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Reservoir computing (RC), a low-power computational framework derived from recurrent 

neural networks, is suitable for temporal/sequential data processing. Here, we report the 

development of RC devices utilizing Ag-Ag2S core-shell nanoparticles (NPs), synthesized 

by a simple wet chemical protocol, as the reservoir layer. We examined the NP-based 

reservoir layer for the required properties of RC hardware, such as echo state property, and 

then performed the benchmark tasks. Our study on NP-based reservoirs highlighted the 

importance of the dynamics between the NPs as indicated by the rich high dimensionality 

due to the echo state property. These dynamics affected the accuracy (up to 99%) of the 

target waveforms that were generated with a low number of readout channels. Our study 

demonstrates the great potential of Ag-Ag2S NPs for the development of next-generation RC 

hardware. 
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1. Introduction 
The computation performance (performance hereafter) of the von Neumann computer was 

greatly improved by miniaturizing the transistors and increasing the density according to 

Moore’s Law.1) However, in recent years, the maximum permissible number of CPU 

transistors has remained constant, and further performance improvements have not been 

achieved to date. Although today’s chip architecture is derived from some new approach, it 

is still deficient at solving more complex and nonlinear tasks, especially the computational 

tasks of artificial intelligence (AI), Big Data, and the Internet of Things (IoT). The limitation 

of the current von Neumann architecture lies in specific parts of parallel computation, and 

thus improvement requires a change in the solution paradigm to achieve higher computing 

performance.2) Recently, several AI hardware systems are suggested for artificial neural 

network (ANN).3)–6) Our previous work implied that reservoir computing (RC), a kind of the 

recurrent neural networks,7)–10) might be one of the suitable candidates to replace the AI 

software system with the random network of nonlinear nanojunctions.3),11),12) 

To realize RC at the hardware level, an electrical component with analog electrical 

characteristics like synapses in the brain13) is required. Memristor, a two-terminal passive 

component that exhibits nonlinear current-voltage characteristics with pinched hysteresis 

resulting from its charge-dependent resistance and memory characteristics, is considered an 

essential component to develop brain-mimicking hardware,14)–18) especially in the RC 

architecture.19)–22) We can use the lower bias of the memristor switching, where the hysteresis 

is quite smaller than switching, to utilize the dynamic of the device much more effective for 

the RC devices because internal condition of the reservoir should be stable during the RC 

performed.  

Chalcogenide compounds such as Ag2S have been reported to exhibit memristive 

behavior23) and switching resulting from the redox reaction and ion migration inside the 

Ag/Ag2S layer. Such kind of redox dynamics is expected as a good candidate of RC device24) 

and enabling them to successfully generate waveforms within an RC device architecture.25) 

However, quality of the nanowire network and number of junctions in the network affects 

the performance of the RC device even with a high number of readout channels. Like a 

human brain that consists of many synapse connections, to improve the performance, the 

number of memristors originating at the nodes that significantly influence network dynamics 
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must be increased by employing a material structure with a high surface area to volume ratio, 

such as nanoparticles. In our previous work, we successfully synthesized Ag-Ag2S core-shell 

nanoparticles using a simple wet chemical reaction and characterized their structural 

properties and memristive behavior. Furthermore, we attempted to control the neuromorphic 

learning behavior with different pulse ratios.26) Our previous study also reported that the 

point of contact between the nanoparticles plays an important role in the performance of the 

memristor. Here, we report that the essential requirements for enabling RC devices such as 

nonlinearity, phase shift, and high harmonics generation (HHG), and then we demonstrate 

supervised learning by training the output weight to construct a specific target waveform and 

study their performance on the separation of signals. 

