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We report the inelastic X-ray scattering (IXS) experimental results of iridium oxide

Ca5Ir3O12 with a strong spin-orbit interaction, showing the hidden order at 105 K

where no superlattice reflections were observed so far. We measured the IXS spectra of

Ca5Ir3O12 along Γ-A, Γ-M, Γ-K-M, M-L, and K-H directions in the Brillouin zone of a

hexagonal lattice down to 20 K. The obtained phonon spectra show almost no change on

cooling; there are no soft phonon modes. However, the superlattice reflections specified

by wavevector q=(1/3, 1/3, 1/3) are observed below 105 K. For the order parameter

in the hidden order, the characteristic on intensity for observed superlattice reflections

can lead to the irreducible representation A2 order parameter in the point group 31m.

Furthermore, the theoretical study indicates that the hidden order at 105 K comes from

an electric toroidal dipole or higher-order multipole ordering.

One of main topics in solid state physics is to reveal the order parameter (OP)

of phase transition. In particular, revealing new type of order parameters leads to a
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discover of new physics and a development of new functions. Some spin-orbit-coupled

materials show a phase transition in which the OP cannot be specified, despite efforts

to elucidate the OP of the phase transition. They are called “hidden order”. In a typ-

ical “hidden order”, despite the observable fact that the specific heat shows a large

anomaly and a large entropy change exists, it is difficult to specify the OP even by

various experimental methods. Such a hidden phase transition is expected to be seen

when the order parameters are the higher order moments (so-called multipole) than the

dipole, and its conjugate external field response is not available and cannot be directly

detected.1,2) A typical example is the phase transition at 17.5 K in URu2Si2, which has

been elucidated since the discovery of the phase transition in 1987, but no conclusion

has been reached yet.1,2) Recently, for hidden order candidates, phase transitions due

to electric toroidal (ET) multipole have been theoretically proposed for some materi-

als such as Cd2Re2O7, CeCoSi, PrIr2Zn20, PrRh2Zn20 and PrV2Al20.
3–7) These phase

transitions are phase transitions that break the spatial inversion symmetry in the low

temperature phase, and it is possible to specify the OP by the response caused by the

phase transition, the new cross-correlation response, and the non-reciprocal response.

In this paper, we report the discovery of a new ET ordering candidate Ca5Ir3O12.

Ca5Ir3O12 has been actively studied as a quasi-one-dimensional spin-orbit coupled ma-

terial. The crystal structure is a non-centrosymmetric hexagonal structure with a space

group of P62m,8,9) and the primitive lattice includes three one-dimensional (1D) chains

of the edge-sharing IrO6; the three 1D rods form triangular lattices. Three Ir sites are

equivalent in this primitive lattice; the averaged valence of Ir ions is +4.67. Ca5Ir3O12

exhibits semi-conductivity and has two phase transitions while changing the temper-

ature.8) Lower one is an antiferromagnetic ordering below 7.8 K,8,10,11) and the other

is a second-order phase transition at Ts = 105 K, where the specific heat clearly indi-

cates an anomaly, and the electrical resistivity shows a sharp upward bend at Ts.
8,10,12)

Presently, the origin of the phase transition at Ts is not clear, because the structural and

magnetic transitions for the powder samples have not been confirmed via XRD, neutron

scattering, and µSR experiments;8,11) the phase transition at Ts is “hidden order”.

Our motivation is to clarify the origin of phase transition at Ts. These powder

diffraction experiments may not have been able to detect the structural change due to

this hidden order because the change of structure is very small. Furthermore, as the

crystal structure of Ca5Ir3O12 does not have spatial inversion symmetry, the above-

mentioned responses caused by a phase transition that breaks the spatial inversion
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symmetry might not be used to detect the phase transition of Ca5Ir3O12; this is a more

hidden order. The origin of the second-order phase transition at Ts is unlikely to be

a simple structural phase transition, and there is a possibility of a phase transition

due to the degree of freedom of the electron system. Recently, we performed Raman

scattering measurement to understand the phase transition at Ts.
13) Since the Raman

spectra clearly change below Ts, the symmetry of crystal structure changes in the phase

transition at Ts. The observed energy range and polarization dependence of the spectral

change indicate that oxygens in c-plane are involved in the phase transition at Ts.

However, in Raman spectroscopy, only Raman active mode at q = 0 is observable, it

is difficult to specify the structural phase transition. Therefore, the IXS measurement

would be effective in the search for specific superlattice instability, because it can be

accessible to the details of q ̸= 0 modes.

