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Abstract

This paper proposes a numerical method for analyzing a thin piezoelectric bimorph in fluid.
A hierarchically decomposed finite element method (FEM) is proposed for modeling the triply
coupled piezoelectric-structure-fluid interaction. The electromechanical coupling (piezoelectric-
structure interaction) behavior in a thin piezoelectric bimorph is described by the classical con-
stitutive equation, the incompressible fluid flows by the Navier-Stokes equation and the structure
by the Cauchy equation of motion. The piezoelectric-structure-fluid interaction system is decom-
posed into subsystems of fluid-structure interaction (FSI) and piezoelectric field, then the piezo-
electric field and the FSI are coupled using the block Gauss-Seidel method, the fluid-structure
interaction is split into the fluid-structure velocity field and the pressure field using an algebraic
splitting and the fluid-structure velocity field is partitioned into fluid velocity field and structure
velocity field. Using the proposed method, the resonance characteristics of a piezoelectric bi-
morph cantilever made of PVDF and PZT-5H material in fluid are investigated for actuation and
sensor configurations.

Keywords: Hierarchical decomposition, piezoelectricity, finite element method (FEM),
piezoelectric-structure interaction, Fluid-structure interaction (FSI), thin piezoelectric bimorph.

1. Introduction

Thin piezoelectric bimorph devices are widely used in actuation and sensing applications.
During recent years, the flexible wings of insect-like micro air vehicles [1, 2] are actuated by a
thin piezoelectric bimorph actuator. These actuators can produce large deformations when op-
erated near resonance. The piezoelectric actuation amplitude is damped significantly due to the
fluid force from the surrounding fluid media. Therefore, it is important to consider the analy-
sis of a thin piezoelectric bimorph actuator in fluid. Also, over recent years, with the rise in
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Fig. 1. Schematic representation of a piezoelectric bimorph in fluid

the demand of energy has attracted significant research interest in energy harvesting describing
the process of generating electrical energy from external sources in the surroundings, such as
structural mechanical vibrations, ocean waves, wind flow and many. The energy harvesting us-
ing thin piezoelectric bimorph devices converts mechanical energy such as ocean wave to the
electric energy has attracted greater attention as a next electric generation system due to their
strong electromechanical convertible characteristics. In piezoelectric energy harvesting applica-
tions, the sensor function of a thin piezoelectric bimorph is utilized [3–5]. In these applications,
the large deformation of a thin piezoelectric bimorph device causes a strong interaction with
the electric field (piezoelectric effect) and the surrounding fluid, and inversely, these two fields
significantly affect the structural behavior of thin piezoelectric bimorph. This interdisciplinary
coupling effect among the electric field, the surrounding fluid media, and the thin structure are
very significant. Therefore, the triply coupled multiphysics analysis of piezoelectric, structure,
and fluids is very important. Fig. 1 shows the schematic representation of a piezoelectric bimorph
in fluid and physical domain interaction.

The analytical solutions to the model equations of piezoelectric-structure-fluid interaction
systems are limited in the scope and their simulation is a difficult task. The triply coupled phe-
nomenon of the piezoelectric-structure-fluid interaction system for a piezoelectric bimorph in
fluid using FEM has gained a popular research interest in the last couple of years due to the sig-
nificant engineering applications, see for example, refs. [5, 6]. In the study of the piezoelectric-
structure-fluid interaction, numerical simulations are very effective since they are appropriate for
parametric studies, detailed analysis and thorough understanding of coupled dependencies, and
reduce the need for experimental studies. So this work is focused on the development of the finite
element method for the piezoelectric-structure-fluid interaction of a thin piezoelectric bimorph
in fluid.

The application of numerical methods to the solution of a coupled problems is generally
solved using either a monolithic or a partitioned approach. A monolithic solution scheme treats
all the domains simultaneously, leading to a single set of algebraic equations and solved in a sin-
gle mathematical framework. Monolithic approaches are generally known to be robust, accurate
and strongly coupled. However, the monolithic approaches are computationally very expensive
and a monolithic FSI formulation can lead to an ill-conditioned equation system. In contrast
to a monolithic approach, a partitioned approach treats each physical field as a separate entity,
discretized and numerically solved, and they are coupled via exchanging the variable between

2



each subsystem. The partitioned approaches are easy for the implementation, enabling the reuse
of already developed existing codes (modularity), and are appropriate for parallel computation.
Monolithic electromechanical coupling and monolithic FSI system can be found respectively in
refs. [7–9] and [10–12]. Some of the partitioned iterative approaches to solving piezoelectric-
structure interaction in a piezoelectric continuum are given in [13–17]. Similarly, for the FSI
system, partitioned simulation strategies can be found in refs. [18–21].

Several algorithms have been proposed for solving electrostatic-fluid-structure interaction
problems, see for example, refs. [22–26]. Rochus et al. [22], De et al. [23], and Ghosh at al
[24] have proposed a monolithic approach while Ishihara et al. [25] proposed a hierarchal de-
composition method and Raulli [26] proposed a partitioned approach to analyzing the Reynolds
squeeze film damping effect between the structure and fluid domains where the structure is driven
vertically by electrostatic actuation. The electrostatic actuation is completely different from the
direct and inverse piezoelectric effect in-terms of constitutive equations. Above mentioned stud-
ies cannot solve electromechanical coupling in the piezoelectric materials. Direct and inverse
piezoelectric equations are much more complicated than electrostatic actuation. One-way cou-
pling between piezoelectric-structure and fluid-structure interactions can be found in [27, 28].
These one way coupling method is used for piezoelectrically actuated structure incorporating the
effect of fluid damping. However, they can not be used for the direct piezoelectric effect incor-
porating fluid and structure effects. Bathe et al. [29] had proposed an FE solution method for
electromagnetics with fluid flows and structures. Again, the electromagnetic effect is different
from the piezoelectric effect. A few research works on the triply coupled finite element analysis
piezoelectric-structure-fluid interaction system can be found in [5, 6].

Ravi et al. [5] had proposed a monolithic approach to solve piezoelectric- fluid-structure in-
teraction of a piezoelectric bimorph beam driven by fluid flow. Although the monolithic approach
is strongly coupled by the formulation itself, but are computationally expensive and lead to ill-
conditioned monolithic system [21]. Kaneko et al. [6] had proposed a simple staggered iterative
approach and employed the 2D solid elements to analyze the direct and inverse piezoelectric
effect. Using a staggered iterative method they connected the fluid, structure, and piezoelec-
tric solvers. The detailed finite element coupled strategy for the EFSI system is not provided
and not investigated in [6]. In [5, 6], they used solid elements to analyze both the direct and
inverse piezoelectric effect in a thin piezoelectric bimorph. However, solid elements employed
therein are inappropriate for the discretization of thin structures and also they are expensive com-
putationally. On the other hand, in our previous study [15], we proposed a novel FE method to
analyze piezoelectric-structure interaction of a thin piezoelectric bimorph using solid element for
piezoelectric analysis and shell for thin structure analysis to overcome the drawbacks of using a
same finite element for electromechanical coupled analysis of a thin piezoelectric devices [30].

