SOME SIMILARITY BETWEEN CONTRACTIONS AND KANNAN MAPPINGS II

Misako Kikkawa and Tomonari Suzuki

Abstract

In Kikkawa-Suzuki [Some similarity between contractions and Kannan mappings, Fixed Point Theory Appl. doi:10.1155/2007/49749], we discussed a similarity between contractions and Kannan mappings. In this paper, we continue to discuss a similarity between contractions and generalized Kannan mappings-M-Kannan mappings.

1. Introduction

The Banach contraction principle [1] is a very famous theorem in nonlinear analysis and has many useful applications and generalizations. See $[2,4-7,12,13,35,36]$ and others.

Theorem 1 ([1]). Let (X, d) be a complete metric space. Let T be a contraction on X, i.e., there exists $r \in[0,1)$ satisfying

$$
d(T x, T y) \leq r d(x, y)
$$

for all $x, y \in X$. Then T has a unique fixed point.
On the other hand, in 1969, Kannan [9] proved the following fixed point theorem.
Theorem 2 ([9]). Let (X, d) be a complete metric space. Let T be a Kannan mapping on X, i.e., there exists $\alpha \in\left[0, \frac{1}{2}\right)$ such that

$$
d(T x, T y) \leq \alpha(d(x, T x)+d(y, T y))
$$

for all $x, y \in X$. Then T has a unique fixed point.
Contractions are always continuous and Kannan mappings are not necessarily continuous. This is a very big difference between both mappings. Also, we note that Kannan's fixed point theorem is not an extension of the Banach contraction principle.

[^0]That is, there exist a contraction which is not Kannan, and a Kannan mapping which is not a contraction. Thus, we cannot compare both conditions directly.

We know that a metric space X is complete if and only if every Kannan mapping has a fixed point, while there exists a metric space X such that X is not complete and every contraction on X has a fixed point; see [3, 15]. Thus, the Banach contraction principle does not characterize the metric completeness of X. We can say that the notion of contractions is stronger in a sense. Recently Suzuki [30] proved a slight generalization of the Banach contraction principle which characterizes the metric completeness of X. See also [10, 31].

Theorem 3 ([30]). Define a nonincreasing function θ from $\left[0,1\right.$) onto $\left(\frac{1}{2}, 1\right]$ by

$$
\theta(r)= \begin{cases}1 & \text { if } 0 \leq r \leq \frac{1}{2}(\sqrt{5}-1) \\ \frac{1-r}{r^{2}} & \text { if } \frac{1}{2}(\sqrt{5}-1) \leq r \leq \frac{1}{\sqrt{2}} \\ \frac{1}{1+r} & \text { if } \frac{1}{\sqrt{2}} \leq r<1\end{cases}
$$

Then for a metric space (X, d), the following are equivalent:
(i) X is complete.
(ii) Every mapping T on X satisfying the following has a fixed point:

- There exists $r \in[0,1)$ such that $\theta(r) d(x, T x) \leq d(x, y)$ implies $d(T x, T y) \leq$ $r d(x, y)$ for all $x, y \in X$.

Remark. $\theta(r)$ is the best constant for every r.
Furthermore Kikkawa and Suzuki [11] proved a Kannan version of Theorem 3.
Theorem 4 ([11]). Define a nonincreasing function φ from $[0,1)$ into $\left(\frac{1}{2}, 1\right]$ by

$$
\varphi(r)= \begin{cases}1 & \text { if } 0 \leq r<\frac{1}{\sqrt{2}} \\ \frac{1}{1+r} & \text { if } \frac{1}{\sqrt{2}} \leq r<1\end{cases}
$$

Let (X, d) be a complete metric space and let T be a mapping on X. Let $\alpha \in\left[0, \frac{1}{2}\right)$ and put $r:=\frac{\alpha}{1-\alpha} \in[0,1)$. Assume that

$$
\begin{equation*}
\varphi(r) d(x, T x) \leq d(x, y) \quad \text { implies } \quad d(T x, T y) \leq \alpha d(x, T x)+\alpha d(y, T y) \tag{1}
\end{equation*}
$$

for all $x, y \in X$, Then T has a unique fixed point.

Remark. $\varphi(r)$ is the best constant for every r.
We note that θ and φ are similar, but $\theta(r) \neq \varphi(r)$ for some r. Since $\theta(r) \leq \varphi(r)$ for every r, we can say that Kannan is stronger in another sense. The authors were very surprised by Theorem 4 because they guessed that $\theta(r)$ is best in Theorem 4 when they were proving it. Then they proved another theorem where $\theta(r)$ is best.

