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We present an ab initio derivation method for effective low-energy Hamiltonians of material with
strong spin-orbit interactions. The effective Hamiltonian is described in terms of the Wannier
function in the spinor form, and effective interactions are derived with the constrained random
phase approximation (cRPA) method. Based on this formalism and the developed code, we derive
an effective Hamiltonian of a strong spin-orbit interaction material Ca5Ir3O12. This system consists
of three edge-shared IrO6 octahedral chains arranged along the c axis, and the three Ir atoms in
the ab plane compose a triangular lattice. For such a complicated structure, we need to set up the
Wannier spinor function under the local coordinate system. We found that a density-functional band
structure near the Fermi level is formed by local dxy and dyz orbitals. Then, we constructed the ab
initio dxy/dyz model. The estimated nearest neighbor transfer t is close to 0.2 eV, and the cRPA
onsite U and neighboring V electronic interactions are found to be 2.4-2.5 eV and 1 eV, respectively.
The resulting characteristic correlation strength defined by (U − V )/t is above 7, and thus this
material is classified as a strongly correlated electron system. The onsite transfer integral involved
in the spin-orbit interaction is 0.2 eV, which is comparable to the onsite exchange integrals ∼ 0.2 eV,
indicating that the spin-orbit-interaction physics would compete with the Hund physics. Based on
these calculated results, we discuss possible rich ground-state low-energy electronic structures of
spin, charge and orbitals with competing Hund, spin-orbit and strong correlation physics.

I. INTRODUCTION

Ab initio studies of strongly correlated electron ma-
terials that allow quantitative comparisons with exper-
imental results, and provide us with further predictive
powers and materials design, are one of the grand chal-
lenges in materials science, where the conventional den-
sity functional theory (DFT) widely used for weakly cor-
related materials does not offer satisfactory accuracy. In-
stead, recent developments of the ab initio scheme with
the reduction to effective low-energy Hamiltonians offer
a promising framework [1, 2]. For example, some of the
high-Tc superconductors were studied in this multi-scale
ab initio scheme for correlated electrons (MACE), and
successfully reproduced the experimental phase diagram
quantitatively, one for a cuprate superconductor [3, 4]
and the other for an iron-based superconductor [5–7].

However, this scheme has not been examined exten-
sively for the cases of coexisting electron correlations
and spin-orbit interaction except for few cases as Refs. 8
and 9, while treating such interplay is coming increas-
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ingly important in various fields such as studies on topo-
logical materials. We focus on the efficient implemen-
tation of the spin-orbit interaction (SOI) to the above
MACE scheme. Recently, an open source software called
RESPACK [10, 11] was developed for the purpose of
deriving effective low-energy Hamiltonians of strongly
correlated material ranging from iron-based supercon-
ductors [5, 12], cuprates [13, 14], nickelates [15, 16],
3d and 4d transition-metal oxides [17], magnetic insu-
lators [18], graphites [19], fullerides and aromatic com-
pounds [20, 21], organic compounds [22, 23], zeolite
systems [24, 25], surface and interface systems [26–29],
lanthanides [30, 31], and actinide dioxides [32–34]. In
addition, handling for band-entangled systems [35, 36]
and development of an extension scheme to purely-low-
dimensional systems [37, 38] have also been made. Here,
we also discuss an implementation of SOI into RESPACK
to make it easier for the public use.

As an application of the scheme, we derive effec-
tive low-energy Hamiltonians of Ca5Ir3O12, whose enig-
matic experimental properties wait for theoretical sup-
port. Electrons on Ir 5d orbitals in Ca5Ir3O12 are ex-
pected to have strong SOI, and we elucidate its effects
on the level of the effective Hamiltonians.

Ca5Ir3O12 has a hexagonal structure (P6̄ 2m) [39] with
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quasi-one-dimensional Ir-atom chain forming the trian-
gular lattice structure in the direction perpendicular to
the chain. It shows insulating (or semiconducting) trans-
port properties presumably in variable range hopping
regime [39, 40], while the Ir 5d orbitals are partially filled
in the DFT electronic structure even in the presence of
SOI [41] as we clarify later, which suggests a substantial
role of the electron correlation. In fact, the compound
shows the Curie-Weiss susceptibility [40] at high tem-
peratures and undergoes two phase transitions, one at
around 105 K and the other at 7.8 K. The latter was
identified as the magnetic transition from the suscepti-
bility, specific heat [39, 40] and µSR [42] measurements,
while the structure of the magnetic order is not identified
yet. The magnetism below 7.8 K is possibly character-
ized by canted antiferromagnetism or spin glass because
of the different response of the magnetic susceptibility to
the field and zero-field cool measurements applied par-
allel to the c-axis. On the other hand, the mechanism
of the 108 K transition is also actively studied in terms
of the phonon property analysis by using the Raman [43]
and inelastic X-ray scattering [44] measurements, but the
structural deformation is so small that it has not been
identified.

The DFT electronic structure suggests the quasi-1D-
like electronic dispersion [41], which also implies that dis-
order plays a key role in transport properties. Iridium va-
lence is furthermore fluctuating nominally between 1/3 of
Ir4+ (d9, namely effective spin 1/2 hole) and 2/3 of Ir5+

(d8, namely spin-1 hole) counted from the closed shell of
t2g orbitals (d6) in the octahedron environment formed
by the oxygen, suggesting the role of charge fluctuations
and/or disproportionation. Since the unit cell contains
three Ir atoms with triangular lattice composed of three
quasi-one-dimensional chains, a naive expectation would
be the disproportionation into periodic alignment of two
Ir5+ and one Ir4+ atoms, which is expected to dissolve the
magnetic frustration arising from the triangular structure
of Ir atoms. However, so far, as mentioned above, the
crystal symmetry was claimed to stay the same through
the two transitions from the Raman [43] and X-ray [44]
spectra, and the unit cell stays the same where the three
Ir atoms are all apparently equivalent [39] at least above
15 K. It also shows the nonlinear conductivity under
strong electric fields [41]. All of these involved but at-
tractive features require theoretical support to clarify the
origin of the bad metal behavior.

In this paper, we derive an effective low-energy Hamil-
tonian of Ca5Ir3O12 using RESPACK considering the
SOI. From the analysis of the DFT band structure, we
found that dxy and dyz orbitals are essential in describ-
ing the low-energy electronic structure near the Fermi
level, and we then derived the dxy/dyz Hamiltonian. An
electron transfer structure with strong one-dimensional
anisotropy was confirmed, but on the other hand, it was
found that the details of the interchain electron transfer
can affect the low-energy electronic structure. In addi-
tion, the correlation strength, (U − V )/t of this material

is very large, about 7, and it was found that the elec-
tronic correlation is relevant to the low-energy physics.
Furthermore, since the magnitude of the SOI is nearly
the same as the size of the exchange integral, the SOI
physics and the Hund physics compete with each other.
We discuss possible spin-charge orders that can be ex-
pected from the analysis of the derived parameters for
the dxy/dyz Hamiltonian.

The present paper is organized as follows: In Sec-
tion II, we give definition of an effective Hamiltonian to
be derived and describe calculation details of the Wan-
nier function in the spinor form and how to obtain the
reducible k-point wave function data from the irreducible
k-point data. Implementation details within RESPACK
and calculation conditions are also given in this section.
In Section III, we show the DFT band structure, the
calculated Wannier functions, and the derived effective-
model parameters for the spin-orbit material Ca5Ir3O12.
Discussion and summary for possible ground-state elec-
tronic structures of this material are given in Section IV.
In appendix A, we give the details of the effective Hamil-
tonian to be derived and, in Appendix B, we show the
characteristic aspect of the exchange integrals in the
spinor formalism. Also, we discuss in Appendix C math-
ematical aspects of single chain Hamiltonian based on
our derived parameters.

II. METHOD

A. Effective Hamiltonian to be derived

In the present study, we consider a derivation of an ef-
fective low-energy Hamiltonian consisting of 2Nw Wan-
nier orbitals, where Nw is the total number of Kramers
pairs in the unit cell. We suppose that the first Nw Wan-
nier orbitals have mainly an up-spin component, and the
last Nw Wannier orbitals have mainly a down-spin com-
ponent. Then, we introduce indices i and σ to specify
the Wannier spinor state, where i is the index for the
Wannier orbital and σ specifies one of the two compo-
nents in the Kramers pair. The effective Hamiltonian to
be considered is written within the two-center integrals
as

H =
∑
RR′

∑
ij

∑
σρ

tσρiRjR′a
†
iσRajρR′

+
1

2

∑
RR′

∑
ij

∑
σρ

UσρiRjR′a
†
iσRa

†
jρR′ajρR′aiσR

+
1

2

∑
RR′

∑
ij

∑
σρ

JσρiRjR′a
†
iσRa

†
jρR′aiρRajσR′

+
1

2

∑
RR′

∑
ij

∑
σρ

Kσρ
iRjR′a

†
iσRa

†
iρRajρR′ajσR′ . (1)

This Hamiltonian is based on the “colinear approxima-
tion” on the σ and ρ degrees of freedom, and a detailed

derivation is presented in Appendix A. In Eq. (1), a†iσR
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and aiσR are creation and annihilation operators, re-
spectively, of an electron in the (iσ)-th Wannier state
at a lattice R. The creation operator is defined by

|ΦiσR〉 = a†iσR|0〉 and ΦiσR(r) is the Wannier function
in the spinor form as

ΦiσR(r) =

(
φuiσR(r)

φdiσR(r)

)
(2)

and

Φ†iσR(r) =

(
φu∗iσR(r) φd∗iσR(r)

)
. (3)

In the spinor representation, it is necessary to pay atten-
tion to the quantization axis for describing the compo-
nents. In this formulation, the Wannier spinor function is
represented along the Cartesian-z axis. φ(r) is the spatial
component along this axis, and the superscript “u” and

“d” describe the up and down components, respectively.
It should be noted here that the subscript σ specifies the
spin components along the local quantization axis (or
front or back degree of freedom of the Kramers pair).
tσρiRjR′ in Eq. (1) is a transfer integral as

tσρiRjR′ =

∫
V

dr Φ†iσR(r)HKS(r)ΦjρR′(r) (4)

with

HKS =

(
Huu Hud

Hdu Hdd

)
, (5)

and it is evaluated as the Wannier matrix element of the
Kohn-Sham (KS) Hamiltonian. The integral of the right-
hand side in Eq. (4) is taken over the crystal volume V .
Also, UσρiRjR′ , J

σρ
iRjR′ , and Kσρ

iRjR′ in Eq. (1) are static
interaction integrals defined as

UσρiRjR′ = lim
ω→0

∫
V

dr

∫
V

dr′Φ†iσR(r)ΦiσR(r)W (r, r′, ω)Φ†jρR′(r
′)ΦjρR′(r

′), (6)

JσρiRjR′ = lim
ω→0

∫
V

dr

∫
V

dr′Φ†iσR(r)ΦjσR′(r)W (r, r′, ω)Φ†jρR′(r
′)ΦiρR(r′), (7)

and

Kσρ
iRjR′ = lim

ω→0

∫
V

dr

∫
V

dr′Φ†iσR(r)ΦjσR′(r)W (r, r′, ω)Φ†iρR(r′)ΦjρR′(r
′), (8)

respectively. W (r, r′, ω) is a frequency-dependent ef-
fective Coulomb interaction calculated within the con-
strained random phase approximation (cRPA) [1] or con-
strained GW approximation (cGW) [45, 46] and this is a
scalar form. In the spinor formalism, the Wannier func-
tion is not real, so, in principle, JσρiRjR′ 6= Kσρ

iRjR′ . We
discuss the structure of the J and K matrices in detail
in Appendix B. In the application to Ca5Ir3O12 in this
paper, we employ the cRPA.

