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KANNAN MAPPINGS 11

Misako Kikkawa and Tomonari SUZUKI

Abstract

In Kikkawa-Suzuki [Some similarity between contractions and Kannan mappings, Fixed Point
Theory Appl. doi:10.1155/2007/49749], we discussed a similarity between contractions and Kannan
mappings. In this paper, we continue to discuss a similarity between contractions and generalized
Kannan mappings—M-Kannan mappings.

1. Introduction

The Banach contraction principle [1] is a very famous theorem in nonlinear analysis
and has many useful applications and generalizations. See [2, 4-7, 12, 13, 35, 36] and
others.

THEOREM 1 ([1]). Let (X,d) be a complete metric space. Let T be a contraction on
X, ie., there exists re€[0,1) satisfying

d(Tx,Ty) < rd(x,y)
for all x,ye X. Then T has a unique fixed point.

On the other hand, in 1969, Kannan [9] proved the following fixed point theorem.

THEOREM 2 ([9]). Let (X,d) be a complete metric space. Let T be a Kannan
mapping on X, ie., there exists o€ [O,%) such that

d(Tx,Ty) < a(d(x, Tx) + d(y, Ty))

for all x,ye X. Then T has a unique fixed point.

Contractions are always continuous and Kannan mappings are not necessarily
continuous. This is a very big difference between both mappings. Also, we note that
Kannan’s fixed point theorem is not an extension of the Banach contraction principle.
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That is, there exist a contraction which is not Kannan, and a Kannan mapping which is
not a contraction. Thus, we cannot compare both conditions directly.

We know that a metric space X is complete if and only if every Kannan mapping
has a fixed point, while there exists a metric space X such that X is not complete and
every contraction on X has a fixed point; see [3, 15]. Thus, the Banach contraction
principle does not characterize the metric completeness of X. We can say that the
notion of contractions is stronger in a sense. Recently Suzuki [30] proved a slight
generalization of the Banach contraction principle which characterizes the metric
completeness of X. See also [10, 31].

TueoreM 3 ([30)). Define a nonincreasing function 6 from [0,1) onto (L,1] by

1 ifOSrs%(\fS—l),
1- 1 1
o =4 ¥ 5(/5-Dsrs
1 1
i — 1.
(L +7 lf\/isr<

Then for a metric space (X,d), the following are equivalent:
(1) X is complete.
(if) Every mapping T on X satisfying the following has a fixed point:
« There exists re[0,1) such that 0(r)d(x, Tx) < d(x, y) implies d(Tx, Ty) <
rd(x,y) for all x,ye X.

REMARK. 6(r) is the best constant for every r.

Furthermore Kikkawa and Suzuki [11] proved a Kannan version of Theorem 3.

TueoreM 4 ([11)). Define a nonincreasing function ¢ from [0,1) into (§,1] by

1
1 if 0<r<——,
/ ¥
p(r) =
! if ! <r<l
—_— — <r .
1+r N/

Let (X,d) be a complete metric space and let T be a mapping on X. Let a € [0, %) and
put r:=7% €(0,1). Assume that

(D) p(rd(x, Tx) < d(x,y) implies d(Tx, Ty) < od(x, Tx) + ad(y, Ty)

for all x,ye X, Then T has a unique fixed point.
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REMARK. ¢(r) is the best constant for every r.

We note that 0 and ¢ are similar, but 8(r) # ¢(r) for some r. Since 6(r) < ¢(r) for
every r, we can say that Kannan is stronger in another sense. The authors were very
surprised by Theorem 4 because they guessed that €(r) is best in Theorem 4 when they
were proving it. Then they proved another theorem where 6(r) is best.

THEOREM 5 ([11]). Define a function 0 as in Theorem 3. Let (X,d) be a complete
metric space and let T be a mapping on X. Suppose that there exists r € [0,1) such that

(2)  O0(nNd(x,Tx) <d(x,y) implies d(Tx, Ty) < r max{d(x, Tx),d(y, Ty)}

for all x,ye X. Then T has a unique fixed point.
REMARK. 6(r) is the best constant for every r.