Theorem 5 ([11]). Define a function θ as in Theorem 3. Let (X, d) be a complete metric space and let T be a mapping on X. Suppose that there exists $r \in[0,1)$ such that

$$
\begin{equation*}
\theta(r) d(x, T x) \leq d(x, y) \quad \text { implies } \quad d(T x, T y) \leq r \max \{d(x, T x), d(y, T y)\} \tag{2}
\end{equation*}
$$

for all $x, y \in X$. Then T has a unique fixed point.
Remark. $\theta(r)$ is the best constant for every r.
We call a mapping T on X M-Kannan if there exists $r \in[0,1)$ such that

$$
d(T x, T y) \leq r \max \{d(x, T x), d(y, T y)\}
$$

for all $x, y \in X$. By Theorems 3-5, we can guess that the notion of M-Kannan mappings is more similar to that of contractions than that of Kannan mappings is.

Using the notion of τ-distances, Suzuki [23] considered some weaker contractions and Kannan mappings and proved the following (Theorem 6):

- If T is a contraction with respect to a τ-distance, then T is Kannan with respect to another τ-distance.
- If T is Kannan with respect to a τ-distance, then T is a contraction with respect to another τ-distance.
That is, the τ-distance versions of both conditions are equivalent.
So, from the above-mentioned thing, it is a very natural question whether the τ distance versions of contractions and $M-K a n n a n ~ m a p p i n g s ~ a r e ~ e q u i v a l e n t . ~ I n ~ t h i s ~$ paper, we shall give the positive answer to the question. Therefore we can still guess that M-Kannan is more similar to contraction than Kannan is.

2. Preliminaries

Throughout this paper we denote by \mathbf{N} the set of positive integers.
In [18], Suzuki introduced the notion of τ-distance in order to generalize the results of Kada et al [8], Tataru [35], Zhong [36, 37] and others. Let (X, d) be a metric space. Then a function p from $X \times X$ into $[0, \infty)$ is called a τ-distance on X if there exists a function η from $X \times[0, \infty)$ into $[0, \infty)$ and the following are satisfied:
($\tau 1) \quad p(x, z) \leq p(x, y)+p(y, z)$ for all $x, y, z \in X$;
($\tau 2) \quad \eta(x, 0)=0$ and $\eta(x, t) \geq t$ for all $x \in X$ and $t \in[0, \infty)$, and η is concave and continuous in its second variable;
($\tau 3) \quad \lim _{n} x_{n}=x \quad$ and $\quad \lim _{n} \sup \left\{\eta\left(z_{n}, p\left(z_{n}, x_{m}\right)\right): m \geq n\right\}=0 \quad$ imply $\quad p(w, x) \leq$ $\lim \inf _{n} p\left(w, x_{n}\right)$ for all $w \in X$;
($\tau 4) \quad \lim _{n} \sup \left\{p\left(x_{n}, y_{m}\right): m \geq n\right\}=0$ and $\lim _{n} \eta\left(x_{n}, t_{n}\right)=0 \operatorname{imply} \lim _{n} \eta\left(y_{n}, t_{n}\right)=0$;
($\tau 5) \lim _{n} \eta\left(z_{n}, p\left(z_{n}, x_{n}\right)\right)=0$ and $\lim _{n} \eta\left(z_{n}, p\left(z_{n}, y_{n}\right)\right)=0 \operatorname{imply} \lim _{n} d\left(x_{n}, y_{n}\right)=0$. The metric d is a τ-distance on X. See $[8,14,16-29,32-34]$ for useful examples and theorems. The following is a key lemma in this paper.

Lemma 1 ([23]). Let (X, d) be a metric space and let p be a τ-distance on X. Let T be a mapping on X and let u be a point of X such that

$$
\lim _{m, n \rightarrow \infty} p\left(T^{m} u, T^{n} u\right)=0
$$

Then for every $x \in X, \lim _{k} p\left(T^{k} u, x\right)$ and $\lim _{k} p\left(x, T^{k} u\right)$ exist. Moreover, define functions β and γ from X into $[0, \infty)$ by

$$
\beta(x)=\lim _{k \rightarrow \infty} p\left(T^{k} u, x\right) \quad \text { and } \quad \gamma(x)=\lim _{k \rightarrow \infty} p\left(x, T^{k} u\right)
$$