The IXS measurements were carried out at BL35XU of SPring-8 using ∼1.5 meV

resolution at 21.7 keV corresponding to Si (11 11 11) reflection.14) The sample used in

this experiment was the same as one used in Ref. 15, which was grown by the CaCl2 flux

methods. The momentum resolution is (0.04 0.10 0.046) [r.l.u.]. The sample was cooled

using a He closed-cycle cryostat mounted within the Huber 512.1 Eulerian cradle.16) To

compensate for the offset of the energy transfer, the Stokes and anti-Stokes components

were measured.

Before reporting the new results, we will summarize the results of IXS at room

temperature (RT). IXS spectra of Ca5Ir3O12 were measured along Γ-A, Γ-M, and Γ-K-M

directions in the Brillouin zone of a hexagonal lattice at RT.15) The phonon dispersions

obtained below 40 meV are in a good agreement with the results of calculation by

generalized gradient approximation with spin-orbit interaction (SO-GGA) for 1× 1× 3

supercell. The optical modes related to the Ir and Ca ions are observed near 10-20 and

20-40 meV, respectively. In the experimental results, there is no sign of softening at the

A, K, and M points at RT.

The IXS spectra of Ca5Ir3O12 along the some high symmetry q-paths (Γ-K-M, Γ-

M, K-H, and M-L) are shown in Figs. 1(b)-(e), and the exact measured q values are

shown in Fig. 1(a). In each of Figs. 1(b)-(e), the temperature dependence of the spectra

at four different q values is depicted. The data of the spectra along the Γ-K-M and

Γ-M at RT are from Ref. 15. As shown in Figs. 1(b)-(e), the observed spectra do

not show any temperature dependence except for the contribution of the Bose factor

to the phonon peak intensities. The phonon peak positions at any q values hardly
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Fig. 1. (Color online) (a) Brillouin zone of Ca5Ir3O12 (thin lines) and high symmetry q-path (thick

line). Circles represent exact measured q in (b)-(e). (b)-(e) q-dependence of IXS spectra, obtained

for Q ∼ (q, 6+q, 0) (b), (0, 8+q, 0) (c), (0.33, 7.33, q) (d), and (0.50, 6.50, q) (e). IXS spectra are

color-coded by temperature.

depend on the temperature within the experimental error, indicating that there is no

soft phonon mode. In contrast, the elastic peak intensity at q = (0.33, 0.33, 0.33)

(Fig. 1(d)) changes more rapidly with temperature than that at other q values, as

shown in Fig. 2. In particular, the peak intensity at q = (0.33, 0.33, 0.33) increases

below 100 K, which is very close to Ts = 105 K. Below Ts, a superlattice structure is
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Fig. 2. (Color online) Temperature dependence of the elastic peak intensities in Figs. 1(b)-(e) of the

some high symmetry q-points (K, M, H, and L) and q = (0.33, 0.33, 0.33).

expected, where the elastic peak intensity increases with decreasing temperature. The

temperature dependence of the ϕ-scan profile at Q =(0.33, 7.33, 0.33) is shown in Fig.

3(a), where φ-scan is the scan whose rotational axis is parallel to the axis from the

measuring sample to the cold head of the cryostat mounted on the Eulerian Cradle of

the IXS spectrometer at BL35XU. A continuous increase of the superlattice peak below

100 K is confirmed. Therefore, this result indicates the existence of a
√
3a×

√
3a× 3c

superlattice. Fig. 3(b) shows the temperature dependence of the integrated intensity of

the superlattice reflection at Q = (0.33, 7.33, 0.33) as shown in Fig. 3(a).

To investigate the details of this superlattice reflection, the ϕ-scan was employed.

Thanks to the analyzer optics installed at BL35XU for the IXS measurements, the

superlattice reflections were observed without background intensities. Figure 4(a) shows

the ϕ-scan profile at 20 K at Q0n0 ∼ (0, n, 0) + (0.33, 0.33, 0.33) (n = 6, 7, 8, 9, 10,

and 11) and Qnn0 ∼ (n, n, 0) + (0.33, 0.33, 0.33) (n = 3, 4, 5, and 6) . There is clearly

a superlattice reflection at Q0n0, while the reflections at Qnn0 is much weaker.

The absence of the super-lattice reflections atQnn0 leads to a restriction to the space

group below Ts. Its crystal momentum is q = (1/3, 1/3, 1/3). The symmetry group of

q is the point group 31m. The OP can be classified by the irreducible representations

of the point group 31m, i.e. A1, A2, and E. If we describe the amplitude of the OP

by u, then the intensity of the super-lattice reflections are usually proportional to u2.