We call a mapping T on X M-Kannan if there exists re [0,1) such that
d(Tx, Ty) < r max{d(x, Tx),d(y, Ty)}

for all x,ye X. By Theorems 3-5, we can guess that the notion of M-Kannan
mappings is more similar to that of contractions than that of Kannan mappings is.

Using the notion of z-distances, Suzuki [23] considered some weaker contractions
and Kannan mappings and proved the following (Theorem 6):

« If T is a contraction with respect to a t-distance, then 7 is Kannan with respect

to another -distance.

+ If T is Kannan with respect to a r-distance, then 7 is a contraction with respect

to another t-distance.
That is, the r-distance versions of both conditions are equivalent.

So, from the above-mentioned thing, it is a very natural question whether the z-
distance versions of contractions and M-Kannan mappings are equivalent. In this
paper, we shall give the positive answer to the question. Therefore we can still guess
that M-Kannan is more similar to contraction than Kannan is.
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2. Preliminaries

Throughout this paper we denote by N the set of positive integers.

In [18], Suzuki introduced the notion of t-distance in order to generalize the results
of Kada et al [8], Tataru [35], Zhong [36, 37] and others. Let (X,d) be a metric
space. Then a function p from X x X into [0, o0) is called a t-distance on X if there
exists a function # from X x [0, 00) into [0,0) and the following are satisfied:

(r1) p(x,z) < p(x,y)+ p(y,2) for all x,y,z€ X;

(r2) #(x,0) =0 and #(x,t) > ¢ for all xe X and 7€ [0, ), and # is concave and

continuous in its second variable;

(z3) lim, x, =x and lim,sup{n(z,, p(zn,Xm)) :m=>n} =0 imply p(w,x) <

lim inf, p(w,x,) for all we X;

(v4) lim, sup{p(xy, ym) : m = n} = 0 and lim, #(x,, #,) = 0 imply lim, #(y,, t.) = 0;

(¢5) lim, #(zy, p(z4, Xx)) = 0 and lim, n(z,, p(z,, yn)) = 0 imply lim, d(x,, y,) = 0.
The metric d is a 7-distance on X. See [8, 14, 16-29, 32-34] for useful examples and
theorems. The following is a key lemma in this paper.

Lemma 1 ([23])). Let (X,d) be a metric space and let p be a t-distance on X. Let
T be a mapping on X and let u be a point of X such that

lim  p(T"u, T"u) =0.

m,n— oo

Then for every x e X, limy p(T*u,x) and lim; p(x, T*u) exist. Moreover, define func-
tions B and y from X into [0,0) by

B(x) = klim p(T*u, x) and y(x) = lim p(x, T*u).

k— o0

Then the following hold:
(1) A function q, from X x X into [0,0) defined by

qi(x,y) = B(x) + B(y)
is a symmetric t-distance on X.

(i) A function gy from X x X into [0,00) defined by

q2(x, y) = y(x) + B(y)
is a t-distance on X.

We denote by 7(X) the set of all z-distances on a metric space (X,d). A r-distance
p on X is called symmetric if p(x,y) = p(y,x) for all x,ye X. We also denote by
70(X) the set of all symmetric 7-distances on X. It is obvious that d € 7o(X) < 7(X).
We denote by TC(X) the set of all mappings 7 on X such that there exist p € 7(X) and
re[0,1) satisfying

p(Tx, Ty) < rp(x,y)
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for all x,ye X. We define sets TK(X), TCy(X), TKo(X), TC2(X) and TC5(X) of
mappings on X as follows: T e TK(X) if and only if there exist p € 7(X) and « € [0,1)
satisfying either of the following holds:

p(Tx, Ty) < a(p(Tx, x) + p(Ty, y))
for all x,ye X, or
p(Tx, Ty) < a(p(Tx, x) + p(y, Ty))
forall x,ye X. T e TCy(X) if and only if there exist p € 7o(X) and r € [0, 1) satisfying
p(Tx, Ty) < rp(x, y)