Then the following hold:
(i) A function q_{1} from $X \times X$ into $[0, \infty)$ defined by

$$
q_{1}(x, y)=\beta(x)+\beta(y)
$$

is a symmetric τ-distance on X.
(ii) A function q_{2} from $X \times X$ into $[0, \infty)$ defined by

$$
q_{2}(x, y)=\gamma(x)+\beta(y)
$$

is a τ-distance on X.
We denote by $\tau(X)$ the set of all τ-distances on a metric space (X, d). A τ-distance p on X is called symmetric if $p(x, y)=p(y, x)$ for all $x, y \in X$. We also denote by $\tau_{0}(X)$ the set of all symmetric τ-distances on X. It is obvious that $d \in \tau_{0}(X) \subset \tau(X)$. We denote by $T C(X)$ the set of all mappings T on X such that there exist $p \in \tau(X)$ and $r \in[0,1)$ satisfying

$$
p(T x, T y) \leq r p(x, y)
$$

for all $x, y \in X$. We define sets $T K(X), T C_{0}(X), T K_{0}(X), T C_{2}(X)$ and $T C_{3}(X)$ of mappings on X as follows: $T \in T K(X)$ if and only if there exist $p \in \tau(X)$ and $\alpha \in\left[0, \frac{1}{2}\right)$ satisfying either of the following holds:

$$
p(T x, T y) \leq \alpha(p(T x, x)+p(T y, y))
$$

for all $x, y \in X$, or

$$
p(T x, T y) \leq \alpha(p(T x, x)+p(y, T y))
$$

for all $x, y \in X . \quad T \in T C_{0}(X)$ if and only if there exist $p \in \tau_{0}(X)$ and $r \in[0,1)$ satisfying

$$
p(T x, T y) \leq r p(x, y)
$$

for all $x, y \in X . \quad T \in T K_{0}(X)$ if and only if there exist $p \in \tau_{0}(X)$ and $\alpha \in\left[0, \frac{1}{2}\right)$ satisfying

$$
p(T x, T y) \leq \alpha(p(T x, x)+p(T y, y))
$$

for all $x, y \in X . \quad T \in T C_{2}(X)$ if and only if there exist $p \in \tau(X)$ and $r \in[0,1)$ satisfying

$$
p(T x, T y) \leq r p(y, x)
$$

for all $x, y \in X . \quad T \in T C_{3}(X)$ if and only if there exist $\ell \in \mathbf{N}, p \in \tau(X)$ and $r \in[0,1)$ satisfying

$$
p\left(T^{\ell} x, T^{\ell} y\right) \leq r p(x, y)
$$

for all $x, y \in X$. We recall that a mapping T on X belongs to $T C(X)$ if and only if T is a contraction with respect to some τ-distance p on X [18], and a mapping T on X belongs to $T K(X)$ if and only if T is Kannan with respect to some τ-distance p on X [20].

We know that the above six sets of mappings coincide completely.
Theorem 6 ([23]). Let (X, d) be a metric space. Then

$$
T C_{0}(X)=T C(X)=T C_{2}(X)=T C_{3}(X)=T K_{0}(X)=T K(X)
$$

holds.
We also know the following fixed point theorem.
Theorem 7 ([18, 20]). Let (X, d) be a complete metric space and let T be a mapping on X belonging to $T C(X)$. Then T has a unique fixed point.

3. Main result

In this section, we prove our main result. We define sets $T M(X)$ and $T M_{0}(X)$ of mappings on X as follows: $T \in T M(X)$ if and only if there exist $p \in \tau(X)$ and $r \in[0,1)$ satisfying either of the following holds:

$$
p(T x, T y) \leq r \max \{p(T x, x), p(T y, y)\}
$$

for all $x, y \in X$, or

$$
p(T x, T y) \leq r \max \{p(T x, x), p(y, T y)\}
$$

for all $x, y \in X . \quad T \in T M_{0}(X)$ if and only if there exist $p \in \tau_{0}(X)$ and $r \in[0,1)$ satisfying

$$
p(T x, T y) \leq r \max \{p(T x, x), p(T y, y)\}
$$

for all $x, y \in X$.
The following is our main result.
Theorem 8. Let (X, d) be a metric space. Then

$$
T C_{0}(X)=T C(X)=T M_{0}(X)=T M(X)
$$

holds.
In order to prove it, we need some lemmas. In the following lemmas and the proof of Theorem 8, we define sets $T M_{1}(X)$ and $T M_{2}(X)$ of mappings on X as follows: $\quad T \in T M_{1}(X)$ if and only if there exist $p \in \tau(X)$ and $r \in[0,1)$ satisfying

$$
p(T x, T y) \leq r \max \{p(T x, x), p(T y, y)\}
$$

for all $x, y \in X . \quad T \in T M_{2}(X)$ if and only if there exist $p \in \tau(X)$ and $r \in[0,1)$ satisfying

