
Flow-level Dynamic Bandwidth Allocation in SDN-enabled Edge Cloud using
Heuristic Reinforcement Learning

Arslan Qadeer
Department of Electrical Engineering

The City College of New York of CUNY
New York, USA

aqadeer000@citymail.cuny.edu

Myung J. Lee
Department of Electrical Engineering

The City College of New York of CUNY
New York, USA

mlee@ccny.cuny.edu

Kazuya Tsukamoto
Department of ECE

Kyutech
Japan

sukamoto@cse.kyutech.ac.jp

Abstract—Edge Cloud (EC) is poised to brace massive
machine type communication (mMTC) for 5G and IoT by
providing compute and network resources at the edge. Yet,
the EC being regionally domestic with a smaller scale, faces
the challenges of bandwidth and computational throughput.
Resource management techniques are considered necessary
to achieve efficient resource allocation objectives. Software
Defined Network (SDN) enabled EC architecture is emerging as
a potential solution that enables dynamic bandwidth allocation
and task scheduling for latency sensitive and diverse mobile
applications in the EC environment. This study proposes a
novel Heuristic Reinforcement Learning (HRL) based flow-
level dynamic bandwidth allocation framework and validates
it through end-to-end implementation using OpenFlow meter
feature. OpenFlow meter provides granular control and allows
demand-based flow management to meet the diverse QoS re-
quirements germane to IoT traffics. The proposed framework is
then evaluated by emulating an EC scenario based on real NSF
COSMOS testbed topology at The City College of New York. A
specific heuristic reinforcement learning with linear-annealing
technique and a pruning principle are proposed and compared
with the baseline approach. Our proposed strategy performs
consistently in both Mininet and hardware OpenFlow switches
based environments. The performance evaluation considers
key metrics associated with real-time applications: throughput,
end-to-end delay, packet loss rate, and overall system cost
for bandwidth allocation. Furthermore, our proposed linear
annealing method achieves faster convergence rate and better
reward in terms of system cost, and the proposed pruning
principle remarkably reduces control traffic in the network.

Keywords-Edge Cloud, Software Defined Networking, Rein-
forcement Learning, Bandwidth Allocation, Resource Manage-
ment, OpenFlow

I. INTRODUCTION

Next generation mobile (e.g. Augmented Reality (AR),
Virtual Reality (VR)) and smart-city applications hold in-
tensive resource hungry and real-time constraints [1]. Edge-
cloud (EC) architecture is a stepping stone to meet the above
real-time constraints by reducing the network latency and
providing the compute, network and storage close to the
user [2]. Edge clouds generally endure a limited amount
of computational and network resources to target the local
users [3]. A large amount of concurrent traffic can be
anticipated and the infrastructure which connects the devices

with EC become a bottleneck for the system. Thus, resource
management for the user traffic from a wide range of
applications at large scale with different QoS requirements
is a challenge.

Resource management in a network is attainable with a
number of different approaches [4], [6], [7]. These include
multipath optimal switching [4], dynamic network orchestra-
tion [6] and cluster-based mechanisms to effectively allocate
network resources [7]. The centralized Software Defined
Networking (SDN) architecture can also be leveraged to
control the resource usage when multiple heterogeneous
users or applications strive for the resources in an EC based
shared network. SDN enables programmability feature of
forwarding devices to enhance the network performance
via efficient resource provisioning and management [9].
Further, network resource management can be optimized
through dynamic bandwidth allocation of the traffic flows.
Bandwidth allocation problem to be addressed in this study
implies allocating resources at the flow level. Resource
allocation based on individual flows allows a fine-grained
control for the traffic from any application and improve the
overall network performance.

Many existing works have proposed different resource
management techniques in SDN [4]–[14]. [5], [8], [11],
[12], [14] adopt machine learning algorithms for bandwidth
allocation, a game theoretic approach is applied for resource
allocation in softwarized networks in [7], and [13] proposes
a context-aware method to improve the content delivery
QoS. [9] considers a special hybrid SDN scenario where
a flow-level strategy with multi-path allocation is proposed
to improve the network utility. An adaptive QoS algorithm is
proposed in [10] which is based on Differentiated Services
(DiffServ) and provides a fine-tuned control over per-flow
bandwidth allocations. Aforementioned studies mainly use
route optimization techniques to solve the problem of link
congestion, inefficient bandwidth allocation and network
delay. Demand-based dynamic bandwidth management for
different kinds of traffic is not taken into account for better
efficiency. Furthermore, considering the above mentioned
parameters to emulate bandwidth allocation and test the



feasibility in real EC based environment is still unexplored.
This study aims to develop a more general approach to

bandwidth allocation and to validate the proposed technique
via simulation of a realistic EC-based scenario. Thus, we
propose a heuristic reinforcement learning based flow-level
dynamic bandwidth allocation algorithm using OpenFlow
meter [16]. The standard reinforcement learning is suitable
for a small state space environment, however, to reduce
training time for a large environment we add a heuristic
function. An end-to-end bandwidth allocation framework has
been deployed on real hardware OpenFlow switches [17]
with the goal of minimizing overall system cost, packet loss
rate, end-to-end delay, and improve network throughput with
fast self-learning capability in a non-stationary environment.
A simulation model is also setup using Mininet [18] to test
scalability of the proposed model with respect to increase
in the number of flows and switches. To the best of our
knowledge, none of the existing works applied heuristic
reinforcement learning to solve the bandwidth allocation
problem using OpenFlow meter in SDN-enabled EC envi-
ronment.

The remainder of this paper is organised as follows:
System model for SDN-enabled EC system is highlighted in
Section II. Section III describes our heuristic reinforcement
leaning (HRL) based bandwidth allocation framework. Sec-
tion IV presents the simulation scenarios and performance
evaluation details, followed by the conclusion and future
directions in Section V.

