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Abstract

New implicit stochastic Runge-Kutta schemes of weak order 1 or 2 are proposed for
stochastic differential equations with a scalar Wiener process, which are derivative-
free, which attain order 2 or 4 for ordinary differential equations, and which are
A-stable in mean square for a linear test equation in some general settings. They
are sought in a transparent way and their convergence order and stability properties
are confirmed in numerical experiments.



1 Introduction

Numerical methods for stochastic differential equations (SDEs) have been developed for
several decades [7, 15, 16, 24, 26, 28], and much progress in this subject has been recently
reported [2, 4, 10, 17]. In the progress, we are especially concerned with numerical methods
with good stability properties.

In designing such methods, implicit Runge-Kutta methods for SDEs are one of the
very attractive candidates since it is well known that implicit Runge-Kutta methods
for ordinary differential equations (ODEs) are the most effective way to overcome stiff
problems. In fact, many researchers have proposed implicit stochastic Runge-Kutta (SRK)
methods. Let us introduce some of them. As said in [4], since methods that copes
with stiffness in the purely deterministic setting can be appropriate implicit numerical
methods for SDEs with additive noise, we concentrate on the case of multiplicative noise
in the sequel. Milstein et al. [18, 19] have proposed the balanced implicit method and
implicit methods with a bounded random variable. Tian and Burrage [27] have proposed
diagonally implicit SRK methods with two stages. These methods are fully implicit
methods for strong solutions, and techniques used in the methods are devoted to avoiding
possible unboundedness of numerical solutions which is caused by the use of normal
random variables. On the other hand, for weak solutions the fully implicit Euler scheme
with a bounded random variable has been proposed [10].

Incidentally, Komori [11] and Rößler [20, 22] have proposed very general SRK families
to obtain weak solutions in the last few years. Each of them has extended the rooted tree
analysis invented by Butcher [6] to seek order conditions of each of their SRK families,
and they have succeeded in obtaining new derivative-free SRK schemes. Komori [12, 13]
has proposed new weak second-order SRK schemes for not only commutative SDEs but
also non-commutative SDEs, whereas Rößler [21, 23] has proposed new weak second-order
SRK schemes for commutative SDEs or SDEs with a scalar Wiener process. Thus, we
can see that the families are general enough to obtain new weak SRK schemes. Since all
their schemes are explicit, however, our present aim is to seek new fully implicit schemes
that have good stability properties for SDEs with a scalar Wiener process on the basis of
Komori’s SRK family.

The organization of the present paper is as follows. In the next section we will basic
notations, definitions and concepts. In Section 3 we will find a solution of order conditions
for each of implicit SRK methods with one or two stages in a general form including free
parameters. In Section 4 we will decide the values of the free parameters and obtain
schemes possessing good stability properties. In Section 5 we will give numerical experi-
ments to confirm convergence order and stability properties for the schemes. In the last
section we will give the summary and remarks.

2 Preliminaries

In this section we introduce an SRK family which gives a weak approximation to a solution
for SDEs with a scalar Wiener process, an expression of weak order conditions for it, and
the concepts of stability for SRK methods.
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2.1 SRK family

First of all, we introduce some notations and the definition of weak order. Consider the
autonomous d-dimensional SDE

dy(t) = g0(y(t))dt + g1(y(t)) ◦ dW (t), y(0) = x0, (2. 1)

where W (s) is a scalar Wiener process, x0 is independent of W (t)−W (0) for t ≥ 0, and ◦
means the Stratonovich formulation. When the following Lipschitz condition is satisfied,
the SDE has exactly one continuous global solution on the entire interval [0,∞) ([1], p.
113): there exists a positive constant K such that, for all x, y ∈ Rd,

||g0(x) − g0(y)|| + ||g1(x) − g1(y)|| ≤ K||x − y||.

For a given time Tend, let τn be an equidistant grid point nh (n = 0, 1, . . . , M) with

step size h
def
= Tend/M < 1 (M is a natural number) and yn a discrete approximation

to the solution y(τn) of (2. 1). The initial approximate random variable y0 is supposed
to have the same probability law with all moments finite as that of x0. In addition,
let CL

P (Rd, R) be the totality of L times continuously differentiable R-valued functions
on Rd, all of whose partial derivatives of order less than or equal to L have polynomial
growth. Then, the definition of weak order is given as follows [3].

Definition 2.1 Suppose that discrete approximations yn are given by a scheme. Then,

we say that the scheme is of weak (global) order q if for each G ∈ C
2(q+1)
P (Rd, R), C > 0

(independent of h) and δ > 0 exist such that

|E[G(y(τM)] − E[G(yM)]| ≤ Chq, h ∈ (0, δ).

In order to obtain an approximate solution yn+1 of the solution y(tn+1) when yn is
given, we consider the SRK family given by

yn+1 = yn +
s∑

i=1

1∑
j=0

c
(j)
i Y

(j)
i , Y

(ja)
ia = η̃

(ja)
ia gja

(yn +
s∑

ib=1

1∑
jb=0

α
(ja,jb)
iaib

Y
(jb)
ib

) (2. 2)

(1 ≤ ia ≤ s, ja = 0, 1), where the constants c
(j)
i and α

(ja,jb)
iaib

are defined by the Butcher

tableau and where each η̃
(ja)
ia is a random variable independent of yn and satisfies

E
[(

η̃
(ja)
ia

)2k
]

=

{
K1h

2k (ja = 0),
K2h

k (ja = 1)

for constants K1, K2 and k = 1, 2, . . .. Note that although this is a specific formulation
of a generalized SRK family given in [12], it is sufficiently useful since (2. 1) has a scalar
Wiener process only and we consider weak second order at most in the sequel.