$$
p(T x, T y) \leq r \max \{p(T x, x), p(y, T y)\}
$$

for all $x, y \in X$. We note $T M(X)=T M_{1}(X) \cup T M_{2}(X)$.
Lemma 2. For every metric space X,

$$
T M_{1}(X) \subset T C_{3}(X)
$$

holds.
Proof. Fix $T \in T M_{1}(X)$. Then there exist $p \in \tau(X)$ and $r \in[0,1)$ satisfying

$$
p(T x, T y) \leq r \max \{p(T x, x), p(T y, y)\}
$$

for all $x, y \in X$. So, $p\left(T^{2} x, T x\right) \leq r \max \left\{p\left(T^{2} x, T x\right), p(T x, x)\right\}$ holds for $x \in X$. If $p\left(T^{2} x, T x\right)>p(T x, x)$, we have $1 \leq r$. This is a contradiction. Thus,

$$
p\left(T^{2} x, T x\right) \leq r p(T x, x)
$$

for all $x \in X$. Using this, we have $p\left(T^{n+1} x, T^{n} x\right) \leq r^{n} p(T x, x)$ for $n \in \mathbf{N}$ and $x \in X$. Fix $u \in X$. Then for $m, n \in \mathbf{N}$, we have

$$
\begin{aligned}
p\left(T^{m} u, T^{n} u\right) & \leq r \max \left\{p\left(T^{m} u, T^{m-1} u\right), p\left(T^{n} u, T^{n-1} u\right)\right\} \\
& \leq r \max \left\{r^{m-1}, r^{n-1}\right\} p(T u, u)
\end{aligned}
$$

and hence $\lim _{m, n} p\left(T^{m} u, T^{n} u\right)=0$. So, by Lemma $1, \beta(x)=\lim _{k} p\left(T^{k} u, x\right)$ is welldefined for every $x \in X$, and a function q from $X \times X$ into $[0, \infty)$ defined by

$$
q(x, y)=\beta(x)+\beta(y)
$$

for $x, y \in X$ is a τ-distance. Since

$$
\begin{aligned}
p(T x, x) & \leq \lim _{k \rightarrow \infty}\left(p\left(T x, T^{k} u\right)+p\left(T^{k} u, x\right)\right) \\
& \leq \lim _{k \rightarrow \infty}\left(r \max \left\{p(T x, x), p\left(T^{k} u, T^{k-1} u\right)\right\}+p\left(T^{k} u, x\right)\right) \\
& =r p(T x, x)+\beta(x),
\end{aligned}
$$

we have

$$
p(T x, x) \leq \frac{1}{1-r} \beta(x)
$$

for $x \in X$. Fix $\ell \in \mathbf{N}$ with $\frac{r^{\prime}}{1-r} \leq r$. Then we have

$$
\begin{aligned}
\beta\left(T^{\ell} x\right) & =\lim _{k \rightarrow \infty} p\left(T^{k} u, T^{\ell} x\right) \\
& \leq \lim _{k \rightarrow \infty} r \max \left\{p\left(T^{k} u, T^{k-1} u\right), p\left(T^{\ell} x, T^{\ell-1} x\right)\right\} \\
& \leq \lim _{k \rightarrow \infty} r \max \left\{p\left(T^{k} u, T^{k-1} u\right), r^{\ell-1} p(T x, x)\right\} \\
& =r^{\prime} p(T x, x) \\
& \leq \frac{r^{\ell}}{1-r} \beta(x) \\
& \leq r \beta(x)
\end{aligned}
$$

for all $x \in X$. So, we have

$$
q\left(T^{\ell} x, T^{\prime} y\right)=\beta\left(T^{\ell} x\right)+\beta\left(T^{\ell} y\right) \leq r(\beta(x)+\beta(y))=r q(x, y)
$$

for $x, y \in X$. This implies $T \in T C_{3}(X)$.
Lemma 3. For every metric space X,

$$
T M_{2}(X) \subset T C_{3}(X)
$$

holds.
Proof. Fix $T \in T M_{2}(X)$. Then there exist $p \in \tau(X)$ and $r \in[0,1)$ satisfying

$$
p(T x, T y) \leq r \max \{p(T x, x), p(y, T y)\}
$$

for all $x, y \in X$. Since

$$
p\left(T x, T^{2} x\right) \leq r \max \left\{p(T x, x), p\left(T x, T^{2} x\right)\right\}
$$

