
Semi-Uniform Deployment of Mobile Robots in
Perfect ℓ-ary Trees

Masahiro Shibata
Graduate School of Computer Science and Systems Engineering

Kyushu Institute of Technology
Fukuoka, Japan

shibata@csn.kyutech.ac.jp

Sébastien Tixeuil
Sorbonne Université

CNRS, LIP6
Paris, France

Sebastien.Tixeuil@lip6.fr

Abstract—In this paper, we consider the problem of semi-
uniform deployment for mobile robots in perfect ℓ-ary trees,
where every intermediate node has ℓ children, and all leaf nodes
have the same depth. This problem requires robots to spread in
the tree so that, for some positive integer d and some fixed integer
s (0 ≤ s ≤ d− 1), each node of depth s+ dj (j ≥ 0) is occupied
by a robot. In other words, after semi-uniform deployment is
achieved, nodes of depth s, s + d, s + 2d, . . . are occupied by a
robot. Robots have an infinite visibility range but are opaque, that
is, robot ri cannot observe some robot rj if there exists another
robot rk in the path between ri and rj . In addition, each robot can
emit a light color visible to itself and other robots, taken from a
set of κ colors, at each time step. Then, we clarify the relationship
between the number of available light colors and the solvability of
the semi-uniform deployment problem. First, we consider robots
with the minimum number of available light colors, that is, robots
with κ = 1 (in this case, robots are oblivious). In this setting, we
show that there is no collision-free algorithm to solve the semi-
uniform deployment problem with explicit termination. Next, we
relax the number of available light colors, that is, we consider
robots with κ = 2. In this setting, we propose a collision-free
algorithm that can solve the problem with explicit termination.
Thus, our algorithm is optimal with respect to the number of
light colors. In addition, to the best of our knowledge, this paper
is the first to report research considering (a variant of) uniform
deployment in graphs other than rings or grids.

Index Terms—mobile robot, semi-uniform deployment, visible
lights

I. INTRODUCTION

Background. Studies for mobile robot networks have
emerged recently in the field of Distributed Computing. Robots
aim to achieve some tasks with limited capabilities. Most
studies assume that robots are identical (they execute the same
algorithm and cannot be distinguished by their appearance)
and oblivious (they cannot remember their past actions). In
addition, it is assumed that robots cannot communicate with
other robots explicitly. Instead, the communication is done
implicitly by having each robot observe the positions of others.

Since Suzuki and Yamashita presented a pioneering
work [1], using the above robots, many problems have been
studied in continuous environments (a.k.a. two- or three-
dimensional Euclidean space) [1], or in discrete environments
(a.k.a. graphs) [2]. For example, the uniform deployment (or
uniform scattering) problem has been studied as a fundamental
problem for coordination of robots. This problem requires

robots to spread uniformly in the network. So far, the uniform
deployment problem for mobile robots has been considered in
rings (i.e., the discrete model) [3], cycles (i.e., the continuous
model) [4], and grid networks (again, the discrete model) [5]–
[7]. In grids, it was argued you can achieve uniform deploy-
ment faster [6] using luminous robots (uniform deployment
in grids is nevertheless feasible by oblivious robots [5]). A
luminous robot is equipped with a device that can emit a non-
volatile single color (from a constant number of colors) to
other robots at a given time. Since the light color is non-
volatile, it can be used as a constant space memory. The
notion of luminous robots was introduced by Das. et al. [8]
with the initial goal to circumvent impossibility results that
hold for oblivious robots. In [9], D’Emidio et al. consider
the solvability of several problems for luminous robots in the
graph environment, focusing on the relationship between syn-
chronicity and light availability. Recently, Poudel and Sharma
[7] improved the time complexity of uniform deployment on
grids for robots without light colors (i.e., oblivious robots). A
separate track of research considered the uniform deployment
problem in ring networks for another mobile entity called
mobile agents [10]–[12], which have persistent memory but
cannot observe others’ positions unless they are located on
the same node. Like aforementioned works, although uniform
deployment has been considered in various settings, to the best
of our knowledge, it was not considered in graphs other than
rings or grids.