In the present study, the piezoelectric-structure-fluid interaction is hierarchically decom-
posed. Ishihara et al. [25] proposed a hierarchal decomposition method to solve electrostatic-
fluid-structure interaction which is completely different from piezoelectric-fluid-structure inter-
action except for FSI analysis. In the proposed method, the piezoelectric-structure-fluid interac-
tion system is decomposed into subsystems of fluid-structure interaction (FSI) and piezoelectric
field, then the piezoelectric field and the fluid-structure interaction are coupled using the block
Gauss-Seidel method, the fluid-structure interaction is split into the fluid-structure velocity field
and the pressure field using an algebraic splitting or projection method for the FSI system [31],
and the fluid-structure velocity field is partitioned into fluid velocity field and structure velocity
field.

The combination of the Lagrangian and Eulerian description, respectively, for the structure
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and fluid mechanics, known as arbitrary Lagrangian-Eulerian (ALE) description [32] is used in
the present formulation. When the problem is geometrically nonlinear, full Newton-Raphson
(N-R) iterations are performed for the structural part. The authors study two approaches for the
management of the BGS and N-R loops, similar to that shown in [15]. In the first approach, non-
linear N-R loop is placed inside the BGS iteration loop. In this approach, in every BGS iteration,
there are several N-R iterations are executed until the energy tolerance criteria is satisfied. On
the other hand, in the second approach, the BGS and N-R loops are unified into a single loop.
Therefore, we call this approach as unified BGS and NR loops. In this approach, the number
of BGS iterations and N-R iterations are the same. These approaches are intended to study the
computational efficiency of the proposed method.

The proposed strongly coupled hierarchically decomposed method for triply coupled piezo-
electric, structural, and fluid fields of thin piezoelectric bimorph in fluid is applied to a flexible
restrictor flap in the converging channel [33], where the rubber flap is replaced by the piezoelec-
tric bimorphs made of PVDF or PZT5H. Three electric configurations of piezoelectric bimorph
(actuator setup, closed-circuit sensor setup, and open-circuit sensor setup) along with the inlet
fluid velocity boundary condition in converging channel as defined in [31, 33] are studied. The
resonance frequency of the piezoelectric bimorph actuator analysis in fluid agrees well with the
theoretical and numerical pure FSI cases. The tendency of the open circuit and closed circuit
sensor frequency for PVD and PZT-5H piezoelectric bimorphs show the same tendency with the
present state of the survey and theoretical approximations.

2. Governing Equations

2.1. Piezoelectricity
Piezoelectricity is basically the interaction between the electrical and mechanical states in

a piezoelectric material. It can be subdivided into the direct piezoelectric effect (sensor effect)
and the inverse piezoelectric effect (actuator effect). The mechanical part is solved using the
equilibrium equation of the structure and the electric part is solved using Maxwell’s equation of
equilibrium for the quasi-static electric field. The constitutive equations of linear piezoelectricity
can be written as

σij = CEijklSkl − ekijEk, (1)

Di = eiklSkl + εSikEk, (2)

where σij is the stress tensor, CEijkl is the elastic constitutive tensor, Skl the mechanical strain
tensor, ekij the piezoelectric coupling coefficient, Ek the electric field vector, and εSik the di-
electric permittivity tensor. The superscripts E and S denote that the elastic constants and the
dielectric constants are evaluated at a constant electric field and a constant strain, respectively.

In the linear piezoelectric analysis, the mechanical strain tensor Sij and the mechanical dis-
placement vector ui are related as

Sij =
1

2
(ui,j + uj,i). (3)

The electric field vector Ei and the scalar electric potential φ,i are related as

Ei = −φ,i. (4)
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The essential and natural boundary conditions related to the electrical filed are written as

φ = φ̄, (5)
Dini = q̄, (6)

where φ̄ and q̄ are the prescribed electric potential and surface charge on the piezoelectric bound-
ary corresponding to the Dirichlet- and Neumann-type, respectively, and ni is the outward unit
normal vector.

2.2. Structure
The equilibrium equation of the structure can be written as

ρs d2us
i

dt2
=
∂σs

ji

∂xj
+ ρsgs

i , in tΩs, (7)

where tΩs is the spatial domain of a structure at time t, ρs is the density of the structure, us
i is the

structural displacement vector,
d

dt
is the so-called material derivative, gs

i is the body force vector
acting on the structure, and σs

ij is the 2nd Piola-Kirchhoff stress tensor. While the structure
undergoes large deformations causing to geometric nonlinearities, the strains are assumed to be
small, thus a materially linear elastic model is assumed. Here, we use 2nd Piola-Kirchhoff stress
tensor and Green-Lagrange strain tensor in total Lagrangian formulation. For the elastic body,
the Dirichlet- and Neumann-type boundary conditions are given by

vs
i = v̄s

i , on Γs
E, (8)

σs
ij .n

s
j = τ s

i , on Γs
N. (9)

where Γs
E and Γs

N are complementary subsets of tΓf corresponding to the Dirichlet- and Neumann-
type boundary conditions at time t, v̄s

i and τ s
i are the prescribed structure velocity and traction

values on the complementary subset of tΓs.

2.3. Fluid
Let the fluid be an incompressible viscous Newtonian fluid. The fluid flow is governed by the

Navier-Stokes equations for an incompressible fluid. The arbitrary Lagrangian-Eulerian formu-
lation is employed to describe the incompressible viscous fluid motion in the deformable domain.
The ALE description of the incompressible Navier-Stokes equations as the governing equations
of the fluid motion [32]:

ρf ∂v
f
i

∂t
+ ρf(vf

j − v̂f
j)
∂vf

i

∂xj
=
∂σf

ji

∂xj
+ ρfgf

i , in tΩf , (10)

under the incompressibility constraint

∂vf
i

∂xi
= 0, in tΩf , (11)

where the superscript f indicates the fluid components, tΩf is the spatial fluid domain at time t,
ρf is the density of the fluid, vf

i is the fluid velocity vector, v̂f
i is the velocity vector of the mesh
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deformation in the ALE co-ordinate, gf
i is the body force vector acting on the fluid, and σf

ij is the
stress tensor of the fluid. To solve for the equilibrium fluid equation Eq.(10), one has to specify
the essential and natural boundary conditions on the closed boundary of the fluid domain tΓf .
The essential or Dirichlet and the natural or Neumann boundary conditions could be imposed at
different segments of the boundary tΓf :

vf
i = v̄f

i , on Γf
E, (12)

σf
ij .n

f
j = τ f

i , on Γf
N, (13)

where Γf
E and Γf

N are complementary subsets of tΓf corresponding to the Dirichlet- and Neumann-
type boundary conditions at time t, v̄f

i and τ f
i are the prescribed fluid velocity and traction values

on the complementary subset of tΓf .

2.4. Interface conditions

The interaction conditions on the interface between the fluid and the structure are imposed
using the following geometric compatibility and equilibrium conditions:

vf
i = vs

i ≡ vfs
i , on Γfs, (14)

σf
ij .n

f
j + σs

ij .n
s
j = τ fs

i , on Γfs, (15)

where the superscript fs indicates the components of the fluid-structure interface, vfs
i is the fluid-

structure interface velocity vector, and τ fs
i is the surface force vector acting on the fluid-structure

interface.