2.2 Weak order conditions by bi-colored rooted trees

In this subsection we give a brief introduction of an expression of weak order conditions
by bi-colored rooted trees (BRTs).

First, we introduce the bi-colored rooted tree (BRT) and a function on its set.
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Definition 2.2 (BRT) A BRT with a root �j (colored with a label j (= 0, 1)) is a tree
recursively defined in the following manner:

1) τ (j) is the primitive tree having only a vertex �j.

2) If t1, . . . , tk are BRTs, then [t1, . . . , tk]
(j) is also a BRT with the root �j.

The totality of BRTs is denoted by T. Examples of BRTs are indicated in Fig. 1.

�1

τ (1)

�1�0

�����1

[τ (0), τ (1)](1)

Figure 1: Examples of BRTs

Definition 2.3 (Elementary weight Φ(t) on T ) An elementary weight of t ∈ T is
given recursively as follows:

Φ(τ (j); s) =
∫ s

τn

◦dWj(s1), Φ(t; s) =
∫ s

τn

k∏
i=1

Φ(ti; s1) ◦ dWj(s1) for t = [t1, . . . , tk]
(j),

where Wj(s1) stands for s1 if j = 0, or W (s1) if j = 1.

For ease of notation we will denote Φ(t; τn+1) by Φ(t).
Next, we introduce another function to relate T to the formula parameters of (2. 2).

Definition 2.4 (Elementary numerical weight Φ̃(t) on T ) Let s be the stage num-
ber of (2. 2). An elementary numerical weight of t ∈ T is given in the following manner:

i) Trace the vertices of t in the direction from the root to upper vertices. Then, for

the root vertex, prepare an index i1 and set Θ = c
(j1)
i1 η̃

(j1)
i1 if the color is j1. For each

vertex except the root vertex, prepare a new index ik+1, multiply Θ by α
(jk,jk+1)
ikik+1

η̃
(jk+1)
ik+1

if the color is jk+1, and reset Θ by it, where ik and jk mean the index and the color
of the parent vertex, respectively.

ii) Define Φ̃(t) by the summation of Θ over i· from 1 to s.

For example,

Φ̃
(

�1�0
�1

)
=

s∑
i1,i2,i3=1

c
(1)
i1 η̃

(1)
i1 α

(1,0)
i1i2 η̃

(0)
i2 α

(1,1)
i1i3 η̃

(1)
i3 .

The definitions above are slightly simpler than those in [13]. This is because we deal with
the specific formulation of the SRK family as we have said in the previous subsection.

Now, we can give weak order conditions. Let ρ(t) be the number of vertices of t ∈ T
and r(t) the number of vertices of t with the color 0, and suppose that any component
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of gj belongs to C
2(q+1)
P (Rd, R) (j = 0, 1) and the regularity of the time discrete approx-

imation is satisfied [10, 12]. In addition, if the following are satisfied, the time discrete
approximation yM converges to the y(τM) with weak (global) order q as h → 0:

E

⎡
⎣ L∏

j=1

Φ̃(tj)

⎤
⎦ = E

⎡
⎣ L∏

j=1

Φ(tj)

⎤
⎦ (2. 3)

for any t1, . . . , tL ∈ T (1 ≤ L ≤ 2q) satisfying
∑L

j=1(ρ(tj) + r(tj)) ≤ 2q and

E
[
Φ̃(t)

]
= 0 (2. 4)

for any t ∈ T satisfying ρ(t) + r(t) = 2q + 1. For details about calculations for the
expectations of both sides of (2. 3), see [13].

2.3 Stability for SRK methods

In this subsection we introduce some concepts of stability. As preliminaries, we begin
with the concepts of stability in mean square for SDEs.

Suppose that g0(0) = g1(0) = 0 and x0 is a constant with probability 1 in (2. 1).
Then, x(t) ≡ 0 is the unique solution of (2. 1) if x0 = 0. This trivial solution is called
the equilibrium position. The definition of stability in mean square is given as follows
([1], p. 188).

Definition 2.5 The equilibrium position is said to be stable in mean square if, for every
ε > 0, there exists a δ > 0 such that

sup
0≤t<∞

E[||y(t)||2 ≤ ε for ||x0|| ≤ δ.

Further if

lim
t→∞E[||y(t)||2] = 0 for all x0 in a neighborhood of y = 0,

the equilibrium position is said to be asymptotically stable in mean square.

