Semi-Uniform Deployment of Mobile Robots in Perfect ℓ-ary Trees

Masahiro Shibata
Graduate School of Computer Science and Systems Engineering
Kyushu Institute of Technology
Fukuoka, Japan
shibata@csn.kyutech.ac.jp

Sébastien Tixeuil
Sorbonne Université
CNRS, LIP6
Paris, France
Sebastien.Tixeuil@lip6.fr

Abstract

In this paper, we consider the problem of semiuniform deployment for mobile robots in perfect ℓ-ary trees, where every intermediate node has ℓ children, and all leaf nodes have the same depth. This problem requires robots to spread in the tree so that, for some positive integer d and some fixed integer $s(0 \leq s \leq d-1)$, each node of depth $s+d j(j \geq 0)$ is occupied by a robot. In other words, after semi-uniform deployment is achieved, nodes of depth $s, s+d, s+2 d, \ldots$ are occupied by a robot. Robots have an infinite visibility range but are opaque, that is, robot r_{i} cannot observe some robot r_{j} if there exists another robot r_{k} in the path between r_{i} and r_{j}. In addition, each robot can emit a light color visible to itself and other robots, taken from a set of κ colors, at each time step. Then, we clarify the relationship between the number of available light colors and the solvability of the semi-uniform deployment problem. First, we consider robots with the minimum number of available light colors, that is, robots with $\kappa=1$ (in this case, robots are oblivious). In this setting, we show that there is no collision-free algorithm to solve the semiuniform deployment problem with explicit termination. Next, we relax the number of available light colors, that is, we consider robots with $\kappa=2$. In this setting, we propose a collision-free algorithm that can solve the problem with explicit termination. Thus, our algorithm is optimal with respect to the number of light colors. In addition, to the best of our knowledge, this paper is the first to report research considering (a variant of) uniform deployment in graphs other than rings or grids.

Index Terms-mobile robot, semi-uniform deployment, visible lights

I. INTRODUCTION

Background. Studies for mobile robot networks have emerged recently in the field of Distributed Computing. Robots aim to achieve some tasks with limited capabilities. Most studies assume that robots are identical (they execute the same algorithm and cannot be distinguished by their appearance) and oblivious (they cannot remember their past actions). In addition, it is assumed that robots cannot communicate with other robots explicitly. Instead, the communication is done implicitly by having each robot observe the positions of others.

Since Suzuki and Yamashita presented a pioneering work [1], using the above robots, many problems have been studied in continuous environments (a.k.a. two- or threedimensional Euclidean space) [1], or in discrete environments (a.k.a. graphs) [2]. For example, the uniform deployment (or uniform scattering) problem has been studied as a fundamental problem for coordination of robots. This problem requires
robots to spread uniformly in the network. So far, the uniform deployment problem for mobile robots has been considered in rings (i.e., the discrete model) [3], cycles (i.e., the continuous model) [4], and grid networks (again, the discrete model) [5][7]. In grids, it was argued you can achieve uniform deployment faster [6] using luminous robots (uniform deployment in grids is nevertheless feasible by oblivious robots [5]). A luminous robot is equipped with a device that can emit a nonvolatile single color (from a constant number of colors) to other robots at a given time. Since the light color is nonvolatile, it can be used as a constant space memory. The notion of luminous robots was introduced by Das. et al. [8] with the initial goal to circumvent impossibility results that hold for oblivious robots. In [9], D'Emidio et al. consider the solvability of several problems for luminous robots in the graph environment, focusing on the relationship between synchronicity and light availability. Recently, Poudel and Sharma [7] improved the time complexity of uniform deployment on grids for robots without light colors (i.e., oblivious robots). A separate track of research considered the uniform deployment problem in ring networks for another mobile entity called mobile agents [10]-[12], which have persistent memory but cannot observe others' positions unless they are located on the same node. Like aforementioned works, although uniform deployment has been considered in various settings, to the best of our knowledge, it was not considered in graphs other than rings or grids.