Our Contribution. In this paper, we consider a vari-
ant of the uniform deployment problem and investigate its
solvability in graphs other than rings or grids. Concretely,
we consider the semi-uniform deployment (or semi-uniform
scattering) problem of mobile robots in perfect ℓ-ary trees,
where every intermediate node has ℓ children, and all leaf
nodes have the same depth. This problem requires robots to
spread in the tree so that, for some positive integer d and
some fixed integer s (0 ≤ s ≤ d − 1), each node of depth
s+ dj (j ≥ 0) is occupied by a robot. An example is given
in Fig. 1, where we denote by n and k the number of nodes
and the number of robots, respectively. We assume that robots
are semi-synchronous (SSYNC), that is, in each time step, a
non-empty subset of robots are activated and they take an
action synchronously and concurrently. In addition, we assume

: robot: node

Fig. 1. An example of the semi-uniform deployment problem (ℓ = 2, n = 31, k = 21, d = 2, s = 0).

that robots have an infinite visibility range but are opaque,
that is, robot ri cannot observe some robot rj if there exists
another robot rk in the path between ri and rj . Moreover,
each robot can emit a light color visible to itself and other
robots, taken from a set of κ colors, at each time step. Then,
we clarify the relationship between the number of available
light colors and the solvability of the semi-uniform deployment
problem. First, we consider robots with the minimum number
of available light colors, that is, robots with κ = 1 (in this case,
robots are oblivious). In this setting, we show that there is no
collision-free algorithm to solve the semi-uniform deployment
problem with explicit termination. Next, we relax the number
of available light colors, that is, we consider robots with
κ = 2. In this setting, we propose a collision-free algorithm
that can solve the problem with explicit termination. Thus,
our algorithm is optimal with respect to the number of light
colors.

II. MODEL

System models. A perfect ℓ-ary tree network T is repre-
sented by a tuple T = (V,E), where V is a set of nodes
(vertices) and E is a set of edges. We denote by n (= |V |)
the number of nodes. In a perfect ℓ-ary tree, there exist three
types of nodes: a root node vr with degree ℓ (it has ℓ children),
intermediate nodes whose degree is ℓ + 1 (it has one parent
and ℓ children), and leaf nodes whose degree is 1 (it has
one parent). From some node, we call the direction toward
(resp., away from) the root node the up direction (resp., down
direction). A subtree rooted at node v is a part of T that
comprises v, and all nodes in v’s down direction. The path
P (v0, vt) = (v0, v1, . . . , vt) with length t is a sequence of
nodes from v0 to vt such that {vi, vi+1} ∈ E (0 ≤ i < t)
and vi ̸= vj if i ̸= j. Notice that P (u, v) is unique in a tree
for any u, v ∈ V . The distance from u to v is the length of
the path from u to v, and denoted by dis(u, v). The depth of
node v is defined as the distance dis(vr, v) from the root node
vr to v. Notice that the depth of the root node vr is 0. The
level of tree T is defined as the maximum depth among leaf
nodes. In a perfect ℓ-ary tree, all leaf nodes have the same
depth, and hence when the level of the tree is h, the number
n of nodes in the tree is n =

∑h
i=0 ℓ

i. Let dv be the degree
of node v. We assume that nodes have no distinct IDs (i.e.,
they are anonymous), but each edge e incident to v is uniquely

labeled at v with a label from the set {1, 2 . . . , dv}. We call
this label port number. Since each edge connects two nodes,
it has two port numbers. Port labelings are common to robots,
but they are local, that is, there is no coherence between the
two port numbers in the edge connecting two nodes.

We consider a set of k robots with the following charac-
teristics and capabilities. Robots are identical, that is, robots
execute the same algorithm. Robots are luminous, that is, each
robot has a device that can emit a light color (or state) visible
to itself and other robots. A robot can choose the color of its
light from a discrete set Col. When the set Col is finite, we
denote by κ the number of available colors (i.e., κ = |Col|).
Notice that, when κ = 1, robots are equivalent to oblivious
robots. Robots have knowledge of k and n, and have a common
sense of direction, that is, each robot r knows the direction
toward the root node vr for each node observable by r.
Robots have no other persistent memory and cannot remember
the history of past actions. Robots cannot communicate with
other robots explicitly, but they can communicate implicitly
by observing positions and light colors of other robots (for
collecting information), and by changing their light colors and
moving (for sending information). In addition, we assume that
robots have an infinite visibility range but are opaque, that is,
robot ri cannot observe some robot rj if there exists another
robot rk in the path from ri to rj . An example is given in
Fig. 2. Numbers at each edge endpoint represent port numbers.
In the figure, robot ri cannot observe rh because another robot
rj exists in the path from ri and rh. Robot ri can observe
the area of solid nodes, edges, and robots, and port numbers
within the area, but it cannot observe the dotted area. We call
the observable area of ri the view of ri.

