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Abstract

In this paper, we are concerned with two types of infinite stage nondeterministic stopped
decision processes. Our purposes are to derive the optimal equations for stopped decision processes
and to give a method to solve some maximum linear equations by using the technique of dynamic
programming.

1 Introduction

This paper considers stopped decision processes in the framework of infinite stage
nondeterministic dynamic programming. Dynamic programming has been originated
by Bellman [1] and developed and applied by Howard [6], Nemhauser [8], Bertsekas
[3], White [11], Bellman and Zadeh [2], Sniedovich [10], Puterman [9], Iwamoto and
Fujita [7] and others. Dynamic programming models can be classified under transition
systems. Deterministic transition system and stochastic one are most popular and also
fuzzy one often appears in problems with uncertainty. Moreover we have recently
proposed a dynamic programming with nondeterministic transition system ([4], [5]). It
is called nondeterministic dynamic programming. Under the nondeterministic system, a
single state yields more than one state with nonnegative weight in the next stage. This
characteristic shows that nondeterministic dynamic programming covers traditional
ones. It also has a strong possibility for applying the idea of dynamic programming
to various problems.

In this study, we apply infinite stage nondeterministic dynamic programming to
two types of stopped decision processes. One has a stopping region. If a state
moves into it, the decision process is stopped. The other has decision 'stop'. If
decision-maker takes 'stop', the decision process is stopped. Furthermore we apply the
result for stopped decision processes to a system of maximized linear equations. We
show that an algorithm based on dynamic programming still works for solving the
system.
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2 Infinite stage nondeterministic dynamic programming

2.1 Notations and definitions

An infinite-stage nondeterministic dynamic programming is defined by four-tuple:

JV = (X, {U, U(-)}, T, {r,p}),

where the definitions of each component are as follows.
1. X is a nonempty finite set which denotes a state space. Its elements Xn E X are

called nth states. xa is an initial state.
2. U is a nonempty finite set which denotes a decision space. Furthermore we

also denote by U a mapping from X to 2 U and U(x) is the set of all feasible
decisions for a state x E X, where 2 Y denotes the following power set:

2 Y = {AlA c Y,A #0}.

After this, let Gr ( U) denote the graph of a mapping U(-):

Gr(U) := {(x, u) I u E U(x), X E X} c X xU,

and R denotes the real number system.
3. T: Gr(U) ---+ 2x is a nondeterministic transition law. For each pair of a state

and a decision (x, u) E Gr(U), T(x, u) means the set of all states appeared in the
next stage. If a decision Un is chosen for a current state xn, all Xn+1 E T(x, u)
will become a next state at the same time.

4. r: Gr(U) ---+ R is a reward function and p: Gr(T) ---+ [0,(0) is a weight func­
tion. If a decision Un is chosen for a current state Xn, we get a reward r(xn, un)
and each next state Xn+1 E T(xn, Un) will be appeared with a corresponding
weight P(xn, Un, Xn+I)'

Next a mapping f: X ---+ U is called decision function if f(x) E U(x) for any
x EX. A sequence of decision functions:

n = {fa, fl , ... , In, ...}

is called a Markov policy. Let II denotes the set of all Markov policies, which is called
Markov policy class. If a decision-maker takes a Markov policy n = {fa, fl, ... }, he
chooses In(Xn)(E U) for state Xn at nth stage.

2.2 Formulation

For an initial state xa E X and Markov policy n E II we introduce total weighted
value is given by



where
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V(Xo; n) := ro + L POrI + L L POPl r2

Xl EX(l) (Xl,X2)EX(2)

+ ... + LL'" LPoPI" ·Pn-Irn+ ...
(Xl, ... ,xn)EX(n)

Xo EX, nEil,
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X(n) = {(Xl, ... ,Xn) E X X ... x X I Xm+I E T(xm,fm(xm)) 0:::; m:::; n - I}.

Then our purpose is to maximize the total weighted value over Markov policy
class. Thus the nondeterministic dynamic programming problem is fonnulated as the
following maximization problem:

P(Xo) Maximize V(xo; n) subject to nEil.

The problem P(xo) means an infinite-stage decision process starting at Oth stage with an
initial state Xo.