Our Contribution. In this paper, we consider a variant of the uniform deployment problem and investigate its solvability in graphs other than rings or grids. Concretely, we consider the semi-uniform deployment (or semi-uniform scattering) problem of mobile robots in perfect ℓ-ary trees, where every intermediate node has ℓ children, and all leaf nodes have the same depth. This problem requires robots to spread in the tree so that, for some positive integer d and some fixed integer $s(0 \leq s \leq d-1)$, each node of depth $s+d j(j \geq 0)$ is occupied by a robot. An example is given in Fig. 1, where we denote by n and k the number of nodes and the number of robots, respectively. We assume that robots are semi-synchronous (SSYNC), that is, in each time step, a non-empty subset of robots are activated and they take an action synchronously and concurrently. In addition, we assume

Fig. 1. An example of the semi-uniform deployment problem ($\ell=2, n=31, k=21, d=2, s=0$).
that robots have an infinite visibility range but are opaque, that is, robot r_{i} cannot observe some robot r_{j} if there exists another robot r_{k} in the path between r_{i} and r_{j}. Moreover, each robot can emit a light color visible to itself and other robots, taken from a set of κ colors, at each time step. Then, we clarify the relationship between the number of available light colors and the solvability of the semi-uniform deployment problem. First, we consider robots with the minimum number of available light colors, that is, robots with $\kappa=1$ (in this case, robots are oblivious). In this setting, we show that there is no collision-free algorithm to solve the semi-uniform deployment problem with explicit termination. Next, we relax the number of available light colors, that is, we consider robots with $\kappa=2$. In this setting, we propose a collision-free algorithm that can solve the problem with explicit termination. Thus, our algorithm is optimal with respect to the number of light colors.

II. Model

System models. A perfect ℓ-ary tree network T is represented by a tuple $T=(V, E)$, where V is a set of nodes (vertices) and E is a set of edges. We denote by $n(=|V|)$ the number of nodes. In a perfect ℓ-ary tree, there exist three types of nodes: a root node v_{r} with degree ℓ (it has ℓ children), intermediate nodes whose degree is $\ell+1$ (it has one parent and ℓ children), and leaf nodes whose degree is 1 (it has one parent). From some node, we call the direction toward (resp., away from) the root node the up direction (resp., down direction). A subtree rooted at node v is a part of T that comprises v, and all nodes in v 's down direction. The path $P\left(v_{0}, v_{t}\right)=\left(v_{0}, v_{1}, \ldots, v_{t}\right)$ with length t is a sequence of nodes from v_{0} to v_{t} such that $\left\{v_{i}, v_{i+1}\right\} \in E(0 \leq i<t)$ and $v_{i} \neq v_{j}$ if $i \neq j$. Notice that $P(u, v)$ is unique in a tree for any $u, v \in V$. The distance from u to v is the length of the path from u to v, and denoted by $\operatorname{dis}(u, v)$. The depth of node v is defined as the distance $\operatorname{dis}\left(v_{r}, v\right)$ from the root node v_{r} to v. Notice that the depth of the root node v_{r} is 0 . The level of tree T is defined as the maximum depth among leaf nodes. In a perfect ℓ-ary tree, all leaf nodes have the same depth, and hence when the level of the tree is h, the number n of nodes in the tree is $n=\sum_{i=0}^{h} \ell^{i}$. Let d_{v} be the degree of node v. We assume that nodes have no distinct IDs (i.e., they are anonymous), but each edge e incident to v is uniquely
labeled at v with a label from the set $\left\{1,2 \ldots, d_{v}\right\}$. We call this label port number. Since each edge connects two nodes, it has two port numbers. Port labelings are common to robots, but they are local, that is, there is no coherence between the two port numbers in the edge connecting two nodes.

We consider a set of k robots with the following characteristics and capabilities. Robots are identical, that is, robots execute the same algorithm. Robots are luminous, that is, each robot has a device that can emit a light color (or state) visible to itself and other robots. A robot can choose the color of its light from a discrete set Col. When the set Col is finite, we denote by κ the number of available colors (i.e., $\kappa=|\operatorname{Col}|$). Notice that, when $\kappa=1$, robots are equivalent to oblivious robots. Robots have knowledge of k and n, and have a common sense of direction, that is, each robot r knows the direction toward the root node v_{r} for each node observable by r. Robots have no other persistent memory and cannot remember the history of past actions. Robots cannot communicate with other robots explicitly, but they can communicate implicitly by observing positions and light colors of other robots (for collecting information), and by changing their light colors and moving (for sending information). In addition, we assume that robots have an infinite visibility range but are opaque, that is, robot r_{i} cannot observe some robot r_{j} if there exists another robot r_{k} in the path from r_{i} to r_{j}. An example is given in Fig. 2. Numbers at each edge endpoint represent port numbers. In the figure, robot r_{i} cannot observe r_{h} because another robot r_{j} exists in the path from r_{i} and r_{h}. Robot r_{i} can observe the area of solid nodes, edges, and robots, and port numbers within the area, but it cannot observe the dotted area. We call the observable area of r_{i} the view of r_{i}.