 

2. Experimental methods 
The experimental procedure is depicted in Fig. 1. In the first stage, the Ag-Ag2S core-shell 

NPs were synthesized using the Brust–Schiffrin procedure according to previous works.14),28) 

Structural properties such as particle dimension and chemical bonding at the surface of 

nanoparticles were previously determined by X-ray diffraction (XRD), transmission electron 

microscopy (TEM), and X-ray photoelectron spectroscopy (XPS).26) The resulting 

nanoparticles were core-shell structures with dimensions of a few tens of nanometers. The 

NPs were synthesized with an Ag/allyl mercaptan molar ratio of 0.25/1 because the resulting 

NPs were found to exhibit nonlinear and hysteresis features in the I−V curves, which are 

suitable for building RC devices.26) The synthesized NPs were then drop-casted onto 

lithographically pre-patterned SiO2/Si substrates at 50 ℃ with Pt/Ti (24/6 nm) as the 

electrodes. The study on RC started by investigating the electrical characteristics of an HP 

4156B semiconductor analyzer. Then, the dynamic properties of the reservoir layer, such as 

HHG and phase shift, were investigated by feeding the constant DC voltage and sine wave 

generated from the function generator (Hewlett Packard Model 33120A) to the device and 

recording the output from the multi-channels of the readout in the time-domain using a data 

acquisition system (National Instruments Model 9234). The output was then trained using a 

linear regression method to generate the target waveform. The accuracy and error were 

calculated for subsequent comparison with the performance of a nanowire-type Ag2S 

reservoir25).  
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3. Results and discussion 
A further cycle of bias injection to the device in the range of −5 to 5 V resulted in the hard 

switching phenomenon with a pinched hysteresis characteristic of a memristor (Fig. 2(a)), 

which is an important milestone in enabling the neuromorphic device, including RC.17),20) 

The I–V characteristics of the NPs exhibited nonlinear and memristive behaviors with an 

on/off ratio of approximately 104. In the RC device, the electrical property of the device must 

exhibit nonlinear mapping of the input signals into high-dimensional computational spaces 

while the synaptic weight of the input and the weight between the nodes in the reservoir 

layer are fixed. Therefore, by exhibiting the nonlinear I−V characteristics depicted in Fig. 

2(a), the prepared device satisfied this RC device requirement.  

To further understand the nonlinear transformation characteristics provided by the 

reservoir system, high dimensionality of the NP-based reservoir must be achieved. This 

property can be identified by analyzing the amplitude distribution in the frequency domain 

using the nonlinear technique of HHG. To this end, a bipolar sinusoidal wave with a peak 

amplitude of 1 V with a frequency of 10 Hz was applied to the device. The output current 

was then recorded, and the signal was converted by a fast Fourier transformation (FFT) 

process to obtain output amplitude characteristics in the frequency domain. As depicted in 

Fig. 2(b), at the input frequency of 10 Hz, the output current amplitude was observed at 

integer multiples of the input frequency; this behavior is indicative of hard switching from a 

high-resistance to a low-resistance state in an interconnected point-contact memristor that 

exceeds the percolation threshold.29),30) Because the NP-based reservoir exhibited these two 

properties, nonlinear I−V characteristics and HHG, the NPs are considered strong candidates 

for RC devices. The characterized memristive device in an interconnected NP complex 

network was examined for emergent behaviors specific to its brain-like recurrent structure. 

Structurally, the network in the memristor-based RC is recurrent in that electrical signals and 

their feedback are produced simultaneously.  

Another requirement for enabling RC is the phase shift that delays the output according 

to the RC formula described in Eqs. (1) and (2),31)) where X(t), win, U(t), w, X(t-1), Y(t), and 

wout are the current reservoir state, fixed input weight, input state, reservoir weight, past 

reservoir state, output state, and output weight, respectively. To investigate this delayed 
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output phenomena, Lissajous plots were analyzed for phase differences between the output 

voltage and a given input voltage.  