B. Initial guess for maximally localized Wannier
functions in the spinor formalism

The Wannier function is obtained from a transforma-
tion of the Bloch function as

ΦiσR(r) =
1√
Nk

Nk∑
k

∑
n

Ak
n,iσΨnk(r)e−ik·R, (9)

where k is a wavevector in the k-mesh, Nk is the total
number of the k mesh, and {Ak

n,iσ} is a transformation
matrix from the Bloch basis to the Wannier basis. As
well as the Wannier function ΦiσR(r), the Bloch function

Ψnk(r) is also represented in the spinor format as

Ψnk(r) =

(
ψunk(r)

ψdnk(r)

)
, (10)

where ψ(r) is the spatial component along the Cartesian-
z axis. To specify the matrix {Ak

n,iσ}, we utilize the
maximally-localized Wannier-function algorithm [47, 48].

In the spinor formalism, we construct 2Nw Wannier
functions. A proper setting of the initial guess for
the Wannier function is important for obtaining sta-
ble results. In particular, in the present complex oxide
Ca5Ir3O12, it is required to prepare an initial guess in
a form in which the coordinate system describing the
Wannier function is set to a local coordinate symmetry
based on a local octahedron IrO6 (see Sec. III A). Also,
the proper SU(2) rotation of the spinor quantization axis
is important for keeping the symmetry of the matrix el-
ements of the transfer and interaction U , J , and K ma-
trices.

In the construction of the practical Wannier func-
tion, we calculate a projection of the initial guess onto
the Bloch function; we first prepare the following initial
guesses for the Wannier functions at the home cell R = 0;
for the spinors with σ =↑,
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Φinii↑0(r) =

 φini,ui↑0 (r)

φini,di↑0 (r)

 = U(α)

(
gLi (r)

0

)
, (11)

and, for the spinors with σ =↓,

Φinii↓0(r) =

 φini,ui↓0 (r)

φini,di↓0 (r)

 = U(α)

(
0

gLi (r)

)
. (12)

gLi (r) is the Gaussian function including s-, p-, or d-type.
It should be noted here that the Gaussian gLi (r) orienta-
tion is aligned to the local coordinate system [10]; even if
gLi (r) is expressed in the Cartesian coordinate system r.
So there is a spatial rotation between the usual orbital
definition and gLi (r). In the present material, Ca5Ir3O12,
gLi (r) in Eqs. (11) and (12) is a d-type Gaussian func-
tion aligned to the local coordinates centered to the IrO6

octahedron, and is taken to be common for the Kramers
pair of Φinii↑0(r) and Φinii↓0(r).

On top of that, the spinor in the right hand side in
Eqs. (11) and (12) is expressed in the quantization axis
along the z direction of the local coordinate system;
at this stage, the minor component is set to zero and
the major component is set to gLi (r). The Bloch func-
tion obtained from the band structure calculation is con-
ventionally expressed in the quantization axis along the
Cartesian-z direction. Then, to evaluate the inner prod-
uct of the Bloch function and the initial guess, we need
a rotation of the quantization axis of the initial guess to
the Cartesian-z direction. The spinor components along

the Cartesian-z quantization axis are obtained by ap-
plying the U(α) to the spinor along the local-z quan-
tization axis, as it is done in Eqs. (11) and (12). Here
U(α) is the SU(2) matrix characterized by the Euler an-
gles α = (α, β, γ), which rotates the quantization axis
from the local frame to the Cartesian frame. We should
note that this U(α) is related to the SO(3) matrix L(α)
describing the spatial rotation from the Cartesian coor-
dinate system to the local one. The SO(3) matrix L(α)
is

L(α) =
(
Lx Ly Lz

)
=

 LXx LXy LXz
LY x LY y LY z
LZx LZy LZz

 , (13)

where Lx, Ly, and Lz are unit vectors along the local x,
y, and z directions, respectively. Note that for the ma-
trix L(α) to be SO(3), hence a pure rotation, we must
define the unit vector Lx, Ly and Lz to be orthogonal.
The orientation of Lz is the most important. Also, X,
Y , and Z are the Cartesian coordinates. The matrix
elements in Eq. (13) can be calculated from atomic po-
sitions forming the local octahedron IrO6. We note that
Ca5Ir3O12 includes three IrO6 octahedron units and each
IrO6 octahedron has its own different local direction (see
Sec. III A). The SU(2) U(α) is

U(α) =

 exp
(
−iα+γ

2

)
cos
(
β
2

)
− exp

(
−iα−γ2

)
sin
(
β
2

)
exp
(
iα−γ2

)
sin
(
β
2

)
exp
(
iα+γ

2

)
cos
(
β
2

)
 .

(14)

The Euler angles α = (α, β, γ) in Eq. (14) are obtained
as follows: The local coordinates L(α) in Eq. (13) are
expressed by using the Euler angles as:

L(α) =

 cosα cosβ cos γ − sinα sin γ − cosα cosβ sin γ − sinα cos γ cosα sinβ
sinα cosβ cos γ + cosα sin γ − sinα cosβ sin γ + cosα cos γ sinα sinβ

− sinβ cos γ sinβ sin γ cosβ

 . (15)

Through the comparison of the above equation with
Eq. (13), we obtain the Euler angles as follows:

α = arctan

(
LY z
LXz

)
or arctan

(
LY z
LXz

)
+ π, (16)

β = arccos(LZz) or arccos(LZz) + π, (17)

γ = arctan

(
−LZy
LZx

)
or arctan

(
−LZy
LZx

)
+ π. (18)

In the numerical calculation by Fortran, since the
arctan and arccos functions return the values of
[π/2, π/2] and [0, π], respectively, as mod functions, there
is an ambiguity of a multiple of π from the divisor. Thus,
we look for a suitable Euler angle, taking into account
this ambiguity. On top of that, when sinβ in Eq. (15) is
zero, the notorious Gimbal lock problem appears. In this

case, we determine the Euler angles as follows:

α = arctan

(
LY x
LXx

)
or arctan

(
LY x
LXx

)
+ π, (19)

β = 0 or π, (20)

γ = 0. (21)

By inserting Eqs. (16), (17), and (18) or (19), (20), and
(21) into Eq. (14), we obtain the SU(2) matrix U(α).

After employing the initial guesses in Eqs. (11) and

(12), we calculate the initial matrix Ak,ini
n,iσ for a given
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Bloch function Ψnk as the following inner product

Ak,ini
n,iσ = 〈Ψnk|Φiniiσ0〉

=

∫
V

(
ψu∗nk(r) ψd∗nk(r)

) φini,uiσ0 (r)

φini,diσ0 (r)

 dr

=

∫
V

ψu∗nk(r)φini,uiσ0 (r)dr +

∫
V

ψd∗nk(r)φini,diσ0 (r)dr.

(22)

The rest of the calculation procedure is basically the same
as the conventional procedure; we perform the spillage
and spread minimization based on the maximally-
localized Wannier-function algorithm [47, 48].

C. Relation between the irreducible and reducible
Bloch functions

In the practical calculation, there is another impor-
tant technical point. It is a procedure to generate re-
ducible k-point wavefunctions from irreducible k-point
wavefunctions. In usual band calculation, only the irre-
ducible k-point wavefunctions are calculated and stored.
Therefore, in the Wannier function and RPA/cRPA cal-
culations that follow the band calculation, the wavefunc-
tions of the reducible k points must be generated from the
wavefunctions of the irreducible k points. This technique
is important for reducing computation cost and memory
size.

Let us consider the relationship between irreducible
and reducible wavefunctions. The reducible wave func-
tion is expanded by plane waves as

Ψnk(r)=

(
ψunk(r)

ψdnk(r)

)

=
∑
G

(
C u

Gn(k)

C d
Gn(k)

)
exp
[
+i(k+G)·r

]
√

Ω
, (23)

where k is reducible k point, G is reciprocal lattice vector
for expansion of the wave function at the reducible k
point, and Ω is the unit-cell volume. CuGn(k) and CdGn(k)
are the expansion coefficients, which are expressed along
the Cartesian-z axis. These are written with coefficients
at irreducible k point, k∗, as follows:(

C u
Gn(k)

C d
Gn(k)

)
=S(α′)

(
C u

G∗n(k∗)e−i(G+∆rw)·T

C d
G∗n(k∗)e−i(G+∆rw)·T

)
(24)

with

G∗ = R−1(G + ∆rw). (25)

Here, G∗ is the reciprocal lattice vector for expansion
of the wave function at the irreducible k point. R is a
rotation matrix representing the rotational operation for

the system, and T is partial translation vector. It should
be noted here that the R matrix operates in a reciprocal
space, and converts a vector k∗+G∗ into a vector k+G
as

k + G = R(k∗ + G∗). (26)

∆rw in Eqs. (24) and (25) is a rewind vector which is
introduced to pull back the k point after the rotational
operation, Rk∗, to the inside of the Brillouin zone. In
the practical calculation, we first look for G∗ that satis-
fies Eq. (25), and then specify C u

G∗n(k∗) and C u
G∗n(k∗)

in the right-hand side of Eq. (24). S(α′) in Eq. (24) is
an SU(2) matrix rotating the spinor, which can be eval-
uated as described in Sec. II B; the R is conventionally
represented in the basic reciprocal lattice coordinates.
Therefore, we convert R into RXY Z which is a rotation
matrix in the Cartesian coordinates as

RXY Z = BRB−1 (27)

with

B =
(
b1 b2 b3

)
=

 bX1 bX2 bX3

bY 1 bY 2 bY 3

bZ1 bZ2 bZ3

 . (28)

Thus, with RXY Z , we determine the Euler angles (α′,
β′, γ′) along the same procedure as in Eq. (16), (17),
and (18) or (19), (20), and (21), for S(α′) of Eq. (24).
Since the spinor is a polar vector, we have to extract
the pure rotational part in the symmetry operation. So,
we first evaluate the determinant det ‖RXY Z‖, and, if

det ‖RXY Z‖ < 0, we define R̃XY Z = −RXY Z and deter-

mine the Euler angles from this R̃XY Z matrix. Finally,
by using the resulting Euler angles, we evaluate the SU(2)
rotation matrix S(α′) of Eq. (24) to obtain C u

Gn(k) and
C d

Gn(k).