A policy n* is called optimal if

v(Xo; n *) 2:: V (Xo; n) 'in E II, 'ixo EX.

2.3 Optimal equation

The nonn of the weight function P is defined as follows

PI:= IIPII I = max L IP(x,u,Y)I·
(X,U)EGr(U) YET(x,u)

Let v(xo) be the maximum value of P(xo). Then we have the following optimal
equation.

THEOREM 2.1 ([4]). Under the assumption PI < 1) the maximum value function v
satisfies the following optimal equation:

v(X) = max [r(x, u) + L P(x, u, Y)V(Y)]
UEU(X) YET(x,u)

Note that the solution of this equation is unique.

XEX.

Let f*(x) E U(x) be a point which attains v(x). Then we get the optimal
stationary Markov policy n* = {f*, f*, ...} in Markov class II.
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3 Stopped decision processes

Now we introduce two types of infinite stage nondeterministic stopped decision
processes.

3.1 Stopping region

We define the infinite stage nondeterministic stopped decision process with stopping
region:

JVgi = ({g', 5}, {U, U(·)}, T, {r, g,P}).

Additional definitions of new components are given below.
1+. {g', 5} is a division of state space X. 5 is called a stopping region. If a

state moves into 5, the process is terminated.
4+. g: 5 ----+ R is a stop-reward function. If the process is terminated, we get stop­

reward instead of stage-reward given by r.
The other components are defined in section 2.

Then the optimal equation for the nondeterministic stopped decision process JVg'l is
obtained as follows.

COROLLARY 3.1.

v(x) = g(x)

v(x) = max [r(x, u) + L P(x, u, y)v(y)]
UE U(x) yE T(x,u)

This corollary immediately follows from Theorem 2.1.

xE5,

X E g'.

3.2 Decision 'Stop'

Next we introduce the decision 'Stop'. We define the infinite stage nondetermin­
istic stopped decision process

JVg'2 = (X, {U, U(-)}, T, {r, g,P}).

Additional definitions of new components are given below.
2+. U includes a decision 'Stop', which is denoted by S. If we take S E U, the

process is terminated.
4+. g: X ----+ R is a stop-reward function.

The other components are defined in section 2.
Then we have the following optimal equation for the nondeterministic stopped

decision process JVg'2 by using Theorem 2.1.



Infinite Stage Nondetenninistic Stopped Decision Processes

COROLLARY 3.2.

v(x) = max [g(X), max [r(x, u) + L P(x, u, Y)V(y)]]
UE U(x)\{S} yE T(x,u)

XEX.
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4 Maximum linear equation

In this section, we use the following notations. For two real values a and b, their
maxima is denoted by

a v b = max{a, b}

and for the set of real values {aI, a2, . .. ,an}, their maxima by

n

Vai = max{al,a2, .. ' ,an}.
i=1

EXAMPLE 4.1. We show that to solve the following nondeterministic stopped
decision process:

.KgI = ({g, 5}, {U, U(-)}, T, {r, g, P}),

where

g = {sI}, 5 = {S2}, U = {I, 2},

U(u) = U Vu E U,

V(x,u) E U X U,

implies to solve the following relation of a system of maximized linear equations:

(1)
y = c,

where af,bk,c E R (j,k = 1,2).

Indeed, the optimal equations for .KgI becomes

(2)
v(SIl = [r(SI' I) +y~/(SI' l,y)V(y)] v [r(SI,2) +y~/(SI,2'Y)V(y)l

V(S2) = g(S2).

We put
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r(sl,k) = bk
, g(S2) = C, {3(sl,k,Sj) = af },k = 1,2,

then Eqs. (2) are the same with Eqs. (1). In this case, variable x in Eqs. (1) plays the
role of the value function V(SI) and y plays the role of V(S2). D

EXAMPLE 4.2. We consider the following nondeterministic stopped decision pro-
cess:

JVY2 = (X, {U, U(·)}, T, {r, g,{3}),

where

X = {SI,S2}, U = {1,2,S},

U(u) = U Vu E U,

T(x, u) = X V(x, u) E U X U.