𝐗𝐗(𝑡𝑡) = 𝒇𝒇 �𝑤𝑤in𝑼𝑼(𝑡𝑡) + 𝑤𝑤𝑿𝑿(𝑡𝑡 − 1)�      (1) 

𝐘𝐘(𝑡𝑡) = 𝑤𝑤out𝑿𝑿(𝑡𝑡)          (2) 

The plots readily show the linear and non-linear relationships between the input and 

output voltages via amplitude and phase changes. Figure 3 shows the Lissajous plots of the 

seven readouts from the NP-based device following the injection of a sinusoidal wave. It 

clearly shows that every output channel exhibited various phase differences between the 

input and the output, indicating delayed output. In terms of the shape of the Lissajous plot, 

the elliptical shape observed for the NP-based device is ideal as it indicates a complex 

network pathway that can create phase delays. Since one of the output signals, O2, showed 

a behavior of atomic switching, trajectory of each sweep overlapped which mean junctions 

through a path between input and O2 electrodes keep original condition after every period. 

Thus, the NP-based system possessed the echo state property as governed by Eqs. (1) and 

(2). The state of the reservoir is dependent on the property of the input current and recent 

memory, and the echo state property is an important concept of RC at the critical point of 

fading memory.  

The Ag-Ag2S core-shell nanoparticles were then used to perform RC tasks as a hidden 

layer, as illustrated in Fig. 1(b), by injecting specific inputs and training the output weight 

through a supervised learning principle employing linear regression. First, a bipolar 

sinusoidal input bias with 1 V peak-amplitude with 10 Hz frequency was injected into one 

electrode. The output voltage from the rest of the electrode channels was recorded 

simultaneously using the LabVIEW program and used to construct various waveforms 

through the superposition of voltage outputs in the computation. The generated waveform r 

was then a weighted sum of the voltage outputs from the electrodes with the weights 𝑤𝑤𝑖𝑖 

calculated by linear regression: 

𝑟𝑟 = ∑ 𝑤𝑤𝑖𝑖𝑉𝑉𝑖𝑖𝑛𝑛
𝑖𝑖=1 , i = O1, O2, O3 …           (3) 

where Vi, n, i are the output electrode voltage, total number of outputs, and the labelled 

output number, respectively. Two parameters were used to quantify the performance of the 

reservoir: the accuracy and the differences between the generated and the target waveforms, 

which were respectively represented by the coefficient of determination (R2) and the mean 
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square error (MSE), as expressed in the following equation: 

𝑀𝑀𝑀𝑀𝑀𝑀 =
∑ �𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑡𝑡(𝑡𝑡𝑚𝑚)−∑ 𝑤𝑤𝑖𝑖𝑉𝑉𝑖𝑖(𝑡𝑡𝑚𝑚)𝑛𝑛

𝑖𝑖=1 �
2𝑃𝑃

𝑚𝑚=1

𝑃𝑃
      (4) 

𝑅𝑅2 = 1 −
∑ �𝑦𝑦𝑡𝑡𝑒𝑒𝑡𝑡−𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑡𝑡�

2𝑚𝑚
𝑖𝑖=1

∑ �𝑦𝑦𝑡𝑡𝑒𝑒𝑡𝑡−𝑦𝑦𝑚𝑚𝑒𝑒𝑡𝑡𝑛𝑛�
2𝑚𝑚

𝑖𝑖=1
                                        (5), 

where yreg, ymean, ytarget is the output data, the mean of output, and the target waveform, 

respectively and wi represents the weight coefficients to be trained with the maximum 

number of outputs at discrete time indices (tm) over the total length (P). The results of the 

waveform generation tasks that were produced by applying linear regression to the outputs 

of 15 readout channels are depicted in Fig. 4, where the accuracy of each task is shown to 

assess the performance of the NP-based RC device. The highest accuracy was obtained when 

the waveform outputs were used to construct triangle and cosine waves due to the similarly 

shaped input and target waveforms, while the lowest accuracy was obtained in constructing 

square and sawtooth waves owing to the complex combination of odd and even harmonic 