However, if the OP belongs to A2, we can derive that the intensity at Qnn0 is not
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Fig. 3. (Color online) (a) Temperature dependence of ϕ-scan profile at Q = (0.33, 7.33, 0.33). (b)

Temperature dependence of the integrated intensity of the superlattice reflection at Q = (0.33, 7.33,

0.33).

proportional to u2, but to u4 (see Supplement A17)). This means that the intensity at

Qnn0 is much weak with respect to the intensity at Q0n0, whose intensity is proportional

to u2. Therefore, the above-mentioned discussion of intensity by A2 OP can explain

successfully the present observation shown in Fig. 4. If we think about A1 and E OPs,

then there is no such different intensity. Therefore, the present result suggests that the

OP belongs to the irreducible representation A2.

We discuss the crystal structure below Ts caused by the A2 OP. The phonon modes

at q = (1/3, 1/3, 1/3) are classified as 12A1+8A2+20E by the point group 31m. Since

all atoms are involved in those eight A2 modes, it is difficult to restrict what structure

is derived from the A2 OP. The recent study of Raman scattering experiment13) has

discussed the structure below Ts. It suggests the displacement of the O(1) atoms in

the c plane. According to this suggestion, we will describe the structural change by the

displacement of the O(1) atoms. The displacements of the other atoms are described in

Supplement B.18) According to the Landau theory, we can obtain three structures with

R3, P 6̄, or P312 space groups from the A2 OP (see Supplement C in detail19)). The

structure discussed below is an example, and the actual structure will be determined

by future diffraction experiments. All discussions are based on the symmetry of the

irreducible representation A2 and do not depend on the structural details.

We discuss two perspectives on the structure below Ts. One is that the Raman
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Fig. 4. (Color online) The ϕ-scan profile at 20 K (a) at Q0n0 ∼ (0, n, 0) + (0.33, 0.33, 0.33) (n=6,

7, 8, 9, 10, and 11) and (b) at Qnn0 ∼ (n, n, 0) + (0.33, 0.33, 0.33) (n=3, 4, 5, and 6). The origin of

φ is defined by the center of reflection peak.

scattering experiment did not show a 6̄ symmetry breaking.13) This suggests a P 6̄

structure. However, Raman scattering could not detect a super-lattice structure along

the c-axis direction. Similarly, this would not be conclusive evidence of P 6̄, as it may not

have detected mz symmetry breaking. Another point of view is that the IrO6 chain will

remain one type after the phase transition. If there are multiple types of IrO6 chains, the

IrO6 chains themselves will move, which will result in the large displacement of Ir and

the superlattice reflection will be easily observed. However, the superlattice reflection

intensity is small, so it is natural that the IrO6 chain remains one type. In Raman

scattering result,13) the vibrational mode of the IrO6 chain is observed as A′
1(1), but no

anomaly is observed in both width and energy, and no new peak is observed near this

energy. From the result, it is expected that the IrO6 chain remains one type. There are

three types of IrO6 chains in P 6̄ and P312, while one type in R3. Therefore, considering

the type of IrO6 chain, the R3 structure is plausible.

We introduce an example of the R3 structure, which is shown in Fig. 5. The other

possible structures are discussed in Supplement C.19) The size of its unit cell is
√
3a×

√
3a × 3c in the hexagonal coordinate, and three primitive cells are included in the

hexagonal unit cell. In the hexagonal unit cell, there are nine IrO6-chains. If we think

a bundle of three chains, which exchange each other by a 3-fold axis, there are three
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bundles. The displacement of O(1) atoms is described by a rotation around the 3-fold

axis in one bundle. In Fig. 5, the displacements of the rotation are 0, −1, and +1 in

the three bundles. The structure is also tripled along the c-axis. Proceeding in the c-

axis, the displacement of the rotation appears in the order of 0, −1, and +1. These

displacements satisfies the translational symmetries of the rhombohedral lattice. The

three bundles are identical according to the translational symmetries, and three chains

in each bundle are identical according to the 3-fold axis. Therefore, there is one type of

IrO6 chain in this R3 structure.

Now, we consider a possibility of a valence order transition. The average valence

of Ir is +4.67. Then, there is the possibility that a valence order of +5, +5, and +4

will happen. In such valence order, the OP is a valence fluctuation of Ir ions. The

irreducible representations of such fluctuation are A1 + E in the point group 31m at

q = (1/3, 1/3, 1/3). Since they do not include A2, the observed order parameter will not

be valence fluctuation such as charge order and conventional CDW; no CDW soft mode

is also observed. Under the order by A2, a valence order belonging to A1 is possible.

However, this is not the OP, but induced by the A2 OP.

The observed super-lattice reflections will be explained by the structural change be-

longing to the irreducible representation A2. This means the transition is a structural

transition. Therefore, we expect a soft mode to derive the structural transition. How-

ever, in the present experiments, we did not find any soft mode at q = (1/3, 1/3, 1/3).