Let us consider the case that g0(y) = Ay and g1(y) = By, where d × d real matrices
A and B are diagonalizable and commute, that is, they are simultaneously diagonaliz-
able ([9], p. 50). Then, asymptotic mean square stability of the equilibrium position is
equivalent to

max
1≤i≤d

{
	(λi(A)) +

(
	(λi(B))

)2
}

< 0, (2. 5)

where λi(A) and λi(B) denote the ith eigenvalues of A and B, respectively [14]. If we set
λ = λj(A) and σ = λj(B) for j such that 	(λj(A)) + (	(λj(B)))2 equals the expression
in the left-hand side of (2. 5), asymptotic mean square stability in the multi-dimensional
linear SDE is equivalent to that in the scalar SDE

dy(t) = λy(t)dt + σy(t) ◦ dw(t), y(0) = x0, λ, σ ∈ C, (2. 6)

which is one of the scalar SDEs obtained from the multi-dimensional linear SDE by
diagonalization and for which (2. 5) corresponds to

	(λ) +
(
	(σ)

)2
< 0. (2. 7)
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Thus, when we consider stability, we will devote ourselves to dealing with (2. 6), provided
that x0 
= 0 with probability 1.

When a one-step scheme is applied to (2. 6), it is expressed by

yn+1 = R1(h, η̃, λ, σ)yn

in general [5], where η̃ stands for a vector of random variables and the pth moment of
each of its elements is supposed to be a monomial of h for p(= 1, 2, . . .). We will call
R1 the amplification factor [14]. The numerical counterpart of asymptotic mean square
stability is given as follows [5, 25].

Definition 2.6 The numerical scheme is said to be MS-stable for a particular h, λ and
σ if

R2(h, λ, σ)
def
= E[|R1(h, η̃, λ, σ)|2] < 1.

MS-stability means that E[|yn|2] → 0 as n → ∞ for the given h, η̃, λ and σ. Further, the
counterpart of deterministic A-stability is given as follows [8].

Definition 2.7 The numerical scheme is said to be A-stable in mean square if it is MS-
stable for any h when (2. 7) holds.

3 Implicit SRK methods

On the basis of (2. 2), we derive implicit SRK methods in a general form including free
parameters. The order conditions will be clearly arranged with help of BRTs, and by
utilizing some results in ordinary Runge-Kutta, they will be solved in a transparent way.

3.1 Method with one stage

We derive a weak first-order implicit SRK method with one stage. For this, let us start
with simplifying assumptions, which are helpful for simplification of order conditions
[11, 13].

In relation to τ (0), τ (1) and [τ (1)](1), assume that the following equations hold:

∑
c
(0)
i1 η̃

(0)
i1 = h,

∑
c
(1)
i1 η̃

(1)
i1 = �W̃ ,

∑
c
(1)
i1 η̃

(1)
i1 α̃

(1,1)
i1i2 η̃

(1)
i2 =

(�W̃ )2

2
, (3. 1)

where �W̃ is a bounded random variables satisfying

E
[
(�W̃ )k

]
=

⎧⎪⎨
⎪⎩

0 (k = 1, 3),
h (k = 2),
O(h2) (k ≥ 4).

(3. 2)

Further, when we set η̃
(j)
i = h (j = 0) or �W̃ (j = 1), we have E[Φ̃(t)] = 0 for τ (1),

t = [τ (1)](0), [τ (0)](1), [[τ (1)](1)](1) and [τ (1), τ (1)](1). Thus, the following statement is true
for the BRTs who appear in (2. 3) and (2. 4) when q = 1:

Statement 3.1 The expectation of an elementary numerical weight or the product of
those is equal to 0 if the odd number of vertices are of the color 1.
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Table 1: Conditions to satisfy for weak order 1
No. Condition No. Condition No. Condition

1
∑

c
(0)
i = 1 2

∑
c
(1)
i = 1 3

∑
c
(1)
i A

(1,1)
i = 1

2

Since the counterpart of this statement is always true in the elementary weights [13], the
number of order conditions to solve decreases if the statement holds.

Now, because the statement holds, (2. 4) automatically holds when q = 1. In addition,
from (3. 1) and (3. 2), (2. 3) holds when q = 1. Thus, we can seek weak first-order SRK
methods by solving (3. 1) under (3. 2).

By setting A
(j1,j2)
i1

def
=

∑s
i2=1 α

(j1,j2)
i1i2 for ease of notation, we obtain the three conditions

for weak order 1 shown in Table 1. The system of Conditions 2 and 3 has the same
algebraic structure as that of order conditions for ordinary Runge-Kutta methods to attain
order 2 for ODEs. Hence, the stage number s has to be at least 1. When we set s = 1,
the solution of the system is uniquely determined ([6], p. 201): c

(1)
1 = 1 and A

(1,1)
1 = 1

2
.

From Condition 1 we have c
(0)
1 = 1. On the other hand, A

(0,0)
1 , A

(0,1)
1 and A

(1,0)
1 can take

any value. By setting A
(0,0)
i = 1/2, we obtain an implicit method with stage one:

[
α

(0,0)
iaib

] [
α

(1,0)
iaib

]
[
α

(0,1)
iaib

] [
α

(1,1)
iaib

]
(
c(0)

)� (
c(1)

)� =

1
2

α
(1,0)
11

α
(0,1)
11

1
2

1 1

, (3. 3)

which is of weak order 1 and which is of order 2 for ODEs. Here, note that α
(0,1)
11 and

α
(1,0)
11 are free parameters.