and

$$
p\left(T^{2} x, T x\right) \leq r \max \left\{p\left(T^{2} x, T x\right), p(x, T x)\right\}
$$

we have $p\left(T x, T^{2} x\right) \leq r p(T x, x)$ and $p\left(T^{2} x, T x\right) \leq r p(x, T x)$ for $x \in X$. Thus,

$$
\begin{aligned}
& p\left(T^{2 m} x, T^{2 m+1} x\right) \leq r^{2 m} p(x, T x), \\
& p\left(T^{2 m} x, T^{2 m-1} x\right) \leq r^{2 m-1} p(x, T x) \\
& p\left(T^{2 m+1} x, T^{2 m} x\right) \leq r^{2 m} p(T x, x)
\end{aligned}
$$

and

$$
p\left(T^{2 m+1} x, T^{2 m+2} x\right) \leq r^{2 m+1} p(T x, x)
$$

hold for $m \in \mathbf{N}$ and $x \in X$. Fix $u \in X$. Then for $m, n \in \mathbf{N}$, we have

$$
\begin{aligned}
p\left(T^{m} u, T^{n} u\right) & \leq r \max \left\{p\left(T^{m} u, T^{m-1} u\right), p\left(T^{n-1} u, T^{n} u\right)\right\} \\
& \leq \max \left\{r^{m}, r^{n}\right\}(p(T u, u)+p(u, T u))
\end{aligned}
$$

and hence $\lim _{m, n} p\left(T^{m} u, T^{n} u\right)=0$. So, by Lemma $1, \beta(x)=\lim _{k} p\left(T^{k} u, x\right)$ and $\gamma(x)=$ $\lim _{k} p\left(x, T^{k} u\right)$ are well-defined for every $x \in X$, and a function q from $X \times X$ into $[0, \infty)$ defined by

$$
q(x, y)=\gamma(x)+\beta(y)
$$

for $x, y \in X$ is a τ-distance. Since

$$
\begin{aligned}
p(x, T x) & \leq \lim _{k \rightarrow \infty}\left(p\left(x, T^{k} u\right)+p\left(T^{k} u, T x\right)\right) \\
& \leq \lim _{k \rightarrow \infty}\left(p\left(x, T^{k} u\right)+r \max \left\{p\left(T^{k} u, T^{k-1} u\right), p(x, T x)\right\}\right) \\
& =\gamma(x)+r p(x, T x),
\end{aligned}
$$

we have

$$
p(x, T x) \leq \frac{1}{1-r} \gamma(x)
$$

for $x \in X$. Since

$$
\begin{aligned}
p(T x, x) & \leq \lim _{k \rightarrow \infty}\left(p\left(T x, T^{k} u\right)+p\left(T^{k} u, x\right)\right) \\
& \leq \lim _{k \rightarrow \infty}\left(r \max \left\{p(T x, x), p\left(T^{k-1} u, T^{k} u\right)\right\}+p\left(T^{k} u, x\right)\right) \\
& =r p(T x, x)+\beta(x),
\end{aligned}
$$

we also have

$$
p(T x, x) \leq \frac{1}{1-r} \beta(x)
$$

for $x \in X$. Fix $\ell \in \mathbf{N}$ with $\frac{r^{2 \ell+1}}{1-r} \leq \sqrt{r}$. Then we have

$$
\begin{aligned}
\beta\left(T^{2 \ell+1} x\right) & =\lim _{k \rightarrow \infty} p\left(T^{k} u, T^{2 \ell+1} x\right) \\
& \leq \lim _{k \rightarrow \infty} r \max \left\{p\left(T^{k} u, T^{k-1} u\right), p\left(T^{2 \ell} x, T^{2 \ell+1} x\right)\right\} \\
& \leq \lim _{k \rightarrow \infty} r \max \left\{p\left(T^{k} u, T^{k-1} u\right), r^{2 \ell} p(x, T x)\right\} \\
& =r^{2 \ell+1} p(x, T x) \\
& \leq \frac{r^{2 \ell+1}}{1-r} \gamma(x) \\
& \leq \sqrt{r} \gamma(x)
\end{aligned}
$$

and

$$
\begin{aligned}
\gamma\left(T^{2 \ell+1} x\right) & =\lim _{k \rightarrow \infty} p\left(T^{2 \ell+1} x, T^{k} u\right) \\
& \leq \lim _{k \rightarrow \infty} r \max \left\{p\left(T^{2 \ell+1} x, T^{2 \ell} x\right), p\left(T^{k-1} u, T^{k} u\right)\right\} \\
& \leq \lim _{k \rightarrow \infty} r \max \left\{r^{2 \ell} p(T x, x), p\left(T^{k-1} u, T^{k} u\right)\right\} \\
& =r^{2 \ell+1} p(T x, x) \\
& \leq \frac{r^{2 \ell+1}}{1-r} \beta(x) \\
& \leq \sqrt{r} \beta(x)
\end{aligned}
$$