Each robot executes an algorithm by repeating three-phases cycles: Look, Compute, and Move (LCM). During the Look phase, the robot observes positions and light colors of robots within its view. During the Compute phase, the robot computes its next light color and movement according to the observation in the Look phase. The robot may change its light color at the end of the Compute phase. If the robot decides to move, it moves to an adjacent node during the Move phase. In this paper, we assume that robots are semi-synchronous (SSYNC), that is, in each cycle, a scheduler activates a non-empty subset of robots and the activated robots execute an LCM cycle synchronously and concurrently. We assume that the scheduler

Fig. 2. An example of a view by robot r_{i}.
is fair, that is, each robot is activated infinitely often. We consider the scheduler as an adversary. That is, we assume that the scheduler is omniscient (it knows robot positions, colors, algorithms, etc.), and tries to activate robots in such a way that they fail to execute the task.

A configuration \mathcal{C} of the system is defined by the position and light color of all robots. In initial configuration C_{0}, all robots emit the same light color (or they are in the same state) and placed at distinct nodes (however, their placement is decided by the adversary). We call a node hosting a robot (resp., not hosting a robot) a robot node (resp., an empty node). For an infinite sequence of configurations $E=C_{0}, C_{1}, \ldots, C_{t}, \ldots$, we say E is a fair execution from initial configuration C_{0} if, for every instant t, C_{t+1} is obtained from C_{t} after a fair scheduler activates a non-empty subset of robots and they execute an LCM cycle. We say C_{i} is the i-th configuration of execution E. In addition, during the execution of the algorithm, a collision is not allowed. Here, a collision represents a situation such that two robots traverse the same edge from different directions or several robots exist at the same node. Concretely, the following three behaviors are not allowed: (a) some robot r_{i} (resp., r_{j}) staying at node v_{p} (resp., v_{q}) moves to v_{q} (resp., v_{p}), (b) some robot r_{i} staying at node v_{p} remains at v_{p} and robot r_{j} staying at node v_{q} moves to v_{p}, and (c) several robots move to the same empty node. The rationale for avoiding collisions is to prevent two robots from occupying the same node. Otherwise, it leads to a situation such that a deterministic algorithm cannot recover from (assuming the adversary always simultaneously activates all robots at a given node, the system would behave as a system with strictly less robots, and hence robots cannot solve the semi-uniform deployment problem).

The problem to be solved. We assume that there exist $k=\sum_{j=0}^{1+\lfloor(h-s) / d\rfloor} \ell^{s+d j}$ robots that occupy distinct nodes in a perfect ℓ-ary tree of level h for some integers d and $s(2 \leq d \leq\lfloor h / 2\rfloor, 0 \leq s \leq d-1)$. Then, the semi-uniform deployment problem in a perfect ℓ-ary tree of level h requires that each node of depth $s+d j(0 \leq j \leq 1+\lfloor(h-s) / d\rfloor)$ is occupied by a robot like Fig. 1. After the deployment, the distance from some robot r to any of adjacent up (or down) robot r^{\prime} is d. Here, we say that robot r^{\prime} is the adjacent up (or down) robot of r when r^{\prime} exists in r 's up (or down) direction, and no robot exists in the path $P\left(r, r^{\prime}\right)$. We define the problem
is as follows.
Definition 1. We assume that there exist $k=$ $\sum_{j=0}^{1+\lfloor(h-s) / d\rfloor} \ell^{s+d j}$ robots that occupy in a perfect ℓ-ary tree of level h for some integers d and s $(2 \leq d \leq\lfloor h / 2\rfloor, 0 \leq s \leq d-1)$. Then, an explicitly terminating algorithm solves the semi-uniform deployment problem in a perfect ℓ-ary tree if and only if (i) each robot eventually enters a state in which it does not move nor change its state, whatever it observes, and (ii) after all robots terminate algorithm execution, every node of depth $s+d j(0 \leq j \leq 1+\lfloor(h-j) / d\rfloor)$ is occupied by one robot.

III. Impossibility result

In this section, we show that, when $\kappa=1$, deterministic terminating semi-uniform deployment is not achievable.

Theorem 1. When $\kappa=1$, deterministic robots cannot solve the semi-uniform deployment problem with explicit termination.

Proof. Let us consider the configuration like Fig. 3(a). Note that this configuration is an allowed initial configuration as all robots occupy distinct nodes. In this configuration, in order to achieve semi-uniform deployment, robot r_{i} must move and visit node v_{t} (the tree rooted at v_{t} requires one more robot, and collisions -hence bypassing- are forbidden). However, r_{i} cannot distinguish the configuration of Fig. 3(a) from a semiuniform deployment-achieved configuration like Fig. 3(b) due to opacity (its view is the same in both situations). Obviously, in the second situation, r_{i} has no other choice but to terminate, as no robot as a reason to move. If r_{i} moves to v_{t} in configuration like Fig. 3(b), explicit termination is never achieved. If r_{i} explicitly terminates in configuration like Fig. 3(a), semiuniform deployment is never achieved. Therefore, the theorem follows.