3. Finite Element Formulation

3.1. Piezoelectric-Structure Interaction

Applying finite element discretization to Eqs.(1) and (2), the following coupled piezoelectric-
structure system in the global coordinates can be obtained in matrix form [7, 9, 14]:

Ma + Ku + Kuφφ = g, (16)
Kφφφ + Kφuu = q, (17)

where M is the mass matrix, K is the mechanical stiffness matrix of the piezoelectric material,
Kφφ is the dielectric stiffness matrix of the piezoelectric material, Kuφ is the piezoelectric cou-
pling coefficient matrix of the piezoelectric material, Kφu is the transpose of Kuφ, a is the vector
of the accelerations, u is the vector of the mechanical displacements, φ is the vector of electric
potentials, g is the vector of the external mechanical forces, and q represents the vector of the
external surface density charges on the piezoelectric material.

In the present work, the piezoelectric field (electric field) is solved using the 3D solid ele-
ments and the structure is solved using the shell elements (see [15]). Hence, Eqs.(16) and (17)
can be written as

Inverse piezoelectric effect using shell : Msas + Ksus = gs + eg
s, (18)

Direct piezoelectric effect using 3D solid : Kφφφsolid = q + eqsolid. (19)
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In the above equations, the term eg
s is the vector of the electrical forces generated in the piezo-

electric material due to the inverse piezoelectric effect and eqsolid is the vector of the induced
electric charge due to the direct piezoelectric effect defined respectively as:

eg
s = eT egsolid, (20)

eqsolid = −Kφuusolid, (21)

where

egsolid = −Kuφφsolid, (22)
usolid = uT us. (23)

The dielectric stiffness matrix Kφφ, the piezoelectric coupling coefficient matrix Kuφ and its
transpose Kφu, the electric potential vector φsolid, the vector of the induced electric charge eqsolid

due to the piezoelectric effect that are evaluated using the 3D solid elements. The displacements
at the solid elements usolid are obtained from the displacement transformation Eq.(23) using the
displacements of the shell elements us. In Eqs.(20) and (23), eT and uT are the force trans-
formation matrix and displacement transformation matrix, respectively. The coupling between
piezoelectric and structure fields is done by exchanging the variables using the block Gauss-
Seidel method.

3.2. Fluid-Structure Interaction
3.2.1. Structure

Finite element spatial discretization to Eq.(7) using the shell element, we obtain the equilib-
rium equation for the structure in matrix form as

Qs ≡ LM
sas + qs(us) = gs, (24)

where Ms is the mass matrix of the structure, qs is the internal force vector, as is the acceleration
vector of the structure, us is the displacement vector of the structure, gs is the external force
vector applied to the structure, Qs is the equivalent internal force vector including all effects of
the structure.

3.2.2. Fluid
Finite element spatial discretization to the incompressible Navier-Stokes Eqs.(10) and (11)

can be written in matrix form, respectively, as

Qf ≡ LM
faf + Nf + Cfvf −Gfpf = gf , (25)

TG
fvf = 0, (26)

where Mf is the mass matrix of the fluid, Nf is the convective term vector of the fluid, Cf is
the diffusion matrix of the fluid, Gf is the divergence operator matrix of the fluid, af is the ac-
celeration vector of the fluid, vf is the velocity vector of the fluid, pf is the pressure vector of
the fluid, gf is the external force vector acting on the fluid, Qf is the equivalent internal force
vector including all effects of the fluid, the subscript L stands for lumping of the matrix, and the
subscript T stands for transpose of the matrix. In the ALE formulation, the fluid convective term
Nf is expressed as Nf(vf − v̂f)vf . In this study, a linear equal order interpolation velocity pres-
sure element [34] is used for the incompressible fluid analysis. The stabilization formulations
streamline-upwind/Petrov-Galerkin (SUPG) [35] and the pressure-stabilizing/Petrov-Galerkin
(PSPG) [34, 36] for incompressible flows are adopted to avoid the numerical instabilities due
to the fluid convection and the P1P1 elements.
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3.2.3. Fluid-Structure Interaction
The geometric compatibility condition Eq.(14) and the equilibrium condition Eq.(15) on the

fluid-structure interaction can be written in vector form, respectively, as

vfs
c ≡ vf

c = vs
c, (27)

and

Qf
c + Qs

c = gfs
c . (28)

Eqs. (24)–(26) are combined using the coupled conditions Eqs.(27) and (28) to form the mono-
lithic equations as [31]

Q ≡ LMa + Cv + N + q(u)−Gp = g, (29)

TGv = 0. (30)

The definitions of each of the matrices and the vectors appearing in Eqs.(29) and (30) are defined
as

LM ≡

LM
f
dd 0 0

0 LM
fs
cc 0

0 0 LM
s
dd

 , (31a)

C ≡

Cf
dd Cf

dc 0
Cf
cd Cf

cc 0
0 0 Cs

dd

 , (31b)

G ≡

Gf
d

Gf
c

0

 , (31c)

q(u) ≡

 0
qs
c(u

s)
qs
d(u

s)

 , (31d)

N ≡

Nf
d

Nf
c

0

 , (31e)

g ≡

gf
d

gfs
c

gs
d

 , (31f)

a ≡

af
d

afs
c

as
d

 , (31g)

v ≡

vf
d

vfs
c

vs
d

 , (31h)

u ≡

 ∗ufs
c

us
d

 , (31i)
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p ≡ pf , (31j)

LM
fs
cc ≡ LM

f
cc + LM

s
cc . (31k)

where the subscript d indicates the decoupled degrees of freedoms and subscript c indicates the
coupled degrees of freedoms.

The time integration of the FSI system is obtained through the predictor-multi-corrector al-
gorithm (PMA) [32, 35] using the Newmark’ β method. Let us consider the nonlinear iteration
k for the Eqs.(29) and (30) at the current time t+ ∆t as

LM
t+∆ta(k) + C t+∆tv(k) + N + q

(
t+∆tu(k)

)
−G t+∆tp(k) = t+∆tg, (32a)

TG
t+∆tv(k) = 0. (32b)

During the predictor stage of the PMA, the acceleration, velocity, displacement, and pressure
at time t+ ∆t are first predicted using those at time t, respectively, as

t+∆ta(0) = 0, (33a)
t+∆tv(0) = tv + ∆t(1− γ) ta, (33b)
t+∆tu(0) = tu + ∆t tv + ∆t2(1/2− β) ta, (33c)
t+∆tp(0) = tp, (33d)

where ta, tv, tu, and tp are the known acceleration, velocity, displacement, and pressure, which
are obtained from the last time step t, β and γ are the Newmark’s parameters that can be chosen
so as to obtain numerical stability and integration accuracy, and ∆t is the time increment.