for all x,ye X. T e TKy(X) if and only if there exist p € 7o(X) and « € [0,1) satisfying

p(Tx, Ty) < a(p(Tx,x) + p(1y, y))
for all x,ye X. T e TCy(X) if and only if there exist p € 7(X) and r € [0, 1) satisfying
p(Tx, Ty) < rp(y, x)

for all x,yeX. T eTC;(X) if and only if there exist /e N, pe7(X) and re|0,1)
satisfying

p(T/x,Ty) <rp(x,y)

for all x,ye X. We recall that a mapping 7 on X belongs to 7C(X) if and only if T
is a contraction with respect to some t-distance p on X [18], and a mapping T on X
belongs to TK(X) if and only if 7 is Kannan with respect to some t-distance p on X
[20].

We know that the above six sets of mappings coincide completely.

THEOREM 6 ([23]). Let (X,d) be a metric space. Then
TCy(X)=TC(X) =TCy(X) =TC3(X) = TKy(X) = TK(X)
holds.
We also know the following fixed point theorem.

THEOREM 7 ([18, 20]). Let (X,d) be a complete metric space and let T be a mapping
on X belonging to TC(X). Then T has a unique fixed point.

3. Main result

In this section, we prove our main result. We define sets TM(X) and TMy(X) of
mappings on X as follows: 7 e TM(X) if and only if there exist p € t(X) and r e [0,1)
satisfying either of the following holds:
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p(Tx, Ty) < rmax{p(Tx,x), p(Ty, y)}

for all x,ye X, or
p(Tx, Ty) < rmax{p(Tx,x), p(y, Ty)}
forall x, ye X. T e TMy(X) if and only if there exist p € 7o(X) and r € [0, 1) satisfying

p(Tx, Ty) < r max{p(Tx,x), p(Ty, y)}

for all x,ye X.
The following is our main result.

THEOREM 8. Letr (X,d) be a metric space. Then
TCy(X) = TC(X) = TMy(X) = TM(X)
holds.

In order to prove it, we need some lemmas. In the following lemmas and the
proof of Theorem 8, we define sets TAf;(X) and TM,(X) of mappings on X as
follows: T e TM;(X) if and only if there exist p e 7(X) and re[0,1) satisfying

p(Tx, Ty) < rmax{p(Tx,x), p(Ty, y)}
for all x,ye X. T e TM,(X) if and only if there exist p € 7(X) and r € [0,1) satisfying
p(Tx, Ty) < rmax{p(Tx,x),p(y,Ty)}
for all x,ye X. We note TM(X) =TM,(X)U TM>(X).
LEMMA 2. For every metric space X,
TM,(X) = TC5(X)
holds.
Proor. Fix T € TM,(X). Then there exist p e 7(X) and re[0,1) satisfying
p(Tx, Ty) < r max{p(Tx,x), p(Ty, y)}

for all x,yeX. So, p(T?x,Tx) <rmax{p(T?x, Tx), p(Tx,x)} holds for xe X. If
p(T?x, Tx) > p(Tx,x), we have 1 <r. This is a contradiction. Thus,

p(T?x, Tx) < rp(Tx, x)

for all xe X. Using this, we have p(T""'x, T"x) <r"p(Tx,x) for neN and xe X.
Fix ue X. Then for m,ne N, we have

p(T™u, T"u) < rmax{p(T"u, T™ 'u), p(T"u, T" 'u)}

< rmax{r™ ' r" Yp(Tu,u)
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and hence lim,, , p(T"u, T"u) = 0. So, by Lemma 1, B(x) = limy p(T*u,x) is well-
defined for every x € X, and a function g from X x X into [0,00) defined by

q(x, y) = B(x) + B(»)

for x,ye X is a t-distance. Since

p(Tx,x) < Lim (p(Tx, T*u) + p(T*u, x))

k— o0

< klim (r max{p(Tx, x), p(T*u, T*"'u)} + p(T*u, x))

rp(Tx, x) + B(x),
we have

P(Tx,x) < 0 ()

for xe X. Fix /e N with £~ <r. Then we have

1-r

BT x) = lim p(T*u, T x)