D. Implementation in RESPACK and calculation
conditions

The method mentioned above was implemented in
RESPACK [10] which is a first-principles calculation soft-
ware for evaluating the interaction parameters of mate-
rials and is able to calculate maximally localized Wan-
nier functions, response functions based on the RPA
and related optical properties, and frequency-dependent
electronic interaction parameters. RESPACK supports
band-calculation codes using norm-conserving pseudopo-
tentials with plane-wave basis sets, and automatic gener-
ation scripts for converting the band-calculation results
to the RESPACK inputs are prepared for xTAPP [49]
and Quantum ESPRESSO [50, 51] packages.

Density-functional band structure calculations for
Ca5Ir3O12 are performed by using xTAPP and Quan-
tum ESPRESSO with the experimental crystal struc-
ture with lattice parameters [39]: a = 9.3491 Å and c =
3.1713 Å. We use the Perdew–Burke–Ernzerhof type [52]
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for the exchange-correlation functional. In Quantum
ESPRESSO, the norm-conserving pseudopotentials are
generated by the code ONCVPSP (Optimized Norm-
Conserving Vanderbilt PSeudopotential) [53], and are
obtained from the PseudoDojo [54]. In xTAPP, the
norm-conserving pseudopotentials [55, 56] are generated
as follows: The Ir pseudopotential is constructed for
both of the valence and semicore electronic configura-
tions. For the former pseudopotential, we consider a
slightly ionic configuration of (5d)7(6s)1(6p)0, where the
core-electron configuration is (Xe)(4f)14; the 4f elec-
trons are frozen and excluded from the pseudopoten-
tial. The cutoff radius for the local potential rloc is
1.7 bohr, and those for the non-local s, p, and d pro-
jectors are 2.1, 2.4, and 2.1 bohr, respectively. We ap-
ply the partial-core correction with a cutoff radius rpcc
of 1.3 bohr. Also, the semicore-type pseudopotential of
Ir was construncted for an ionic semicore configuration
of (5s)2(5p)6(5d)7(6s)1(6p)0 with rloc = 1.0 bohr. The
cutoff radii for the non-local s, p, and d projectors are
1.0, 1.0, and 1.2 bohr, respectively, where the 5s and 6s
channels and the 6s and 6p channels share the same cut-
off radius. The Ca pseudopotential is constructed for a
slightly ionic (3s)2(3p)6(4s)1.6(4p)0.3(3d)0 configuration
with rloc = 1.0 bohr. The cutoff radius of the non-local
s, p, and d projectors are 1.0 bohr. The O pseudopo-
tential is generated with rloc = 1.0 bohr for a valence
configuration of (2s)2(2p)4. The cutoff radii of the non-
local s, p, and d projectors are 1.0, 1.0, and 1.0 bohr,
respectively.

We use 8×8×8 k-points for sampling in the first Bril-
louin zone. The energy cutoff is set to be 144 Ry for
the wave functions and 576 Ry for the charge density.
The Fermi energy in the band calculations was esti-
mated with the broadening techniques with the smearing
of 0.0272 eV [57] (for the calculations with Quantum
Espresso, the Gaussian smearing of the same value was
used). The interaction parameters are calculated using
the cRPA method [1, 12, 36], in which we employ the
band disentanglement scheme [36]. The energy cutoff for
the dielectric function is set to be 20 Ry. The total num-
ber of bands used in the polarization calculation is 340
for the calculations with the valence-type Ir pseudopo-
tential and 404 for the semicore-type one, which includes
the unoccupied states up to ∼ 29 eV with respect to the
Fermi level. The integral over the Brillouin zone is calcu-
lated with the generalized tetrahedron technique [58, 59]
with a smearing of 0.1 eV.

To study the SOI effect on the electronic structure,
we perform the usual GGA calculation and compare the
results with the SOI. We call the former calculation as
GGA and the latter calculation as SO-GGA. In SO-GGA,
the Wannier functions was constructed in a band-select
mode that constructs the Wannier function by directly
specifying the Bloch bands related to the Wannier func-
tion without setting the energy window. On the other
hand, the GGA Wannier function were constructed by
specifying the inner and outer energy window. The in-

ner window was set to [−0.32 eV, 0.75 eV] for both
xTAPP and Quantum Espresso, where the energy zero
is the Fermi level. The outer window was taken to be
[−0.61 eV, 0.75 eV] for both xTAPP and Quantum
Espresso. The unoccupied states up to ∼ 26 eV with
respect to the Fermi level are included in the polarization
calculation.

III. RESULTS

A. Crystal structure

Figure 1 shows the crystal structure of Ca5Ir3O12. The
dark-blue, light-yellow, and small-red spheres indicate
Ca, Ir, and O atoms, respectively, and bonds are drawn
between the Ir and O atoms. This material consists of
three budding rods of edge-shared IrO6 octahedra in the
unit cell. These IrO6 rods are aligned along the c-axis,
and these are related by a 120◦ rotation symmetry around
the c axis. We refer to each rod as chain-n with n being
an index for the chains and running from 1 to 3. Follow-
ing the octahedral convention, a local coordinate system
associated with the octahedron is defined as shown in
Fig. 1. The local y axes are taken in the ab plane and
in the direction of the vertex oxygen of the IrO6 octahe-
dron. The local coordinates of each chain also match by
a 120◦ rotation about the c axis (see the top right inset
of Fig. 1). We also note that the IrO6 octahedron is dis-
torted and has no inversion symmetry (see the bottom
right inset of Fig. 1).

B. Band calculation

We show in Fig. 2 (a) calculated GGA and SO-GGA
band structures of Ca5Ir3O12 by thin-red and thick-blue
curves, respectively. From the comparison, we see that
the SOI affects the electronic structure near the Fermi
level, especially leading to the band split and gap opening
in the GGA bands along the L-M and H-K lines.

To see the character of the global band structure, we
show in Fig. 2(b) results of the fat-band analysis for the
SO-GGA band, where the band structure is decomposed
into the 5d orbitals of the Ir atoms. The bands near
2 eV to 4 eV are composed by dx2−y2 and d3z2−r2 or-
bitals, while the bands around −2 eV to 0.5 eV consist
of dxy, dyz, and dzx orbitals. This band structure re-
sults from the crystal field splitting of 5d orbitals into eg
and t2g groups under the crystal field of oxygen atoms
at the corner of an octahedron. Since the IrO6 octahe-
dron is distorted, the degeneracy within each group is
lifted. From these results, we found that the low-energy
bands around the Fermi level consist of mainly dxy and
dyz orbitals. It should be noted here that the d orbitals
follow the local coordinate. The reason why the xy and
yz bands have the higher energy than the zx band is
that the distance from the Ir atom to the apex oxygen in
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FIG. 1. Crystal structure of Ca5Ir3O12, where Ca, O, and Ir atoms are depicted by blue, small-red, and yellow spheres,
respectively (drawn by VESTA [60]). The unit cell contains three edge-shared IrO6 chains along the c axis, and these chains
are denoted as chain-1, chain-2, and chain-3. The local coordinate system based on the IrO6 octahedron in each chain are
also depicted. We note that the local y axes are in the ab plane, and the local coordinates have a rotational symmetry of 120
degree rotation around the c axis. To show this symmetry clearly, we give in the top right inset the cross-section from the
c-axis direction. We also show in the bottom right inset the IrO6 octahedron including the Ir-O bond length data, from which
we see that the structure is considerably distorted and has no inversion symmetry.

the local y direction (1.95 Å) is shorter than that to the
in-plane oxygen (1.99 and 2.01 Å). Thus, in the present
study, we consider a derivation of an effective Hamilto-
nian for the dxy and dyz orbitals, and call this the dxy/dyz
Hamiltonian. Since there are three Ir atoms in the unit
cell, this model is composed of the 12 Wannier spinor
states.

C. Onsite energy diagram

Based on Fig. 2, the on-site energy diagram of Ir is
summarized in Fig. 3. The crystal field splitting of the
5d level of iridium is 3.764 eV, and further, due to the
distortion of the octahedron, both eg and t2g levels un-
dergo a small band splitting near 0.6 eV. We note that
this distortion cannot cause an appreciable level splitting
between dxy and dyz orbitals; the splitting of the two or-
bits is as small as 0.071 eV. Finally, when the SOI acts
on these levels, the dxy and dyz levels further split (see
below).

D. dxy/dyz Hamiltonian

From here, we derive the dxy/dyz Hamiltonian, be-
cause these two bands are well isolated from other bands

near the Fermi level as one sees in Fig. 2. Figure 4 is
a comparison of the Wannier-interpolation band (green-
dashed curves) and the original SO-GGA band (red-solid
curves). We see a good agreement between the two
bands. We note that the initial guess setting is impor-
tant for the present Ca5Ir3O12 ; we set the dxy and dyz
Gaussian orbitals as initial guesses, where the d orbitals
are represented in the local coordinates within each IrO6

octahedra (see Fig. 1). Also, the initial guesses are rep-
resented as a pure spin up or down state along the local
quantization axis [Eqs. (11) and (12)]. With this treat-
ment, all twelve Wannier functions have the same spread.
This setting is very important to keep the right three-
fold symmetry of matrix elements in the Hamiltonian
[transfer {tσρiRjR′} and interaction {UσρiRjR′}, {J

σρ
iRjR′},

and {Kσρ
iRjR′}matrices in Eq. (1)] by the calculated Wan-

nier functions.