II. SYSTEM MODEL FOR SDN-ENABLED EDGE CLOUD
SYSTEM

A. Testbed Description

The IRNC (International Research and education Network
Connections) is a program by NSF (National Science Foun-
dation) for ”high-performance network connectivity required
by international science and engineering research and edu-
cation collaborations”. The NSF IRNC supported COSMIC
(COSMOS Interconnecting Continents) testbed proposes to
build a fully programmable network (from the optical/radio
physical layer and above) and computational infrastructure
(Edge Clouds). In the proposed COSMIC architecture, a data
center near to the mobile users can serve as an EC and
be used to offload service requests of real-time and latency
sensitive applications. The data center in a remote LAB or
other continents will be emulated as a core cloud, and the
delay-tolerant services can be offloaded to the data center to
achieve efficient resource sharing in a multi-domain network
environment. As a first step in this paper, we consider
COSMOS (Cloud Enhanced Open Software-Defined Mobile
Wireless Testbed) [19] topology at The City College of New
York (CCNY). COSMOS hosts an edge node at CCNY
and further connects Columbia University in New York
City at one end and Kyutech University in Japan at other
end as shown in Fig. 1. COSMOS CCNY has three 5G

GRE Tunnel

JGN
Gateway

192.203.115.148
Global IP(JGN)

134.74.16.197
Global IP

(TrasPAC/Internet 2)

eno2

enp1s0

CCNY
SG200-50#GE1

[Trunk]

#GE2
[Trunk]

#GE3
[Trunk]

#GE22
[Access]

CCNY
Gateway 

#G
E2

1
[A

cc
es

s]#G
E2

0
[A

cc
es

s]

Data Plane-1
10.20.67.0/24

Ctrl&Mgmt Plane
192.168.100.0/24

Data Plane-2
10.20.65.0/24

Ta
gg

ed
(1

09
1,

 1
09

2,
 1

94
1)

Tagged
(1091, 1092, 1941)

Ta
gg

ed
(1

09
1,

 1
09

2,
 1

94
1)

Untagged (1091)

U
nt

ag
ge

d 
(1

09
2)

Untagged 
(1941)Kyutech 

Japan Side

CCNY Subnet

CCNY Lab
SG350-10

ROADM

3D MEM

GE Switch

Server

Server

ROADM

3D MEM

GE Switch

Server

Server

CC
N

Y
D

at
a 

Ce
nt

er

COSMOS
Columbia 

side
CCNY 

Side

Edge Node

COSMOS 
Antenna

VLAN Controller

Figure 1: COSMOS CCNY Edge Cloud testbed Model. The detail about
System Model is given in Section II-A.

antennas (Software Defined Radios (SDR)) and connects
wireless (mobiles, IoTs, Street Cameras etc.) users to the
EC at CCNY data center. There are other network nodes1

as well which connect hosts from different research labs of
CCNY to the EC. This testbed is instrumental in the research
and development of low-latency infrastructure and efficient
resource provisioning algorithms for next-generation mobile
and IoT applications. The rest of this paper describes the
end-to-end implementation of flow-level dynamic bandwidth
allocation framework and validates it in the above stated
real-world COSMOS testbed scenario.

B. Traffic Model

In SDN, flows (forwarding rules) are generally installed
based on MAC/IP addresses of the hosts. When a packet
arrives on a switch, data-plane matches the existing flows,
if a match is found then the packet is forwarded via an
appropriate port. If a match is not found, the data-plane
forwards the packet to the control-plane which installs a
new flow based on the topology information and destination
MAC/IP address in the packet. This conventional way of
matching the rules cannot differentiate the various kinds of
traffic coming from a same user or host. For example, a
host can generate many kinds of traffic (e.g. video, voice,
email, file sharing etc.) which can be categorised as time-
sensitive or best-effort [20]. Installing a distinct flow for
each type of traffic and allocating bandwidth based on the
QoS requirement of the flow provides a granular control in
management of the resources. Thus, we install flows and
classify traffic based on the L4 (TCP/UDP) port numbers
and assign weight ω to each flow depending upon the QoS
requirement of that traffic. These weights can be assigned
dynamically to the flows which is detailed in the following
section.

1Currently, these nodes are legacy network switches, however, soon to
be replaced with OpenFlow enabled advanced switches to support SDN
experiments.



C. Bandwidth Model

We formulate a general bandwidth allocation model that
can be utilized in any SDN-enabled EC based system. As
shown in Fig. 1, an EC system possesses N number of
network nodes (i.e. Switches) {1, 2, 3, ..., N}, P number of
ports {1, 2, 3, ..., P} per node n and F number of flows
{1, 2, 3, ..., F} per port p. Each flow f has a weight ωf
which signifies the quality preference as described in Section
II-B. Bp is the total bandwidth/capacity available on a port p
(e.g. 100Mbps). In order to allocate bandwidth to the flows
we make use of OpenFlow meter feature. OpenFlow meters
are associated with the flows and control the packet/data rate,
thus, called RateLimiter [16]. Data rate is assigned to the
meter bands in the form of discrete units. The minimum
allocated bandwidth is 1 unit (1Mbps) and maximum is 10
units. Multiple flows with similar category (e.g. video) can
be grouped and associated with one meter. However, for the
sake of simplicity and easy management we create M meters
{1, 2, 3, ...,M} equal to the number of Flows and associate
each flow to a dedicated meter. We evaluate the bandwidth
utility of the switch per port basis. The total usage of the
port capacity at time t is the sum of the occupied resources
by all the flows and given as:

Up(t) =

∑F
f=1 b

p
f

Bp
, (1)

where bpf is the number of bandwidth units that is allo-
cated to the flow f on port p.

III. HRL-AGENT AND BANDWIDTH ALLOCATION
FRAMEWORK

In this section, we present a framework to solve the
bandwidth allocation problem in the EC based system. As
depicted in Fig. 2, SDN controller acts as a bridge between
HRL-agent and data-plane. It has two responsibilities: 1)
Collecting statistics from the data-plane and building state
of the network; 2) Creating/updating meters according to the
bandwidth allocation policy learned by the HRL agent. This
process of information collection and meter creation forms
a closed loop and called network control loop [11]. With the
help of this network control loop, the HRL agent interacts
with the network environment to learn optimal bandwidth
allocation policies.