IV. Proposed algorithm

In this section, we propose an explicitly terminating and collision-free deterministic algorithm to solve the semiuniform deployment problem for the case of $\kappa=2$. By Theorem 1, this algorithm is optimal with respect to the number of light colors. In the initial configuration, each robot emits the same light color, say M, and robots are placed at distinct nodes by an adversary. Each robot uses two kinds of light colors: M (Moving) or T (Terminated). Each robot with light color T means that it terminated the algorithm execution and is staying at its destination node (i.e., the robot never leaves its current node anymore). Hence, in the following we explain the behavior of robots with light color M .

Each robot r_{i} with light color M first looks for a landmark of semi-uniform deployment, such as a leaf node of the tree or a robot with light color T. Since robots are opaque but have an infinite visibility range, at least one robot with light color M can observe a leaf node from any initial configuration. After r_{i} finds a leaf node (or a robot with light color T), it calculates the locations of destination-candidate nodes for semi-uniform deployment within its view, based on the location of a landmark,

Fig. 3. Configurations such that r_{i} cannot detect whether it can explicitly terminate the algorithm execution or not.

Fig. 4. Examples of selecting a destination node.
the values of n and k, and the fact that it is on a perfect ℓ-ary tree. Let D_{i} be the set of destination-candidate nodes visible to r_{i}. Then, among D_{i}, r_{i} determines its (temporary) destination node v_{d}^{i} as the node with the largest depth (i.e., a node that is the farthest from the root node v_{r}), and with the shortest length and the smallest port sequence from r_{i}. Examples are given in Fig. 4. We omit port numbers unrelated to selection of the destination node. In Fig. 4 (a), there exist two destinationcandidate nodes v_{a} and v_{b}, each of which has the same largest depth. In this case, v_{a} is selected as the destination node of r_{i} because it is closer to r_{i} than v_{b}. In Fig. 4 (b), there exist two destination-candidate nodes v_{a} and v_{b}, each of which has the same largest depth and the same distance to r_{i}. In this case, v_{b} is selected because the port sequence 1312 from r_{i} to v_{b} is smaller than the sequence 1321 from r_{i} to v_{a}. Notice that the reason of why a node with the largest depth is preferentially selected is that there are more destination nodes with a larger depth than destination nodes with a smaller depth due to the tree structure, and hence staying at a destination node with a larger depth can avoid preventing other robots from moving to their destination nodes. Also notice that the destination node for each robot may change when its view changes by its and other robots' movements.

After selection of the destination node, robots try to move to and stay at their destination nodes in a bottom-up manner. Each robot r_{i} determines its behavior depending on which direction its destination node v_{d}^{i} exists from r_{i}. For explanation, we consider the following four cases in this order: (a) r_{i} cannot find an empty destination-candidate node, (b) r_{i} is already staying at v_{d}^{i}, (c) v_{d}^{i} is in r_{i} 's up direction, and (d) v_{d}^{i} is in r_{i} 's down direction. In case (a), it means that existence of robots within r_{i} 's view prevents r_{i} from finding a destination node due to opacity. For example, in Fig. 5(a),

Fig. 5. Movement examples of a robot when it cannot find an empty destination node or it already stays at its destination node $(d=3)$.
although nodes with squares are destination nodes, they are already occupied by robots and robots r_{i} and r_{j} cannot stay at any empty destination-candidate node. To inform such a situation, letting r_{h} be the robot staying at a node with the smallest depth within views of r_{i} and r_{j}, they try to move up until they reach the child node of r_{h} 's currently staying node v_{c}^{h}. Let $v_{u p}^{i c}$ be the adjacent up node of r_{i} 's currently staying node v_{c}^{i}. During the movement, since a collision is not allowed, each robot r_{i} moves up only when there is no other robot at $v_{u p}^{i c}$'s child nodes or when the port sequence from $v_{u p}^{i c}$ to v_{c}^{i} is the lexicographically smallest among port sequences from $v_{u p}^{i c}$ to a child node with a robot (Fig. 5(b)). Notice that, if we assume ASYNC robots, it is possible that several robots staying at child nodes of some node v decide to move up to v at different timings but reach v at the same time, which causes a collision. Also, from Fig. 5(a) to (b), if we assume that port labelings are not common to robots, both r_{i} and r_{j} may recognize that each of them has the lexicographically smallest port sequence from $v_{u p}^{i c}$, which also causes a collision. Hence, in this paper we assume that robots are SSYNC and port labelings are common to robots. When r_{i} continues to move up and eventually reaches v_{c}^{h},s child node (node $v_{u p}^{i c}$ in case of Fig. 5(b)), r_{h} detects the fact and tries to move up, which is explained next.