3.2 Method with two stages

We have solved the order conditions for weak order 1. In this subsection, we consider
implicit SRK methods with two stages and find a solution of the order conditions for
weak order 2 in a similar way.

In relation to τ (0), τ (1), [τ (1)](1), [τ (1)](0) and [τ (0)](1), let us assume that the following
equations hold:

⎧⎪⎪⎨
⎪⎪⎩

∑
c
(0)
i η̃

(0)
i = h,

∑
c
(1)
i η̃

(1)
i = �W,

∑
c
(1)
i1 η̃

(1)
i1 α̃

(1,1)
i1i2 η̃

(1)
i2 =

(�W )2

2
,∑

c
(0)
i1 η̃

(0)
i1 α̃

(0,1)
i1i2 η̃

(1)
i2 =

∑
c
(1)
i1 η̃

(1)
i1 α̃

(1,0)
i1i2 η̃

(0)
i2 =

h�W

2
,

(3. 4)

where �W is a bounded random variable satisfying

E
[
(�W )k

]
=

⎧⎪⎨
⎪⎩

0 (k = 1, 3, 5),
(k − 1)hk/2 (k = 2, 4),
O(h3) (k ≥ 6).

Further, we set η̃
(j)
i = h (j = 0) or �W (j = 1). Then, the statement 3.1 holds for the

BRTs who appear in (2. 3) and (2. 4) when q = 2. Thus, since (2. 4) automatically
holds when q = 2, we can restrict our attention to (2. 3). Furthermore, since 14 order
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conditions in relation to τ (0), τ (1), [τ (1)](1), [τ (1)](0) and [τ (0)](1) are satisfied by (3. 4) as
shown in [11, 13], all we have to do is to solve the system of seventeen equations in Tables
1 and 2, which include the simplifying conditions.

Table 2: Conditions to satisfy for weak order 2
No. Condition No. Condition

4
∑

c
(0)
i A

(0,1)
i = 1

2
11

∑
c
(1)
i A

(1,0)
i A

(1,1)
i = 1

4

5
∑

c
(1)
i A

(1,0)
i = 1

2
12

∑
c
(1)
i1 α

(1,1)
i1i2 α

(1,1)
i2i3 A

(1,1)
i3 = 1

24

6
∑

c
(0)
i A

(0,0)
i = 1

2
13

∑
c
(1)
i1 α

(1,1)
i1i2

(
A

(1,1)
i2

)2
= 1

12

7
∑

c
(1)
i1 α

(1,1)
i1i2 A

(1,0)
i2 = 1

4
14

∑
c
(1)
i1 A

(1,1)
i1 α

(1,1)
i1i2 A

(1,1)
i2 = 1

8

8
∑

c
(0)
i1 α

(0,1)
i1i2 A

(1,1)
i2 = 1

4
15

∑
c
(1)
i

(
A

(1,1)
i

)3
= 1

4

9
∑

c
(1)
i1 α

(1,0)
i1i2 A

(0,1)
i2 = 0 16

∑
c
(1)
i1 α

(1,1)
i1i2 A

(1,1)
i2 = 1

6

10
∑

c
(0)
i

(
A

(0,1)
i

)2
= 1

2
17

∑
c
(1)
i

(
A

(1,1)
i

)2
= 1

3

The system of Conditions 2, 3, 12, 13, 14, 15, 16 and 17 has the same algebraic
structure as that of the order conditions for ordinary Runge-Kutta methods to attain
order 4 for ODEs ([6], pp. 90-91). Hence, the stage number s has to be at least 2. When
we set s = 2, the solution of the system of the eight conditions is uniquely determined
([6], p. 202):

A(1,1)
[
α

(1,1)
iaib

]
(
c(1)

)� =

1
2
−

√
3

6
1
4

1
4
−

√
3

6
1
2

+
√

3
6

1
4

+
√

3
6

1
4

1
2

1
2

. (3. 5)

From Conditions 5, 11 and this, we have A
(1,0)
1 = A

(1,0)
2 = 1/2, which also satisfies

Condition 7. By noting that A
(0,1)
1 = A

(0,1)
2 leads to a conflict with Conditions 1, 4 and

10, we obtain from them

c
(0)
1 =

1

2δ0

, c
(0)
2 =

2δ0 − 1

2δ0

, A
(0,1)
2 =

A
(0,1)
1 − 1

2A
(0,1)
1 − 1

(A
(0,1)
1 
= 1

2
),

where δ0
def
= 2

(
A

(0,1)
1

)2 − 2A
(0,1)
1 + 1. Then, we have

A
(0,0)
2 =

δ0 − A
(0,0)
1

2δ0 − 1
, α

(0,1)
21 =

δ0 − 2α
(0,1)
11

2 (2δ0 − 1)
, α

(1,0)
21 = −α

(1,0)
11 +

1 − A
(0,1)
1

δ0

from Conditions 6, 8 and 9, respectively. Since c
(0)
1 = c

(0)
2 = 1/2 and A

(0,0)
2 = 1 − A

(0,0)
1 if

A
(0,1)
1 = 0 or 1, we can take the set of values in the right-hand side of (3. 5) as a set of

values of A
(0,0)
i ’s, α

(0,0)
iaib

’s and c
(0)
i ’s, which enables a scheme to attain order 4 for ODEs.