A. Semi-Markov Decision Process (SMDP) Formulation

We first formulate the bandwidth allocation problem in the
EC system into semi-Markov decision process (SMDP). We
define state space and action space followed by our unique
reward model. At each state, different resource allocation
decisions yield different rewards. The goal is to maximize
the long-term reward (i.e. minimize end-to-end delay, system
cost, packet loss and improve throughput).

RYU
SDN Controller

HRL- Agent

st at

Flo
ws

/P
or

ts 
St

ati
sti

cs

Bandwidth 
Allocation

Data Plane

Control Plane

Q-Learning Heuristic 
Function

Reward Model

OFPST_METER_CONFIG 
(OF1.3) (xid=0x2):

meter=1, kbps, bands =  
type=drop rate=1000

OFPST_METER_CONFIG 
(OF1.3) (xid=0x2):

meter=1, kbps, bands =  
type=drop rate=1000

OFPST_METER_CONFIG 
(OF1.3) (xid=0x2):

meter=1, kbps, bands =  
type=drop rate=1000

OpenFlow Meter

Figure 2: The structure of HRL-Agent and bandwidth allocation framework.
The detail is described in Section III.

1) State Space: The state of the system at any time t
is the observation of traffic demands of flows and packet
loss rates at a switch. Therefore, each distinct state is a
sequence of observations of all the nodes in a network,
st = {(Rpf (t), Lpf (t))1, (R

p
f (t), Lpf (t))2, ..., (R

p
f (t),

Lpf (t))N}. In each decision epoch, HRL agent learns opti-
mal resource allocation strategies based on these sequences
which leads to a very large but finite SMDP chain. Rpf and
Lpf denote the traffic rate and packet loss rate of a flow f at
port p, respectively. Thus, the current average rate at time
t is calculated as the rate during the last τ till the current
time t and can be determined as:

Rpf (t) =
Rxpf (t)−Rxpf (t− τ)

t− τ
× 8, (2)

where Rxpf (t) is the total number of received bytes of a
flow f on port p at time t, and we multiply by 8 to convert
it in bits/sec. Eq. (2) gives us an average data rate of an
interval (t − τ ) which is fair to consider the current traffic
status of a flow. Similarly, the packet loss rate is given as:

Lpf (t) =
∆Rxpkt

p
f (t)−∆Txpkt

p
f (t)

∆Rxpkt
p
f (t)

, (3)

where ∆Rxpkt
p
f and ∆Txpkt

p
f represent the change in

number of received and transmitted packets, respectively, of
flow f on port p during (t−τ ). As explained in later section,
we try to keep this time interval as short as possible in order
to replicate a real environment and measure precise readings.

2) Action Space: The action for a flow f on port p,
in any state, refers to all possible allocations in that state
which is chosen according to the action selection policy
(random, greedy etc.). Therefore, the action set becomes,
Ast = {bpf}, (f ∈ [1, F ], p ∈ [1, P ]), where b represents a
new allocation at time t. By this new allocation (b units of
bandwidth (Section II-C)) at time t, the state advances into
the next state st+1.



3) Reward Model: The goal of HRL agent is to minimize
the overall system cost by taking a sequence of actions in
all the states. According to the definition of a real-valued
reward function in [21], [22], in order to find an optimal
resource allocation policy by taking action at at state st,
system advances into a new state st+1 and receives a reward
rt from the environment, which is system cost for action at.
In our model, the reward can be calculated as the sum of
cost and penalty of resource procurement in the system.

costf = bf × C, (4)

where C is the system cost per unit of bandwidth and
this can be set according to the given environment. Penalty
for a flow is defined as the extra cost for imprecise resource
allocations and given as:

penaltyf = ωf ×
Rf
bf
, (5)

where ωf is the weight, Rf is current rate and bf is new
rate allocated to the flow f . The penalty equation helps the
HRL agent to learn precise resource allocation policy by
keeping the penalty ratio to minimum. Therefore, reward is
given as:

rt(st, at) = costf (st, at) + penaltyf (st, at). (6)

We calculate reward for all the flows on all ports. This
approach is worthwhile in a way that the QoS requirement
(current rate and weight) in each flow may vary and calcu-
lating reward for every individual flow can better assist the
HRL agent to derive an optimal resource allocation policy.

The optimization problem of bandwidth allocation, while
considering the varying QoS requirements and constrained
resources, is the maximization of the long-term reward i.e.
minimization of the system cost in our case, and formulated
as below:

maximize

T∑
t=1

rt(st, at) (7)

subject to:

Unp (t) ≤ 1,∀t ∈ T, ∀p ∈ P,∀n ∈ N (8)

1 ≤ bf ≤ bfMax
,∀f ∈ F (9)

Lf < θf ,∀f ∈ F, (10)

where constraint (8) describes that the usage of all ports
on all switches does not exceed it’s total available capacity
(Bp) at any time. The constraint (9) guarantees bandwidth
allocation between 1 unit and maximum allowed units for
the flow f . Lastly, the constraint (10) ensures that the packet

loss rate remains below the threshold θf which is further
explained in the later section.

B. Heuristic Reinforcement Learning Algorithm

Traffic patterns in an EC can change over time which
makes it a completely non-stationary environment. So, we
modify our training algorithm from the standard Q-Learning.
The goal is to devise an algorithm which is capable of
quickly adapting to the changes in the environment.

1) Q-Learning: Resource allocation policy is derived
using Q-Learning which is an Off-Policy based machine-
learning algorithm. Q-Learning agent can follow any policy
(ε− greedy, ε− soft, softmax etc.) to calculate the value
function Q(s, a) by utilizing the above given reward model
(Eq. (6)). The optimum action-value function Q∗(s, a) is
the maximum expected achievable reward which follows the
Bellman equation [21]. Therefore, the Q value estimates are
updated as follows:

Qt+1(st, at) = (1− α)Qt(st, at)+

α(rt(st, at) + γmax
at+1

Qt(st+1, at+1)), (11)

where α is the learning rate and γ is the discount factor
which is used to influence the impact of the future reward
on the current action [22].