In case (b) (i.e., when r_{i} is already staying at v_{d}^{i}), r_{i} determines its behavior depending on the configuration of the subtree rooted at v_{d}^{i}. First, we consider the case that v_{d}^{i} is a deepest destination node in the tree. In this case, when there is no robot in r_{i} 's down direction, r_{i} changes its light color to T

Fig. 6. Movement example of a robot when it already stays at a destination node and terminates the algorithm execution $(d=3)$.
and terminates the algorithm execution. Otherwise, i.e., when there is a robot r_{j} in r_{i} 's down direction, it means that r_{j} cannot stay at any empty destination-candidate node similarly to Fig. 5(a). In this case, r_{j} eventually reaches v_{d}^{i} 's child node as explained in case (a). After that, r_{i} tries to move up with avoiding a collision as explained above. Next, we consider the case that v_{d}^{i} is a non-deepest destination node in the tree. In this case, r_{i} keeps staying at v_{d}^{i} until (i) there exists a robot r_{j} at v_{d}^{i} 's child node or (ii) all nodes with distance d in v_{d}^{i} 's down direction are occupied by a robot with light color T. When (i), as explained in case (a), it is possible that r_{j} cannot stay at any empty destination-candidate node. Hence, r_{i} tries to move up with avoiding a collision like robot r_{h} in Fig. 5(c). When (ii), it means that all robots in r_{i} 's down direction correctly reached their destination nodes and terminated the algorithm executions. Hence, r_{i} also changes its light color to T and terminates the algorithm execution (Fig. 6).

In case (c) (i.e., v_{d}^{i} is in r_{i} 's up direction), r_{i} tries to move up with avoiding a collision as explained above. Finally, in case (d) (i.e., v_{d}^{i} is in r_{i} 's down direction), basically r_{i} tries to move down to reach v_{d}^{i}. However, moving down without any additional rule may cause a collision. For example, in Fig. 7(a), robots r_{i} and r_{j} recognize v_{d}^{i} as a common destination node and r_{j} tries to move to the up adjacent node $v_{u p}^{j c}$ since there is no other robot at $v_{u p}^{j c}$,s child nodes (Fig. 7(b)). Hence, a collision occurs if r_{i} also moves down. To avoid this, letting T_{d}^{i} be the subtree rooted at v_{c}^{i}, s child node existing on $P\left(v_{c}^{i}, v_{d}^{i}\right)$, r_{i} tries to move down only when there is no robot in T_{d}^{i} or all robots existing in T_{d}^{i} emit the same light color T (Fig. 7(c)), which guarantees that the robots in T_{d}^{i} do not move anymore. If any of the above conditions is not satisfied, r_{i} keeps staying at v_{c}^{i}. Notice that, while waiting, the destination node of r_{i} may change to a node existing in r_{i} 's up direction. In this case, r_{i} applies the behavior in case (c) and tries to move up with avoiding a collision. By these behaviors, with avoiding a collision and a deadlock, all robots eventually reach their destination nodes and they achieve semi-uniform deployment.

An execution example for the case of $d=2$ is given in Fig. 8. In this figure, each robot observes at least one leaf node and so all robots already know positions of destination nodes. From (a) to (b), robot r_{3} already stays at a destination node and there is no robot in r_{3} 's down direction. Hence, r_{3} changes its

Fig. 7. Movement examples of robot r_{i} when its destination node is in r_{i} 's down direction $(d>3)$.
light color to T and terminates the algorithm execution there. In addition, r_{1} and r_{2} have the same destination node existing in their up direction. In this case, since the port sequence from the destination to r_{1} is smaller than that from the destination to r_{2}, r_{1} moves to the destination node and r_{2} keeps staying at the current node. Moreover, r_{4} and r_{5} have the same destination node v_{d}^{45}. In this case, since the destination node is in the up (resp., down) direction from r_{5} (resp., r_{4}), r_{5} moves up to the destination and r_{4} keeps staying at the current node. Thereafter, r_{5} changes its light color to T and terminates the algorithm execution. From (b) to (c), r_{4} moves to the adjacent up node (root node) and checks behaviors of r_{1} (and r_{2}). On the other hand, r_{1} moves up because it already stays its destination node but there is another robot r_{2} at a child node of r_{1} 's currently staying node. From (c) to (d), r_{2} moves up to its destination node, changes its light color to T , and terminates algorithm execution. From (d) to (e), r_{1} moves down to its destination node, changes its light color to T , and terminates algorithm execution. From (e) to (f), r_{4} recognizes that all nodes with distance $2(=d)$ are occupied by a robot with light color T , and hence it also changes its light color to T and terminates the algorithm execution. Then, robots achieve semi-uniform deployment.
The pseudocode is described in Algorithm 1. In the algorithm, robots use procedure $U p()$ to try to move up with avoiding a collision (lines $26-29$). To show the correctness of the proposed algorithm, we have the following lemmas.