E. Maximally localized Wannier function

We next describe details of the maximally localized
Wannier functions of the dxy/dyz Hamiltonian. The cal-
culated real-space Wannier functions are displayed in
Fig. 5. The panels (a) and (b) illustrate the dxy and
dyz Wannier functions, respectively. In this plot, three
independent Wannier functions are shown in one panel
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FIG. 2. (a) Ab initio density functional band structure of
Ca5Ir3O12. Thick-blue and thin-red curves are the results
with and without the spin-orbit interaction, respectively. The
energy zero is the Fermi level. Dispersions are plotted along
the high-symmetry points, where Γ=(0, 0, 0), L=(0, b∗/2,
c∗/2), M=(0, b∗/2, 0), A=(0, 0, c∗/2), H=(−a∗/3, 2b∗/3,
c∗/2), and K=(−a∗/3, 2b∗/3, 0) with a∗, b∗, and c∗ being
basic vectors of the reciprocal lattice, respectively. (b) Fat
band results for 5d orbital of Ir atom.

together. This plot was made as follows:

1. First, we convert the resulting Wannier spinor rep-
resented along the Cartesian-z axis into that in the
local-z axis as(

φ̄uiσ0(r)

φ̄diσ0(r)

)
= U(α)−1

(
φuiσ0(r)

φdiσ0(r)

)
, (29)

where U(α) is the SU(2) matrix introduced in
Eqs. (11) and (12). Also, φ̄u(r) and φ̄d(r) are the
spatial components along the local-z axis. With
this conversion, we found that the components of
the Wannier spinor concentrate on the major part.
In the present compound, about 98 % of the com-
ponents are concentrated on the major part.

2. Then, we plot the real part of the major part in
Fig. 5. Namely we plot Re[φ̄uxy↑0(r)] in the panel

(a) and Re[φ̄uyz↑0(r)] in the panel (b). We see that
the resulting Wannier functions are equivalent for
the dxy and dyz orbitals.
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FIG. 3. Level diagram for onsite energy of Ir. By considering
the crystal field splitting as large as 3.8 eV, the 5d level of Ir
splits the eg and t2g levels. Further, due to the distortion of
the IrO6 octahedron mentioned in the bottom right inset of
Fig. 1, the eg and t2g levels undergo a small band splitting
near 0.6 eV. We note that this distortion hardly causes a level
splitting for dxy/dyz orbitals; the level deviation between the
dxy and dyz orbitals is about 0.071 eV. When the spin-orbit
interaction acts on these levels, the dxy and dyz levels near
the Fermi level split.
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FIG. 4. Comparison of the Wannier-interpolation band
(green-dashed curves) based on the dxy and dyz orbitals and
the original SO-GGA band (red-solid curves). The view of
the figure is the same as that of Fig. 2 (a).

F. Transfer parameters

Next, we discuss the one-body part of the dxy/dyz
Hamiltonian. TABLE I summarizes the main transfers of
this model. The nearest neighbor (NN) transfers tNNxy↑,yz↑
and tNNyz↑,xy↑ are 0.178 eV and 0.215 eV, respectively. A

schematic figure of the two neighboring orbitals (to un-
derstand these transfers defined by the bond between
these two orbitals) is given in Fig. 6, where the panel (a)
displays a distorted octahedron, and panels (b) and (c)
are two edge-shared octahedrons along the c-axis. The
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FIG. 5. Visualization of maximally localized Wannier functions of Ca5Ir3O12: The dxy (a) and dyz (b) Wannier functions are
plotted as Re[φ̄u

xy↑0(r)] and Re[φ̄u
yz↑0(r)], respectively, in Eq. (29) (drawn by VESTA [60]). The Wannier functions are drawn

within the spatial range of a 2×2×2 supercell. In the figures, the octahedral IrO6 chains are drawn by silver sticks, and Ca
atoms are displayed by small-blue spheres. The dxy and dyz Wannier functions of the nth IrO6 chain are described as dxy-n
and dyz-n, respectively. We note that the drawn three Wannier functions in the panels are independent and displayed on one
plot.

former displays the configuration of tNNxy↑,yz↑, and the lat-

ter is that of tNNyz↑,xy↑. The difference in the two transfers

(tNNxy↑,yz↑ = 0.178 eV and tNNyz↑,xy↑ = 0.215 eV) can be
understood in terms of the path-length difference in the
transfer configurations due to the octahedron distortion.
The NN transfers between the same orbitals tNNxy↑,xy↑
and tNNyz↑,yz↑ are as small as 0.03 eV. The onsite transfer

tonsite
xy↑,yz↑ is also as small as 0.027 eV. The largest inter-

chain (IC) electron transfer tlargest
IC is 0.032 eV, whose

schematic figure is depicted in Fig. 6 (d). It should be
noted here that this transfer occurs between the pair lo-
cated each in the neighboring ab planes, where the pair
partner is not located at the Ir atom along the c axis
(interplane nearest pair), but located at the the nearest
neighbor Ir atom of the interplane nearest Ir atom; it is
larger than the IC transfer in the same ab plane (nearly
0.028 eV). Lastly, the spin-orbit coupling tonsite

xy↑,yz↓ is re-
markably large as 0.213 eV.

The most interesting and important point is that the
transfer parameters of SO-GGA and GGA are almost
the same, and the only difference is due to the SOI ma-
trix element tonsite

xy↑,yz↓. Looking at the comparison between

the SO-GGA and GGA bands in Fig. 2 (a), we notice
that the two-band structures are different near the Fermi
level, and the origin of this difference is obviously the
SOI. TABLE I also shows the difference between xTAPP
and Quantum Espresso results. Although a small dif-
ference is found in the values of the NN transfers, we
confirmed that the band dispersion of xTAPP is in per-
fect agreement with that of Quantum Espresso at low
energies.

We next remark the IC electron transfer further in

TABLE I. Main transfer parameters of the dxy/dyz Hamil-
tonian of Ca5Ir3O12, which are estimated as the matrix ele-
ments of the Kohn-Sham Hamiltonian in Eq. (4) with respect
to the maximally localized Wannier functions. In this ta-
ble, we compare the SO-GGA and GGA results, and the sec-
ond and third columns are results based on the xTAPP band
calculation, and the fourth and fifth columns contain results
with the Quantum Espresso band calculation. We show
4 nearest-neighbor (NN) transfers along the chain (c-axis),
onsite transfers, and absolute value of the largest interchain
(IC) electron transfer. Definition for tNN

xy↑,yz↑ and tNN
yz↑,xy↑ is

given in Figs. 6 (b) and (c), respectively. Also, the configu-

ration for the largest IC electron transfer tlargestIC is drawn in
Fig. 6 (d). tonsitexy↑,yz↑ is nonzero because of the local coordinate

defined along the distorted octahedron. The bottom tonsitexy↑,yz↓
is the matrix element due to the onsite spin-orbit interaction.
The unit of transfer integral is eV.

xTAPP Quantum Espresso

SO-GGA GGA SO-GGA GGA

tNN
xy↑,yz↑ 0.178 0.173 0.182 0.174

tNN
yz↑,xy↑ 0.215 0.209 0.219 0.210

tNN
xy↑,xy↑ 0.027 0.024 0.025 0.024

tNN
yz↑,yz↑ 0.027 0.024 0.025 0.024

tonsitexy↑,yz↑ −0.027 −0.036 −0.033 0.045

|tlargestIC | 0.032 0.041 0.032 0.041

tonsitexy↑,yz↓ 0.213 - 0.215 -
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FIG. 6. Schematic figure to understand configurations for
main transfers in TABLE I: (a) Distorted IrO6 octahedron
including the Ir-O bond length data and the local coordinates
are drawn in the left side. Panels (b) and (c) respectively de-
scribe nearest-neighbor (NN) pairs of the dxy-dyz and dyz-dxy
transfers on the edge-sheared octahedrons along the c-axis.
Due to the octahedral distortion, the transfer-path length via
the bridging O site is appreciably longer in (b) than (c), lead-
ing to the difference in the transfer parameters (tNN

xy↑,yz↑ ∼
0.18 eV and tNN

yz↑,xy↑ ∼ 0.22 eV). The panel (d) shows con-
figurations for the largest interchain electron transfers (green
arrows). The numbers in the panel denote Ir sites and types
of orbitals are specified in the parentheses. We note that the
largest interchain electron transfer occurs between Ir sites lo-
cated at the nearest neighbor ab plane each other and not
along the c-axis but one Ir atom apart from that along the c-
axis; it is larger than interchain electron transfers in the same
ab plane.

detail. This transfer is as small as 0.032 eV at maxi-
mum, which confirms the quasi-one-dimensional charac-
ter of electrons. However, it is important to describe
the details of the effect of the IC transfer on the band
structure of the dxy/dyz Hamiltonian. Figure 7 shows
the effect of the IC electron transfer on the band struc-
ture. The panels (a) and (b) are the calculated band
dispersion and density of states, respectively. The thick-
red and thin-blue curves are the results with and without
the IC electron transfers, respectively. We found that it
is important to include the IC electron transfers larger

than 0.003 eV in in order to quantitatively reproduce the
original band structure. In the absence of IC electron
transfers, a fairly large gap of about 0.4 eV is generated
due to the spin-orbit interaction, and we see separated
upper and lower bands. Switching on the IC electron
transfer, the bandwidth of each band is widened. The
IC electron transfer effect is appreciable for the bands
along the Γ-A line.
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FIG. 7. Effects of interchain electron transfers on the band
structure: (a) Band dispersion and (b) density of states
(DOS). The thick-red and thin-blue curves are the results
with and without the interchain electron transfers, respec-
tively. The DOS calculation is based on 37×37×37-k point
sampling, and the broadening of δ = 0.01 eV is applied. Also,
in these calculations, we recalculated the Fermi energy to pre-
serve the electron filling.

G. Interaction parameters

Interaction parameters in the dxy/dyz Hamiltonian are
evaluated with cRPA. In cRPA, the constrained polariza-
tion function is first evaluated by switching off the tran-
sitions between specific occupied and unoccupied bands;
since we want to derive the effective interaction param-
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eters of the dxy/dyz Hamiltonian, we exclude the band
pairs involving Ir dxy and dyz orbitals in the polariza-
tion calculation [12]. The effective interaction W (r, r′, ω)
is then evaluated using the resulting cRPA polarization
function. Finally, we calculate the matrix elements of
the static W (r, r′, 0) with the dxy and dyz maximally lo-
calized Wannier functions, which gives UσρiRjR′ [Eq. (6)],

JσρiRjR′ [Eq. (7)], and Kσρ
iRjR′ [Eq. (8)].