2) Heuristic Function: Resource allocation policy deriva-
tion is performed through trial-and-error interactions of the
Q-Learning agent with the environment which is a very
time consuming process. A heuristic function can be used to
speed up the convergence rate. In order to improve agent’s
behavior, heuristic function selects suitable actions to steer
the exploration of the state-action space in the direction
of useful regions [24]. The heuristic function H(st, at) is
an action policy modifier which specifies the significance
of performing an action at at time t when visiting state
st. Domain information is extracted from the environment
and a heuristic is composed from the extracted structural
information to accelerate the learning process. How to
incorporate the heuristic function with standard ε− greedy
Q-Learning action value function is given below:

π(st) ={
arg maxat [Qt(st, at) + ξ(Ht(st, at))

β ], if q ≤ εt,
arandom otherwise.

(12)

In above Eq., ξ and β are design parameters to control
the impact of heuristic value function on action selection
policy π(st). q is uniform random value from 0 to 1,
εt is also between 0 and 1 which is the probability of
exploration (random action) at time t and arandom is a
uniform random action chosen from the possible actions in



state st. According to [24], [25], when ξ = β = 1, the
heuristic function update formula is given as:

Ht+1(st, at) ={
maxaQt(st, a)−Qt(st, at) + η, if at = πH(st),
0 otherwise,

(13)

where at is an optimal action influenced by the heuristic
πH(st), and η is a small positive value usually set to 1
[24], [25]. According to [24], a heuristic is derived in two
stages, in the first stage, heuristic is built only once by
extracting the domain information. In the following stage,
function is not updated to overcome a bad heuristic and
used as is in the action selection policy. On the other hand,
[25] proposes a heuristic reinforcement learning based on
the state backtracking technique which no longer requires
stage one; nonetheless, it causes additional delay to update
the action transfer probability function at the end of every
training episode. Therefore, we adapt the former approach
in order to save the overall training time.

3) Linear Annealing: Bianchi [24] used fixed exploration
rate which is suitable only for small environments. However,
for a large environment, we start exploration with highest
probability and then linearly decay the exploration rate. This
strategy gives sufficient trials to explore a large environment
randomly at the beginning and then exploits the already
known good policies more often. Further, randomness breaks
the correlation of learning data and reduces the variance in
the update [22]. The decay frame or the linear annealing
frame LAF (t) for εt is given below:

LAF (t) =
εS − εF
T

× t, (14)

where T is maximum number of iterations (steps) in one
training episode, and εS and εF represent the start ε and
final ε, respectively. Thereafter, εt can be given as follows:

εt = max(εF , (εS − LAF (t))) (15)

The Eq. (15) describes that the exploration rate is high at
the beginning and annealed with the time that comes to its
final state at the end of first training episode. A novel study,
human-level control through deep reinforcement learning
[26], uses a fixed approach of linear annealing where ε
is decayed in a fixed number of iterations. However, our
proposed model gives the malleability to adjust annealing
rate with respect to the size of the environment and the
number of learning iterations.

4) Training Process: A recent study in SDN [12] period-
ically collects network status information which generates
a lot of control traffic. We avoid this problem by sending
flows/ports statistics requests to the switches one by one
in a round-robin fashion. This is beneficial in two ways:

Initialize SDN Controller Run Round-Robin

Send Status Requests

Collect Topology 
Information

Check  Switch-1 Check  Switch-2 Check  Switch-N

YES
YES

pdr T� pdr T� pdr T�

YES

Run Training Algorithm Run Training Algorithm Run Training Algorithm

NO NO NO

Update Meters Update Meters Update Meters

Figure 3: Workflow for Round-Robin based control algorithm with Pruning
Principle. The detail is given in Sections III-B4 and III-B5.

1) It minimizes the control traffic in the network; 2) It is
computationally light weight as the SDN controller has to
process small amount of information at a time.

5) Pruning Principle: According to the round-robin
based training process (Section III-B4), one switch is pro-
cessed at a time, which causes delay in the convergence of
whole topology. To overcome this situation, we introduce
a pruning principle to avoid processing of all the switches
every time. We define a packet loss rate threshold θ. This
threshold is different for all the flows which is inversely
proportional to the weight (ω) of the flow and given as:

θf =
1

ωf
×K, (16)

where K is constant for all the flows. This inverse
relationship helps to have a different threshold based on the
weights which also ensures the QoS requirements (Eq. (10))
for all the flows. The major contribution of our proposed
pruning principle is the reduction of topology convergence
time by a significant amount which eliminates the issue
caused by round-robin training method.

A workflow for round-robin based training process and
pruning principle together is depicted in Fig. 3. SDN con-
troller is initialized, and topology information is collected
which includes switches, ports and flows information. There-
after, the round-robin process is started that sends flows/ports
statistics request to each switch one-by-one. If the packet
loss rate for all flows in a switch is below the defined
threshold (θf ), then we prune that switch for retraining and
proceed to the next one, otherwise we run our proposed
training algorithm to determine optimal resource allocation
policy and update the meters. Note that pruning principle
further reduces the control traffic by avoiding futile meter
updates in the data-plane.

The round-robin control algorithm with pruning princi-
ple is shown in Algorithm 1. The algorithm for Heuristic
reinforcement learning with linear annealing to obtain opti-



mal bandwidth allocation policy (Q∗) in SDN-enabled EC
environment is summarized in Algorithm 2.