Therefore we obtain

$$
q\left(T^{2 \ell+1} x, T^{2 \ell+1} y\right)=\gamma\left(T^{2 \ell+1} x\right)+\beta\left(T^{2 \ell+1} y\right) \leq \sqrt{r}(\beta(x)+\gamma(y))=\sqrt{r} q(y, x)
$$

for all $x, y \in X$ and hence

$$
q\left(T^{4 \ell+2} x, T^{4 \ell+2} y\right) \leq \sqrt{r} q\left(T^{2 \ell+1} y, T^{2 \ell+1} x\right) \leq r q(x, y)
$$

for $x, y \in X$. This implies $T \in T C_{3}(X)$.

Proof of Theorem 8. By Theorem 6 and Lemmas 2 and 3, we have

$$
T M(X) \subset T C_{3}(X)=T C_{0}(X)=T K_{0}(X)
$$

Also, it is obvious

$$
T K_{0}(X) \subset T M_{0}(X) \subset T M(X)
$$

Therefore we obtain the desired result.

4. Additional results

In [31], we proved a mapping in Theorem 3 belongs to $T C(X)$. Motivated by this thing, we shall prove that mappings in Theorems 4 and 5 also belong to $T C(X)$.

Theorem 9. Let (X, d) be a metric space. Let T be a mapping on X satisfying the assumption of Theorem 4. Then T belongs to $T C(X)$.

Proof. Let T be a mapping on X satisfying (1) for some $\alpha \in\left[0, \frac{1}{2}\right)$. Put $r:=$ $\frac{x}{1-x} \in[0,1)$ and fix $u \in X$. We proved in [11] the following:

- For every $x \in X,\left\{T^{n} x\right\}$ is a Cauchy sequence in X.
- If the limit of $\left\{T^{n} x\right\}$ exists, then the limit is a fixed point of T.
- $d\left(T^{n+1} u, T x\right) \leq \alpha d\left(T^{n} u, T^{n+1} u\right)+\alpha d(x, T x)$ holds for sufficiently large $n \in \mathbf{N}$ provided $x \in X$ satisfies $x \neq \lim _{j} T^{j} u$.
Therefore we can define a function β from X into $[0, \infty)$ by $\beta(x)=\lim _{n} d\left(T^{n} u, x\right)$. From Lemma 1, a function p from $X \times X$ into $[0, \infty)$ by $p(x, y)=\beta(x)+\beta(y)$ is a τ distance.

We shall show $\beta(T x) \leq r \beta(x)$ for $x \in X$. In the case where $\left\{T^{n} u\right\}$ does not converge to x, we have

$$
\begin{aligned}
\beta(T x) & =\lim _{n \rightarrow \infty} d\left(T^{n+1} u, T x\right) \\
& \leq \lim _{n \rightarrow \infty}\left(\alpha d\left(T^{n} u, T^{n+1} u\right)+\alpha d(x, T x)\right) \\
& =\alpha d(x, T x) \\
& \leq \alpha \lim _{n \rightarrow \infty}\left(d\left(x, T^{n} u\right)+d\left(T^{n} u, T x\right)\right) \\
& =\alpha \beta(x)+\alpha \beta(T x)
\end{aligned}
$$

and hence $\beta(T x) \leq r \beta(x)$. In the other case, where $\left\{T^{n} u\right\}$ converges to x, we have $T x=x$. Since $\beta(x)=0$, we have $\beta(T x)=\beta(x)=0=r \beta(x)$. Therefore $\beta(T x) \leq r \beta(x)$ in both cases.

Hence we obtain $p(T x, T y)=\beta(T x)+\beta(T y) \leq r \beta(x)+r \beta(y)=r p(x, y)$ for all $x, y \in X$. This implies $T \in T C(X)$.

Theorem 10. Let (X, d) be a metric space. Let T be a mapping on X satisfying the assumption of Theorem 5. Then T belongs to $T C(X)$.