The monolithic FSI equation system shown in Eqs.(32a) and (32b) at time t + ∆t are non-
linear equations. These nonlinear equation system can be linearized using the increments of the
accelerations ∆a, velocity ∆v, displacement ∆u, and pressure ∆p. These increments are ob-
tained from the state variables from the previous nonlinear iteration to the current iteration during
the corrector stage of the PMA method defined as [31],

t+∆ta(k) = t+∆ta(k−1) + ∆a, (34a)
t+∆tv(k) = t+∆tv(k−1) + ∆v = t+∆tv(k−1) + γ∆t∆a, (34b)
t+∆tu(k) = t+∆tu(k−1) + ∆u = t+∆tu(k−1) + β∆t2∆a, (34c)
t+∆tp(k) = t+∆tp(k−1) + ∆p. (34d)

Substituting Eqs. (34a)–(34d) into Eq.(32), the following linearized equations in residual
form are obtained as

M
∗

∆a−G∆p = ∆g, (35a)
γ∆t TG∆a + Gε∆p = ∆h, (35b)

where M
∗

is the generalized mass matrix , ∆g and ∆h are the residual force vectors, ∆
indicates the increment, and Gε come from the pressure stabilization term of the pressure-
stabilizing/Petrov-Galerkin (PSPG) [34, 36]. The definition of M

∗
for the implicit, explicit, and
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implicit and explicit treatment of the fluid convection term N and the fluid diffusion term C can
be found in Ref [12, 31]. If the fluid convection and diffusion terms are treated implicitly then

M
∗
≡ LM + γ∆t(

∼
N + C) + β∆2K, (36)

where
∼
N is the Jacobian of the fluid convective vector Nf , and K is defined using the tangent

stiffness matrix of the structure. In case the fluid convection and diffusion terms are treated
explicitly then

M
∗
≡ LM + β∆2K. (37)

If the fluid convection term is treated explicitly, and the fluid diffusion term is treated implicitly
then

M
∗
≡ LM + γ∆tC + β∆2K. (38)

The FSI monolithic system Eq.(35) is very strongly coupled. However, the monolithic approach
is computationally expensive and the monolithic formulations can lead to ill-conditioned equa-
tion system [12, 37]. Therefore, in this study, the algebraic splitting also known as projection
method proposed by Ishihara and Horie [31] is employed. The algebraic splitting method is
computationally efficient and avoids Schur complement without loss of robustness. This method
has been successfully used for fluid-structure interaction analysis in the flapping flexible wing
[2, 38] and hierarchal decomposition of the structure-fluid-electrostatic interaction in a MEMS
micro cantilever [25]. The projection method is summarized as follows:

From the fluid-structure interaction equilibrium Eq.(32a), the state variables are predicted
as the intermediate state variables for the known fluid pressure t+∆tp(k−1). Then, Eq.(32a) is
linearized as

M
∗

∆â = ∆g, (39)

where the intermediate state variables and their increments are described as

t+∆tâ(k) = t+∆ta(k−1) + ∆â, (40a)
t+∆tv̂(k) = t+∆tv(k−1) + ∆v̂ = t+∆tv(k−1) + γ∆t∆â, (40b)
t+∆tû(k) = t+∆tu(k−1) + ∆û = t+∆tu(k−1) + β∆t2∆â, (40c)

where t+∆tâ(k), t+∆tv̂(k), and t+∆tû(k) are the intermediate or predicted acceleration, velocity
and displacement, respectively. Subtracting both sides of Eq.(39) from Eq.(35a), after suitable
arrangement,

γ∆tG∆p = M
∗ (t+∆tv(k) −t+∆t v̂(k)

)
. (41)

By left multiplying both sides of Eq.(41) with TGLM
−1 to obtain,

γ∆t TGLM
−1G∆p = TG

t+∆tv(k) − TG
t+∆tv̂(k)

+ TGLM
−1M

∗(t+∆tv(k) −t+∆t v̂(k)
)
,

(42)
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where M
∗

= M
∗
− LM. If the following pressure Poisson equation (PPE),

γ∆t TGLM
−1G∆p = −TG

t+∆tv̂(k), (43)

is solved, then Eq.(42) is reduced as

TG
t+∆tv(k) + TGLM

−1M
∗(t+∆tv(k) −t+∆t v̂(k)

)
= 0. (44)

When the nonlinear iterations are convergent, the predicted velocity t+∆tv̂(k) agrees with t+∆tv(k)

asymptotically as

| t+∆tv(k) − t+∆tv̂(k) | → 0 as k → 0 (45)

The second term of the Eq.(44) will vanish asymptotically in the nonlinear iterations, and the
incompressibility constraint for the current fluid velocity t+∆tv(k) is satisfied as

TG
t+∆tv(k−1) = 0. (46)

In summary, Eq.(39) is solved to determine the increment of the intermediate acceleration ∆â for
the previous pressure. Once ∆â is evaluated, then the intermediate velocity t+∆tv̂(k) is solved
using Eq.(40b). After that, the pressure increment ∆p is obtained solving Eq.(43). Next the
acceleration increment ∆a is solved using Eq.(35a), and Eq.(34a), Eq.(34b), and Eq.(34c) are
solved to derive the acceleration t+∆ta(k), the velocity t+∆tv(k), and the displacement t+∆tu(k),
respectively.

3.3. Hierarchically Decomposed Piezoelectric-Structure-Fluid Interaction
The strongly coupled piezoelectric-structure-fluid interaction is hierarchically decomposed,

which is shown in Fig. 2, as follows: At the first level, the triply coupled system is partitioned
into subsystems of piezoelectric field and fluid-structure interaction (FSI). These two fields are
coupled using the block the Gauss-Seidel iterative method. In the second level, the FSI subsystem
is further decomposed using the projection method, i.e., the FSI is split into the fluid-structure
velocity field and the pressure field using algebraic splitting. In the third level, the structure-fluid
velocity field is further partitioned into the structure velocity field and the fluid velocity field
using the explicit time integration for the fluid interior DOFs. This decomposition allows us to
employ 3D solid element to solve piezoelectric field, shell element to solve inverse-piezoelectric
effect, and P1P1 element to solve the fluid field, which remedies the shortcoming of using a
single finite element mesh for all three fields.

The piezoelectric system in 3D solid elements is given by

t+∆tK
(i)
φφ

t+∆t
φ

(i)
solid = t+∆tq− t+∆tK

(i)
φu

t+∆tu
(i−1)
solid . (47)

Using the displacement transformation Eq.(23) from the shell element to the 3D solid element,
the above equation becomes

t+∆tK
(i)
φφ

t+∆t
φ

(i)
solid = t+∆tq− t+∆tK

(i)
φu uT

t+∆tus(i−1). (48)

where superscript i indicates the current BGS iteration. The electric potential t+∆tφ
(i)
solid of

current iteration i is evaluated in the 3D solid elements using the displacements of the shell
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Fig. 2. Hierarchal decomposition for the piezoelectric-structure-fluid interaction system

elements obtained in the previous iteration i − 1. We obtain the electrical forces eg for the
known electric potential in the current BGS iteration i at each time step t + ∆t in the 3D solid
elements as

t+∆t
egsolid = − t+∆tK

(i)
uφ

t+∆t
φ

(i)

solid. (49)

The induced electrical force vector is now applied on to the shell structure of the FSI system
through the force transformation relation given in Eq.(20), which gives us eg

s. After the force
transformation, the external force vector g given in Eq.(31f) becomes

g ≡

gf
d

gfs
c

gs
d

 =======⇒ g ≡

 gf
d

gfs
c + eg

s
c

gs
d + eg

s
d

 , (50)

where eg
s = [eg

s
c, eg

s
d]