Algorithm 1: Round-Robin control Algorithm with
Pruning Principle

Input : Network Topology
1 Initialize SDN controller
2 Collect network topology information
3 while true do
4 for switch = 1 to N do
5 Send flows and ports statistics request to switch
6 for port = 1 to P do
7 for flow = 1 to F do
8 if pdrpf < θf then
9 continue;

10 else
11 Run Training algorithm and update

OpenFlow meters on switch
12 Proceed to next switch
13 end
14 end
15 end
16 end
17 end

Algorithm 2: Heuristic Reinforcement Learning
(HRL)

Input : Traffic flows with varying QoS demands
1 Initialize the environment
2 Initialize action-value function Q arbitrarily
3 Initialize Heuristic function H
4 for episode = 1 to E do
5 Reset the environment to initial state
6 for t = 1 to T do
7 Calculate εt using Eq. (15)
8 Choose action at using Eq. (12)
9 Execute action at, observe next state st+1 and receive

reward rt
10 Update the values of heuristic function using Eq. (13)
11 Update the values of Q according to the update rule in

Eq. (11)
12 st = st+1

13 end
14 end

Output: Optimal Bandwidth Allocation policy Q∗

IV. EXPERIMENTAL RESULTS

In this section, we analyze the performance of our pro-
posed bandwidth allocation framework. We develop the
system model (Traffic and Bandwidth model in Section (II))
and proposed HRL algorithm (Section (III)) in Python using
RYU SDN controller 4.34. The meter feature is supported
in OpenFlow version 1.3 and above [16] which is not sup-
ported by the POX controller. According to [27], RYU has
overall better performance compared to the POX controller.
Open Daylight, which is a Java based SDN controller,
also supports OpenFlow version 1.3 [28]. However, it is
easier to build machine learning environment in Python,
thus, we choose RYU controller to implement our end-to-
end framework. The proposed framework is then evaluated

in both Mininet and hardware OpenFlow switches based
environments which is explained in the following section.

A. Experiment Setup

We validate the long-term stability, effectiveness and
scalability of our proposed methods in two different environ-
ments. One is based on real hardware OpenFlow switches
(Zodiac FX) and other is based on Mininet. Scalability
testing of the algorithm is performed by creating topology
in Mininet which uses openvswitch (v2.14.1 with OpenFlow
1.3 support) to emulate the switches. Whereas, stability
and the long-term performance efficiency of our proposed
strategy is evaluated in both Mininet and hardware switches
based environments. Zodiac FX supports up to 212 flows
and 8 meters per switch and the port capacity/bandwidth for
these switches is 100Mbps, therefore, we scale down the
traffic accordingly. In both cases, the RYU SDN controller
runs on Ubuntu 18.04 with 3.40 GHz Intel Core i7 processor
and 8GB memory.

The list of hyperparameters and their corresponding de-
fault values that are used during the experiment are given in
Table I. The two baselines that we use to compare with our
proposed methods are described below:

• HAQL [24]: Existing heuristic accelerated Q-learning
approach to accelerate the learning mechanism in Q-
learning. This approach used fixed exploration rate of
10% to calculate the heuristic only once. This baseline
is used to compare the convergence speed and learning
efficiency with our proposed algorithm. The rest of the
parameters (α, β, γ, η, ξ) and reward function are kept
the same for a fair comparison.

• MMWFS Allocation [29]: As explained in Section
(II-B), our proposed algorithm prioritizes flows based
on their weights. So, we choose max-min weighted
fair share (MMWFS) bandwidth allocation algorithm
for a fair comparison which considers resource sharing
associated with the weights of different flows. This
baseline algorithm is common to both conventional and
advanced SDN networks and defined as follows:

– ”Resources are allocated in the order of increasing
demand, normalized by the weight”

– ”No source/flow gets a resource share larger than
its demand/current rate”

– ”Sources/flows with unsatisfied demands get re-
source shares in proportion to their weights”.

In our testing, MMWFS is used to compare the key
performance metrics such as throughput, end-to-end
delay, packet-loss rate and overall system cost with our
proposed algorithm.

B. Convergence

The envisioned deployment of COSMOS testbed connects
Rutgers, Columbia, CCNY and New York University [19].



Table I: Hyperparameters and corresponding Default Values with Description

Hyperparameter Value Description

α 0.1 The learning rate alpha, set between 0 and 1, used in the Q-learning update.

β 1 Design parameter to control the influence of heuristic function.

γ 0.99 Discount factor gamma, set between 0 and 1, used in the Q-learning update.

εS 1 Start value of exploration rate (ε− greedy).

εF 0.1 Final value of exploration rate (ε− greedy).

η 1 A small positive value used in the heuristic function update.

ξ 1 Design parameter to control the influence of heuristic function.

B 1000 Total bandwidth in Mbps available at each switch port.

C 1 Per unit of bandwidth cost in cents/hour.

E 10 Number of episodes to train the HRL agent.

T 10000 Number of learning steps or iterations per episode.

K 10−1 A constant used in the calculation of packet loss rate threshold.

0 1 2 3 4 5 6 7 8 9 10
Episodes

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

No
rm

ali
ze

d C
os

t

HRL-LA
HAQL

Figure 4: Convergence speed and Normalized cost comparison between
HRL-LA and HAQL.

Each site is considered to have a similar topology as
shown in Fig. 1. Therefore, to perform the scalability test,
a topology is created using Mininet with 16 switches (4
switches at each site), 32 hosts, 47 links and 500 plus flows
in one switch. Traffic is generated from various flows with
varying data rates (using IPERF v3.1.3) and QoS demands
so that the learning agent can derive an efficient resource
allocation policy with better long-term reward. We compare
the convergence speed of our proposed strategy HRL-LA
(Heuristic Reinforcement learning with linear annealing)
with the existing HAQL algorithm. As shown in Fig. 4,
HRL-LA converged almost in one episode and obtained
overall better reward (lower cost) than the HAQL. Initially,
there are some oscillations in the case of HRL-LA which
means the agent explores the environment. However, after
the 1st episode when heuristic is applied, the divergence and
oscillations are significantly reduced which demonstrates
the higher efficiency of the learning procedure of our pro-
posed strategy. Multiple experiments are carried out and the
recorded average time that it takes to reach the convergence

point for one switch is 9.6 seconds for HRL-LA and 138
seconds for HAQL. The improvement of this magnitude is
due to our linear-annealing method as described in Section
III-B3. This shows that our proposed method outperforms
the existing approach by reducing the convergence time to
nearly 1/15th and achieving a better reward which can be
practical for large environments.