Each robot executes an algorithm by repeating three-phases
cycles: Look, Compute, and Move (LCM). During the Look
phase, the robot observes positions and light colors of robots
within its view. During the Compute phase, the robot computes
its next light color and movement according to the observation
in the Look phase. The robot may change its light color at the
end of the Compute phase. If the robot decides to move, it
moves to an adjacent node during the Move phase. In this
paper, we assume that robots are semi-synchronous (SSYNC),
that is, in each cycle, a scheduler activates a non-empty subset
of robots and the activated robots execute an LCM cycle
synchronously and concurrently. We assume that the scheduler

𝒓𝒊

1
2

1

1

3
2 3

2

2

3

3
3

1 1

𝒓𝒉

𝒓𝒋

Fig. 2. An example of a view by robot ri.

is fair, that is, each robot is activated infinitely often. We
consider the scheduler as an adversary. That is, we assume that
the scheduler is omniscient (it knows robot positions, colors,
algorithms, etc.), and tries to activate robots in such a way
that they fail to execute the task.

A configuration C of the system is defined by the position
and light color of all robots. In initial configuration C0, all
robots emit the same light color (or they are in the same
state) and placed at distinct nodes (however, their place-
ment is decided by the adversary). We call a node hosting
a robot (resp., not hosting a robot) a robot node (resp.,
an empty node). For an infinite sequence of configurations
E = C0, C1, . . . , Ct, . . ., we say E is a fair execution from
initial configuration C0 if, for every instant t, Ct+1 is obtained
from Ct after a fair scheduler activates a non-empty subset
of robots and they execute an LCM cycle. We say Ci is
the i-th configuration of execution E. In addition, during the
execution of the algorithm, a collision is not allowed. Here,
a collision represents a situation such that two robots traverse
the same edge from different directions or several robots exist
at the same node. Concretely, the following three behaviors are
not allowed: (a) some robot ri (resp., rj) staying at node vp
(resp., vq) moves to vq (resp., vp), (b) some robot ri staying
at node vp remains at vp and robot rj staying at node vq
moves to vp, and (c) several robots move to the same empty
node. The rationale for avoiding collisions is to prevent two
robots from occupying the same node. Otherwise, it leads to
a situation such that a deterministic algorithm cannot recover
from (assuming the adversary always simultaneously activates
all robots at a given node, the system would behave as a system
with strictly less robots, and hence robots cannot solve the
semi-uniform deployment problem).

The problem to be solved. We assume that there exist
k =

∑1+⌊(h−s)/d⌋
j=0 ℓs+dj robots that occupy distinct nodes

in a perfect ℓ-ary tree of level h for some integers d and
s (2 ≤ d ≤ ⌊h/2⌋, 0 ≤ s ≤ d − 1). Then, the semi-uniform
deployment problem in a perfect ℓ-ary tree of level h requires
that each node of depth s + dj (0 ≤ j ≤ 1 + ⌊(h − s)/d⌋)
is occupied by a robot like Fig. 1. After the deployment, the
distance from some robot r to any of adjacent up (or down)
robot r′ is d. Here, we say that robot r′ is the adjacent up (or
down) robot of r when r′ exists in r’s up (or down) direction,
and no robot exists in the path P (r, r′). We define the problem

is as follows.

Definition 1. We assume that there exist k =∑1+⌊(h−s)/d⌋
j=0 ℓs+dj robots that occupy in a perfect

ℓ-ary tree of level h for some integers d and s
(2 ≤ d ≤ ⌊h/2⌋, 0 ≤ s ≤ d − 1). Then, an explicitly
terminating algorithm solves the semi-uniform deployment
problem in a perfect ℓ-ary tree if and only if (i) each robot
eventually enters a state in which it does not move nor
change its state, whatever it observes, and (ii) after all
robots terminate algorithm execution, every node of depth
s+ dj (0 ≤ j ≤ 1 + ⌊(h− j)/d⌋) is occupied by one robot.

III. IMPOSSIBILITY RESULT

In this section, we show that, when κ = 1, deterministic
terminating semi-uniform deployment is not achievable.

Theorem 1. When κ = 1, deterministic robots cannot solve
the semi-uniform deployment problem with explicit termina-
tion.