TABLE II shows our derived interaction parameters
of Ca5Ir3O12. The low energy interactions are given by
the cRPA values; RPA and bare interactions are pro-
vided only for comparison and discussion. In xTAPP
band calculation with the valence-type pseudopotential,
onsite cRPA intra-orbital interaction U is estimated as
2.41 eV, where U is evaluated as U↑↓xy0,xy0. We note

that U↑↓xy0,xy0 = U↓↑xy0,xy0 = U↑↓yz0,yz0 = U↓↑yz0,yz0 is

satisfied. Onsite cRPA inter-orbital interaction U ′ is
1.93 eV, which is evaluated as U↑↑xy0,yz0. Note that there
are many symmetrically equivalent interactions that give
the same value. There are three onsite exchange inte-

grals, which are characterized by J↑↑xy0,yz0, J↑↓xy0,yz0, and

K↑↑xy0,yz0. As abbreviation, we simply write them J↑↑,

J↑↓, and K↑↓, which are corresponding to the Hund-
type, exchange-type, and pair-hopping-type exchange in-
tegrals, respectively (Appendix B). These cRPA values
are nearly 0.21 eV. Now, the obtained J reasonably sat-
isfies the relation U = U ′ + 2J for the spherical atom.
We note that the obtained cRPA values of U ∼ 2.4 eV
and U ′ ∼ 2 eV look reasonable in terms of the previous
ab initio estimates of U and U ′ for the t2g electrons in
other Ir compounds (Sr2IrO4 [8] and Na2IrO3 [9]).

The orbital-averaged NN interaction VNN is esti-
mated as 0.96 eV. Since the averaged NN transfer
t = (tNNxy↑,yz↑ + tNNyz↑,xy↑)/2 is about 0.197 eV, the cor-

relation degree of freedom (U − VNN )/t is estimated as
7.36. Then, in this compound, the electronic correlation
is expected to play a substantial role in the low-energy
physics. We note that the SOI estimated as 0.213 eV is
comparable to the exchange interaction J (∼ 0.21 eV)
and the largest NN transfer (=0.215 eV). Therefore, the
Hund physics and spin-orbit physics compete with each
other and participate in the low-energy physics. We note
in passing that the orbital-averaged nearest IC interac-
tion VIC is 0.51 eV.

The screening trend seen from the resulting bare,
cRPA, and RPA interactions is normal [10]; the screening
effect significantly affects the direct Coulomb integrals
(U , U ′, VNN , and VIC) and is not so significant in the
exchange integrals (J↑↑, J↑↓, and K↑↓).

TABLE II also compares the differences in the calcula-
tion results between the semicore-type and valence-type
pseudopotential for Ir. Basically, there is no substan-
tial difference (interaction terms for both calculations
differ by no more than a few percent). As far as the
comparison in the results based on xTAPP is concerned,
the resulting onsite cRPA Coulomb interaction U with
the semicore-type pseudopotential is 2.48 eV which is

slightly larger than the value of 2.41 eV with the valence-
type pseudopotential. This small increase is also ob-
served for all other cRPA interaction terms, but also,
interestingly, for all bare interaction terms: for instance,
the on-site bare interaction increases from 9.83 eV (for
the valence-type pseudopotential) to 10.00 eV (for the
semicore-type pseudopotential). We interpret the ori-
gin of this increase as the lower values of the cutoff
radii for the semicore-type pseudopotential, with respect
to the valence-type pseudopotential (as shown in Sec.
II D), which slightly increases the localization of Wannier
functions. Finally, the estimated correlation strength
(U − VNN )/t with the semicore-type pseudopotential is
7.36 with t =0.201 eV, where the nearest-neighbor (NN)
transfers with the semicore-type pseudopotential tNNxy↑,yz↑
and tNNyz↑,xy↑) are 0.182 and 0.219 eV, respectively.

On the other hand, when compared with the results
based on the Quantum Espresso calculations, which
are also based on the semicore-type pseudopotential for
Ir, the interaction values are almost the same as the
results of xTAPP; in cRPA, U = 2.47 eV for Quan-
tum Espresso and U = 2.48 eV for xTAPP-semicore-
pseudopotential. Thus, in Quantum Espresso, since
the averaged NN transfer t and interaction V is about
0.201 eV and 1.01 eV, respectively, the correlation
strength (U −V )/t is estimated as 7.28 (which is close to
the value 7.36 for xTAPP). Then, we evaluate that the
correlation strength of Ca5Ir3O12 is about 7.3.

TABLE III compares the interaction parameters of the
t2g and dxy/dyz Hamiltonian, where the t2g Hamiltonian
consider not only dxy and dyz orbitals but also the dzx
orbital. As a result, the derived interaction parameters
of the t2g Hamiltonian become larger than those of the
dxy/dyz Hamiltonian, because the polarizations taking
place within all the t2g electrons are excluded in cRPA
and the screening gets smaller than in the dxy/dyz case.
As seen from this result, the direct Coulomb integrals U
and U ′ of the t2g Hamiltonian is about 0.3 eV larger than
those of the dxy/dyz Hamiltonian. Also, the difference
in the exchange integrals between the t2g and dxy/dyz
Hamiltonian is as small as 0.01 eV. We note that our
estimated t2g-U of Ca5Ir3O12 (∼ 2.79 eV as an average
of Uxy, Uyz, and Uzx) is close to the U value of Na2IrO3

(2.72 eV) [9]. On the other hand, the orbital averaged
t2g-U value of Sr2IrO4 [8] has been reported as about
2.26 eV. The systematic study of material dependence
of the degree of strong electronic correlation for the Ir
oxides will be a very interesting issue, which is left for
future problems.

TABLE III also gives a comparison with the interaction
parameters obtained with the Wannier functions without
the Wannier spread minimization, that is, the Wannier
functions obtained just after the initial-guess projection.
This model is denoted as dinixy /d

ini
yz . We see from the result

that the derived interaction parameters of the dxy/dyz
and dinixy /d

ini
yz Hamiltonians are almost the same. There-

fore, in the parameter derivation, the quantitative effect
of the spread-functional minimization on the interaction
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TABLE II. Calculated static interaction parameters of the dxy/dyz Hamiltonian of Ca5Ir3O12. The interaction parameters
with the bare (unscreened), constrained RPA (cRPA), and usual RPA are compared. U and U ′ are onsite intra-orbital
and inter-orbital direct Coulomb integrals, respectively. Also, J↑↑, J↑↓, and K↑↓ are onsite exchange integrals, which are
corresponding to the Hund-type, exchange-type, and pair-hopping-type exchange integrals, respectively (Appendix B). VNN =

(1/Nw)2
∑Nw

i,j=1 U
↑↑
i0jR is the orbital-averaged value of the nearest-neighbor (NN) interactions with R = (0, 0, 1) and Nw = 2,

where i and j specify the xy and yz orbitals. Also, VIC is the orbital-averaged value of the nearest interchain (IC) interactions.
The table also compares the results based on the two band-calculation software (xTAPP and Quantum Espresso). The “(s)”
and “(v)” after SO-GGA and GGA indicate the pseudopotential types of Ir, i.e., the semicore-type or valence-type. The unit
of the interaction parameter is eV.

xTAPP Quantum Espresso

SO-GGA (s) SO-GGA (v) GGA (v) SO-GGA (s) GGA (s)

bare cRPA RPA bare cRPA RPA bare cRPA RPA bare cRPA RPA bare cRPA RPA

U 10.00 2.48 0.42 9.83 2.41 0.41 10.01 2.29 0.40 9.98 2.47 0.42 10.15 2.44 0.40
U ′ 9.32 1.98 0.13 9.15 1.93 0.13 9.26 1.74 0.09 9.29 1.98 0.13 9.38 1.87 0.09
J↑↑ 0.28 0.23 0.14 0.27 0.21 0.14 0.29 0.23 0.14 0.28 0.23 0.14 0.30 0.25 0.14
J↑↓ 0.26 0.21 0.13 0.25 0.20 0.12 0.29 0.23 0.14 0.26 0.21 0.13 0.30 0.25 0.14
K↑↓ 0.28 0.23 0.14 0.27 0.21 0.14 0.29 0.23 0.14 0.28 0.23 0.14 0.30 0.25 0.14
VNN 4.44 1.00 0.04 4.42 0.96 0.04 4.39 0.81 0.05 4.47 1.01 0.05 4.44 0.91 0.06
VIC 2.86 0.54 0.00 2.85 0.51 0.00 2.86 0.46 0.00 2.86 0.54 0.00 2.87 0.51 0.00

parameter is small.

IV. SUMMARY AND DISCUSSION

In summary, we presented an ab initio framework to
study the effective Hamiltonian for strongly correlated
electron systems with strong SOI; the spinor formalism
and algorithm for deriving the effective Hamiltonian rep-
resented in the maximally localized Wannier function
are presented and implemented in open source software
RESPACK. In particular, we described how to use crys-
tal symmetries of the material in the presence of SOI;
(i) a proper initial guess setting for the Wannier spinor
involving proper choices of the quantization axis, and
(ii) the computational procedure for generating all the
k-point wave function data from the irreducible k-point
data, which are useful for the speedup of calculations and
memory savings.

As an example of application, we derived an ab ini-
tio effective low-energy Hamiltonian of Ca5Ir3O12. Ir t2g
electrons are described with the Wannier spinors repre-
sented in the local coordinate system fixed to the IrO6 oc-
tahedron. After analyzing the band structure, we found
that the effective Hamiltonian described in terms of the
degenerate dxy and dyz orbitals offers the following in-
teresting insights into characters and properties of this
compound:

1. The electronic correlation strength characterized
by (U − V )/t is estimated as ∼ 7, where t is the
averaged transfer of the nearest pair, and U and
V are onsite and nearest interactions, respectively

TABLE III. Comparison of calculated static constrained
RPA (cRPA) interaction parameters between the two-orbital
dxy/dyz and three-orbital t2g Hamiltonians. The bare (un-
screened) interaction values are also listed for reference. The
definition of the parameters is the same as TABLE II. The
dini
xy /d

ini
yz column lists calculated interaction parameters with

the initial-guess Wannier functions (i.e., results obtained
without the spread functional minimization). The unit of the
interaction integral is eV.

t2g dxy/dyz dini
xy /d

ini
yz

bare cRPA bare cRPA bare cRPA

Uxy 10.044 2.737 9.834 2.411 9.831 2.410

Uzx 10.588 2.881 - - - -

U ′xy,yz 9.286 2.218 9.155 1.926 9.151 1.925

U ′xy,zx 9.229 2.103 - - - -

J↑↑xy,yz 0.285 0.227 0.270 0.212 0.270 0.212

J↑↓xy,yz 0.283 0.225 0.251 0.198 0.252 0.198

K↑↓xy,yz 0.285 0.227 0.270 0.212 0.270 0.212

J↑↑xy,zx 0.285 0.229 - - - -

J↑↓xy,zx 0.280 0.226 - - - -

K↑↓xy,zx 0.285 0.229 - - - -

VNN 4.523 1.119 4.425 0.964 4.423 0.963

VIC 2.866 0.597 2.855 0.514 2.854 0.514
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FIG. 8. Possible spin-charge orders to dissolve the frustration, based on the derived parameters for the dxy/dyz Hamiltonian:
(a) The charge pattern including ferrimagnetic 120◦ spin structure, where Ir4+ and Ir5+ sites are assumed to be spin-1/2 and
spin-1, respectively, and described by green and blue dots. In this figure, the Ir spin is along the local y axis of the IrO6

octahedron [panel (b)], because the magnetic easy axis is the local y axis (Appendix C). The panel (c) shows a possible charge
order and accompanied partial magnetic order at the hexagonal Ir5+ (spin-1) sublattice, which can generate strong quantum
fluctuation on the triangular Ir4+ (spin-1/2) sublattice. The spin patterns of the panel (a) and (c) are based on the Ir electronic
configurations with the Hund interaction > spin-orbit interaction (SOI) [panel (d)]. Another possible spin-charge pattern drawn
in the panel (e) exists, where the Hund interaction is less than SOI. In this case, Ir5+ sites denoted by orange dots are assumed
to be spin-0 [panel (f)]. In the panels (c) and (e), the unpaired spins on the Ir4+ sites are expected to dynamically fluctuate
and hardly order because of the vanishing mean field from the surrounded Ir5+ electrons.