For A
(0,1)
1 = 0 or 1, we finally obtain

[
α

(0,0)
iaib

] [
α

(1,0)
iaib

]
[
α

(0,1)
iaib

] [
α

(1,1)
iaib

]
(
c(0)

)� (
c(1)

)� =

1
4

1
4
−

√
3

6
α

(1,0)
11

1
2
− α

(1,0)
11

1
4

+
√

3
6

1
4

1 − δ1 δ1 − 1
2

α
(0,1)
11 δ2

1
4

1
4
−

√
3

6
1
2
− α

(0,1)
11

1
2
− δ2

1
4

+
√

3
6

1
4

1
2

1
2

1
2

1
2

(3. 6)
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as a solution of all the order conditions. Here, δ1
def
= A

(0,1)
1 +α

(1,0)
11 and δ2

def
= A

(0,1)
1 −α

(0,1)
11 .

Note that the set of values of c
(1)
i ’s and α

(1,1)
iaib

’s is unique for weak order 2.

4 Stability analysis

In the previous section we have found solutions of the order conditions for SRK methods
with one or two stages, which includes the free parameters. In this section, let us consider
how to decide the values of the parameters and seek schemes possessing good stability
properties.

4.1 MS-stable scheme with one stage

First of all, we represent the amplification factor for (2. 2) in a general form. When we
apply (2. 2) to (2. 6), by utilizing Cramer’s rule we obtain

R1(h, η̃, λ, σ) =
det

(
I − D̃B̃Ã + D̃B̃1c�

)
det

(
I − D̃B̃Ã

) , (4. 1)

where

Ã
def
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

α
(0,0)
11 α

(0,1)
11 · · · α

(0,0)
1s α

(0,1)
1s

α
(1,0)
11 α

(1,1)
11 · · · α

(1,0)
1s α

(1,1)
1s

...
...

...
...

α
(0,0)
s1 α

(0,1)
s1 · · · α(0,0)

ss α(0,1)
ss

α
(1,0)
s1 α

(1,1)
s1 · · · α(1,0)

ss α(1,1)
ss

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

D̃
def
= diag(η̃

(0,0)
1 , η̃

(1,1)
1 , . . . , η̃(0,0)

s , η̃(1,1)
s ),

B̃
def
= diag(λ, σ, . . . , λ, σ),

c
def
=

[
c
(0)
1 , c

(1)
1 , . . . , c(0)

s , c(1)
s

]�
and 1 stands for a 2s-dimensional column vector of 1’s.

For ease of notation, denote by D1(h, η̃, λ, σ) and N1(h, η̃, λ, σ) the denominator and
the numerator in the right-hand side of (4. 1), respectively. From (3. 3),

D1(h,�W̃ , λ, σ) =

(
λh

2
− 1

)(
σ�W̃

2
− 1

)
− α

(0,1)
11 α

(1,0)
11 λhσ�W̃ , (4. 2)

N1(h,�W, λ, σ) =

(
λh

2
+ 1

)(
σ�W̃

2
+ 1

)
− (α

(0,1)
11 α

(1,0)
11 + δ3)λhσ�W̃ , (4. 3)

where δ3
def
= 1 − α

(0,1)
11 − α

(1,0)
11 . Now, we can see that R1(h,�W̃ , λ, σ) is regarded as a

function of z
def
= hλ and σ�W̃ , say, R̃1(z, σ�W̃ ).

Suppose that a pair (α
(0,1)
11 , α

(1,0)
11 ) is given. In addition, denote 	(z) and �(z) by zr

and zi. Then, if |R̃1(izi, i�(σ)�W̃ )| = 1 and R̃1(z, i�(σ)�W̃ ) is analytic for any z such
that zr < 0, |R̃1(z, i�(σ)�W̃ )| < 1 holds in the region zr < 0. This equation is equivalent
to {

	
(
N1(h,�W̃ , i�(λ), i�(σ))

)}2
+

{
�
(
N1(h,�W̃ , i�(λ), i�(σ))

)}2

=
{
	
(
D1(h,�W̃ , i�(λ), i�(σ))

)}2
+

{
�
(
D1(h,�W̃ , i�(λ), i�(σ))

)}2
.
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Since

	
(
N1(h,�W̃ , i�(λ), i�(σ))

)
−	

(
D1(h,�W̃ , i�(λ), i�(σ))

)
= zi�(σ)�W̃δ3,

�
(
N1(h,�W̃ , i�(λ), i�(σ))

)
+ �

(
D1(h,�W̃ , i�(λ), i�(σ))

)
= 0

from (4. 2) and (4. 3), the equation is satisfied when δ3 = 0. By noting that
|R1(h,�W̃ , λ, i�(σ))| < 1 with probability 1 means R2(h, λ, i�(σ)) < 1, we can say that

it yields an A-stable scheme in the case of 	(σ) = 0 to find a pair (α
(0,1)
11 , α

(1,0)
11 ) which

satisfies δ3 = 0 and for which R̃1(z, i�(σ)�W̃ ) is analytic in the region zr < 0.