Proof. Let us consider the configuration like Fig. 3(a). Note
that this configuration is an allowed initial configuration as all
robots occupy distinct nodes. In this configuration, in order
to achieve semi-uniform deployment, robot ri must move and
visit node vt (the tree rooted at vt requires one more robot,
and collisions –hence bypassing– are forbidden). However, ri
cannot distinguish the configuration of Fig. 3(a) from a semi-
uniform deployment-achieved configuration like Fig. 3(b) due
to opacity (its view is the same in both situations). Obviously,
in the second situation, ri has no other choice but to terminate,
as no robot as a reason to move. If ri moves to vt in configu-
ration like Fig. 3(b), explicit termination is never achieved. If
ri explicitly terminates in configuration like Fig. 3(a), semi-
uniform deployment is never achieved. Therefore, the theorem
follows.

IV. PROPOSED ALGORITHM

In this section, we propose an explicitly terminating and
collision-free deterministic algorithm to solve the semi-
uniform deployment problem for the case of κ = 2. By
Theorem 1, this algorithm is optimal with respect to the
number of light colors. In the initial configuration, each robot
emits the same light color, say M, and robots are placed at
distinct nodes by an adversary. Each robot uses two kinds of
light colors: M (Moving) or T (Terminated). Each robot with
light color T means that it terminated the algorithm execution
and is staying at its destination node (i.e., the robot never
leaves its current node anymore). Hence, in the following we
explain the behavior of robots with light color M.

Each robot ri with light color M first looks for a landmark
of semi-uniform deployment, such as a leaf node of the tree or
a robot with light color T. Since robots are opaque but have an
infinite visibility range, at least one robot with light color M
can observe a leaf node from any initial configuration. After ri
finds a leaf node (or a robot with light color T), it calculates the
locations of destination-candidate nodes for semi-uniform de-
ployment within its view, based on the location of a landmark,

𝒓𝒊
𝒗𝒔 𝒗𝒕

𝒓𝒊

ሺaሻ ሺbሻ

Fig. 3. Configurations such that ri cannot detect whether it can explicitly terminate the algorithm execution or not.

𝒗𝒂

1
3

1
2 1

2
𝒗𝒃𝒓𝒊

ሺaሻ

𝒗𝒂

1
3

1
2 1

2
𝒗𝒃

𝒓𝒊

ሺbሻ

Fig. 4. Examples of selecting a destination node.

the values of n and k, and the fact that it is on a perfect ℓ-ary
tree. Let Di be the set of destination-candidate nodes visible to
ri. Then, among Di, ri determines its (temporary) destination
node vid as the node with the largest depth (i.e., a node that
is the farthest from the root node vr), and with the shortest
length and the smallest port sequence from ri. Examples are
given in Fig. 4. We omit port numbers unrelated to selection of
the destination node. In Fig. 4 (a), there exist two destination-
candidate nodes va and vb, each of which has the same largest
depth. In this case, va is selected as the destination node of ri
because it is closer to ri than vb. In Fig. 4 (b), there exist two
destination-candidate nodes va and vb, each of which has the
same largest depth and the same distance to ri. In this case,
vb is selected because the port sequence 1312 from ri to vb is
smaller than the sequence 1321 from ri to va. Notice that the
reason of why a node with the largest depth is preferentially
selected is that there are more destination nodes with a larger
depth than destination nodes with a smaller depth due to the
tree structure, and hence staying at a destination node with a
larger depth can avoid preventing other robots from moving to
their destination nodes. Also notice that the destination node
for each robot may change when its view changes by its and
other robots’ movements.

After selection of the destination node, robots try to move
to and stay at their destination nodes in a bottom-up manner.
Each robot ri determines its behavior depending on which
direction its destination node vid exists from ri. For expla-
nation, we consider the following four cases in this order:
(a) ri cannot find an empty destination-candidate node, (b)
ri is already staying at vid, (c) vid is in ri’s up direction, and
(d) vid is in ri’s down direction. In case (a), it means that
existence of robots within ri’s view prevents ri from finding
a destination node due to opacity. For example, in Fig. 5(a),

ሺaሻ

: robot with light M : robot with light T : destination node

1
3

12
1 2

1 1

ሺbሻ ሺcሻ

3

12
1 2

3

12
1 2𝒓𝒊 𝒓𝒋

𝒓𝒉

𝒓𝒊

𝒓𝒋

𝒓𝒉

𝒗𝒄𝒉

𝒗𝒄𝒊

𝒗𝒖𝒑𝒊𝒄

Fig. 5. Movement examples of a robot when it cannot find an empty
destination node or it already stays at its destination node (d = 3).