(see TABLEs I and II). A large electron correlation is expected to play a key role in the low-energy
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physics.

2. The estimated value of the largest transfer taking
account of SOI is 0.21 eV, which is as large as the
exchange interaction 0.20-0.23 eV. This amplitude
is, however, relatively smaller than the crystal field
splitting between the dyz/dzx orbitals and dzx or-
bital (∼ 1 eV). This makes the dominant role of the
crystal field splitting in the t2g electron levels over
the spin-orbit splitting in contrast to Sr2IrO4 [8],
where the bands are rather characterized by the to-
tal angular momentum Jeff that is a good quantum
number in the strong SOI limit.

3. Although one-dimensional anisotropy exists, it is
important to include the IC electronic transfer
equal to or larger than 0.003 eV to reproduce the
overall quantitative band structure, where the dis-
persion in the IC direction is not negligible (see
Fig. 7).

4. In the present case, the SOI effect plays a cru-
cial role by forming a gap below the Fermi level
within the dxy/dyz manifold. However, the par-
tially 1/6 filled upper bands constituted by dxy/dyz
orbitals, separated by the spin-orbit gap from the
lower dxy/dyz bands, is expected to generate the
Fermi surface and metallic conduction, where the
IC electron transfer is not negligible and the one-
dimensional localization effect should be limited
(see the item 3 above). The bad metallic behavior
may thus be ascribed to the electronic correlation
presumably combined with the valence fluctuation.

5. Since the effective onsite Coulomb repulsion (>
2 eV) is larger than the spin-orbit gap and fur-
thermore larger than the total dyz/dxy band width
(∼ 1.5 eV), the final electronic structure could
be totally reconstructed by the electronic correla-
tion, which makes it necessary to accurately solve
the effective Hamiltonian derived here beyond the
DFT-GGA level. Even the explicit inclusion of the
dzx orbital into the effective Hamiltonian might be
necessary to consider because of the large onsite
Coulomb repulsion Uzx (see TABLE III).

6. The geometrical frustration arising from the trian-
gular Ir configuration may be dissolved by a regular
alignment of two Ir5+ and one Ir4+ on each triangle,
namely charge ordering as is illustrated in Fig. 8.
We give in the panel (a) a possible charge and spin
arrangement in the ab plane, where this configu-
ration will minimize the loss of intersite Coulomb
energy. For clear understanding of the spin pattern
accompanied with the charge arrangement, we de-
pict in the panel (b) the orientation of IrO6 octa-
hedron and the local y axis defined for each octa-
hedron. We note that the local y-axis is the easy
axis of an Ir spin (see the item 7 below). Then, a
naive expectation is 120◦ spin structure consisting

of one spin-1/2 Ir4+ and two spin-1 Ir5+, where the
Ir spin drawn in Fig. 8 (a) is along the local-y axis.

7. In the energy or temperature scale lower than the
SOI, the magnetic anisotropy induced by the SOI
will play an important role to stabilize discrete bro-
ken symmetry phases: As explained below, the SOI
induces an easy-axis anisotropy along the local y
axis. The geometry and crystal field splitting of the
local distorted octahedral cluster IrO6 essentially
determine the magnetic anisotropy. As shown in
the onsite energy diagram (Fig. 3), when the SOI
is neglected, the dxy and dyz orbitals are nearly
degenerated, thus, may induce an angular momen-
tum along the local y axis. Then, the atomic SOI is
dominated by couplings between the y components
of the spin and angular momentum, λSyLy, where
λ is the effective spin-orbit coupling constant and
Sy (Ly) is the y component of the spin (angular
momentum) of the Ir ions in the local coordinate.
The spin-orbit coupling λSyLy may stabilize the
total angular momentum along the local y axis in
the broken symmetry phases at low temperatures
[Fig. 8 (a)]. In Appendix C, the relevance of λSyLy

is demonstrated by using the transfer integrals of
the dxy/dyz Hamiltonian (given in TABLE I and
Fig. 6).

8. An alternative expectation is the hexagonal lat-
tice of Ir5+ atoms with the center of hexagon
occupied by spin-1/2 Ir4+, which is shown in
Fig. 8 (c). The antiferromagnetic intra- and inter-
chain exchange interactions suggested by the high-
temperature magnetic susceptibility measurement
is expected to be larger between two Ir5+ atoms
than the exchange involving spin-1/2 Ir4+ atom,
because of the spin-1 Ir5+ state due to the Hund’s
rule coupling. This picture is based on the elec-
tronic configuration of the Ir atoms, described in
Fig. 8 (d). In this spin structure, partial antiferro-
magnetic order of the hexagonal Ir5+ atoms would
be formed and leave the spin-1/2 Ir4+ sites disor-
dered because of the cancellation of the antiferro-
magnetic coupling from the neighboring Ir5+ spins.
In the chain direction, there may exist a compe-
tition between the two possible cases: To reduce
the intrachain and intersite Coulomb repulsion, the
Ir4+ sites are aligned in every three sites within a
chain and alternatingly between chains as well to
minimize the intersite interaction. On the other
hand, the kinetic energy is lowered by forming a
chain with uniform Ir4+ valence and two uniform
Ir5+ chains. The antiferromagnetic order becomes
stronger in the chain direction in the latter case
and lowers the energy as well. In the lower energy
(temperature) scale, the 120 degree coplanar order
of the moment on the triangular Ir4+ sublattice or
the spin alignment perpendicular to the Ir5+ mo-
ment represented by e+iθ/2| ↑〉 ± e−iθ/2| ↓〉 in the
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basis of the Ir5+ moment axis, where θ is a real
constant, may also subsequently occur, which may
further cause the ferrimagnetism perpendicular to
the Ir5+ moment in the latter case.

9. Another possibility is that the SOI is dominant be-
yond the Hund’s coupling. In this case, Ir5+ sites
become spin-0 atoms, which is shown in Figs. 8
(e) and (f). In the present estimation, the SOI
∼ 0.21 eV compete with the exchange integral ∼
0.22 eV. So, various spin and charge orders includ-
ing Figs 8 (a), (c), and (e) will compete at low
energies. In general, in a situation where the spin-
orbit interaction is large, the multipole degree of
freedom may become apparent. These issues will
also need to be considered carefully.

10. Although such a spin-charge-order correlation
might exist as a short-range fluctuation, the pre-
served original symmetry at low temperatures so
far experimentally reported suggests that the Ir4+

and Ir5+ configurations are not regular and static
but dynamic or random at least above 15 K. It is
desired to see the crystal symmetry, charge and spin
order/fluctuation in the low-temperature phase be-
low 7.8 K, whether the spin-charge order or glassy
freezing may take place together with semiconduct-
ing behaviors. It is also desired to specify the
time scale of the valence fluctuation in experimen-
tal measurements and dependence of spin-charge
correlation on the annealing rate to reach the low-
temperature phase. The nonlinear conduction [41]
may also be originated from such fluctuations and
weak pinning by the disorder, which could induce
low-frequency noise in the AC transport response
as well.

Because of the above interplay among the SOI, elec-
tronic correlation, valence fluctuation and geometrical
frustration in the magnetic coupling Ca5Ir3O12 provides
us with an intriguing playground of competition and fluc-
tuation to be elucidated in the future by solving the ef-
fective Hamiltonian derived here and by comparing with
refined experiments.
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Appendix A: Derivation of the formula for the effective Hamiltonian

In this appendix, we consider a derivation of the effective Hamiltonian in Eq. (1). We start from the general form
of Hamiltonian described in terms of the spinor field operator as

Ĥ =

∫
V

drΦ̂†(r)H0(r)Φ̂(r) +
1

2

∫
V

∫
V

drdr′Φ̂†(r)Φ̂†(r′)W(r, r′, ω = 0)Φ̂(r′)Φ̂(r), (A1)

where Φ̂(r) and Φ̂†(r) are the spinor field operators. H0

is a one-body Hamiltonian which is a 2 × 2 matrix. W
is the static limit of the frequency-dependent effective
interaction, which is assumed to be a scalar form without
spin dependence [61, 62]. The integrals in Eq. (A1) are
over the crystal volume V . For H0, we use the Kohn-
Sham Hamiltonian, and, for W(r, r′), we use the cRPA
effective interaction;

H0(r) ∼ HKS(r), (A2)

W(r, r′) ∼W (r, r′). (A3)

The spinor field operators are expressed with the Wan-

nier spinor function ΦiσR(r) and Φ†iσR(r) defined in
Eqs. (2) and (3) and their creation/annihilation oper-

ators a†iσR and aiσR as

Φ̂(r) =
∑
iσ

∑
R

ΦiσR(r)aiσR, (A4)

and

Φ̂†(r) =
∑
iσ

∑
R

Φ†iσR(r)a†iσR. (A5)

By inserting Eqs. (A2), (A3), (A4), and (A5) into
Eq. (A1), we obtain

Ĥ =
∑
iσ,jρ

∑
Ri,Rj

∫
V

drΦ†iσRi
(r)HKS(r)ΦjρRj

(r)a†iσRi
ajρRj

+
1

2

∑
iσ,jρ,kλ,lν

∑
Ri,Rj ,Rk,Rl

∫
V

∫
V

drdr′Φ†iσRi
(r)ΦlνRl

(r)W(r, r′)Φ†jρRj
(r′)ΦkλRk

(r′)a†iσRi
a†jρRj

akλRk
alνRl

, (A6)

where i, j, k, and l specify the Wannier orbital, and σ,
ρ, λ, and ν are indices that specify the front and back
components of the Kramers pair. Ri,Rj ,Rk, and Rl are
indices for the lattice vector.