Proof. Let T be a mapping on X satisfying (2) for some $r \in[0,1)$. Fix $u \in X$. We proved in [11] the following:

- For every $x \in X,\left\{T^{n} x\right\}$ is a Cauchy sequence in X.
- If the limit of $\left\{T^{n} x\right\}$ exists, then the limit is a fixed point of T.
- For every $x \in X, d\left(T x, T^{2} x\right) \leq r d(x, T x)$ holds.
- $d\left(T^{n} u, T x\right) \leq r \max \left\{d\left(T^{n-1} u, T^{n} u\right), d(x, T x)\right\}$ holds for sufficiently large $n \in \mathbf{N}$ provided $x \in X$ satisfies $x \neq \lim _{j} T^{j} u$.
We can define a function β from X into $[0, \infty)$ by $\beta(x)=\lim _{n} d\left(T^{n} u, x\right)$. Using Lemma 1, a function p from $X \times X$ into $[0, \infty)$ by $p(x, y)=\beta(x)+\beta(y)$ is a τ-distance.

Fix $\ell \in \mathbf{N}$ with $\frac{r^{\prime}}{1-r} \leq r$. We shall show $\beta\left(T^{\ell} x\right) \leq r \beta(x)$ for all $x \in X$. In the case where $\left\{T^{n} u\right\}$ converges to either x or $T^{\ell-1} x$, since the limit is a fixed point of T, the limit and $T^{\ell} x$ coincide. Thus $\beta\left(T^{\ell} x\right)=0$ holds. So we have $\beta\left(T^{\ell} x\right) \leq r \beta(x)$. In the other case, where $\left\{T^{n} u\right\}$ converges to neither x nor $T^{t-1} x$, we have

$$
\begin{aligned}
\beta\left(T^{\ell} x\right) & =\lim _{n \rightarrow \infty} d\left(T^{n} u, T^{\ell} x\right) \\
& \leq \lim _{n \rightarrow \infty} r \max \left\{d\left(T^{n-1} u, T^{n} u\right), d\left(T^{\ell-1} x, T^{\ell} x\right)\right\} \\
& \leq \lim _{n \rightarrow \infty} r \max \left\{d\left(T^{n-1} u, T^{n} u\right), r^{\ell-1} d(x, T x)\right\} \\
& =r^{\ell} d(x, T x) .
\end{aligned}
$$

Since

$$
\begin{aligned}
d(x, T x) & \leq \lim _{n \rightarrow \infty}\left(d\left(x, T^{n} u\right)+d\left(T^{n} u, T x\right)\right) \\
& \leq \lim _{n \rightarrow \infty}\left(d\left(x, T^{n} u\right)+r \max \left\{d\left(T^{n-1} u, T^{n} u\right), d(x, T x)\right\}\right) \\
& =\beta(x)+r d(x, T x),
\end{aligned}
$$

we have $d(x, T x) \leq \frac{1}{1-r} \beta(x)$. Therefore

$$
\beta\left(T^{\ell} x\right) \leq r^{\prime} d(x, T x) \leq \frac{r^{\ell}}{1-r} \beta(x) \leq r \beta(x)
$$

holds for $x \in X$. We have shown $\beta\left(T^{\ell} x\right) \leq r \beta(x)$ in both cases.
Hence we obtain

$$
p\left(T^{\prime} x, T^{\prime} y\right)=\beta\left(T^{\ell} x\right)+\beta\left(T^{\ell} y\right) \leq r \beta(x)+r \beta(y)=r p(x, y)
$$

for all $x, y \in X$. This implies $T \in T C_{3}(X)$. From Theorem 6, we obtain $T \in T C(X)$.