although nodes with squares are destination nodes, they are
already occupied by robots and robots ri and rj cannot stay
at any empty destination-candidate node. To inform such a
situation, letting rh be the robot staying at a node with the
smallest depth within views of ri and rj , they try to move up
until they reach the child node of rh’s currently staying node
vhc . Let vic

up be the adjacent up node of ri’s currently staying
node vic. During the movement, since a collision is not allowed,
each robot ri moves up only when there is no other robot at
vic

up’s child nodes or when the port sequence from vic
up to vic

is the lexicographically smallest among port sequences from
vic

up to a child node with a robot (Fig. 5(b)). Notice that, if
we assume ASYNC robots, it is possible that several robots
staying at child nodes of some node v decide to move up to
v at different timings but reach v at the same time, which
causes a collision. Also, from Fig. 5(a) to (b), if we assume
that port labelings are not common to robots, both ri and
rj may recognize that each of them has the lexicographically
smallest port sequence from vic

up, which also causes a collision.
Hence, in this paper we assume that robots are SSYNC and
port labelings are common to robots. When ri continues to
move up and eventually reaches vhc ’s child node (node vic

up in
case of Fig. 5(b)), rh detects the fact and tries to move up,
which is explained next.

In case (b) (i.e., when ri is already staying at vid), ri
determines its behavior depending on the configuration of the
subtree rooted at vid. First, we consider the case that vid is a
deepest destination node in the tree. In this case, when there is
no robot in ri’s down direction, ri changes its light color to T

light: M → T

: robot with light M : robot with light T : destination node

Fig. 6. Movement example of a robot when it already stays at a destination
node and terminates the algorithm execution (d = 3).

and terminates the algorithm execution. Otherwise, i.e., when
there is a robot rj in ri’s down direction, it means that rj
cannot stay at any empty destination-candidate node similarly
to Fig. 5(a). In this case, rj eventually reaches vid’s child node
as explained in case (a). After that, ri tries to move up with
avoiding a collision as explained above. Next, we consider the
case that vid is a non-deepest destination node in the tree. In
this case, ri keeps staying at vid until (i) there exists a robot rj
at vid’s child node or (ii) all nodes with distance d in vid’s down
direction are occupied by a robot with light color T. When (i),
as explained in case (a), it is possible that rj cannot stay at
any empty destination-candidate node. Hence, ri tries to move
up with avoiding a collision like robot rh in Fig. 5(c). When
(ii), it means that all robots in ri’s down direction correctly
reached their destination nodes and terminated the algorithm
executions. Hence, ri also changes its light color to T and
terminates the algorithm execution (Fig. 6).

In case (c) (i.e., vid is in ri’s up direction), ri tries to move
up with avoiding a collision as explained above. Finally, in
case (d) (i.e., vid is in ri’s down direction), basically ri tries to
move down to reach vid. However, moving down without any
additional rule may cause a collision. For example, in Fig. 7(a),
robots ri and rj recognize vid as a common destination node
and rj tries to move to the up adjacent node vjc

up since there
is no other robot at vjc

up’s child nodes (Fig. 7(b)). Hence, a
collision occurs if ri also moves down. To avoid this, letting T i

d

be the subtree rooted at vic’s child node existing on P (vic, v
i
d),

ri tries to move down only when there is no robot in T i
d or all

robots existing in T i
d emit the same light color T (Fig. 7(c)),

which guarantees that the robots in T i
d do not move anymore.

If any of the above conditions is not satisfied, ri keeps staying
at vic. Notice that, while waiting, the destination node of ri
may change to a node existing in ri’s up direction. In this
case, ri applies the behavior in case (c) and tries to move up
with avoiding a collision. By these behaviors, with avoiding
a collision and a deadlock, all robots eventually reach their
destination nodes and they achieve semi-uniform deployment.