C. Performance Analysis

We miniaturize COSMOS CCNY testbed environment, as
shown in Fig. 1, by using 4 real Zodiac FX OpenFlow
switches (Firmware v0.86) [17]. A similar topology is
emulated in Mininet as well to assess the long-term stability
of our algorithm across different environments. During the
experiment four categories of traffics with varying data rate
and different QoS demands are generated that can be antici-
pated in an Edge-Cloud (EC) environment. RT-1 (real-time)
is considered time critical and bandwidth hungry traffic.
In general, this type of traffic is generated by Augmented
and Virtual Reality (AR/VR) based devices, surveillance
drones/cameras and Zoom meetings. The data rate for such
traffic is set to vary in the range [6Mbps, 8Mbps]. RT-2
is also very time critical traffic but not bandwidth hungry.
Smart-city sensors (temperature, waste management, smart
parking sensors etc.) and other IoTs in an EC can be the
source of RT-2 traffic, and the data rate is set to vary in
the range [1Mbps, 2Mbps]. BE-1 (best-effort) is considered
delay tolerant but bandwidth hungry traffic. Such traffic can
be expected from the users downloading or uploading files,
and data rate for BE-1 varies in the range [6Mbps, 8Mbps].
Lastly, BE-2 is also delay tolerant similar to BE-1, however,
produces fewer amount of traffic in the range [1Mbps,
2Mbps] which can contain text, email, web etc. traffic. Real-
time traffic has higher weight (ω) values that defines the QoS
demands and helps the algorithm to prioritize this traffic over
best-effort.



RT-1 RT-2 BE-1 BE-2
(a)

0

2

4

6
Av

era
ge

 Th
rou

gh
pu

t (
Mb

ps
)

RT-1 RT-2 BE-1 BE-2
(b)

0

50

100

150

Av
era

ge
 E2

E D
ela

y (
s)

RT-1 RT-2 BE-1 BE-2
(c)

10 4

10 3

Pa
ck

et 
Lo

ss 
Ra

te

RT-1 RT-2 BE-1 BE-2
(d)

0.0

0.5

1.0

Av
era

ge
 Sy

ste
m 

Co
st 

($)

HRL-LA MMWFS HRL-LA-MN MMWFS-MN

Figure 5: Performance comparisons of proposed strategy with max-min weighted fair share bandwidth allocation algorithm. Both evaluations are conducted
on hardware switches and Mininet for real-time-1, real-time-2, best-effort-1 and best-effort-2 traffics. In view of (a) Average Throughput, (b) Average
End-to-End Delay, (c) Packet Loss Rate and (d) Average System Cost; vertical axis of (c) is in log scale.

The experiment is performed for 5 hours (18000 seconds)
in each environment (virtual and physical) and analyzed
the long-term performance of our proposed strategy by
comparing the throughput, end-to-end delay, packet loss rate
and the overall system cost with max-min weighted fair
share (MMWFS) bandwidth allocation approach [29]. In
Fig. 5, HRL-LA-MN and MMWFS-MN refer to the results
in Mininet based network. Our proposed algorithm is stable
in both environments, however, the performance in virtual
network (Mininet) is marginally better as compared to the
physical network. This is because the virtual network is with
in the same machine (Section IV-A) which induces lower
deviations in the jitter, and other real-world factors are also
neglected in the case of Mininet [30]. In the following,
we discuss the performance of our proposed strategy and
MMWFS in hardware switches based network only, which
demonstrates a near real-world environment.

After the derivation of first bandwidth allocation policy
for flows, only 6 additional training requests were triggered
during the whole experiment. Whereas, in the case of
MMWFS algorithm, 265 re-computations were recorded.
This shows that our proposed algorithm can quickly adapt
to the changes in a non-stationary environment and obtain
a long-term resource allocation policy which can endure
fluctuations in the traffic. After the end of every retraining or
re-computation, meters are updated using control messages
from control-plane to the data-plane. In effect of the signif-
icant less number of retrainings compared to MMWFS, the

proposed strategy helps to minimize the meter updates, thus,
reducing control traffic in the network to nearly 1/45th.

Fig. 5(a) shows average throughput which is measured
with IPERF v3.1.3 during the experiment for different
traffics. It is evident from the results that the resource alloca-
tion policy derived from HRL-LA prioritizes and allocates
more bandwidth to real-time traffic at the expense of less
bandwidth allocation to the best-effort traffic. Nonetheless,
the overall network throughput is improved by 10.82% as
compared to the MMWFS approach. This is due to the
fact that MMWFS algorithm never allocates more than the
demand (Section IV-A). Fig. 5(b) depicts the average end-
to-end (E2E) delay comparison. In order to calculate E2E
delay, 100MB of data is transferred for RT-1 and BE-1
traffic, and 10MB of data is transferred for RT-2 and BE-
2. This experiment is repeated several times and average is
measured. Although E2E delay is directly dependant on the
allocated bandwidth, it is important to show the impact of
network throughput on E2E delay. It can be clearly seen in
Fig. 5(b) that MMWFS algorithm treats all kinds of traffic
equally based on their weights and demands. Whereas, HRL-
LA prefers the real-time traffic over best-effort and improves
the overall E2E delay in the network by 9.67%.