The lack of a soft mode suggests that the transition is an order-disorder type structural

transition. In this case, some local distortions exist above Ts. The transition occurs at Ts

by a long-range order of such local distortions. An evidence of a local distortion is that

the resistivity is semi-conductive above Ts. This means that charges are trapped locally

by some local distortion above Ts. Another evidence has been reported by Raman exper-

iment.13) That is observed by a broad additional peak above Ts. These local distortions

will be fluctuate in time and in space. They will be observed as a diffuse scattering by

a diffraction experiment. The diffuse scattering is observed as a broad signal around

Q0n0 above Ts, and becomes sharp near Ts. Then, it is a Bragg peak below Ts. In this

case, a soft mode does not necessarily have to be observed. This diffuse scattering will

be verified by a X-ray diffraction experiment using a single crystal, which is a future

subject.

The above data imply that the OP at Ts corresponds to the A2 mode, where space

group changes from P 6̄2m (#189) to P 6̄ (#174) when supposing the 6̄ symmetry or
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Fig. 5. (Color online) An example superlattice structure by the A2 OP. We show only IrO6 octa-

hedron with displacements of O(1) atoms; the displacement is indicated by a length-enhanced arrow.

The size of its unit cell is
√
3a×

√
3a× 3c; the broken line shows the size of unit cell in P 6̄2m (#189).

(a) The 1st layer from z = 0.0 to 0.33; this is labelled by A. This is the same as the 3rd layer from

z = 0.67 to 1.0. (b) The 2nd layer from z = 0.33 to 0.67; this is labelled by B. (c) The 3rd layer from

z = 0.67 to 1.0; this labelled by C. This superlattice structure is formed by stacking ABC along c-axis.

The sign shown on IrO6 octahedron corresponds to the sign of the z component of the ET dipole. The

“0” shown on IrO6 means that the displacements of the two O(1) atoms are in opposite directions,

and z component of the ET dipole is cancelled.

to R3 (#146) without 6̄. The origin of this phase transition might be attributed to the

activation of the ET dipole or higher-order multipoles belonging to the same irreducible

representation.20) In fact, the displacements of the O(1) atoms give a nonzero ET dipole
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moment ri × δi around the Ir ions along the z direction, where ri is the position vector

and δi is the displacement vector from the positions at the ith Ir ion in the higher-

temperature phase, when setting each Ir ion as the origin.13) In other words, each Ir ion

is affected by an axial vector field along the z axis that arises from the ET dipole.21,22)

From the development of the reflection at (1/3, 1/3, 1/3), the alignments of the ET

dipole along the z axis are the up-down-zero structure and three-sublattice trimers in

the c plane are also aligned in the up-down-zero structures in the case of R3, as shown

in Fig. 5. Thus, the phase transition at Ts is regarded as the density waves of the ET

dipole degree of freedom.

Microscopically, such an axial field at each Ir ion can induce an effective spin-orbit

entanglement in the expression of li × si , where li and si are the atomic orbital-angular

and spin-angular momenta, respectively, which has the same symmetry as the above

axial ET dipole.23,24) Such a peculiar spin-orbit coupling can become active as local

atomic or bond degrees of freedom. The investigation to clarify which electronic degrees

of freedom play an important role will be left for future theoretical study.

The ET dipole gives rise to intriguing responses to external stimuli. For example,

the thermoelectric power tensor (Seebeck effect), where the electric field Eµ is induced

by a thermal gradient ∇νT as Eµ = βµν∇νT (µ, ν = x, y, z) would be a good probe

for the ET dipole. As βµν is the rank-2 polar tensor of time-reversal even, the rank-1

ET dipole contributes to the tensor in the form of βxy = −βyx. Furthermore, the ET

dipole would also be detected though the measurements for other physical phenomena,

such as the Nernst effect, spin-current generation, and the magnetic resistance, which

includes the contribution from the ET dipole.

In this letter, we report the IXS spectra of Ca5Ir3O12 down to 20 K from RT, in order

to reveal the OP of hidden order at Ts = 105 K. The superlattice reflections specified

by wavevector q=(1/3, 1/3, 1/3) are observed below Ts although the obtained phonon

spectra are not changed on cooling; this is a first observation superlattice reflections

in this hidden order. From the consideration of intensity for the candidate structural

symmetry at low temperature phase, the OP in the hidden order belongs to the irre-

ducible representation A2. The theoretical study indicates that this hidden order at 105

K comes from an ET dipole or higher-order multipole ordering.
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Supplement A. Scattering factor of X-ray diffrac-
tion for the A2 modes.

We consider the following scattering factor of X-ray diffraction.