An execution example for the case of d = 2 is given in
Fig. 8. In this figure, each robot observes at least one leaf node
and so all robots already know positions of destination nodes.
From (a) to (b), robot r3 already stays at a destination node and
there is no robot in r3’s down direction. Hence, r3 changes its

ሺaሻ

: robot with light M : robot with light T : destination node

ሺbሻ ሺcሻ

𝒓𝒊

𝒓𝒋
𝒗𝒖𝒑
𝒋𝒄

𝒓𝒋

𝒓𝒊

𝒓𝒊

𝒗𝒅
𝒊 𝒗𝒅

𝒊 𝒗𝒅
𝒊

Fig. 7. Movement examples of robot ri when its destination node is in ri’s
down direction (d > 3).

light color to T and terminates the algorithm execution there.
In addition, r1 and r2 have the same destination node existing
in their up direction. In this case, since the port sequence from
the destination to r1 is smaller than that from the destination to
r2, r1 moves to the destination node and r2 keeps staying at the
current node. Moreover, r4 and r5 have the same destination
node v45d . In this case, since the destination node is in the
up (resp., down) direction from r5 (resp., r4), r5 moves up
to the destination and r4 keeps staying at the current node.
Thereafter, r5 changes its light color to T and terminates the
algorithm execution. From (b) to (c), r4 moves to the adjacent
up node (root node) and checks behaviors of r1 (and r2).
On the other hand, r1 moves up because it already stays its
destination node but there is another robot r2 at a child node of
r1’s currently staying node. From (c) to (d), r2 moves up to its
destination node, changes its light color to T, and terminates
algorithm execution. From (d) to (e), r1 moves down to its
destination node, changes its light color to T, and terminates
algorithm execution. From (e) to (f), r4 recognizes that all
nodes with distance 2 (= d) are occupied by a robot with
light color T, and hence it also changes its light color to T
and terminates the algorithm execution. Then, robots achieve
semi-uniform deployment.

The pseudocode is described in Algorithm 1. In the al-
gorithm, robots use procedure Up() to try to move up with
avoiding a collision (lines 26 – 29). To show the correctness
of the proposed algorithm, we have the following lemmas.

Lemma 1. Unless all deepest destination nodes in the tree are
occupied by a robot with light color T, at least one robot with
light color M recognizes some deepest destination node not
occupied by a robot with light color T as a possible destination
node.

Proof. We show the proof by contradiction, that is, we assume
that no robot with light color M recognizes some deepest
destination node in the tree as a possible destination node.
Let ri be a robot observing some leaf node, vic be the node
where ri is currently staying, and vid be a deepest destination
node that is nearest to ri and not occupied by a robot with
light color T (ri may or may not recognize the existence of
vid). Notice that at least one robot can observe a leaf node
since robots are opaque but have an infinite visibility range.

𝒓𝟏 𝒓𝟐

2 3

1 𝒓𝟏

𝒓𝟐

𝒓𝟑

𝒓𝟒

𝒓𝟓

𝒓𝟓

𝒓𝟒

𝒓𝟑

ሺaሻ ሺbሻ

𝒗𝒅
𝟒𝟓

ሺcሻ ሺdሻ

𝒓𝟒
𝒓𝟏

𝒓𝟐

𝒓𝟏

𝒓𝟐

𝒓𝟒

: robot with light M : robot with light T : destination node

ሺeሻ ሺfሻ

𝒓𝟏

𝒓𝟒 𝒓𝟒

Fig. 8. Movement examples to avoid a situation such that some robot cannot
stay at any destination node (d = 2).

If vid is within ri’s current view, ri can recognize vid as a
destination node since ri can observe a leaf node. Thus, by
the hypothesis of the contradiction, it is necessary that vic has
a larger depth than vid and there exists at least one robot
in the path from vic to vid. Among the robots, let rj be the
robot nearest to vid. We assume that rj is at vid’s child node
existing in the path from vid to vic (the other cases can be
treated similarly). Then, when rj observes a leaf node, rj can
recognize vid as a destination node. Hence, by the hypothesis
of the contradiction, robot(s) are placed at descendant nodes of
rj’s currently staying node vjc so that rj cannot observe any
leaf nodes in the down direction. Then, the way of placing
such robots with the minimum number of robots is to place a
robot at each child node of vjc . Moreover, when rj observes
a leaf node via the up direction, i.e., a leaf node whose path
between the leaf node and vjc includes the root node, rj can
also recognize vid as a destination node. To prevent this, it
is necessary that (1) any child node vdeepest

child of some deepest
destination node in the tree is occupied by a robot and (2) any
child node of vdeepest

child is also occupied by a robot. However,
letting depmax be the depth of a deepest destination node, the
required number of robots is at least the number of nodes with
depth depmax +1 or depmax +2, which is clearly more than the
actual number of robots, which is a contradiction. Therefore,
the lemma follows.