Then to solve JVY2 implies to solve the following relation of a system of maximized
linear equations:

(3)
x = CI v (bl + allx + al2y) v (b? + a?l x + a?2Y) ,

Y = C2 v (hi + ailx + ai2Y) v (hi + ailx + ai2Y) ,

(4)

where at,b~,CiER (i,},k= 1,2). Indeed, the optimal equation for JVY2 becomes

v(sJl = g(sJl v [r(SI' 1) + y"f;/(SI, 1, y)V(y)] v [r(SI, 2) + y~,/(SI' 2, y)v(y)l
V(S2) = g(S2) v [r(S2' 1) + y"f;" P(S2, 1, y)V(y)] v [r(S2' 2) + y"f;" P(S2' 2, Y)V(y)] .

We put

i,},k = 1,2,

then Eqs. (4) are the same with Eqs. (3). D

Generally, these types of system of maximized linear equations give the optimal
equations for infinite horizon optimal stopping problems under nondeterministic tran­
sition system.

Now we solve maximized linear equations by using dynamic programming ap­
proach. Let us consider the following relation of a system of equations:

(5) i = 1,2, ... , N,
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where at,b~ E R (15k 5 Ki , 1 5 i,j 5 N). We call the system (5) maximum linear
equation. For the set A = {at E R 11 5 k 5 K i , 1 5 i, j 5 N}, we use the following
notations.

N

IIAII = max. L lajr,
! ~k~K;,! ~1~N j=!

A ~ 0 ¢:} aj ~ 0 for 15k 5 K i , 1 5 i, j 5 N.

Note that under the assumption

IIAII < 1

there exists a unique solution of Eq. (5). Further under the additional assumption

A ~ 0,

we have the following algorithm for finding the unique solution.

ALGORITHM. (Howard's Policy Iteration Algorithm [6]).
Step 1 (initial selection)

Let n = O. Take any feasible selection (decision function) fo. The term
feasible selection f means that f is a function satisfying

i= 1,2, ... ,N.

Step 2 (value determination)
Solve the system of linear equations given by the maximum linear equation
with the selection fn and set the solution to x n = (xl' Xl' ... ,x~), that is, the
determined x n satisfies

Step 3 (optimality test)
If x n satisfies

K; ( N )x~ = V ~a~x~ + b~
1 L.- lJ } 1

k=! j=!

then go to step 6. Otherwise, go to step 4.
Step 4 (selection improvement)

Choose a feasible selection fn+! satisfying

i= 1,2, ... ,N.

i= 1,2, ... ,N,
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K(N ) NVI '"'" a~x~ + b~ = '"'" a!n+l (i) X~ + b!n+l (i)
~ 1J J I ~ 1J J I

k=i j=i j=i

i=I,2, ... ,N.

Step 5 (next step)
Let n = n + 1. Go to step 2.

Step 6 (optimal solution)
The selection j~ is optimal and (xn, yn) is the desired solution.

EXAMPLE 4.3. We solve the following maximum linear equations:

Xi= 24 V (4+~Xl +~X2) V (6+~Xl +~X2)

X2 = 18 v (8 +~Xl +~X2) v (5+~Xl +~X2)
U = 8 (stop) u=1 u=2

1st iteration
Step 1. Let n = 0 and fo = (8,8), where j~ = (k i ,k2 ) means j~(I) = k i , j~(2) = k2 .

Step 2. The linear equations

{

Xi = 24,

X2 = 18

have the solution (x?,x~)=(24,18).

Step 3. We check if (x?, x~) satisfies the maximum linear equations:

Since they are not satisfied go to step 4.
Step 4. Set ji = (8,1).
Step 5. Go to step 2.
2nd iteration
Step 2. The linear equations

yield the solution (xl, xi) = (24,24).
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Step 3. We check if (xl, xi) satisfies

Since they are not satisfied, go to step 4.
Step 4. Set fi = (8,2).
Step 5. Go to step 2.
3rd iteration
Step 2. The linear equations

yield the solution (Xf, xi) = (24,26).
Step 3. We check if (xf, xi) satisfies
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Since the third solution (xf, xi) satisfies the original maximum linear equation,
go to step 6.

Step 6. Thus we get the optimal selection fi = (8,2) and the desired unique solution:

(X;, x;) = (xf, xD = (24,26). o
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