F (Q) =
∑
i,a

fi(Q)e2πiQ·(ria+uia) (1)

=
∑
i,a

fi(Q)e2πiQ·ria
(
1 + 2πi(Q · uia)− 2π2(Q · uia)

2 + . . .
)

(2)

= F (0)(Q) + F (1)(Q) + F (2)(Q) + . . . . (3)

where, a is an index of a unit cell, i is an index of an atom in the a-th unit
cell, fi(Q) is the atomic form factor of the i-th atom, ria is the position of the
(ia)-th atom in the P 6̄2m structure above Ts, and uia is the displacement of
the (ia)-th atom below Ts. F (n)(Q) is the summation of the n-th power terms
of uia. F

(0)(Q) ̸= 0, if Q is a reciprocal lattice vector G. Since uia has a factor
exp (2πiq · ria), F (1)(Q) ̸= 0, when Q + q = G. Similarly, F (2)(Q) ̸= 0, if
Q+ q1 + q2 = G, where q1 and q2 are wavevectors of the uia.

The X-ray diffraction intensity is proportional to |F (Q)|2. If we think
Qnn0 = (n + 1/3, n + 1/3, 1/3), then, F (0)(Qnn0) = 0, F (1)(Qnn0) ̸= 0 with
q = (2/3, 2/3, 2/3) and F (2)(Qnn0) ̸= 0 with q1 = q2 = (1/3, 1/3, 1/3). Usu-
ally, the leading term of the intensity will be |F (1)(Qnn0)|2 with u2. Now, we
show |F (1)(Qnn0)|2 = 0, if uia belongs to the A2 irreducible representation.

In the space group P 6̄2m, there is the mirror mn operation which does not
change Qnn0. The mirror plane is perpendicular to a∗ −b∗ direction, where a∗

and b∗ are the reciprocal lattice vectors. By this mn operation, F (Qnn0) does
not change, since both of (uia ·Qnn0) and (Qnn0 · ri,a) do not change.

We suppose that the (ia)-th atom moves to (jb)-th position under the mn

operation. In other words, mnria = rjb. And also mnrjb = ria. Then, we
consider the following summation.

F
(1)
1 = fi(Qnn0)(uia ·Qnn0)e

2πiQnn0·ria

+fj(Qnn0)(ujb ·Qnn0)e
2πiQnn0·rjb (4)

= f(Qnn0) {(uia ·Qnn0) + (ujb ·Qnn0)} e2πiθ, (5)

where, θ = Qnn0 · ria = Qnn0 · rjb, f(Qnn0) = fi(Qnn0) = fj(Qnn0) since i and
j are the same chemical element. Now, we think the irreducible representation
A2 of the point group 31m. The point group 31m is the symmetry group of
q = (1/3, 1/3, 1/3). From the character table of the A2, the character of mn is
−1. This means the following relation.

mnuia = −ujb. (6)

When we take inner-product of both sides with Qnn0, we derive,

mn(uia ·Qnn0) = (uia ·Qnn0) = −(ujb ·Qnn0). (7)
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If we substitute them in F
(1)
1 , we can get F

(1)
1 = 0. On the other hand, if

the (ia)-th atom locates on the mirror plane, then, mnuia = −uia. In this
case, the atomic displacement, uia, is perpendicular to the mirror. We get
(uia · Qnn0) = 0. From these results, F (1)(Qnn0) = 0, if uia belongs to A2.
F (1)(Qnn0) is the leading order term of the X-ray scattering factor with respect
to the uia. The next term F (2)(Qnn0)is a summation of (uia ·Qnn0)

2, and does
not vanish. Therefore, the intensity |F (Qnn0)|2 is proportional to u4. Since this
is higher order than other Q, the intensity is very weak, when |u| is small.

The index 1/3 is important for the conclusion of the u4 intensity. If we think
a 1/2 case, then, the wavevector of the second-order terms do not include 1/2.
Therefore, the u4 contribution to the intensity is absent, if a mirror operation
doesn’t change Q and converts uia to −uia. In such case, the space group of the
distorted structure consists of a glide plane, which guarantees the intensity is 0.
In the present case with 1/3, the intensity of Qnn0 is small, but not 0. This is
useful to discuss the symmetry of the order-parameter, when the distortion is
small. When the distortion becomes large, the intensity at Qnn0 could be the
same order as that at Q0n0.

If we think aboutQ0n0 = (1/3, n+1/3, 1/3), there is no symmetric operation
conserving Q0n0. Then, there is no reason that the intensity at Q0n0 is weak. If
we think about A1 and E, they have no symmetric operation which multiplies
uia by −1. Then, we can not expect that the intensity at Qnn0 is weak for A1

and E. Therefore, only if the order-parameter belongs to A2, the intensity at
Qnn0 becomes very weak in comparison to that at Q0n0.
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Supplement B. Atomic displacement consisting of
the first-order terms of the order-parameter

We consider atomic displacement of the distorted structure below Ts, assumed
that the order-parameter is the A2 mode at the wavevector q1. As discussed
in Supplement B [1], the realized lattice is rhombohedral or hexagonal. In the
case of the rhombohedral lattice, there are two new reciprocal lattice vectors,
q1 and q′