T, and eg
s
c is the external force or transnational force acting on the shell

and eg
s
d is the external electric moment of force or rotational force acting on the shell, as shown

in Fig. 3. The transnational force acting on the shell are obtained using [15]

eg
s
c =

Nr∑
nr=1

eg
nr

solid +

Ns∑
ns=1

eg
ns

solid

2
, (51)

where nr = 1, . . . , Nr are the indices of the solid element nodes that are located along the
considered director vectors Vk

n of the shell nodes as shown in Fig. 3, and eg
nr

solid is the induced
nodal electric force vector at solid node nr. Similarly, ns = 1, . . . , Ns are the indices of the
solid element nodes that are located not along the considered director vector of the shell nodes
but directly adjacent to it, and eg

ns

solid is the induced nodal electric force vector at solid node ns.
The rotational force acting on the shell eg

s
d are obtained using

eg
s
d =

Nr∑
nr=1

(dnr × eg
nr

solid) +

Ns∑
ns=1

(dns × eg
ns

solid

2
), (52)
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where dnr and dns are the position vectors of the solid element nodes nr and ns, respectively,
with respect to the shell mid-surface nodes. After the force transformation onto the shell struc-
ture, the fluid-structure interaction is analyzed using the projection method at current BGS itera-
tion i as follows:
The increment of intermediate acceleration at the current BGS and nonlinear iteration is deter-
mined for the known pressure t+∆tp(i)(k−1) by solving

M
∗

∆â(i) = ∆g(i). (53)

Using ∆â(i), the intermediate state variables and their increment given in Eq.(40) are evaluated
at each BGS and nonlinear iteration as

t+∆tâ(i)(k) = t+∆ta(i)(k−1) + ∆â(i), (54a)
t+∆tv̂(i)(k) = t+∆tv(i)(k−1) + ∆v̂(i) = t+∆tv(i)(k−1) + γ∆t∆â(i), (54b)
t+∆tû(i)(k) = t+∆tu(i)(k−1) + ∆û(i) = t+∆tu(i)(k−1) + β∆t2∆â(i), (54c)

The pressure increment at the current BGS and nonlinear iterations is obtained using the inter-
mediate velocity by solving

γ∆t TGLM
−1G∆p(i) = −TG

t+∆tv̂(i)(k). (55)

Then the acceleration increment is solved using

M
∗

∆a(i) −G∆p(i) = ∆g(i). (56)

Now the correct phase of the PMA given in Eq.(34) is executed to solve for the acceleration
t+∆ta(i)(k), the velocity t+∆tv(i)(k), and the displacement t+∆tu(i)(k) at current BGS and non-
linear iterations of every time step. At the correct stage, we obtain the structural displacements
in the shell solving the geometric nonlinear structure equilibrium equation which is used to solve
the piezoelectric field in the 3D solid given as

t+∆tus(i)(k) = t+∆tus(i)(k−1) + ∆us(i). (57)

In an incremental formulation based on the Newton-Raphson iteration method, the increment in
the internal energy is used to terminate the N–R iteration loop [39]. The resultant displacements
in the shell element is now transformed to the solid element using displacement transformation
at every BGS iteration to analyze the piezoelectric field. Eq.(23) is rewritten as

t+∆tu
(i)
solid = uT

t+∆tus(i). (58)

The components of the transformation matrix uT are obtained from the displacement interpola-
tion function at time t as in the shell element [40] using

tus
j = hn(r1, r2) tnu

s
j +

r3

2
a hn(r1, r2)(−αnVn

2 + βnVn
1 ), (59)

where tus
j are the displacements of a material point in a shell element at time t with natural co-

ordinates (rj), n represents shell node, tnu
s
j is the displacement vector of the shell node n at time

t, hn are the element shape function, a is the shell thickness, and αn and βn are rotations about
13



Vn
1 and Vn

2 , respectively. The coupling strategy of the triply coupled piezoelectric-structure-
fluid system is symbolically represented using the model equation system including the degrees
of freedoms (DOFs) of fluid, structure and piezoelectric fields as shown in Fig. 4.
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Fig. 3. Electric force and moment of electric force transformation
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Predict acceleration, velocity, displacement, and
pressure using Eqs. (33a)–(33d), respectively

Derive electrical potential using Eq.(48)
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Transform the electric forces and moments using Eq.(50)

Derive intermediate accelera-
tion increments using Eq.(53)

Derive intermediate velocity solving Eq.(54b)

Derive pressure increment solving Eq.(55)

Derive acceleration increment solving Eq.(56)
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Check BGS iteration convergence
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(BGS with N-R loop)

Approach 1
(Unified BGS and N–R loop)

t = t+ ∆t

Not converged

Not converged Not converged

Fig. 5. Solution procedure of the proposed piezoelecctric-structure-fluid interaction
Piezoelectric solver, FSI solver, force and displacement transformation.

Fig. 5 shows the analysis procedure to solve piezoelectric-structure-fluid interaction. The
BGS iteration loop is used to couple the variables between the piezoelectric field and the FSI
system. This loop is repeated until the desired tolerance is satisfied. When the problem is ge-
ometrically nonlinear, a second inner loop (Newton-Raphson iterations) is performed for the
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structural part. Again, this N-R loop is repeated until the increment in the internal energy criteria
is satisfied. To manage the BGS and N-R iteration loops in piezoelectric-structure-fluid interac-
tion, we propose two approaches similar to that of piezoelectric-structure interaction in Ref.[15].
The purpose of studying these approaches is to check the computational efficiency, convergence
property, and accuracy.

1. Approach 1: Unified BGS and N-R loops
In this approach, the BGS and N-R loops are unified into a single loop, therefore, we call
this approach as unified BGS and N-R loops. Here, we use the term nonlinear iterations to
indicate the unified iteration BGS and N-R iterations. The analysis flow of this approach
is illustrated in the right side of Fig. 5 with the red color lines and labels, where i indicates
the nonlinear iteration loop or unified BGS and N-R iteration loop. For this approach,
Eq.(57) is modified as

t+∆tus(i) = t+∆tus(i−1) + ∆us(i). (60)

2. Approach 2: BGS iteration with the N-R loop
In this approach, for every BGS iteration, several N-R iterations are evaluated until the
increment in the internal energy of the structure is lesser than the prescribed energy tol-
erance value [39]. The BGS iteration loop is terminated based on the structure relative
displacement error between the current and previous iterations [13]. We call this approach
as BGS iteration with the N-R loop. The analysis flow of this approach is illustrated on the
left side of Fig. 5 with the blue color lines and labels.