< lim r max{p(T*u, T*'u), p(T'x, T’ 'x)}

k— oo

IA

klim rmax{p(T*u, T* 'u), r'1p(Tx, x)}

= r'p(Tx, x)

r

14
()
< rf(x)
for all xe X. So, we have
g(T'x,T'y) = B(T’x) + B(T"y) < r(B(x) + B(»)) = rq(x, »)
for x, ye X. This implies T € TC3(X). O

IA

LemMMA 3.  For every metric space X,

TM>(X) = TC3(X)
holds.

ProoF. Fix T € TM>(X). Then there exist p € 7(X) and re [0,1) satisfying

p(Tx,Ty) < rmax{p(Tx,x), p(y,Ty)}

for all x,ye X. Since
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p(Tx, T?x) < r max{p(Tx, x), p(Tx, T*x)}
and
p(T*x, Tx) < rmax{p(T’x, Tx), p(x, Tx)},
we have p(Tx, T?x) < rp(Tx,x) and p(T?*x,Tx) < rp(x, Tx) for xe X. Thus,
p(T¥x, T x) < r¥p(x, TX),
p(T™x, TP 1x) < " Ip(x, Tx),
p(THHx, T?Mx) < r¥p(Tx, x)
and
TV, TP 2x) < p2 (T, x)
hold for meN and xe X. Fix ue X. Then for m,ne N, we have
p(T™u, T"u) < r max{p(T™u, T"™ 'u), p(T" 'u, T"u)}
< max{r", r"}(p(Tu,u) + p(u, Tu))

and hence lim,, , p(T"u, T"u) = 0. So, by Lemma 1, f(x) = lim; p(T*u,x) and y(x) =
lim; p(x, T¥u) are well-defined for every xe X, and a function ¢ from X x X into
[0,00) defined by

q(x, y) = y(x) + B(»)

for x, ye X is a 7-distance. Since

plx, Tx) < lim (p(x, T*u) + p(T*u, Tx))

k— oo

IA

lim (p(x, Tu) + 7 max{p(T*u, T ), p(x, Tx)})
—

= y(x) + rp(x, Tx),

we have

1
p(x, Tx) < ]

— ()

for xe X. Since

p(Tx,x) < lLim (p(Tx, T*u) + p(T*u, x))

k—o0

< Jlim (r max{p(Tx, x), p(T* u, T*u)} + p(T*u, x))
m

rp(Tx, x) + B(x),
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we also have
1
P(Tx,x) < 7—f(%)

for xeX. Fix /eN with *

20+1
~ < /r. Then we have

1—-r =

ﬂ(T2f+lx) = lim p(Tku, T2/+lx)

k— o0

< kllm rmaX{p(Tku, Tk_lu)’p(Tzfx’ T2f+lx)}
— 0

< klim r max{p(Tku, Tk"u),r”p(x, Tx)}
— 00

= r*lp(x, Tx)

r2/+1

IA

A

Vry(x)

IA

and

y(TZN—Ix) _ khm p(sz—]X, Tku)
¢— 00

IA

klim rmax{p(T¥*'x, T¥x), p(T* 'u, T*u)}
— 00

IA

klim rmax{r¥p(Tx,x), p(T* ‘'u, T*u)}
— 0

r2(+1p(Tx’ X)

r2/+1
<

()
< VrB(x).
Therefore we obtain
q(T*+x, T+ y) = p(T* M) + BT y) < Vr(B(x) +9(») = Vrg(y, x)
for all x, ye X and hence
G(TY2x, TY42) < \rg(T¥ 'y, T¥+x) < rg(x, y)

for x, ye X. This implies T e TC3(X).
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PrOOF OF THEOREM 8. By Theorem 6 and Lemmas 2 and 3, we have
TM(X) c TC3(X) = TCo(X) = TKp(X).
Also, it is obvious
TKo(X) © TMy(X) = TM(X).