Let α
(1,0)
11 be 1 − α

(0,1)
11 to satisfy δ3 = 0 and �W a two-point distributed random

variable with P (�W = ±√
h) = 1/2. Then, R2(h,	(λ),	(σ)) − 1 is expressed by

R2(h,	(λ),	(σ)) − 1 =
N2

(
zr, vr; α

(0,1)
11

)
D2

(
zr, vr; α

(0,1)
11

) ,

where D2 and N2 are polynomials (including the parameter α
(0,1)
11 ) with respect to zr and

vr
def
= h(	(σ))2. Since it is possible to re-scale D2 and N2 by an arbitrary factor, let us

assume that D2 and N2 are re-scaled such that the coefficient of the principal term in D2

is equal to (1 − 4α
(0,1)
11 (1 − α

(0,1)
11 ))4. By some calculations, we can obtain

N2

(
zr,−zr; α

(0,1)
11

)
= 8z2

r

{
(2α

(0,1)
11 + 1)(2α

(0,1)
11 − 3)δ4

4z
3
r + 4δ2

4z
2
r + 4(δ2

4 + 4)zr + 16(δ2
4 − 3)

}
,

where δ4
def
= 2α

(0,1)
11 − 1. In the right-hand side, thus, only if α

(0,1)
11 = 1/2, it follows that

the coefficients of z3
r and z5

r are non-negative, whereas those of z2
r and z4

r are non-positive.

Thus, let us set the value of α
(0,1)
11 to 1/2.

When α
(0,1)
11 = α

(1,0)
11 = 1/2, we can immediately see from (4. 2) that D1(h,�W̃ , λ, i�(σ)) 
=

0 in the region zr < 0 and D1(h,�W̃ ,	(λ),	(σ)) > 0 in the region zr < −vr. In addition,

N2

(
zr, vr;

1

2

)
= 128

{
(zr − 2)2zr + vr(4 − zr)

}
< 128z2

r(zr − 3) < 0

in the region zr < −vr. Consequently, (3. 3) for α
(0,1)
11 = α

(1,0)
11 = 1/2 is A-stable not only

in the case of 	(σ) = 0 but also in the case of �(λ) = �(σ) = 0. In the sequel, this
scheme will be called ISRK1.

4.2 MS-stable scheme with two stages

In a similar way, let us decide the values of the three free parameters included in the
solution of the order conditions in Subsection 3.2. Since one of them, A

(0,1)
1 , takes 0 or 1,

we deal with each case separately.
Let us begin with the case of A

(0,1)
1 = 0. From (3. 6) and A

(0,1)
1 = 0,

D1(h,�W, λ, σ) =

(
z2

12
− z

2
+ 1

)(
(σ�W )2

12
+ 1

)
+

(√
3 − 2

6
z2 +

z

2
− 1

)
σ�W

2

+ z

(
(1 −√

3)z + 2
√

3

12
δ5 − δ6

)
(σ�W )2 + z(2 − z)σ�Wδ6, (4. 4)
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N1(h,�W, λ, σ) =

(
z2

12
+

z

2
+ 1

)(
(σ�W )2

12
+ 1

)
+

(
2 −√

3

6
z2 +

z

2
+ 1

)
σ�W

2

+ z

(
(
√

3 − 1)z + 2
√

3

12
δ5 + δ6

)
(σ�W )2 + z(2 + z)σ�Wδ6, (4. 5)

where δ5
def
= α

(0,1)
11 + α

(1,0)
11 − 1/2 and δ6

def
= α

(0,1)
11

(
1 − 2α

(1,0)
11

)
. Similarly to the previous

subsection, we can see that it yields an A-stable scheme in the case of 	(σ) = 0 to find a

pair (α
(0,1)
11 , α

(1,0)
11 ) which satisfies δ5 = 0 and for which R̃1(z, i�(σ)�W ) is analytic in the

region zr < 0.
Let α

(1,0)
11 be 1/2 − α

(0,1)
11 to satisfy δ5 = 0 and �W a three-point distributed random

variable with P (�W = ±√
3h) = 1/6 and P (�W = 0) = 2/3. Then, let us consider

the polynomial D2

(
zr, vr; α

(0,1)
11

)
, provided that D2 and N2 are re-scaled such that the

coefficient of the principal term in D2 is equal to 1.
Suppose that D2

(
zr, vr; α

(0,1)
11

)
does not vanish in the region zr < 0, and then let us

devote ourselves to N2

(
zr, vr; α

(0,1)
11

)
. By utilizing (4. 5), we can obtain

N2

(
zr, vr; α

(0,1)
11

)
= 128

(
2 −

√
3 + 24

(
α

(0,1)
11

)2
)2

v3
rz

12
r + 24

(
1 + 16

(
α

(0,1)
11

)2
)

v4
rz

11
r + R,

where R stands for the remainder terms with orders less than those of the first two terms
in the right-hand side. The substitution of vr = −zr into the expression in the right-hand
side of the equation yields

−8
(
9216

(
α

(0,1)
11

)4
+ 48(31 − 16

√
3)

(
α

(0,1)
11

)2
+ 109 − 64

√
3
)

z15
r + O(z14

r ).