Lemma 2. All deepest destination nodes are eventually occu-
pied by a robot with light color T.

Algorithm 1 Behavior of robot ri with light color M (vic is
the current node of ri)

1: if there is no leaf node or a robot with light color T within
its view then

2: Up()
3: else
4: Calculate set Di of destination-candidate nodes within

its view by n, k, and a position of a leaf node or a robot
with light color T

5: if Di = ∅ then
6: Up()
7: else
8: Determine its destination node vid among Di as the

node with the largest depth and with the shortest
length and the smallest port sequence from ri

9: if ri is already staying at vid then
10: if a robot exists at vic’s (or vid’s) child node then
11: Up()
12: else if ((ri cannot observe a leaf node) ∧ (all nodes

with distance d existing in vid’s down direction are
occupied by a robot with light color T)) ∨ ((ri can
observe a leaf node) ∧ (there is no robot other than
ri in the subtree rooted at vid)) then

13: Change its light color to T and terminate the
algorithm execution

14: else
15: Keep staying at vic
16: end if
17: else if vid is in ri’s up direction then
18: Up()
19: else if vid is in ri’s down direction then
20: Let T i

d be the subtree rooted at vic’s child node
existing in P (vic, v

i
d)

21: if (there is no robot in T i
d) ∨ (all the robots existing

in T i
d emit the same light color T) then move to

the down adjacent node via P (vic, v
i
d)

22: else Keep staying at vic
23: end if
24: end if
25: end if

26: Procedure Up()
27: Let vic

up be the vic’s adjacent up node
28: if (there is no other robot at vic

up’s child nodes) ∨ (the port
sequence from vic

up to vic is the lexicographically smallest
among port sequences from vic

up to a child node with a
robot) then moves to vic

up
29: else keep staying at vic

Proof. By Lemma 1, at least one robot ri with light color M
recognizes some node within its view as a deepest and possible
destination node vid. In the proof, we show that vid is eventually
occupied by a robot with light color T, and the remaining proof
(i.e., all other deepest destination nodes are occupied) can be

shown in a similar way. Let vic be ri’s currently staying node.
We consider the case that the depth of vic is (a) larger than that
of vid, (b) the same with that of vid (i.e., ri is already staying
at vid), and (c) smaller than that of vid in this order. First, (a)
if vic has a larger depth than vid, then vid is in ri’s up direction
and ri tries to move up to reach vid. If there is no other robot
in the subtree rooted at vid, by lines 12 – 13 and 17 – 18 in
Algorithm 1, ri can continue to move up, reach vid, change
its light color to T, and terminate the algorithm execution. If
another robot rj exist in the subtree rooted at vid, ri and rj
try to move up with avoiding a collision by Procedure Up().
Without loss of generality, we assume that ri first reaches vid.
Then, by lines 1 – 2 in Algorithm 1, rj eventually reaches
vid’s child node. After that, ri detects the fact and eventually
moves up (lines 9 – 11 of Algorithm 1). Finally, rj reaches
vid, changes its light color to T, and terminates the algorithm
execution (the case when more than two robots exist in the
subtree rooted at vid is treated similarly).

Next, we consider the case that (b) ri already stays at
vid. In this case, when there is no other robot in the subtree
rooted at vid, ri can change its light color to T and terminate
the algorithm execution. Otherwise (i.e., when other robots
exist in the subtree rooted at vid), as explained in case (a),
ri eventually moves up and some robot in the subtree rooted
at vid eventually reaches vid, changes its light color to T, and
terminates the algorithm execution.

Finally, we consider the case that (c) vic has a smaller depth
than vid. In this case, let vidown be the adjacent down node of
vic existing in the path from vic to vid. Then, when there is
no robot with light color M in the subtree rooted at vidown, by
lines 12 – 13 and 19 – 21 in Algorithm 1, ri can continue to
move down, reach vid, change its light color to T, and terminate
the algorithm execution. Otherwise (i.e., when other robots
with light color M exist in the subtree rooted at vidown), ri
keeps staying at the current node and checks their behaviors
by line 22 of Algorithm 1, and some robot among them or
ri eventually reaches vid, changes its light color to T, and
terminates the algorithm execution, as explained in case (a)
and (b). Therefore, without a collision and a deadlock during
the algorithm execution, vid is eventually occupied by a robot
with light color T. Thus, the lemma follows.

Lemma 3. All destination nodes are eventually occupied by
a robot with light color T.