For the inner product Φ†iσRi
(r)ΦlνRl

(r) for the two-
particle (namely, interaction) part proportional to W ,
we introduce “colinear approximation”; we suppose that
the product of the front components or that of the back
components may have a significant value. Then, we ob-
tain

Φ†iσRi
(r)ΦlνRl

(r) ∼ Φ†iσRi
(r)ΦlσRl

(r)δσν (A7)

and

Φ†jρRj
(r′)ΦkλRk

(r′) ∼ Φ†jρRj
(r′)ΦkρRk

(r′)δρλ. (A8)

For the Wannier functions sharing the same site, this
approximation is exact, because, in the Wannier spinors
forming the Kramers pair, the front-type Wannier spinor
and the back-type Wannier spinor are exactly orthogonal
to each other. On the other hand, in the case where the
Wannier-spinor quantization axis is different for each site;
i.e., non-colinear case, the front-type Wannier spinor and
the distant back-type Wannier spinor are not orthogonal
to each other. Then, the colinear approximation means
dropping terms due to the product of the front-type and
back-type Wannier spinors. However, since the spatial
overlap between the distant Wannier functions is small,
it does not seem to cause a serious quantitative error.

By inserting Eqs. (A7) and (A8) into Eq. (A6), we have

Ĥ =
∑
i,j

∑
σ,ρ

∑
Ri,Rj

tσρiRijRj
a†iσRi

ajρRj
+

1

2

∑
i,j,k,l

∑
σ,ρ

∑
Ri,Rj ,Rk,Rl

IσρiRi,jRj ,lRl,kRk
a†iσRi

a†jρRj
akρRk

alσRl
(A9)

with the matrix elements of the one-particle part

tσρiRjR′ =

∫
V

drΦ†iσR(r)H0(r)ΦjρR′(r) (A10)
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and the matrix elements of the two-particle part

IσρiRi,jRj ,lRl,kRk
=

∫
V

∫
V

drdr′Φ†iσRi
(r)ΦlσRl

(r)W(r, r′)Φ†jρRj
(r′)ΦkρRk

(r′). (A11)

Furthermore, the above four-center integral is approxi-
mated to the two-center integral; with (i,Ri) = (l,Rl)
and (j,Rj) = (k,Rk), we obtain the direct Coulomb in-
tegral as

UσρiRjR′ = IσρiR,jR′,iR,jR′ , (A12)

where we rewrite Ri and Rj as R and R′, respectively.
Also, with the approximation of (i,Ri) = (k,Rk) and
(l,Rl) = (j,Rj), the (ij|ji)-type exchange integral is ob-
tained as

JσρiRjR′ = IσρiR,jR′,jR′,iR. (A13)

Finally, with (i,Ri) = (j,Rj) and (l,Rl) = (k,Rk), we
obtain (ij|ij)-type exchange integral as

Kσρ
iRjR′ = IσρiR,iR,jR′,jR′ . (A14)

With this two-center approximation, we obtain the ef-
fective Hamiltonian in Eq. (1) characterized by {tσρiRjR′},
{UσρiRjR′}, {J

σρ
iRjR′}, and {Kσρ

iRjR′}.

Appendix B: Exchange integral in the spinor
formalism

Here, we consider the relationship among the three-
type exchange integrals of the Hund-type J H, exchange-
type J EX, and pair-hopping-type J PH, which are defined
as

J H
ij ≡

∫
V

dr

∫
V

dr′Φ†i↑(r)Φj↑(r)W (r, r′)Φ†j↑(r
′)Φi↑(r

′),

(B1)

J EX
ij ≡

∫
V

dr

∫
V

dr′Φ†i↑(r)Φj↑(r)W (r, r′)Φ†j↓(r
′)Φi↓(r

′),

(B2)

and

J PH
ij ≡

∫
V

dr

∫
V

dr′Φ†i↑(r)Φj↑(r)W (r, r′)Φ†i↓(r
′)Φj↓(r

′),

(B3)

respectively, where we drop the lattice-vector index R for
simplicity. These integrals are related with the J and K
matrices defined in Eqs. (7) and (8) as follows:

J H
ij = J↑↑ij , (B4)

J EX
ij = J↑↓ij , (B5)

J PH
ij = K↑↓ij . (B6)

If the Wannier function is in a scalar form, it is a real
function, and then the three-type exchange integrals are
the same; J H

ij = J EX
ij = J PH

ij , or equivalently, Jij = Kij ,
where the spin indices on the J and K matrix elements
can be dropped, because, in the scalar case, the exchange
integral is characterized with only the spatial function.
On the other hand, in the spinor case, the Wannier func-
tion is in general complex, and the three-type exchange
integrals are not the same. In this appendix, we discuss
the relationship among these exchange integrals.

First, we show that the Hund-type exchange integral
J H
ij in Eq. (B1) is equal to the pair-hopping-type ex-

change integral J PH
ij in Eq. (B3) when there is time-

reversal symmetry. By inserting the spinor component
representation of Eqs. (2) and (3) in Eq. (B1), the Hund-
type exchange integral is written as spinor-wannier

J H
ij =

∫
V

dr

∫
V

dr′Φ†i↑(r)Φj↑(r)W (r, r′)Φ†j↑(r
′)Φi↑(r

′)

=

∫
V

dr

∫
V

dr′
(
φu∗i↑ (r) φd∗i↑ (r)

)(φuj↑(r)

φdj↑(r)

)

×W (r, r′)
(
φu∗j↑ (r′) φd∗j↑(r

′)
)(φui↑(r′)

φdi↑(r
′)

)
. (B7)

Here, we utilize the time-reversal symmetry for the spinor
as (

φui↑(r)

φdi↑(r)

)
=

(
φd∗i↓ (r)

−φu∗i↓ (r)

)
(B8)

and its transpose conjugate(
φu∗i↑ (r) φd∗i↑ (r)

)
=
(
φdi↓(r) − φui↓(r)

)
. (B9)

By inserting Eqs. (B8) and (B9) in Eq. (B7), the Hund-
type exchange integral is transformed as follows:

J H
ij =

∫
V

dr

∫
V

dr′
(
φu∗i↑ (r) φd∗i↑ (r)

)(φuj↑(r)

φdj↑(r)

)

×W (r, r′)
(
φdj↓(r

′) − φuj↓(r′)
)( φd∗i↓ (r′)

−φu∗i↓ (r′)

)

=

∫
V

dr

∫
V

dr′
(
φu∗i↑ (r) φd∗i↑ (r)

)(φuj↑(r)

φdj↑(r)

)

×W (r, r′)
(
φu∗i↓ (r′) φd∗i↓ (r′)

)(φuj↓(r′)
φdj↓(r

′)

)

=

∫
V

dr

∫
V

dr′Φ†i↑(r)Φj↑(r)W (r, r′)Φ†i↓(r
′)Φj↓(r

′).

(B10)



18

The right hand side of the above equation is the pair-
hopping-type exchange integral J PH

ij in Eq. (B3), and
from the view of the J and K matrices, we have a rela-

tionship of J↑↑ij = K↑↓ij .

Next, we consider the exchange-type exchange inte-
gral J EX

ij . Similar to the discussion of the Hund-type
exchange integral, this integral is written as

J EX
ij =

∫
V

dr

∫
V

dr′Φ†i↑(r)Φj↑(r)W (r, r′)Φ†j↓(r
′)Φi↓(r

′)

=

∫
V

dr

∫
V

dr′
(
φu∗i↑ (r) φd∗i↑ (r)

)(φuj↑(r)

φdj↑(r)

)

×W (r, r′)
(
φu∗j↓ (r′) φd∗j↓(r

′)
)(φui↓(r′)

φdi↓(r
′)

)
. (B11)

Using again the time-reversal symmetry of Eqs. (B8) and
(B9), J EX

ij in Eq. (B11) is transformed as follows:

J EX
ij =

∫
V

dr

∫
V

dr′
(
φu∗i↑ (r) φd∗i↑ (r)

)(φuj↑(r)

φdj↑(r)

)

×W (r, r′)
(
−φdj↑(r′) φuj↑(r′)

)(−φd∗i↑ (r′)

φu∗i↑ (r′)

)

=

∫
V

dr

∫
V

dr′
(
φu∗i↑ (r) φd∗i↑ (r)

)(φuj↑(r)

φdj↑(r)

)

×W (r, r′)
(
φu∗i↑ (r′) φd∗i↑ (r′)

)(φuj↑(r′)
φdj↑(r

′)

)

=

∫
V

dr

∫
V

dr′Φ†i↑(r)Φj↑(r)W (r, r′)Φ†i↑(r
′)Φj↑(r

′)

(B12)

Thus, the exchange-type exchange integral J EX
ij is found

to be expressed as K↑↑ij in the K matrix in Eq. (8), which

results in J↑↓ij = K↑↑ij .

We summarize the structure of the J and K matrices
as follows:

J =


J↑↑=J H =J PH J↑↓ = J EX

J↓↑ = J EX J↓↓=J H =J PH

 , (B13)

and

K =


K↑↑ = J EX K↑↓=J PH =J H

K↓↑=J PH =J H K↓↓ = J EX

.(B14)

The matrix size of J and K is 2Nw×2Nw, which is com-
posed of Nw×Nw block matrices. We note that the terms
related to the K↑↑ and K↓↓ blocks are the terms corre-
sponding to a†i↑a

†
j↑ai↑aj↑ and a†i↓a

†
j↓ai↓aj↓, which become

zero as the result of the action on the vacuum state.

Appendix C: Single Chain Hamiltonian

The electronic structure of Ca5Ir3O12 near the Fermi
level consists of mainly dxy/dyz orbitals of iridium ions,
where these ions constitute the one-dimensional chains.
Although the interchain couplings are important to
reproduce the DFT electronic structure as shown in
Fig. 7(a) (blue curves), the single chain provides the
zeroth-order approximation to capture the impact of SOI
(and the broken inversion symmetry) on the electronic
structure. In this appendix, we focus on the single chain
of iridium and illustrate the mechanism of the gap for-
mation below the Fermi level and spin anisotropy.

The dominant energy scales in the single-particle
Hamiltonian of the single chain are the onsite spin-
orbit coupling λ = tonsite

xy↑,yz↓, the nearest-neighbor hop-

pings tr = tNNxyσ,yzσ and t` = tNNyzσ,xyσ. The other spin-
independent (spin-dependent) matrix elements are one-
order magnitude smaller in further neighbor hoppings
(offsite spin-orbit couplings).