Therefore we obtain the desired result. O

4. Additional results

In [31], we proved a mapping in Theorem 3 belongs to TC(X). Motivated by this
thing, we shall prove that mappings in Theorems 4 and 5 also belong to TC(X).

THEOREM 9. Let (X, d) be a metric space. Let T be a mapping on X satisfying the
assumption of Theorem 4. Then T belongs to TC(X).

Proor. Let T be a mapping on X satisfying (1) for some x € [0,}). Put r:=
%, €[0,1) and fix ue X. We proved in [11] the following:
+ For every xe X, {T"x} is a Cauchy sequence in X.
If the limit of {7”x} exists, then the limit is a fixed point of T.
d(T"u, Tx) < ad(T"u, T""'u) + ad(x, Tx) holds for sufficiently large neN
provided x € X satisfies x # lim; T7u.
Therefore we can define a function f from X into [0,0) by B(x) = lim, d(T"u, x).
From Lemma 1, a function p from X x X into [0, ) by p(x,y) = p(x) + p(y) is a -
distance.
We shall show B(Tx) <rf(x) for xe X. In the case where {T"u} does not
converge to x, we have
B(Tx) = lim d(T"'u, Tx)

n— o0

< lim (ad(T"u, T"'u) + ad(x, Tx))

= ad(x, Tx)
<a linolo(d(x, T"u) + d(T"u, Tx))

— aB(x) + aB(T)

and hence f(Tx) <rf(x). In the other case, where {T"u} converges to x, we have
Tx = x. Since f(x) =0, we have f(Tx) = f(x) =0 =rf(x). Therefore f(Tx) < rfi(x)
in both cases.

Hence we obtain p(Tx,Ty) = f(Tx) + p(Ty) < rB(x) +rp(y) = rp(x,y) for all
x,ye X. This implies T € TC(X). O
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THEOREM 10. Let (X,d) be a metric space. Let T be a mapping on X satisfying
the assumption of Theorem 5. Then T belongs to TC(X).

ProoF. Let T be a mapping on X satisfying (2) for some re[0,1). Fix ue X.
We proved in [11] the following:

+ For every xe X, {T"x} is a Cauchy sequence in X.

« If the limit of {7"x} exists, then the limit is a fixed point of 7.

* For every xe X, d(Tx, T?x) < rd(x, Tx) holds.

« d(T"u, Tx) < rmax{d(T" 'u, T"u),d(x, Tx)} holds for sufficiently large ne N

provided x e X satisfies x # lim; 7T/u.

We can define a function f from X into [0,00) by f(x)=lim, d(T"u,x). Using
Lemma I, a function p from X x X into [0, 00) by p(x, y) = f(x) + f(y) is a t-distance.

Fix / e N with £~ <r. We shall show f(7*x) < rf(x) for all xe X. In the case
where {T"u} converges to either x or 7/ !x, since the limit is a fixed point of T, the
limit and 7’x coincide. Thus #(77x) = 0 holds. So we have (T 'x) < rB(x). In the
other case, where {7"u} converges to neither x nor T/ !x, we have

B(T'x) = lim d(T"u, T'x)
< lim rmax{d(T" 'u, T"u),d(T"'x,T’x)}
n—ao0

< lim r max{d(T" 'u, T"u),r""'d(x, Tx)}

n—o0
= rd(x, Tx).
Since

d(x, Tx) < lim (d{x, T"u) + d(T"u, Tx))

H— 0

< lim (d(x, T"u) 4+ r max{d(T" 'u, T"u),d(x, Tx)})

— B(x) + rd(x, Tx),

we have d(x, Tx) < =p(x). Therefore

B(T’x) <r'd(x,Tx) < B(x) < rp(x)

1 —r

holds for x € X. We have shown B(7’x) < rf(x) in both cases.
Hence we obtain

p(T %, T'y) = B(T x) + B(T’y) < rf(x) + rB(y) = rp(x, y)

for all x, ye X. This implies T e TC3(X). From Theorem 6, we obtain T € TC(X).
O
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