Proof. By Lemma 2, all deepest destination nodes are even-
tually occupied by a robot with light color T. Then, by
considering robots’ behaviors and the similar discussion of the
proof of Lemma 2, from destination nodes with a larger depth
to destination nodes with a smaller depth, they are occupied
by a robot with light color T one by one. Eventually, all
destination nodes are occupied with a robot light color T. Thus,
the lemma follows.

By Lemmas 1, 2, and 3, we have the following theorem.

Theorem 2. When κ = 2, Algorithm 1 solves the semi-uniform
deployment problem with explicit termination.

V. CONCLUSION

In this paper, we considered the problem of semi-uniform
deployment for luminous and opaque robots in perfect ℓ-ary
trees, and clarified the relationship between the number κ of
available light colors and the solvability of the problem. First,
when κ = 1 (i.e., robots are oblivious), there is no collision-
free algorithm to solve the semi-uniform deployment problem
with explicit termination. Next, when κ = 2, robots can
achieve collision-free semi-uniform deployment with explicit
termination (and our proof is constructive, as we provide a
deterministic algorithm for this task). So, with respect to the
number of light colors, our algorithm is optimal. Interestingly,
the situation strongly differs from the case of grids, where
oblivious solutions are available [5], [7]. In trees, we exhibited
an infinite family (the perfect ℓ-ary trees) that precludes
oblivious solutions (but allows luminous ones).

An interesting directions for future research are as follows.
First, we will consider whether or not oblivious robots can
achieve semi-uniform deployment without explicit termination
(that is, the robots eventually form a semi-uniform deploy-
ment, but are unaware the task is complete). Next, we will
consider whether or not robots with weaker capability can
solve the problem, e.g., ASYNC robots and/or robots without
chirality. Finally, we will extend the problem to trees of
arbitrary shape (i.e., not just perfect ℓ-ary trees).

Acknowledgements.: This work was partially supported by
JSPS KAKENHI Grant Number 18K18031, 20KK0232, and
21K17706. This work was partially funded by the ANR project
SAPPORO, ref. 2019-CE25-0005-1.

REFERENCES

[1] I. Suzuki and M. Yamashita. Distributed anonymous mobile robots: For-
mation of geometric patterns. SIAM Journal on Computing, 28(4):1347–
1363, 1999.

[2] S. Cicerone, G. Di Stefano, and A. Navarra. Asynchronous robots on
graphs: Gathering. In Distributed Computing by Mobile Entities, Current
Research in Moving and Computing, volume 11340, pages 184–217.
Springer, 2019.

[3] Y. Elor and A. M. Bruckstein. Uniform multi-agent deployment on a
ring. Theoretical Computer Science, 412(8-10):783–795, 2011.

[4] P. Flocchini, G. Prencipe, and N. Santoro. Self-deployment of mobile
sensors on a ring. Theoretical Computer Science, 402(1):67–80, 2008.

[5] L. Barriere, P. Flocchini, E. Mesa-Barrameda, and N. Santoro. Uniform
scattering of autonomous mobile robots in a grid. International Journal
of Foundations of Computer Science, 22(03):679–697, 2011.

[6] P. Poudel and G. Sharma. Time-optimal uniform scattering in a grid.
ICDCN, pages 228–237, 2019.

[7] P. Poudel and G. Sharma. Fast uniform scattering on a grid for
asynchronous oblivious robots. SSS, pages 211–228, 2020.

[8] S. Das, P. Flocchini, G. Prencipe, N. Santoro, and M. Yamashita.
Autonomous mobile robots with lights. Theoretical Computer Science,
609:171–184, 2016.

[9] M. D’Emidio, G. Di Stefano, D. Frigioni, and A. Navarra. Characterizing
the computational power of mobile robots on graphs and implications
for the euclidean plane. Information and Computation, 263:57–74, 2018.

[10] M. Shibata, T. Mega, F. Ooshita, H. Kakugawa, and T. Masuzawa.
Uniform deployment of mobile agents in asynchronous rings. Journal
of Parallel and Distributed Computing, 119:92–106, 2018.

[11] M. Shibata, H. Kakugawa, and T. Masuzawa. Space-efficient uniform
deployment of mobile agents in asynchronous unidirectional rings.
Theoretical Computer Science, 809:357–371, 2020.

[12] M. Shibata, Y. Sudo, J. Nakamura, and Y. Kim. Uniform deployment
of mobile agents in dynamic rings. SSS, pages 248–263, 2020.