Then, the dominant part of the single-particle Hamil-
tonian is given by

H0 = Honsite
0 +HNN0 , (C1)

where the onsite term Honsite
0 and the nearest-neighbor

term HNN
0 are defined as



19

Honsite
0 =

∑
R

(
a†xy↑R a†yz↑R a†xy↓R a†yz↓R

) ε− µ −d 0 λ
−d ε− µ −λ 0
0 −λ ε− µ −d
λ 0 −d ε− µ


 axy↑R
ayz↑R
axy↓R
ayz↓R

 , (C2)

and

HNN0 =
∑
R

(
a†xy↑R a†yz↑R a†xy↓R a†yz↓R

) t0 tr 0 0
t` t0 0 0
0 0 t0 tr
0 0 t` t0


 axy↑R+Rc

ayz↑R+Rc

axy↓R+Rc

ayz↓R+Rc



+
∑
R

(
a†xy↑R a†yz↑R a†xy↓R a†yz↓R

) t0 t` 0 0
tr t0 0 0
0 0 t0 t`
0 0 tr t0


 axy↑R−Rc

ayz↑R−Rc

axy↓R−Rc

ayz↓R−Rc

 , (C3)

where, d = tonsite
xyσ,yzσ, t0 = tNNxy↑,xy↑ = tNNxy↓,xy↓ ' tNNyz↑,yz↑ = tNNyz↓,yz↓, ε denotes the onsite energy for the dxy and dyz

orbitals, µ is the chemical potential, and Rc is the lattice vector along the c axis. Here, we neglect the matrix elements
smaller than 10 meV in Honsite

0 and HNN0 .
To make the nature of H0 transparent, we perform the Fourier transformation of H0 by introducing the Pauli

matrices for the spin and orbital degrees of freedom, σα and τα (α = 0, x, y, z), respectively, as

H0 =
∑
k

{
[ε− µ+ 2t0 cos (k ·Rc)]σ

0 ⊗ τ0 + [−d+ (tr + t`) cos (k ·Rc)]σ
0 ⊗ τx

− (tr − t`) sin (k ·Rc)σ
0 ⊗ τy − λσy ⊗ τy

}
, (C4)

where ⊗ denotes the Kronecker product of two matrices. Then, the band dispersions for the conduction bands E±c
and the valence bands E±v are obtained as,

E±c = ε− µ+ 2t0 cos (k ·Rc) +

√
[−d+ (tr + t`) cos (k ·Rc)]

2
+ [±λ+ (tr − t`) sin (k ·Rc)]

2
, (C5)

E±v = ε− µ+ 2t0 cos (k ·Rc)−
√

[−d+ (tr + t`) cos (k ·Rc)]
2

+ [±λ+ (tr − t`) sin (k ·Rc)]
2
. (C6)

The gap among conduction and valence bands is sim-
ply estimated as follows. Because the ratio d/(tr + t`)
(∼ 0.07 for SO-GGA) is small and negligible, |E±c −E±v |
and |E±c − E∓v | show minima at k · Rc ∼ ±π/2, where
−d+(tr + t`) cos (k ·Rc) ' 0. Then the gap is estimated
by 2|±λ+(tr−t`)| and, thus, is determined by the combi-
nation of the spin-orbit coupling λ and broken inversion
symmetry quantified by |tr − t`|.

The single-particle states around the conduction band
minima at k ·Rc ∼ ±π/2 show easy-axis anisotropy char-
acterized by the y component of the spin-orbit coupling,
as follows. Around the conduction band minuma, the
single-particle Hamiltonian is dominated by,

∓(tr − t`)σ0 ⊗ τy − λσy ⊗ τy. (C7)

The above term is diagonalized by the eigenstates of σy⊗
τy.

The y component of the Pauli matrices for the or-
bital degrees of freedom is proportional to a projection
of the y component of the effective angular momentum,

which is denoted by `y, in the t2g manifold onto the two-
dimensional dxy/dyz manifold: λσy ⊗ τy is equivalent to
λσy ⊗ `y. In the t2g manifold expanded by the maxi-
mally localized Wannier orbitals, the spin-orbit coupling
is given by −λt2g ~̀ · ~σ + δλt2g`yσy + λ′t2g (`zσx + `xσz),

where λt2g (> 0) is the spin-orbit coupling in the t2g man-
ifold, and δλt2g and λ′t2g are anisotropic couplings due to
the crystal fields. When the zx orbital is fully occupied,
only the y component of the above spin-orbit coupling
remains relevant. We note that, by reversing the sign
of the effective angular momentum `y, we obtain the y
component of the angular momentum Ly(= −`y) in the
spherical environment. Thus, −λσy`y is nothing but the
y component of the LS coupling.

The eigenstates of σy ⊗ τy are labeled by the y
component of the effective total angular momentum,
Jyeff = ±1/2,±3/2. In the broken time-reversal symme-
try phases, the conduction electrons may induce the total
angular momentum along the local y axis due to the the
y component of the LS coupling.
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effective coulomb interaction at metal and insulator sur-
faces, Phys. Rev. Lett. 109, 146401 (2012).

[27] P. Hansmann, L. Vaugier, H. Jiang, and S. Biermann,
What about u on surfaces? extended Hubbard models for
adatom systems from first principles, J. Phys.: Condens.
Matter 25, 094005 (2013).

[28] S. Okamoto, W. Zhu, Y. Nomura, R. Arita, D. Xiao, and
N. Nagaosa, Correlation effects in (111) bilayers of per-
ovskite transition-metal oxides, Phys. Rev. B 89, 195121
(2014).

[29] T. Tadano, Y. Nomura, and M. Imada, Ab ini-
tio derivation of an effective Hamiltonian for the
La2CuO4/La1.55Sr0.45CuO4 heterostructure, Phys. Rev.
B 99, 155148 (2019).

[30] F. Nilsson, R. Sakuma, and F. Aryasetiawan, Ab ini-
tio calculations of the Hubbard U for the early lan-
thanides using the constrained random-phase approxima-
tion, Phys. Rev. B 88, 125123 (2013).

[31] J.-B. Morée and B. Amadon, First-principles calculation
of Coulomb interaction parameters for lanthanides: Role
of self-consistence and screening processes, Phys. Rev. B
98, 205101 (2018).

[32] B. Amadon, T. Applencourt, and F. Bruneval, Screened
Coulomb interaction calculations: cRPA implementa-
tion and applications to dynamical screening and self-
consistency in uranium dioxide and cerium, Phys. Rev.
B 89, 125110 (2014).

[33] P. Seth, P. Hansmann, A. van Roekeghem, L. Vaugier,
and S. Biermann, Towards a first-principles determina-
tion of effective Coulomb interactions in correlated elec-

https://doi.org/10.1103/PhysRevB.70.195104
https://doi.org/10.1103/PhysRevB.70.195104
https://doi.org/http://dx.doi.org/10.1143/JPSJ.79.112001
https://doi.org/10.1103/PhysRevB.99.245155
https://doi.org/10.1103/PhysRevB.101.045124
https://doi.org/10.1143/JPSJ.79.044705
https://doi.org/10.1143/JPSJ.79.044705
https://arxiv.org/abs/https://doi.org/10.1143/JPSJ.79.044705
https://doi.org/https://doi.org/10.1103/PhysRevLett.108.177007
https://doi.org/https://doi.org/10.1103/PhysRevLett.108.177007
https://doi.org/https://doi.org/10.1038/ncomms6738
https://doi.org/10.1103/PhysRevLett.108.086403
https://doi.org/10.1103/PhysRevLett.113.107201
https://doi.org/10.1103/PhysRevLett.113.107201
https://doi.org/https://doi.org/10.1016/j.cpc.2020.107781
https://doi.org/https://doi.org/10.1016/j.cpc.2020.107781
https://doi.org/10.1103/PhysRevB.93.085124
https://doi.org/10.1103/PhysRevB.93.085124
https://doi.org/10.1143/JPSJ.77.093711
https://doi.org/10.1143/JPSJ.77.093711
https://arxiv.org/abs/https://doi.org/10.1143/JPSJ.77.093711
https://doi.org/10.1103/PhysRevB.98.134501
https://doi.org/10.1103/PhysRevB.99.245155
https://doi.org/10.1103/PhysRevB.100.205138
https://doi.org/10.1103/PhysRevB.101.075107
https://doi.org/10.1103/PhysRevB.86.165105
https://doi.org/10.1103/PhysRevResearch.2.033430
https://doi.org/10.1103/PhysRevResearch.2.033430
https://doi.org/10.1103/PhysRevLett.106.236805
https://doi.org/10.1103/PhysRevB.85.155452
https://doi.org/10.1103/PhysRevB.94.155152
https://doi.org/10.1143/JPSJ.78.083710
https://doi.org/10.1143/JPSJ.78.083710
https://arxiv.org/abs/https://doi.org/10.1143/JPSJ.78.083710
https://doi.org/10.1103/PhysRevB.86.205117
https://doi.org/10.1103/PhysRevB.86.205117
https://doi.org/10.1103/PhysRevB.80.174420
https://doi.org/10.1143/JPSJ.80.124705
https://arxiv.org/abs/https://doi.org/10.1143/JPSJ.80.124705
https://doi.org/10.1103/PhysRevLett.109.146401
https://doi.org/10.1088/0953-8984/25/9/094005
https://doi.org/10.1088/0953-8984/25/9/094005
https://doi.org/10.1103/PhysRevB.89.195121
https://doi.org/10.1103/PhysRevB.89.195121
https://doi.org/10.1103/PhysRevB.99.155148
https://doi.org/10.1103/PhysRevB.99.155148
https://doi.org/10.1103/PhysRevB.88.125123
https://doi.org/10.1103/PhysRevB.98.205101
https://doi.org/10.1103/PhysRevB.98.205101
https://doi.org/10.1103/PhysRevB.89.125110
https://doi.org/10.1103/PhysRevB.89.125110


21

tron materials: Role of intershell interactions, Phys. Rev.
Lett. 119, 056401 (2017).

[34] J.-B. Morée, R. Outerovitch, and B. Amadon, First-
principles calculation of the Coulomb interaction param-
eters U and J for actinide dioxides, Phys. Rev. B 103,
045113 (2021).

[35] T. Miyake, F. Aryasetiawan, and M. Imada, Ab initio
procedure for constructing effective models of correlated
materials with entangled band structure, Phys. Rev. B
80, 155134 (2009).
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