4. Numerical Example: Analysis of thin piezoelectric bimorph in converging fluid channel

A flexible restrictor flap in the converging channel is one of the FSI benchmark problems,
which was proposed by Mok and Wall [33] in order to demonstrate the computational efficien-
cies, convergence properties, stability performances, mesh sensitivities, and the coupling be-
tween fluid and structure using partitioned finite element algorithm. Several authors in Refs.
[31, 33, 41–44] have studied this numerical example to validate their FSI algorithm. Ishihara
and Horie in Ref.[31] had analyzed the same problem to discuss the convergence properties,
computational efficiency, and stability performances of the projection method. Their results are
close to the solutions from the literature (Mok et al. [33] and Neumann et al. [41]). In the above
mentioned studies, the flexible structure is shown in Fig. 6 is made of a rubber material with
the material density ρs = 1500 kg/m3, Young’s modulus Es = 2.3MPa, and a Poisson’s ratio
υs = 0.45. The fluid is silicone oil. The mass density and the viscosity of silicone oil used in
the analysis are ρf = 956 kg/m3 and µf = 0.145kg/(m.s). The inflow velocity of the fluid has
a parabolic shape. The fluid velocity at the top vin varies as Vmax

2 (1 − cosπt10 ) until 10 sec and
Vmax after 10 sec. The value of Vmax is 0.06067 m/s and f = 0.05Hz.

4.1. Numerical setup
In the present study, a piezoelectric bimorph is used instead of a rubber. Two separate piezo-

electric materials are studies. One is Polyvinylidene fluoride (PVDF), and the other one is lead
zirconate titanate (PZT). The mechanical and electric properties of these piezoelectric materi-
als that are used in the analysis are given in Table 1. As shown in Table 1, the piezoelectric
stress constants, piezoelectric strain constants, and electromechanical coupling factor of PZT-5H
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Fig. 6. A flexible restrictor flap in converging fluid channel

material is very high compared to that of PVDF. The reason why these two piezoelectric mate-
rials are used is that they have different mechanical, electrical and electromechanical properties.
The piezoelectric ceramic PZT-5H has a very strong direct and inverse piezoelectric coupling
effect than that of the piezoelectric polymer PVDF. Four test cases involving different loading
conditions and electric configurations are investigated.

1. In case 1, the actuator setup is used for the piezoelectric bimorph configuration with a se-
ries connection wherein a uniform potential is applied onto the top surface of the bimorph
while the bottom surface being earthed as shown in Fig. 7(a) and the piezoelectric layers
are polarized opposite to each other in the thickness direction. The bimorph is subjected
to an applied AC voltage Vφ = Vφ0

sinωφt.

2. In case 2, pure FSI analysis is performed for the structural properties of a PVDF and
PZT-5H with the sinusoidal external mechanical force, which is equivalent to the induced
electric force in the actuator problem also known as blocking force [45] is applied to the
tip of the flap as shown in Fig. 7(b). The blocking force for the applied electric field E3

can be obtained as [45],

Fext0 =
3wt2Es

8L
d31E3, (61)

where w is the width of the piezoelectric bimorph, t = 2tp is the thickness of the bi-
morph, tp is the thickness of each piezoelectric layer, Es is the Young’s modulus of the
piezoelectric bimorph, L is the length of the bimorph, and d31 is the piezoelectric strain
constant. If the piezoelectric layers are connected in series, then the applied electric field
in the thickness direction across the piezoelectric layers is E3 = Vφ0/2tp. In this prob-
lem setup, the piezoelectric field is not considered, instead only pure FSI analysis with
external mechanical forces at the tip of the shell structure along with the fluid boundary
condition is imposed. This blocking force is applied sinusoidally as Fext = Fext0sinωt.
The amplitude of the external force Fext0 corresponding to Vφ0 = 100 V for PVDF and
PZT-5H bimorph configurations with series connection calculated using the relation given
in Eq.(61) are 6.90×10−4 N and 0.0786N, respectively.

3. In case 3, closed or short circuit sensor setup is used for a piezoelectric bimorph where the
top and bottom surfaces of the bimorph are set to zero electric potential and a transverse
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mechanical force which is equivalent to the induced electric force in the actuator setup is
applied to the free end of the shell structure made of the piezoelectric material as shown in
Fig. 7(c). The piezoelectric layers are polarized in opposite to each other in the thickness
direction. The external force used here is the same as that used in case 2, and it is known
as the blocking force [45].

4. In case 4, open circuit sensor setup is used for a piezoelectric bimorph where the top and
bottom surfaces of the bimorph are in an open circuit condition and a transverse mechani-
cal force which is equivalent to the induced electric force in the actuator setup is applied to
the free end of the shell structure made of the piezoelectric material as shown in Fig. 7(d).
The piezoelectric layers are polarized in opposite to each other in the thickness direction.
The external force used here is the same as that used in case 2 and case 3.

For all these cases, the inlet fluid velocity boundary condition in the converging channel follows
the setup shown in Fig. 6. The fluid domain of the channel is modeled using P1P1 elements
[34] (12,012 nodes and 33,600 elements) shown in Fig. 8(a), the structural mesh of the piezo-
electric cantilever beam is modeled using shell elements [46] (42 nodes and 20 elements) shown
in Fig. 8(b), and the electrical field is modeled using 3D solid elements (20 node hexahedron
element) shown in Fig. 8(c) consists of 683 nodes and 80 elements. Both the fluid and structural
meshes have single division along the z-direction as shown in Fig. 8(a) and (b), while the electri-
cal mesh has 4 divisions along x-direction as shown in Fig. 8(c). Note that the z dimension of the
fluid domain also has 0.02m and the boundary conditions are imposed such that the phenomena
are restricted in the xy planes.

Fig. 7. Thin piezoelectric bimorph in converging fluid channel
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Fig. 8. The finite element meshes: a) P1P1 elements for the fluid, b) shell for the thin structure, c) 3D solid elements for
the piezoelectric field (the graphics is enlarged in thickness x-direction for better visibility)

4.2. Results and discussions

4.2.1. Resonance frequency of piezoelectric bimorph: Theory
The theoretical solution for the resonance frequency of the bimorph cantilever beam im-

mersed in the fluids is given as [47]

ω
(n)
fld = ω(n)

vac

[
1 +

πρfw

4ρsh
Γf(m)

]−1/2

, (62)

where ρf and ρs are the density of the fluid and the structure, respectively, w and h are the width
and the thickness of the structure, m is the normalized mode numbers, Γf(m) is the hydrody-
namic function and ω(n)

vac is the nth resonant frequency in a vacuum. In general, the 1st bending
resonance frequency of the cantilever beam operating transversely in viscous liquid media is
found to shift to a lower value compared to that in the vacuum or air [48].
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Table 1: Material properties of PVDF and PZT-5H used in the numerical analysis of a piezoelectric bimorph in converging
fluid channel (the absolute permitivity ε0 = 8.854 pF/m)

PVDF[8] PZT-5H [49]
Young’s Modulus (GPa)

E11 2.0 62.0
E33 2.0 50.0

Elastic stiffness (GPa)
C11 2.62 115.0
C12 1.07 68.5
C13 1.07 68.9
C33 2.62 101.5
C44 0.775 20.3
C66 0.775 23.3