1. The volume is three times larger. In the case of the hexagonal
lattice, in addition to the four vectors of q1, q

′
1, q2, and q′

2, the another four
vectors, (0, 0, 1/3), (0, 0, 2/3), (1/3, 1/3, 0), and (2/3, 2/3, 0), become new recip-
rocal lattice vectors. The volume is nine times. Since (0, 0, 1/3) = q2 − q1, the
contribution from (0, 0, 1/3) is second-order of the order-parameter. Similarly,
the wavevectors, (0, 0, 2/3), (1/3, 1/3, 0), (2/3, 2/3, 0), and (0, 0, 0), are second-
order terms. Here, we think about the first-order terms with the wavevectors,
q1, q

′
1, q2, and q′

2.
In the point group 31m, the freedom of the atomic displacements are decom-

posed into 12A1 + 8A2 + 20E. Therefore, there are eight basis vectors of the
atomic displacement belonging to A2 at q1. This vectors are written as w1k,ia.
The eight vectors are distinguished by k. The position of the origin of a-th unit
cell is Ra. Then, we can write the Ra dependence as,

w1k,ia = w1k,ie
2πiq1·Ra . (1)

The basis vectors at the other three wavevectors are defined as,

w1′k,ia = w∗
1k,ie

2πiq′
1·Ra , (2)

w2k,ia = (mzw1k,i)e
2πiq2·Ra , (3)

w2′k,ia = (mzw
∗
1k,i)e

2πiq′
2·Ra , (4)

where, the mirror mz perpendicular to the c axis operates only on w1k,i. Using
these definitions, the atomic displacement uia is written as,

uia =
∑

x=1,1′,2,2′

ux

∑
k

ξk wxk,ia. (5)

The four coefficients ux determine the structural distortion. We take them as
the order-parameters. The free-energy as the function of ux is described in
Supplement C [1]. ξk determine the eigenvector of the order-parameter. If
the structural change is caused by soft-modes, the soft modes are quadruple
degenerate, and the eigenvectors of the soft-modes are

∑
k ξk wxk,ia.

The components of uia are real. This means u∗
ia = uia. To enforce this

relation, we need to satisfy u′
1 = u∗

1 and u′
2 = u∗

2. When a symmetric operator g
is applied to wxk,ia, we write the resulting vector at the ia-th atom as (gwxk)ia.
From the character table of the point group 31m, wxk,ia belonging to A2 is
converted as,

(C3wxk)ia = wxk,ia, (mywxk)ia = −wxk,ia. (6)
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In the cases of the residual symmetric operations in the space group P 6̄2m,
mz and C2x, we can obtain the following relations from eqs. (2)-(4) and from
C2x = mzmy.

(mzw1k)ia = w2k,ia, (mzw1′k)ia = w2′k,ia, (7)

(mzw2k)ia = w1k,ia, (mzw2′k)ia = w1′k,ia, (8)

(C2xw1k)ia = −w2k,ia, (C2xw1′k)ia = −w2′k,ia, (9)

(C2xw2k)ia = −w1k,ia, (C2xw2′k)ia = −w1′k,ia. (10)

From these results, we can derive,

(C3u)ia =
∑
k

ξk (u1w1k,ia + u1′w1′k,ia + u2w2k,ia + u2′w2′k,ia) , (11)

(myu)ia =
∑
k

ξk (−u1w1k,ia − u1′w1′k,ia − u2w2k,ia − u2′w2′k,ia) , (12)

(mzu)ia =
∑
k

ξk (u2w1k,ia + u2′w1′k,ia + u1w2k,ia + u1′w2′k,ia) , (13)

(C2xu)ia =
∑
k

ξk (−u2w1k,ia − u2′w1′k,ia − u1w2k,ia − u1′w2′k,ia) . (14)

From these conversion relations, the eqs. (1)-(4) in the Supplement B for the
order-parameters are obtained [1].

To describe the basis vectors w1k,ia, we define the positions of 20 atoms in
the unit cell as shown in Table 1. We summarize the eight w1k,ia in Table 2.
Figure 1(a) and (b) in Supplement B corresponds to the imaginary part and real
part of the structure of w1,4,ia in the case that ξ4 = 1 and ξk = 0, for k ̸= 4 [1].
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i atom position
1 Ca(1) (1/3,2/3,0.5)
2 Ca(1) (2/3,1/3,0.5)
3 Ca(2) (-0.2873,0,0.5)
4 Ca(2) (0,-0.2873,0.5)
5 Ca(2) (0.2873,0.2873,0.5)
6 Ir (0.3330,0,0)
7 Ir (0,0.3330,0)
8 Ir (-0.3330,-0.3330,0)
9 O(1) (0.2006,0,0.5)
10 O(1) (0,0.2006,0.5)
11 O(1) (-0.2006,-0.2006,0.5)
12 O(2) (0.4617,0,0.5)
13 O(2) (0,0.4617,0.5)
14 O(2) (-0.4617,-0.4617,0.5)
15 O(3) (0.4460,0.2407,0)
16 O(3) (-0.2407,0.2053,0)
17 O(3) (-0.2053,-0.4460,0)
18 O(3) (0.2053,-0.2407,0)
19 O(3) (0.2407,0.4460,0)
20 O(3) (-4460,-0.2053,0)