Thus, if (
α

(0,1)
11

)2
<

−31 + 16
√

3 +
√
−15 + 32

√
3

384
(≈ 8.00 × 10−3), (4. 6)

the coefficient of z15
r is positive. Then, further, the coefficients of zno

r also become positive
and the coefficients of zne

r become negative for no = 1, 3, . . . , 13 and ne = 0, 2, . . . , 14.

Thus, when (4. 6) is satisfied, N2

(
zr,−zr; α

(0,1)
11

)
< 0 holds in the region zr < 0. Finally,

by plotting the region of MS-stability for several values of α
(0,1)
11 which satisfy (4. 6),

we have found that the region of MS-stability becomes large when α
(0,1)
11 = 0. In the

sequel, (3. 6) for A
(0,1)
1 = α

(0,1)
11 = 0 and α

(1,0)
11 = 1/2 will be called ISRK2. In Fig. 2,

the dark-colored part indicates the region of MS-stability for ISRK2, whereas the part
enclosed by the two straight lines vr = −zr and vr = 0 indicates the region in which (2.
7) holds. Here, note that the line vr = −zr is included in the region of MS-stability since
N2 (zr,−zr; 1/2) < 0.

The rest of our works in the case of A
(0,1)
1 = 0 is to show that D1(h,�W, λ, i�(σ))

and D1(h,�W,	(λ),	(σ)) do not vanish in the region zr < 0 when α
(0,1)
11 = 0 and

α
(1,0)
11 = 1/2. If D1(h,�W, λ, i�(σ)) = 0, from (4. 4) the following two equations must

hold simultaneously:

{
(z2

r − z2
i − 6zr + 12) ((�(σ)�W )2 − 12) = 12zi�(σ)�W (2(2−√

3)zr − 3),

(zr − 3)zi ((�(σ)�W )2 − 12) = −6�(σ)�W ((2 −√
3)(z2

r − z2
i ) − 3zr + 6).
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2

4

vr

zr -4 -2 0

40

80

vr

zr -80 -40 0

Figure 2: Region of MS-stability for ISRK2 when �(λ) = �(σ) = 0

Since it is clear that these do not hold simultaneously when �(σ)�W = 0, we proceed
with calculations, provided that �(σ)�W 
= 0. From the equations we have

2 −√
3

3
(z2

r + z2
i )

2 + (2− zr)((5 − 2
√

3)z2
r − 6zr + 12) + ((2

√
3 − 5)zr + 4(

√
3 − 1))z2

i = 0.

Since the expression in the left-hand side is positive in the region zr < 0, we can see that
D1(h,�W, λ, i�(σ)) 
= 0 holds there.

On the other hand, if D1(h,�W,	(λ),	(σ)) = 0, we have

(6(2
√

3 − 3)	(σ)�W + δ7)z
2
r − 6δ7zr + 12δ7 = 0,

where δ7
def
= (	(σ)�W −3)2 +3. The discriminant of the quadratic equation with respect

to zr, that is, −3δ7(24(2
√

3 − 3)	(σ)�W + δ7) is negative since δ7 > 0 and

24(2
√

3−3)	(σ)�W+δ7 = (	(σ)�W+3(8
√

3−13))2+39(48
√

3−83) ≥ 39(48
√

3−83) > 0.

In addition, by taking D1(h,�W,	(λ),	(σ)) > 0 when zr = 0 into account, we can see
that D1(h,�W,	(λ),	(σ)) > 0.

Finally, we consider the case of A
(0,1)
1 = 1. We can proceed with calculations in

a similar way. No value of α
(0,1)
11 , however, exists such that the coefficient of z15

r in

N2

(
zr,−zr; α

(0,1)
11

)
is negative. Thus, differently from the previous case, N2

(
zr,−zr; α

(0,1)
11

)
<

0 does not always hold in the region zr < 0.

5 Numerical experiments

We show the results of numerical experiments to confirm the weak order of the schemes
found in the previous section and their properties of MS-stability.

The following SDE is considered:

dy(t) =
(
A − 1

2
B2

)
y(t)dt + By(t) ◦ dW (t), y(0) = x0,

where

A =

[
0 1
a1 a2

]
, B =

[
b 0
0 b

]
.
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1
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∑2
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log2

∑2

i=1
(V [yi(1)]−〈Ṽ [yi(1)]〉)2∑2

i=1
(V [yi(1)])2

Figure 3: Relative errors in the first test

In the first test, we set a1 = −3, a2 = −2, b = 1/2 and x0 = [1 0]� with probability 1.
Then, we sought yM by means of the schemes, and calculated the arithmetic means and
the arithmetic variances of the ith element of yM as estimates of E[yi(1)] and variances
V [yi(1)] (i = 1, 2), respectively. On the other hand, their exact values were sought from
dE[y(t)]/dt = AE[y(t)] and

d

dt

⎡
⎢⎢⎣

E[y2
1(t)]

E[y1(t)y2(t)]

E[y2
2(t)]

⎤
⎥⎥⎦ =

⎡
⎢⎣

1
4

2 0
−3 −7

4
1

0 −6 −15
4

⎤
⎥⎦
⎡
⎢⎢⎣

E[y2
1(t)]

E[y1(t)y2(t)]

E[y2
2(t)]

⎤
⎥⎥⎦ .