Density (kg/m3)
ρp 1800 7360

Poission’s ratio
υp 0.29 0.30

Piezoelectric stress constants (C/m2)
e31 0.046 -5.01
e33 - 24.0
e15 - 14.7

Piezoelectric strain constants (pC/N)
d31 23.0 -262
d33 - 518
d15 - 726

Absolute permitivity (×10−10 F/m)
ε11 1.06 245.9
ε33 1.06 280.6

Electromechanical coupling factor
k31 0.12 -0.386
k33 - 0.683
k15 - 0.660

4.2.2. Numerical result
At first, we present the iteration convergence properties of both the approaches for the numer-

ical setup given in Fig. 7(a) for a bias voltage Vφ0 = 100V at a frequency ωφ = 50.0 rad/s with
the fluid boundary condition which is shown in Fig. 6 and a time increment ∆t = 5.0 × 10−3s.
Fig. 9(a) shows the increment in the internal energy which is obtained by multiplying the residual
force vector and the incremental displacement vector and Fig. 9(b) shows the relative error in the
tip deflection at every nonlinear iteration i with the unified approach. To plot these graphs, the
number of nonlinear iterations is fixed to 10. As shown in Fig. 9(a), when the nonlinear iteration
reaches 4, the increment in the internal energy satisfies the preassigned energy tolerance value
etol = 1.0×10−12. However, to achieve displacement convergence condition at least 6 nonlinear
iterations are needed, as shown in Fig. 9(b). Notice that, in Fig. 9(b), for the first few time steps
until t = 1s, many nonlinear iterations are needed satisfying displacement convergence criteria.
The nonlinear iteration loop automatically exits when the displacement convergence criteria is
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satisfied.
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Fig. 9. Iteration convergence properties of Approach 1: unified BGS and N-R loops
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Fig. 10. Iteration convergence properties of Approach 2: BGS iteration with N-R loop

Fig. 10 shows the iteration convergence properties of the second approach, i.e., the BGS
iteration with the N-R loop. Here, Figs. 10(a)–10(c) show the time histories of the increment in
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the internal energy at every BGS iteration i and N-R iteration k. To plot these graphs, the number
of N-R iteration is fixed to 6 while the BGS iteration is fixed to 6. For the sake of convenience, the
convergence properties of only first three BGS iterations are shown in Figs. 10(a)–10(c). At the
first BGS iteration, four N-R iterations are required to satisfy the preassigned energy tolerance
of etol while the second BGS iteration requires three N-R iterations, and the subsequent BGS
iterations requires two N-R iterations to satisfy the tolerance condition. At each BGS iteration,
the N-R iteration convergence condition is satisfied. Figs. 10(d)–10(f) shows the time histories of
the tip displacement relative error in each N-R iteration of every BGS iteration. This conventional
approach takes many numbers of N-R iterations than unified BGS and N-R loops approach to
achieve energy tolerance and relative error in displacement at every time step.

Now, the comparison of the actual computational time of the two approaches is demonstrated.
We use the parallel computation based on the domain decomposition method [50], where the fluid
domain is decomposed into the six subdomains considering the computational load balancing.
The structure and piezoelectric domains are solved together with one of the fluid subdomains.
We use a multi-core processor, where the clock frequency of each core is 2.2GHz. Table 2 shows
the actual computing time to solve one time step with the nonlinear iterations i =1, 2, ..., 6 in the
unified approach, where the FSI and piezoelectric analyses consume about 74% and 26% of the
time respectively. From the iteration convergence results of the unified algorithm shown in Fig. 9,
at least 6 nonlinear iterations are desired to obtain a converged solution. Therefore, the desired
computing time to solve one time step with the unified approach is 2379 ms. Table 3 shows the
computing time to solve one time step with the BGS iteration with the N-R loop approach. Based
on the convergence results of the BGS iteration with the N-R loop approach shown in Fig. 10,
5 BGS iterations consisting of a total of 11 N-R iterations are required. Therefore, the desired
computing time to solve one time step with the BGS iteration with the N-R loop approach is
4348 ms as shown in Table 3. Therefore, the unified approach is computationally efficient than
the BGS iteration with the N-R loop. Hence, in the following sections, the unified approach is
used.

Table 2: Actual computing time to solve one time step with the nonlinear iterations in the unified approach or Approach
1

Nonlinear iteration Computational time [ms]
1 397
2 397
3 397
4 395
5 396
6 397
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Table 3: Actual computing time to solve one time step with the BGS and N-R iterations in Approach 2

BGS iteration N-R iteration Computing time [ms]

1

1 395
2 395
3 395
4 395

2
1 395
2 395
3 395

3 1 396
2 395

4 1 396
5 1 396

Next, the influence of time increment on the number of nonlinear iteration is shown for the
unified approach. The critical time increment is given approximately 0.4 sec from the Courant
number condition, as discussed in the previous FSI analysis for the channel with a flexible flap
made of rubber [31]. Fig. 11 shows the relationship between the time increment ∆t and the
number of nonlinear iterations to obtain a converged solution at the time t = 10 sec for the
actuator setup with the applied voltage Vφ0

= 100V at a frequency ωφ = 50.0 rad/s. As shown
in Fig. 11, in the case using ∆t = 0.050 to 0.10 sec, more than 10 nonlinear iterations are
required to obtain a converged solution. Moreover, in the case using ∆t > 0.1 sec, the iterations
failed to converge. On the other hand, the nonlinear iterations are converged in the case using
∆t < 0.005 sec. Therefore, ∆t is fixed at 0.005 sec.
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Fig. 11. Relation between the time increment ∆t vs the number of nonlinear iterations at the time t = 10 sec.
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(b) ωφ = 5.00 rad/s
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(c) ωφ = 50.50 rad/s
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Fig. 12. Tip horizontal displacement of the PVDF bimorph actuator in converging channel (with fluid bc’s Vmax
2

(1 −
cosπt

10
)) for an applied AC voltage Vφ = Vφ0sinωφt at various input voltage frequency ωφ and various bias voltage

Vφ0 analyzed using unified BGS and N-R loop approach.

Now the piezoelectric-structure-fluid interaction analysis results for the actuator setup shown
in Fig. 7(a) is presented. Since the FSI benchmark problem has no analytical solution or exper-
imental data, a reference FSI solution obtained using Ishihara and Horie [31] was taken as the
exact solution for PVDF/PZT-5H material instead of rubber in silicone oil. Piezoelectric bimorph
actuator layers are polarized opposite to each other. The time increment ∆t is fixed to 0.005 sec.
Fig. 12 shows the vibration characteristics of the tip of the bimorph actuator in response to var-
ious input AC signals with different input voltage frequencies. One can see in Fig. 12 that, the
response for input voltage Vφ0

= 0.1volt with frequencies ωφ = 2.0, 5.0, 50.50 and 90.0 rad/s,
the curve coincides with that of the reference solution [31]. This indicates that the piezoelectric
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and inverse-piezoelectric effect at Vφ0 = 0.1V is negligible. The shape of the present piezoelec-
tric field–structure–fluid interaction curve at Vφ0

= 0.1V is identical to those from the numerical
solutions of Mok et al. [33], Neumann et al. [41], and Ishihara and Horie [31]. As the input
voltage is increased, the coupling becomes significantly strong and increases the induced electric
force. Therefore, harmonic oscillations occur around the reference solution, as shown in Fig. 12
for Vφ0 = 50 and 100 volt. As shown in the enlarged view graph of Fig. 13, it is clear that the
average behavior of the obtained solution at Vφ0 = 100V coincides with the reference solution
in the quasi–state phase.