Table 1: The atomic positions of 20 atoms for the definition of wxk,ia. The
values are taken from the neutron diffraction data.[2]

k w1,k,i

1 w1,1,1 = (0, 0, 1), w1,1,2 = (0, 0,−1)
2 w1,2,3 = (1, 2, 0), w1,2,4 = (−2,−1, 0), w1,2,5 = (1,−1, 0)
3 w1,3,6 = (1, 2, 0), w1,3,7 = (−2,−1, 0), w1,3,8 = (1,−1, 0)
4 w1,4,9 = (1, 2, 0),w1,4,10 = (−2,−1, 0),w1,4,11 = (1,−1, 0)
5 w1,5,12 = (1, 2, 0),w1,5,13 = (−2,−1, 0), w1,5,14 = (1,−1, 0)

6
w1,6,15 = (1, 2, 0), w1,6,16 = (−2,−1, 0), w1,6,17 = (1,−1, 0)
w1,6,18 = (1, 2, 0), w1,6,19 = (−2,−1, 0), w1,6,20 = (1,−1, 0)

7
w1,7,15 = (1, 0, 0), w1,7,16 = (0, 1, 0), w1,7,17 = (−1,−1, 0)
w1,7,15 = (−1, 0, 0), w1,7,19 = (0,−1, 0), w1,7,20 = (1, 1, 0)

8
w1,8,15 = (0, 0, 1), w1,8,16 = (0, 0, 1), w1,8,17 = (0, 0, 1)

w1,8,18 = (0, 0,−1), w1,8,19 = (0, 0,−1), w1,8,20 = (0, 0,−1)

Table 2: The eight basis vectors wxk,ia belonging to A2 irreducible representa-
tion. These basis vectors are not normalized. The components which are not
shown are 0.
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Supplement C. Landau theory with A2 mode

We consider Landau theory, when the order-parameter belongs to A2. The stars
of q1 = (1/3, 1/3, 1/3) are q1′ = (2/3, 2/3, 2/3), q2 = (1/3, 1/3, 2/3), q2′ =
(2/3, 2/3, 1/3). We define four complex numbers to each crystal momentum
as u1, u1′ , u2, and u2′ . Since q1 = −q1′ , q2 = −q2′ , from the time-reversal
symmetry, u1′ = u∗

1, u2′ = u∗
2. Then, it is sufficient to consider two complex

numbers u1 and u2. These are converted by the symmetry operations in the
space group P 6̄2m as followings.

C3(u1, u2) = (u1, u2), (1)

my(u1, u2) = (−u1,−u2), (2)

mz(u1, u2) = (u2, u1), (3)

C2x(u1, u2) = (−u2,−u1). (4)

For the discussion below, we describe as u1 = |u1|eiθ1 , u2 = |u2|eiθ2 . The
relation between these parameters ux and atomic displacements uia is described
in Supplement C. Using these two complex numbers, we can expands the free
energy as,

F =
A(T − Ts)

2
(|u1|2 + |u2|2) +

B

4
(|u1|2 + |u2|2)2 +

C

4
|u1|2|u2|2

+
D

6
(|u1|2 + |u2|2)3 +

E

6
|u1|2|u2|2(|u1|2 + |u2|2)

+
G

6
(u6

1 + u6
2) +

G∗

6
(u6

1′ + u6
2′) +

H

6
u3
1u

3
2 +

H∗

6
u3
1′u

3
2′

+
I

6
(u3

1u
3
2′ + u3

1′u
3
2) (5)

=
A(T − Ts)

2
(|u1|2 + |u2|2) +

B

4
(|u1|2 + |u2|2)2 +

C

4
|u1|2|u2|2

+
D

6
(|u1|2 + |u2|2)3 +

E

6
|u1|2|u2|2(|u1|2 + |u2|2)

+
|G|
3

(|u1|6 cos(6θ1 + θG) + |u2|6 cos(6θ2 + θG))

+
|H|
3

|u1|3|u2|3 cos(3(θ1 + θ2) + θH)

+
I

3
|u1|3|u2|3 cos 3(θ1 − θ2). (6)