waves. Even though the accuracy of both square and sawtooth waves was below 90% 

quantitatively, the generated wave was qualitatively close to the target waveform. The effect 

of the number of readout channels on the performance of waveform generation was then 

investigated by comparing various types of devices. As depicted in Fig. 5, the accuracy 

increased with an increase in the number of readout channels for all waveform types, 

supporting the use of numerous readout channels to optimize the training and suppress the 

error. Compared to the performance of the nanowire-based reservoir with 64 readout 

channels reported previously,25) only the accuracy for the trained sawtooth wave was slightly 

lower (< 90%), almost of all waveform generation task was improved accuracy even using 

much lower number of electrodes, indicating the importance of increasing the number of 

memristors junctions of the nanoparticle network to achieve better performance of the RC 

device. 

 

4. Conclusions 
We successfully fabricated an RC device utilizing Ag-Ag2S NPs that were synthesized via 

simple experimental procedures at room temperature. The I–V characteristics of the NPs 

exhibited nonlinear and memristive behaviors with an on/off ratio of approximately 104. The 

NP-based device exhibited rich HHG, indicating high dimensional mapping of the input. 
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Furthermore, the echo state property of the NP-based device was successfully demonstrated 

by the Lissajous plots in which a phase shift of all the readout channels was observed with 

various phase magnitudes. Because the NP-based device exhibited nonlinearity with HHG, 

a scale-free network, and echo state property, they were considered suitable for reservoir 

tasks. As a simple demonstration of RC, a supervised learning principle was applied to train 

the synaptic output weight to perform waveform generation tasks. The performance of the 

reservoir task was quantified by R2 and MSE. RC with a multi-node device requires a certain 

number of readout channels to optimize the training. Furthermore, compared to nanowires, 

NP-based RC exhibits better performance with a smaller number of readout channels 

because the large surface area to volume ratio of the NPs increases the network dynamics, 

which can be achieved with a simple yet efficient synthesis protocol. We expect this novel 

approach for creating a brain-inspired computing device will provide a new perspective for 

developing future neuromorphic electronics based on the non-von Neumann computer 

architecture. 
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Figure Captions 

Fig. 1. (a) Illustration of reservoir computing (RC). (b) Schematic of the RC experiment 

using Ag-Ag2S core-shell nanoparticles. The nanoparticles were used to increase the number 

of point-contact memristors, thereby improving the device dynamics and the performance of 

the RC hardware. 

Fig. 2. (a) Input cycles ranging from −5 to 5 V resulted in hard switching with pinched 

hysteresis, indicating memristive behavior. Red arrow indicates a range, ±1V, where bipolar 

sinusoidal wave bias applied for tasks afterwards. This measurement was performed by two 

electrodes sample. (b) Output current in the frequency-domain following the injection of a 

bipolar sinusoidal wave with peak amplitude of 1 V with frequency of 10 Hz. High harmonic 

generation (HHG) was observed at integer multiples of the input frequency, indicating that 

the input nonlinearly mapped into high-dimensional space, which is suitable for building an 

RC device. 

Fig. 3. Lissajous plots of output vs. input voltage from each readout channel. All the readout 

channels exhibited phase shifting, indicating that the output was delayed. Thus, the NP-based 

RC device possessed the echo state property. 

Fig. 4. Demonstration of supervised learning through waveform generation of cosine (a), 

triangle (b), square (c), and sawtooth (d) as a target with 15 readout channels. The accuracy 

of shape-similar-waveforms (triangle and cosine) with the input sine wave was above 95%, 

while the accuracy of a more complex waveform (square and sawtooth) was below 90%. 

Although the generated sawtooth waveform exhibited the lowest accuracy, it was 

qualitatively closest to the target. 

Fig. 5. Accuracy of the generated waveform against number of output channels. Increasing 

the number of output channels increased the accuracy and suppressed the mean-square-error. 

The highest efficiency (~99%) was achieved for the triangle wave with 15 output channels. 
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