Lemma 1. Unless all deepest destination nodes in the tree are occupied by a robot with light color T, at least one robot with light color M recognizes some deepest destination node not occupied by a robot with light color T as a possible destination node.

Proof. We show the proof by contradiction, that is, we assume that no robot with light color M recognizes some deepest destination node in the tree as a possible destination node. Let r_{i} be a robot observing some leaf node, v_{c}^{i} be the node where r_{i} is currently staying, and v_{d}^{i} be a deepest destination node that is nearest to r_{i} and not occupied by a robot with light color T (r_{i} may or may not recognize the existence of v_{d}^{i}). Notice that at least one robot can observe a leaf node since robots are opaque but have an infinite visibility range.

Fig. 8. Movement examples to avoid a situation such that some robot cannot stay at any destination node $(d=2)$.

If v_{d}^{i} is within r_{i} 's current view, r_{i} can recognize v_{d}^{i} as a destination node since r_{i} can observe a leaf node. Thus, by the hypothesis of the contradiction, it is necessary that v_{c}^{i} has a larger depth than v_{d}^{i} and there exists at least one robot in the path from v_{c}^{i} to v_{d}^{i}. Among the robots, let r_{j} be the robot nearest to v_{d}^{i}. We assume that r_{j} is at v_{d}^{i},s child node existing in the path from v_{d}^{i} to v_{c}^{i} (the other cases can be treated similarly). Then, when r_{j} observes a leaf node, r_{j} can recognize v_{d}^{i} as a destination node. Hence, by the hypothesis of the contradiction, robot(s) are placed at descendant nodes of r_{j} 's currently staying node v_{c}^{j} so that r_{j} cannot observe any leaf nodes in the down direction. Then, the way of placing such robots with the minimum number of robots is to place a robot at each child node of v_{c}^{j}. Moreover, when r_{j} observes a leaf node via the up direction, i.e., a leaf node whose path between the leaf node and v_{c}^{j} includes the root node, r_{j} can also recognize v_{d}^{i} as a destination node. To prevent this, it is necessary that (1) any child node $v_{\text {child }}^{\text {deepest }}$ of some deepest destination node in the tree is occupied by a robot and (2) any child node of $v_{\text {child }}^{\text {depest }}$ is also occupied by a robot. However, letting $d e p_{\text {max }}$ be the depth of a deepest destination node, the required number of robots is at least the number of nodes with depth $d e p_{\text {max }}+1$ or $d e p_{\text {max }}+2$, which is clearly more than the actual number of robots, which is a contradiction. Therefore, the lemma follows.