Packet loss rate is an essential performance metric in the
QoS requirements which is calculated using Eq. (3). As
shown in Fig. 5(c), our proposed strategy maintains a packet
loss rate for RT traffic under 10−4. Although HRL-LA
compromises on the BE traffic, yet, keeps packet loss rate



below the threshold level (Eq. (16)) on average to satisfy the
QoS demands. When compared to MMWFS, a 13.17% less
packet loss rate is observed in case of our proposed method.
As retraining of the resource allocation policy directly
depends on the packet loss rate (Fig. 3), the improvement
in packet loss rate also contributes in the reduction of re-
computations as discussed above. Lastly, average system
cost for bandwidth allocation is calculated using Equations
(4) and (5) by utilizing the observed average throughput
(Fig. 5(a)) for all traffic types. The cost for allocating fewer
amount of bandwidth is smaller (Eq. (4)); however, penalty
equation (Eq. (5)) poses an additional amount if bandwidth
is imprecisely allocated. In effect of this, the overall cost is
increased for allocating less bandwidth to a high weighted
flow. Therefore, RT traffic, despite having more bandwidth,
induces less cost due to the low amount of penalty and best-
effort traffic induces slightly more cost. The small difference
in the cost of BE traffic is due to the fact that the weight
values for BE traffic are smaller which does not cause high
impact on the penalty. As shown in Fig. 5(d), there is an
8.93% improvement in the overall system cost for bandwidth
allocation.

In summary, our proposed algorithm prioritizes real-time
traffic over best-effort while satisfying the QoS demands by
all kinds of traffic. HRL-LA improves the overall network
throughput, E2E delay, packet loss rate and system cost on
average at the expense of marginal training time which ben-
efits in the long-run to significantly reduce control traffic in
the network. Moreover, our proposed algorithm consistently
outperforms MMWFS approach in both virtual (Mininet)
and hardware switches based environments.

V. CONCLUSION

In this study, we investigated the problem of network re-
source management for the IoTs and mobile users in an SDN
enabled edge-cloud environment. We presented a novel dy-
namic bandwidth allocation framework by introducing HRL-
LA, a heuristic reinforcement learning-based system with
linear annealing technique. OpenFlow meter is utilized to
achieve a fine-grained control for demand-based bandwidth
allocation of individual flows. Our proposed strategy is fast
in convergence speed, scalable and adaptive to the dynamics
of a practical environment. To show the effectiveness of our
strategy we developed the proposed framework in Python
and conducted two experiments, one in the Mininet and
other on the Zodiac FX hardware switches by replicating
real COSMOS CCNY testbed environment. As compared
to an existing algorithm, our proposed technique reduces
convergence time by nearly 1/15th. When compared to a
well-known max-min weighted fair share bandwidth allo-
cation algorithm, HRL-LA improves the overall network
throughput, end-to-end delay, packet loss rate and system
cost by 10.82%, 9.67%, 13.67% and 8.93% on average,
respectively, while satisfying the QoS demands as well.

A pruning principle is also proposed to avoid undesired
computations, which aids to reduce control traffic in the net-
work to nearly 1/45th. Furthermore, our proposed strategy
is stable and outperforms alternative approach in both virtual
(Mininet) and physical (Zodiac FX) networks.

For future work, we plan to investigate for on-demand
training procedures which will further reduce the topology
convergence time. Additionally, investigation on multi-agent
reinforcement learning will help to expand the current frame-
work to several distributed edge-clouds to solve the resource
management problem in NSF IRNC testbed based multi-
domain network.

ACKNOWLEDGMENT

This work is supported in part by NSF JUNO2 (Japan-
US Network Opportunity 2) (Award No. 1818884) and NSF
IRNC (Award No. 2029295).

REFERENCES

[1] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, V. Young,
”Mobile edge computing—A key technology towards 5G,”
in ETSI (European Telecommunications Standards Institute),
Sophia Antipolis, France, ISBN: 979-10-92620-08-5 no. 11,
Sep. 2015.

[2] Z. Ning, X. Kong, F. Xia, W. Hou and X. Wang, ”Green
and Sustainable Cloud of Things: Enabling Collaborative Edge
Computing,” in IEEE Communications Magazine, vol. 57, no.
1, pp. 72-78, January 2019.

[3] Y. Mao, C. You, J. Zhang, K. Huang and K. B. Letaief,
”A Survey on Mobile Edge Computing: The Communication
Perspective,” in IEEE Communications Surveys & Tutorials,
vol. 19, no. 4, pp. 2322-2358, Fourthquarter 2017.

[4] M. A. Salahuddin, A. Al-Fuqaha and M. Guizani, ”Software-
Defined Networking for RSU Clouds in Support of the Internet
of Vehicles,” in IEEE Internet of Things Journal, vol. 2, no. 2,
pp. 133-144, April 2015, doi: 10.1109/JIOT.2014.2368356.

[5] Y. He, F. R. Yu, N. Zhao, V. C. M. Leung and H. Yin,
”Software-Defined Networks with Mobile Edge Computing
and Caching for Smart Cities: A Big Data Deep Rein-
forcement Learning Approach,” in IEEE Communications
Magazine, vol. 55, no. 12, pp. 31-37, Dec. 2017, doi:
10.1109/MCOM.2017.1700246.

[6] A. Bentaleb, A. C. Begen, R. Zimmermann and S. Harous,
”SDNHAS: An SDN-Enabled Architecture to Optimize QoE
in HTTP Adaptive Streaming,” in IEEE Transactions on Mul-
timedia, vol. 19, no. 10, pp. 2136-2151, Oct. 2017, doi:
10.1109/TMM.2017.2733344.

[7] S. D’Oro, L. Galluccio, S. Palazzo and G. Schembra, ”A Game
Theoretic Approach for Distributed Resource Allocation and
Orchestration of Softwarized Networks,” in IEEE Journal on
Selected Areas in Communications, vol. 35, no. 3, pp. 721-735,
March 2017, doi: 10.1109/JSAC.2017.2672278.



[8] Stampa, G., Arias, M., Sanchez-Charles, D., Muntes-Mulero,
V., and Cabellos, A., “A Deep-Reinforcement Learning Ap-
proach for Software-Defined Networking Routing Optimiza-
tion”, arXiv:1709.07080v1, 2017.

[9] X. Huang, T. Yuan and M. Ma, ”Utility-Optimized Flow-
Level Bandwidth Allocation in Hybrid SDNs,” in IEEE
Access, vol. 6, pp. 20279-20290, 2018, doi: 10.1109/AC-
CESS.2018.2820682.