References

[1] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133-181.
[2] J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc., 215 (1976), 241-251.
$[3]$ E. H. Connell, Properties of fixed point spaces, Proc. Amer. Math. Soc., 10 (1959), 974-979.
[4] D. Downing and W. A. Kirk, A generalization of Caristi's theorem with applications to nonlinear mapping theory, Pacific J. Math., 69 (1977), 339-346.
[5] M. Edelstein, An extension of Banach's contraction principle, Proc. Amer. Math. Soc., 12 (1961), 7-10.
[6] I. Ekeland, On the variational principle, J. Math. Anal. Appl., 47 (1974), 324-353.
[7] ——, Nonconvex minimization problems, Bull. Amer. Math. Soc., 1 (1979), 443-474.
[8] O. Kada, T. Suzuki and W. Takahashi, Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Math. Japon., 44 (1996), 381-391.
[9] R. Kannan, Some results on fixed points-II, Amer. Math. Monthly, 76 (1969), 405-408.
[10] M. Kikkawa and T. Suzuki, Three fixed point theorems for generalized contractions with constants in complete metric spaces, Nonlinear Anal. (2007), doi:10.1016/j.na.2007.08.064.
[11] ——, Some similarity between contractions and Kannan mappings, Fixed Point Theory Appl. doi:10.1155/2007/49749.
[12] A. Meir and E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl., 28 (1969), 326329.
[13] S. B. Nadler, Jr., Multi-valued contraction mappings, Pacific J. Math., 30 (1969), 475-488.
[14] N. Shioji, T. Suzuki and W. Takahashi, Contractive mappings, Kannan mappings and metric completeness, Proc. Amer. Math. Soc., 126 (1998), 3117-3124.
[15] P. V. Subrahmanyam, Completeness and fixed-points, Monatsh. Math., 80 (1975), 325-330.
[16] T. Suzuki, Fixed point theorems in complete metric spaces, in Nonlinear Analysis and Convex Analysis (W. Takahashi Ed.), RIMS Kokyuroku, 939 (1996), pp. 173-182.
[17] ——, Several fixed point theorems in complete metric spaces, Yokohama Math. J., 44 (1997), 61-72.
[18] —— Generalized distance and existence theorems in complete metric spaces, J. Math. Anal. Appl., 253 (2001), 440-458.
[19] -, On Downing-Kirk's theorem, J. Math. Anal. Appl., 286 (2003), 453-458.
$[20] \quad$, Several fixed point theorems concerning τ-distance, Fixed Point Theory Appl., 2004 (2004), 195-209.
[21] -, Generalized Caristi's fixed point theorems by Bae and others, J. Math. Anal. Appl., 302 (2005), 502-508.
[22] , Counterexamples on τ-distance versions of generalized Caristi's fixed point theorems, Bull. Kyushu Inst. Technol., 52 (2005), 15-20.
[23] ——, Contractive mappings are Kannan mappings, and Kannan mappings are contractive mappings in some sense, Comment. Math. Prace Mat., 45 (2005), 45-58.
[24] - Ume's generalization of Takahashi's nonconvex minimization theorem, Nonlinear Funct. Anal. Appl., 10 (2005), 629-639.
[25] ——, The strong Ekeland variational principle, J. Math. Anal. Appl., 320 (2006), 787-794.
[26] -, Some notes on Meir-Keeler contractions and L-functions, Bull. Kyushu Inst. Technol., 53 (2006), 1-13.
[27] _ Fixed point theorems for more generalized contractions in complete metric spaces, Demonstratio Math., 40 (2007), 219-227.
$[28]$ - A definitive result on asymptotic contractions, J. Math. Anal. Appl., 335 (2007), 707-715.
$[29] \quad$ On the relation between the weak Palais-Smale condition and coercivity by Zhong, Nonlinear Anal. (2007), doi:10.1016/j.na.2007.01.071.
[30] ——, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc., 136 (2008), 1861-1869.
[31] T. Suzuki and M. Kikkawa, Some remarks on a recent generalization of the Banach contraction principle, to appear in Proceedings of the 8th International Conference on Fixed Point Theory and its Applications (ICFPTA 2007).
[32] T. Suzuki, R. Saadati and D. O'Regan, Common fixed points of two commuting mappings in complete metric spaces, Bull. Iranian Math. Soc., 32 (2006), 53-66.
[33] T. Suzuki and W. Takahashi, Fixed point theorems and characterizations of metric completeness, Topol. Methods Nonlinear Anal., 8 (1996), 371-382.
[34] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.
[35] D. Tataru, Viscosity solutions of Hamilton-Jacobi equations with unbounded nonlinear terms, J. Math. Anal. Appl., 163 (1992), 345-392.
[36] C.-K. Zhong, On Ekeland's variational principle and a minimax theorem, J. Math. Anal. Appl., 205 (1997), 239-250.
[37] ——, A generalization of Ekeland's variational principle and application to the study of the relation between the weak P.S. condition and coercivity, Nonlinear Anal., 29 (1997), 1421-1431.

(M. Kikkawa)
Department of Mathematics
Faculty of Science
Saitama University, Sakura, Saitama 338-8570, Japan
E-mail address: mi-sa-ko-kikkawa@jupiter.sannet.ne.jp

(T. Suzuki)
Department of Mathematics
Kyushu Institute of Technology
Tobata, Kitakyushu 804-8550, Japan
E-mail address: suzuki-t@mns.kyutech.ac.jp

[^0]: Date: Received November 30, 2007.
 2000 Mathematics Subject Classification. Primary 54E40, Secondary 54H25.
 Key words and phrases. Contraction, Kannan mapping, τ-distance, fixed point.
 The second author is supported in part by Grants-in-Aid for Scientific Research, the Japanese Ministry of Education, Culture, Sports, Science and Technology.