Lemma 2. All deepest destination nodes are eventually occupied by a robot with light color T.

```
Algorithm 1 Behavior of robot \(r_{i}\) with light color M ( \(v_{c}^{i}\) is
the current node of \(r_{i}\) )
    if there is no leaf node or a robot with light color T within
    its view then
        \(U p()\)
    else
        Calculate set \(D_{i}\) of destination-candidate nodes within
        its view by \(n, k\), and a position of a leaf node or a robot
        with light color T
        if \(D_{i}=\emptyset\) then
            \(U p()\)
        else
            Determine its destination node \(v_{d}^{i}\) among \(D_{i}\) as the
        node with the largest depth and with the shortest
        length and the smallest port sequence from \(r_{i}\)
        if \(r_{i}\) is already staying at \(v_{d}^{i}\) then
            if a robot exists at \(v_{c}^{i}\),s (or \(v_{d}^{i}\) 's) child node then
                    \(U p()\)
            else if \(\left(\left(r_{i}\right.\right.\) cannot observe a leaf node) \(\wedge\) (all nodes
            with distance \(d\) existing in \(v_{d}^{i}\) 's down direction are
            occupied by a robot with light color T\()) \vee\left(\left(r_{i}\right.\right.\) can
            observe a leaf node) \(\wedge\) (there is no robot other than
            \(r_{i}\) in the subtree rooted at \(\left.v_{d}^{i}\right)\) ) then
                Change its light color to T and terminate the
                algorithm execution
            else
                Keep staying at \(v_{c}^{i}\)
            end if
        else if \(v_{d}^{i}\) is in \(r_{i}\) 's up direction then
            \(U p()\)
        else if \(v_{d}^{i}\) is in \(r_{i}\) 's down direction then
            Let \(T_{d}^{i}\) be the subtree rooted at \(v_{c}^{i}\),s child node
            existing in \(P\left(v_{c}^{i}, v_{d}^{i}\right)\)
            if (there is no robot in \(T_{d}^{i}\) ) \(\vee\) (all the robots existing
            in \(T_{d}^{i}\) emit the same light color T ) then move to
            the down adjacent node via \(P\left(v_{c}^{i}, v_{d}^{i}\right)\)
            else Keep staying at \(v_{c}^{i}\)
        end if
        end if
    end if
    Procedure \(U p()\)
    Let \(v_{u p}^{i c}\) be the \(v_{c}^{i}\),s adjacent up node
    if (there is no other robot at \(v_{u p}^{i c}\), s child nodes) \(V\) (the port
    sequence from \(v_{u p}^{i c}\) to \(v_{c}^{i}\) is the lexicographically smallest
    among port sequences from \(v_{u p}^{i c}\) to a child node with a
    robot) then moves to \(v_{u p}^{i c}\)
    else keep staying at \(v_{c}^{i}\)
```

Proof. By Lemma 1, at least one robot r_{i} with light color M recognizes some node within its view as a deepest and possible destination node v_{d}^{i}. In the proof, we show that v_{d}^{i} is eventually occupied by a robot with light color T , and the remaining proof (i.e., all other deepest destination nodes are occupied) can be
shown in a similar way. Let v_{c}^{i} be r_{i} 's currently staying node. We consider the case that the depth of v_{c}^{i} is (a) larger than that of v_{d}^{i}, (b) the same with that of v_{d}^{i} (i.e., r_{i} is already staying at v_{d}^{i}), and (c) smaller than that of v_{d}^{i} in this order. First, (a) if v_{c}^{i} has a larger depth than v_{d}^{i}, then v_{d}^{i} is in r_{i} 's up direction and r_{i} tries to move up to reach v_{d}^{i}. If there is no other robot in the subtree rooted at v_{d}^{i}, by lines $12-13$ and $17-18$ in Algorithm $1, r_{i}$ can continue to move up, reach v_{d}^{i}, change its light color to T , and terminate the algorithm execution. If another robot r_{j} exist in the subtree rooted at v_{d}^{i}, r_{i} and r_{j} try to move up with avoiding a collision by Procedure $U p()$. Without loss of generality, we assume that r_{i} first reaches v_{d}^{i}. Then, by lines $1-2$ in Algorithm 1, r_{j} eventually reaches v_{d}^{i} 's child node. After that, r_{i} detects the fact and eventually moves up (lines $9-11$ of Algorithm 1). Finally, r_{j} reaches v_{d}^{i}, changes its light color to T , and terminates the algorithm execution (the case when more than two robots exist in the subtree rooted at v_{d}^{i} is treated similarly).

Next, we consider the case that (b) r_{i} already stays at v_{d}^{i}. In this case, when there is no other robot in the subtree rooted at v_{d}^{i}, r_{i} can change its light color to T and terminate the algorithm execution. Otherwise (i.e., when other robots exist in the subtree rooted at v_{d}^{i}), as explained in case (a), r_{i} eventually moves up and some robot in the subtree rooted at v_{d}^{i} eventually reaches v_{d}^{i}, changes its light color to T , and terminates the algorithm execution.

Finally, we consider the case that (c) v_{c}^{i} has a smaller depth than v_{d}^{i}. In this case, let $v_{\text {down }}^{i}$ be the adjacent down node of v_{c}^{i} existing in the path from v_{c}^{i} to v_{d}^{i}. Then, when there is no robot with light color M in the subtree rooted at $v_{\text {down }}^{i}$, by lines $12-13$ and $19-21$ in Algorithm 1, r_{i} can continue to move down, reach v_{d}^{i}, change its light color to T , and terminate the algorithm execution. Otherwise (i.e., when other robots with light color M exist in the subtree rooted at $v_{\text {down }}^{i}$), r_{i} keeps staying at the current node and checks their behaviors by line 22 of Algorithm 1, and some robot among them or r_{i} eventually reaches v_{d}^{i}, changes its light color to T , and terminates the algorithm execution, as explained in case (a) and (b). Therefore, without a collision and a deadlock during the algorithm execution, v_{d}^{i} is eventually occupied by a robot with light color T. Thus, the lemma follows.
Lemma 3. All destination nodes are eventually occupied by a robot with light color T.