[10] J. M. Boley, E. Jung and R. Kettimuthu, ”Adaptive QoS
for data transfers using software-defined networking,” 2016
IEEE International Conference on Advanced Networks and
Telecommunications Systems (ANTS), Bangalore, 2016, pp.
1-6, doi: 10.1109/ANTS.2016.7947874.

[11] Y. Hu, Z. Li, J. Lan, J. Wu and L. Yao, ”EARS:
Intelligence-driven experiential network architecture for au-
tomatic routing in software-defined networking,” in China
Communications, vol. 17, no. 2, pp. 149-162, Feb. 2020, doi:
10.23919/JCC.2020.02.013.

[12] S. Kumar, G. Bansal and V. S. Shekhawat, ”A Machine
Learning Approach for Traffic Flow Provisioning in Software
Defined Networks,” 2020 International Conference on Infor-
mation Networking (ICOIN), Barcelona, Spain, 2020, pp. 602-
607, doi: 10.1109/ICOIN48656.2020.9016529.

[13] R. Haw, M. G. Rabiul Alam and C. S. Hong, ”A context-
aware content delivery framework for QoS in mobile cloud,”
The 16th Asia-Pacific Network Operations and Manage-
ment Symposium, Hsinchu, 2014, pp. 1-6, doi: 10.1109/AP-
NOMS.2014.6996607.

[14] S. Lin, I. F. Akyildiz, P. Wang and M. Luo, ”QoS-Aware
Adaptive Routing in Multi-layer Hierarchical Software Defined
Networks: A Reinforcement Learning Approach,” 2016 IEEE
International Conference on Services Computing (SCC), San
Francisco, CA, 2016, pp. 25-33, doi: 10.1109/SCC.2016.12.

[15] M. Rahouti, K. Xiong and Y. Xin, ”Secure Software-Defined
Networking Communication Systems for Smart Cities: Current
Status, Challenges, and Trends,” in IEEE Access, vol. 9, pp.
12083-12113, 2021, doi: 10.1109/ACCESS.2020.3047996.

[16] ”OpenFlow Switch Specification,” Version 1.5.1 (Protocol
version 0x06), ONF TS-025, March 2015.

[17] ”Zodiac FX,”, Firmware Version 0.86 Northbound
Networks, March 2017 [online] Available at:
https://forums.northboundnetworks.com/ [Accessed Jan
19, 2021].

[18] Bob Lantz, Brandon Heller, and Nick McKeown. 2010. ”A
network in a laptop: rapid prototyping for software-defined
networks.” In Proceedings of the 9th ACM SIGCOMM Work-
shop on Hot Topics in Networks (Hotnets-IX). Association for
Computing Machinery, New York, NY, USA, Article 19, 1–6.
DOI:https://doi.org/10.1145/1868447.1868466

[19] NSF, PAWR ”COSMOS: Cloud Enhanced Open Software
Defined Mobile Wireless Testbed for City-Scale Deployment”
https://cosmos-lab.org.

[20] Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z., and
W. Weiss, ”An Architecture for Differentiated Services”, RFC
2475, DOI 10.17487/RFC2475, December 1998.

[21] Y. Liu, M. J. Lee and Y. Zheng, ”Adaptive Multi-Resource
Allocation for Cloudlet-Based Mobile Cloud Computing Sys-
tem,” in IEEE Transactions on Mobile Computing, vol. 15, no.
10, pp. 2398-2410, 1 Oct. 2016.

[22] M. Cheng, J. Li and S. Nazarian, ”DRL-cloud: Deep re-
inforcement learning-based resource provisioning and task
scheduling for cloud service providers,” 2018 23rd Asia and
South Pacific Design Automation Conference (ASP-DAC),
Jeju, 2018, pp. 129-134.

[23] R. S. Sutton and A. G. Barto, ”Reinforcement
Learning: An Introduction,” The MIT Press, Cambridge,
Massachusetts, sec. 6.5, 1998, [online] Available:
http://incompleteideas.net/sutton/book/ebook/the-book.html

[24] Bianchi, R.A.C., Ribeiro, C.H.C. and Costa, A.H.R. Accel-
erating autonomous learning by using heuristic selection of
actions. J Heuristics 14, 135–168 (2008).

[25] M. Fang, H. Li and X. Zhang, ”A Heuristic Reinforce-
ment Learning Based on State Backtracking Method,” 2012
IEEE/WIC/ACM International Conferences on Web Intelli-
gence and Intelligent Agent Technology, Macau, 2012, pp. 673-
678.

[26] Mnih, V., Kavukcuoglu, K., Silver, D. et al. Human-level con-
trol through deep reinforcement learning. Nature 518, 529–533
(2015).

[27] A. L. Stancu, S. Halunga, A. Vulpe, G. Suciu, O. Fratu
and E. C. Popovici, ”A comparison between several Software
Defined Networking controllers,” 2015 12th International Con-
ference on Telecommunication in Modern Satellite, Cable and
Broadcasting Services (TELSIKS), Nis, 2015, pp. 223-226,
doi: 10.1109/TELSKS.2015.7357774.

[28] M. Z. Shaikh and S. H. Darekar, ”Performance Analysis
of Various Open Flow Controllers by Performing Scalability
Experiment on Software Defined Networks,” 2018 3rd In-
ternational Conference on Inventive Computation Technolo-
gies (ICICT), Coimbatore, India, 2018, pp. 783-787, doi:
10.1109/ICICT43934.2018.9034343.

[29] J. Chou and B. Lin, ”Optimal multi-path routing and band-
width allocation under utility max-min fairness,” 2009 17th
International Workshop on Quality of Service, Charleston, SC,
2009, pp. 1-9, doi: 10.1109/IWQoS.2009.5201396.

[30] J. M. Jimenez, O. Romero, A. Rego, J. Lloret, ”Analyzing
the Performance of Software Defined Networks vs Real Net-
works,” International Journal on Advances in Networks and
Services, vol 9 no 3 & 4, 2016, pp. 107-116.