The coefficients G and H are complex number. G = |G|eiθG , and H = |H|eiθH .
This is a result of the lack of the inversion symmetry. If the inversion symmetry
exits, G and H must be real number. This system will undergo second-order
transition at T = Ts, when B > 0. Here, we think that |u1| and |u2| is small so
that the six-order terms are small with respect to the fourth-order terms. In this
conditions, we get two superlattices: rhombohedral lattice, (|u1|, |u2|) = (u, 0),
or (0, u), in the C > 0 case, and hexagonal lattice, |u1| = |u2| = u/

√
2, in the
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space group condition u1, u2

R3 C > 0 u1 = 0 or u2 = 0
P 6̄ C < 0, and I < 0 u1 = u2

P312 C < 0, and I > 0 u1 = −u2

Table 1: The three structures obtained from the Free energy, eq. 6.

C < 0 case. Both lattices have the unit cell size of
√
3a×

√
3a×3c, if we take the

hexagonal unit cell. The volume is nine times larger than the P 6̄2m structure.
For the rhombohedral lattice, the hexagonal cell includes three primitive cells.
The volume of the primitive cell is three times larger.

The sixth-order terms determine the phases, θ1 and θ2. The phase depen-
dences of the free energy is written in the rhombohedral case as,

F (θ1) =
|G|
3

u6 cos(6θ1 + θG) (7)

This takes a minimum at 6θ1 = (2n + 1)π − θG with the integer n. The phase
θ1 depends on the parameter θG. Therefore, the structural distortion shows a
sine-wave modulation like an incommensurate structure. The phase will depend
on temperature. The space group of this rhombohedral structure is R3.

In the hexagonal case, the phase dependence becomes,

F (θ1, θ2) =
|G|
24

u6(cos(6θ1 + θG) + cos(6θ2 + θG)

+
|H|
24

u6 cos(3(θ1 + θ2) + θH) +
I

24
u6 cos 3(θ1 − θ2) (8)

=
|G|
12

u6 cos(θa + θG) cos θs +
|H|
24

u6 cos(θa + θH)

+
I

24
u6 cos θs, (9)

where, θa = 3(θ1 + θ2), and θs = 3(θ1 − θ2). The θs depends on the sign of I.
For I > 0, θs = (2n + 1)π. Then, the space group becomes P312. For I < 0,
θs = 2nπ, and its space group is P 6̄. The remaining θa can be obtained from
∂F/∂θa = 0, and depends on the parameters, θG and θH . Therefore, in the
hexagonal case, both phases of θ1 and θ2 will show temperature dependence.
The obtained three structures are summarized in Table 1.

These structures depend on the phases θ1 and θ2. Therefore, a definite
structure cannot be drawn. Instead, we can describe a structure as a linear
combination of two structures. For the rhombohedral R3 structure, we define
R3:c with θ1 = 0 and R3:s with θ1 = π/2. Then, the structure can be made
schematically by (R3 : c) cos θ1 + (R3 : s) sin θ1. Similarly, we define P 6̄:c with
(θ1, θ2) = (0, 0), P6̄:s with (π/2, π/2), P312:c with (0, π), and P312:s with
(π/2, 3π/2) for the hexagonal structures. The R3:c structure has the c-type
structure in c-plane as shown in Fig. S1(b). The R3:s structure has the s-type
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structure as shown in Fig. S1(a). The stacking along the c-direction obeys the
periodicity of the Rhombohedral lattice.

In the main text, the R3:s structure is introduced as an example, and is
shown in Fig. 5. In the P 6̄:c structure, the c-type structure stacks along the
c-direction as +2, −1, and −1 displacement. In the P 6̄:s structure, the s-type
structure stacks as +2, −1, and−1. In the P312:c structure, the s-type structure
stacks as 0, +1, and −1. Finally, in the P312:s structure, the c-type structure
stacks as 0, +1, and −1.

For all cases, we can write the free energy as following.

F =
A(T − Ts)

2
u2 +

b

4
u4 +

c

6
u6. (10)

Below Ts, the order parameter can be obtained from dF/du = 0. The solution
without u = 0 is,

u2 =
−b+

√
b2 + 4A(Ts − T )c

2c
. (11)

Here, we do not describe the detailed free energy for A1 or E. In these
cases, the free energy has a third-order term, like u3, since 3q1 is a reciprocal
lattice vector and there is no operation to convert u to −u. Therefore, from the
Landau theory, the transition will be the first-order. This is inconsistent with
the experimental result, which is second-order transition. From this point of
view, the order-parameter will belong to A2.
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(a)

(b)

Figure S1: The possible structural changes by A2 order-parameter, where only
O(1) displacement is shown. (a) An s-type distortion. (b) A c-type distortion.
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