In an experiment, 16 sample sets were considered and 16 × 106 independent trajectories
were simulated for one sample set. Thus, we obtained 16 estimates for each of E[yi(1)] and
V [yi(1)] (i = 1, 2). The results are indicated in Figure 3 and Table 3. In the figure and the
table, an estimator of an unknown quantity θ and an arithmetic mean of 16 estimates θ̃’s
are denoted by θ̂ and 〈θ̃〉 [13]. The dash or solid line means ISRK1 or ISRK2, respectively.
The figure illustrates that each scheme achieves each weak order expected theoretically.

Table 3: Biases and standard deviations in the first test

Bias Standard deviation
Scheme h

Ê[y1(1)] Ê[y2(1)] V̂ [y1(1)] V̂ [y2(1)] Ê[y1(1)] Ê[y2(1)] V̂ [y1(1)] V̂ [y2(1)]
2−1 7.85e− 3 −6.48e− 2 4.47e− 3 −2.77e− 2 4.39e− 5 9.19e− 5 7.26e− 6 3.05e− 5
2−2 −4.96e− 3 −9.67e− 3 −5.40e− 4 −1.41e− 2 4.52e− 5 1.07e− 4 1.46e− 5 7.99e− 5

ISRK1 2−3 −4.44e− 3 4.62e− 4 −1.13e− 3 −7.67e− 3 3.43e− 5 8.39e− 5 1.38e− 5 8.21e− 5
2−4 −2.70e− 3 1.51e− 3 −8.03e− 4 −4.00e− 3 2.82e− 5 6.94e− 5 1.79e− 5 1.08e− 4
2−5 −1.47e− 3 1.06e− 3 −4.64e− 4 −2.04e− 3 3.95e− 5 9.71e− 5 1.69e− 5 1.02e− 4
2−1 −2.60e− 3 −1.42e− 3 −2.01e− 3 4.36e− 3 5.14e− 5 1.32e− 4 1.14e− 5 7.61e− 5
2−2 −5.49e− 4 −4.42e− 4 −5.37e− 4 1.03e− 3 4.03e− 5 1.00e− 4 1.76e− 5 1.10e− 4

ISRK2 2−3 −1.24e− 4 −1.34e− 4 −1.34e− 4 2.64e− 4 3.88e− 5 9.56e− 5 1.70e− 5 1.04e− 4
2−4 −3.91e− 5 −1.37e− 5 −3.58e− 5 5.12e− 5 4.15e− 5 1.02e− 4 1.49e− 5 8.97e− 5
2−5 −7.92e− 6 −8.00e− 6 −1.13e− 5 −9.52e− 7 3.93e− 5 9.64e− 5 1.67e− 5 1.00e− 4

In the second test, we set a1 = −10000, a2 = −205, b = 3 and x0 = [0 1]�. Then,
since (2. 5) holds, the equilibrium position is asymptotically stable in mean square. In
each experiment, 1×105 independent trajectories were simulated. The results are showed
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in Table 4. The table indicates that ISRK2 is not MS-stable for h = 1/2. In fact, it is
true from Fig. 2 since the eigenvalues of A − B2/2 are −129.5 and −84.5.

Table 4: Estimates in the second test
Scheme h Ẽ[y1(3)] Ẽ[y2(3)] Ṽ [y1(3)] Ṽ [y2(3)] Ẽ[y1(5)] Ẽ[y2(5)] Ṽ [y1(5)] Ṽ [y2(5)]

2−1 −0.003 0.911 0.000 0.000 −0.003 0.809 0.000 0.000
ISRK1 2−2 −0.003 0.447 0.000 0.000 −0.001 0.194 0.000 0.000

2−3 −0.000 0.007 0.000 0.000 −0.000 0.000 0.000 0.000
2−1 −0.009 1.746 0.001 21.407 −0.013 2.049 0.004 98.331

ISRK2 2−2 −0.002 0.269 0.000 2.718 −0.000 0.057 0.000 0.434
2−3 −0.000 0.000 0.000 0.000 −0.000 0.000 0.000 0.000

6 Summary and remarks

First, we have considered implicit SRK methods with one or two stages, and have found
solutions of the order conditions for them to be of weak order 1 or 2 in a form including
the free parameters. Second, we have decided the values of the parameters such that
the schemes have good stability properties. Third, we have performed the numerical
experiments and have shown that the schemes achieve the convergence order and stability
properties expected theoretically.

The schemes have the following features.

• The schemes ISRK1 and ISRK2 are A-stable in the case that �(σ) =0 in (2. 6).

• Further, ISRK1 is A-stable also in the case of 	(λ) = 	(σ) = 0.

• Although ISRK1 and ISRK2 are of weak order 1 or 2, respectively, they are of order
2 or 4 for ODEs. For this, they can be expected to show better performance in
seeking an approximation to the expectation of a solution for SDEs with small noise
[13].

• When �(λ) = �(σ) = 0, ISRK1 and ISRK2 satisfy that the slope of the boundary
curve at the origin (zr, vr) = (0, 0) is equal to −1. In the neighborhood of the
origin, thus, the region of MS-stability for them is consistent with that in which (2.
7) holds.
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