication (ICEIC), pp. 1–2, IEEE, 2020.

52. H. Liu, K. Simonyan, and Y. Yang, “Darts: Differentiable architecture search,”

arXiv preprint arXiv:1806.09055, 2018.

53. J. Bergstra, D. Yamins, and D. Cox, “Making a science of model search: Hyper-

parameter optimization in hundreds of dimensions for vision architectures,” in

International conference on machine learning, pp. 115–123, 2013.

54. T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna: A next-

generation hyperparameter optimization framework,” in Proceedings of the 25th

ACM SIGKDD international conference on knowledge discovery & data mining,

pp. 2623–2631, 2019.

55. Xilinx, Vivado, “Vivado design suite user guide implementation,” 2019.

56. Xilinx, PetaLinux, “Petalinux tools documentation,” 2018.

57. Xilinx, SDSoC, “Sdsoc environment user guide,” 2019.

58. H. Nakahara et al., “Guinness: A gui based binarized neural network synthesizer

toward an fpga.” https://github.com/HirokiNakahara/GUINNESS, 2017. Accessed:

2021-04-02.

61/62

NINNART FUENGFUSIN - 18899039 62

59. B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam, and

D. Kalenichenko, “Quantization and training of neural networks for efficient

integer-arithmetic-only inference,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pp. 2704–2713, 2018.

62/62

	Declaration of Authorship
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Trend of Convolutional Neural Networks
	1.2 Problems of Convolutional Neural Network in Edge Devices
	1.2.1 Researches on Convolutional Neural Network for Edge Devices

	1.3 Why Using Field-programmable Gate Array to Implement Neural Networks?
	1.4 Goal of this research
	1.5 Outline of thesis
	1.5.1 Chapter 1 - Introduction
	1.5.2 Chapter 2 - Background
	1.5.3 Chapter 3 - Related Works
	1.5.4 Chapter 4 - Mixed Precision Weight Networks
	1.5.5 Chapter 5 - Experimental Results and Discussion
	1.5.6 Chapter 6 - Conclusion

	2 Background
	2.1 Artificial Neural Network
	2.2 Elements within Artificial Neural Networks
	2.2.1 Hyper-Parameters
	2.2.2 Fully-connected Layer
	2.2.3 Convolutional Layer
	2.2.4 Activation function
	2.2.4.1 Rectified Linear Unit

	2.2.5 Max-pooling
	2.2.6 Cost or Loss Function
	2.2.6.1 Softmax
	2.2.6.2 Cross-entropy

	2.2.7 Optimization
	2.2.7.1 Gradient Descent
	2.2.7.2 Gradient Descent with Momentum
	2.2.7.3 Adam Optimization

	2.3 Regularization
	2.3.1 Dropout
	2.3.2 Batch Normalization
	2.3.3 L2 Weight Decay

	2.4 Learning Rate Decay
	2.4.1 Step Down Learning Rate

	2.5 Feed-Forward Neural Network Models
	2.5.1 Multiple Layers Perceptron
	2.5.2 LeNet-5
	2.5.3 ResNet-18

	2.6 Benchmark Dataset
	2.6.1 Fashion-MNIST
	2.6.2 CIFAR-10
	2.6.3 ILSVRC 2012

	2.7 Image Pre-processing
	2.7.1 Basic Image Normalization
	2.7.2 Normalization with Mean and Standard Deviation of Training Dataset

	2.8 Quantization Neural Networks
	2.9 Field-programmable Gate Array
	2.10 High-level Synthesis
	2.10.1 Directives and Hardware Design in Vivado High-level Synthesis

	3 Mixed Precision Weight Network and FPGA Design
	3.1 Mixed-precision Weights Network
	3.1.1 1- and 2-bit Signed Integer
	3.1.2 Half-precision Floating-point
	3.1.3 XOR Signed-bits
	3.1.4 Ternary Bitwise Operation
	3.1.5 Overview of FPGA Implementation

	4 Related Works
	4.1 BinaryConnect
	4.2 Binarized Neural Networks
	4.3 Ternary Weight Networks
	4.4 Mixed-precision Model
	4.5 FPGA Implementation of Quantization models
	4.6 Novelties

	5 Experimental Results and Discussion
	5.1 Software Simulation
	5.1.1 Fashion-MNIST
	5.1.1.1 Bayesian Optimization
	5.1.1.2 Effect of float and half on MPWN model

	5.1.2 CIFAR10
	5.1.3 ILSVRC 2012

	5.2 FPGA Synthesis and Implementation
	5.2.1 XOR signed-bit and ternary bitwise operation synthesis
	5.2.2 Hardware Synthesis
	5.2.3 Hardware Implementation

	6 Conclusion
	6.1 Future Works

	Bibliography