Fig. 13 shows the frequency response of the bimorph actuator (case 1) in the converging
channel for the imposed fluid velocity boundary conditions at a bias voltage Vφ0

= 100V for
various input voltage frequency ωφ. From Fig. 13, it is evident that the harmonic oscillations
for ωφ = 2.0 rad/s, 50.5 rad/s, 80.0 rad/s are about the reference FSI solution for all the input
voltage frequency. Also, the response in ωφ = 50.5 rad/s achieved the largest peak amplitude
among the different input voltage frequencies, indicating the resonance at this voltage frequency.

In general, the resonance frequency of the piezoelectric bimorph actuator is the same as the
beam resonance. To validate the frequency response of the bimorph actuator in the fluid, we
use the pure FSI setup shown in Fig. 7(b) and compare with the results obtained for the actuator
problem setup shown in Fig. 7(a). In Fig. 14(a), the blue curve shows the summary of the maxi-
mum horizontal tip displacement of PVDF bimorph actuator versus input voltage frequency for
the problem setup given in Fig. 7(a) and similarly the black curve shows the frequency response
of the elastic body with structural properties of PVDF material versus the input frequency of an
equivalent external mechanical force for the problem setup given in Fig. 7(b). As shown in the
Fig. 14, the actuator setup shows the resonance when the input voltage frequency ωφ = 50.50
rad/s, while the pure FSI setup shows the resonance when the input frequency of the equivalent
external mechanical force ω = 50.90 rad/s. Both the solution is very close to that of the theo-
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retical solution ω(1)
fld = 52.45 rad/s using Eq.(62). Fig. 14(b) shows the frequency response of

PZT-5H actuator for case 1 and case 2. The PZT-5H bimorph shows resonance when the input
voltage frequency is ωφ = 192.0 rad/s for both actuator setup and pure FSI setup. The theoretical
solution for the PZT-5H bimorph in fluid is ω(1)

fld = 198.69 rad/s using Eq.(62). Their relative
error is 3.3%. This indicates that the proposed method accurately captures the AC response of
the piezoelectric bimorph actuator in the fluid. As shown in Fig. 14, the vibration amplitude in
the actuator setup decreases a bit compared with the pure FSI case. This is because of the inverse
piezoelectric effect counterplays with the mechanical vibration, as discussed in Ref.[51]. The
vibration amplitude decrease in the PVDF bimorph actuator problem (case 1) shows similarities
with the results presented by Song et al. [51]. Also, this amplitude decrease in the actuator setup
compared with the pure FSI can be understood as the equivalent external resistance of the inverse
piezoelectric effect with optimum resistance value due to the applied electrical potentials onto
the piezoelectric bimorph layers [52, 53].

Figs. 15(a) and 15(b) show the frequency response of the PVDF and PZT-5H bimorph open
and short-circuit sensor configuration for the problem setup given in Fig. 7(c) and (d), respec-
tively. It is known that the resonance frequency of the piezoelectric bimorph beam under closed
circuit and the open circuit configuration are co-related as [51, 54]

fshort = fopen

√
1− k2

31, (63)

where k31 is the electro-mechanical coupling factor of a piezoelectric material, fshort is the res-
onance frequency of the piezoelectric bimorph in the closed or short circuit configuration, and
fopen is the resonance frequency of the open circuit configuration. The value of k31 for PVDF is
about 0.12, therefore the difference between fshort and fopen is within 1%. As k31 of PZT-5H
is about 0.4, the difference between fshort and fopen is approximately within 10%, as shown
in the studies of Zhu et al. [52]. In Fig. 15(a), the shift in the resonance frequencies in PVDF
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Fig. 15. Frequency response curve of a piezoelectric bimorph sensor configuration.

piezoelectric bimorphs in the open- and closed-circuit configuration are negligible, unlike the
case of PZT-5H based piezoelectric bimorphs of which the resonance frequency shows a notice-
able shift upon the electric configuration as shown in Fig. 15(b). Song et al. [51] demonstrated
through numerical and experimental studies that the frequency shift is negligible between open-
and closed-circuit sensor configurations for a piezoelectric bimorph made of PVDF material.
The present results follow the same trend with [51] for PVDF piezoelectric bimorph. The PZT-
5H bimorph open circuit sensor configuration shows the resonance when the equivalent force
frequency is ω = 199.0 rad/s, while the short circuit configuration shows the resonance at the
input frequency ω = 186.0 rad/s. The difference between open- and closed-circuit resonance fre-
quency is 6.6%, thus justifying the relation given in Eq.(63) for PZT-5H material. The simulation
results in [53] also show a 5% difference between the open- and closed-circuit configurations for
the piezoelectric bimorph based on PZT-5H material. Therefore, the simulated results using the
proposed algorithm follow the same trends upon the shift in the resonance. The method accu-
rately take into account the AC response of a thin piezoelectric bimorph upon the material type
and electrical configuration.

5. Conclusions

A hierarchically decomposed finite element method is proposed for modeling the triply cou-
pled piezoelectric-structure-fluid interaction of a piezoelectric bimorph made of PVDF and PZT-
5H materials in the viscous fluid media. In the proposed method, the piezoelectric-structure-fluid
interaction system is hierarchically decomposed as follows: The triply coupled system is parti-
tioned into subsystems of piezoelectric field and fluid-structure interaction, then the piezoelec-
tric field and the fluid-structure interaction are strongly coupled using the block Gauss-Seidel
method. The fluid-structure interaction subsystem is further decomposed using the projection
method, i.e., the FSI is split into the fluid-structure velocity field and the pressure field using an
algebraic splitting, and then the structure-fluid velocity field is again partitioned into the struc-
ture velocity field and the fluid velocity field using the explicit time integration for the fluid
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interior DOFs. Two approaches are presented for the management of the block Gauss–Seidel
and Newton-Raphson iteration loops and they are studied for the purpose of computational ef-
ficiency. In the first approach, the nonlinear N-R loop is placed inside the BGS iteration loop.
In this approach, in every BGS iteration, several N-R iterations are executed until the energy
tolerance criteria is satisfied. On the other hand, in the second approach, the BGS and N-R loops
are unified into a single loop.

The proposed method takes into account the triply coupled interaction phenomena. As a
fundamental validation, when the bimorph actuator is excited at very low bias voltage in the
fluid channel with the inlet fluid velocity, the horizontal tip displacement of the bimorph actuator
coincides with the reference FSI solutions. At higher bias voltages, harmonic oscillation appears
about the reference solution, indicates a strong inverse piezoelectric coupling in the fluid. The
unified BGS and N-R loops are efficient than the conventional BGS iteration with the N-R loop
since the later requires more number of iterations to satisfy the convergence conditions. However,
both approaches show the same level of solution accuracy.

In the actuator mode, the resonance frequency of a thin flexible piezoelectric bimorph in
the fluid agrees well with the theoretical solutions. Also, in the sensor mode, the shift in the
resonance frequency upon the electric boundary conditions is matched well with the theoretical
approximations. It is shown that the resonance frequency difference between the open- and
closed-circuit sensor electric configurations in PVDF piezoelectric bimorphs has a negligible
shift. However, a noticeably shift upon the electric boundary conditions can be seen in PZT5H
piezoelectric bimorphs. The simulated frequency responses and vibration amplitudes of the thin
flexible piezoelectric bimorphs analyzed using the proposed method shows a good agreement
with the previous studies.
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