Proof. By Lemma 2, all deepest destination nodes are eventually occupied by a robot with light color T. Then, by considering robots' behaviors and the similar discussion of the proof of Lemma 2, from destination nodes with a larger depth to destination nodes with a smaller depth, they are occupied by a robot with light color T one by one. Eventually, all destination nodes are occupied with a robot light color T. Thus, the lemma follows.

By Lemmas 1, 2, and 3, we have the following theorem.
Theorem 2. When $\kappa=2$, Algorithm 1 solves the semi-uniform deployment problem with explicit termination.

V. Conclusion

In this paper, we considered the problem of semi-uniform deployment for luminous and opaque robots in perfect ℓ-ary trees, and clarified the relationship between the number κ of available light colors and the solvability of the problem. First, when $\kappa=1$ (i.e., robots are oblivious), there is no collisionfree algorithm to solve the semi-uniform deployment problem with explicit termination. Next, when $\kappa=2$, robots can achieve collision-free semi-uniform deployment with explicit termination (and our proof is constructive, as we provide a deterministic algorithm for this task). So, with respect to the number of light colors, our algorithm is optimal. Interestingly, the situation strongly differs from the case of grids, where oblivious solutions are available [5], [7]. In trees, we exhibited an infinite family (the perfect ℓ-ary trees) that precludes oblivious solutions (but allows luminous ones).

An interesting directions for future research are as follows. First, we will consider whether or not oblivious robots can achieve semi-uniform deployment without explicit termination (that is, the robots eventually form a semi-uniform deployment, but are unaware the task is complete). Next, we will consider whether or not robots with weaker capability can solve the problem, e.g., ASYNC robots and/or robots without chirality. Finally, we will extend the problem to trees of arbitrary shape (i.e., not just perfect ℓ-ary trees).

Acknowledgements.: This work was partially supported by JSPS KAKENHI Grant Number 18K18031, 20KK0232, and 21K17706. This work was partially funded by the ANR project SAPPORO, ref. 2019-CE25-0005-1.

REFERENCES

[1] I. Suzuki and M. Yamashita. Distributed anonymous mobile robots: Formation of geometric patterns. SIAM Journal on Computing, 28(4):13471363, 1999.
[2] S. Cicerone, G. Di Stefano, and A. Navarra. Asynchronous robots on graphs: Gathering. In Distributed Computing by Mobile Entities, Current Research in Moving and Computing, volume 11340, pages 184-217. Springer, 2019.
[3] Y. Elor and A. M. Bruckstein. Uniform multi-agent deployment on a ring. Theoretical Computer Science, 412(8-10):783-795, 2011.
[4] P. Flocchini, G. Prencipe, and N. Santoro. Self-deployment of mobile sensors on a ring. Theoretical Computer Science, 402(1):67-80, 2008.
[5] L. Barriere, P. Flocchini, E. Mesa-Barrameda, and N. Santoro. Uniform scattering of autonomous mobile robots in a grid. International Journal of Foundations of Computer Science, 22(03):679-697, 2011.
[6] P. Poudel and G. Sharma. Time-optimal uniform scattering in a grid. ICDCN, pages 228-237, 2019.
[7] P. Poudel and G. Sharma. Fast uniform scattering on a grid for asynchronous oblivious robots. SSS, pages 211-228, 2020.
[8] S. Das, P. Flocchini, G. Prencipe, N. Santoro, and M. Yamashita. Autonomous mobile robots with lights. Theoretical Computer Science, 609:171-184, 2016.
[9] M. D'Emidio, G. Di Stefano, D. Frigioni, and A. Navarra. Characterizing the computational power of mobile robots on graphs and implications for the euclidean plane. Information and Computation, 263:57-74, 2018.
[10] M. Shibata, T. Mega, F. Ooshita, H. Kakugawa, and T. Masuzawa. Uniform deployment of mobile agents in asynchronous rings. Journal of Parallel and Distributed Computing, 119:92-106, 2018.
[11] M. Shibata, H. Kakugawa, and T. Masuzawa. Space-efficient uniform deployment of mobile agents in asynchronous unidirectional rings. Theoretical Computer Science, 809:357-371, 2020.
[12] M. Shibata, Y. Sudo, J. Nakamura, and Y. Kim. Uniform deployment of mobile agents in dynamic rings. SSS, pages 248-263, 2020.

