
Query Processing in Highly Distributed
Environments∗

Akira Kawaguchi1, Nguyen Viet Ha2, Masato Tsuru2, Abbe Mowshowitz1, and
Masahiro Shibata2

Abstract This paper will demonstrate a novel method for consolidating data in
an engineered hypercube network for the purpose of optimizing query processing.
Query processing typically calls for merging data collected from a small subset
of server nodes in a network. This poses the problem of managing efficiently the
exchange of data between processing nodes to complete some relational data opera-
tion. The method developed here is designed to minimize data transfer, measured as
the product of data quantity and network distance, by delegating the processing to
a node that is relatively central to the subset. A hypercube not only supports simple
computation of network distance between nodes, but also allows for identifying a
node to serve as the center for any data consolidation operations. We will show how
the consolidation process can be performed by selecting a subgraph of a complex
network to simplify the selection of a central node and thus facilitate the computa-
tions required. We will also show a prototype implementation of a hypercube using
Software-Defined Networking to support query optimization in a distributed het-
erogeneous database system, making use of network distance information and data
quantity.

1 Introduction

Today, scientists and engineers are building a unique computational infrastructure
and testbed to support large-scale computing and information management that en-
compasses big data, data science, data analytics and visualization research. The
instruments and infrastructure will be used for developing next-generation algo-
rithms and software platforms to support these efforts while allowing precise exper-
imentation with multiple architectural options. As we attempt to solve increasingly

1 Department of Computer Science, City College of New York, NY 10031, USA e-mail:
{akawaguchi, amowshowitz}@ccny.cuny.edu
2 Department of Computer Science and Networks, Kyushu Institute of Technology, Iizuka,
Fukuoka, 820-8502 Japan e-mail: {ha, tsuru, shibata}@cse.kyutech.ac.jp

∗ This material is based upon work supported by the National Science Foundation under Grant
No. 1818884.

1



2 Kawaguchi et al.

complex problems, a combination of computing platforms through effective data
networking is often desirable. A wide range of computing platforms, from tradi-
tional clusters or cloud servers can be connected through the fast, high bandwidth
networks, including 5G. The landscape of network services is becoming increas-
ingly diverse with recent advances in technology, particularly applications of visual
computing and machine learning. This new technology can make dramatic improve-
ments in the management of large urban environments. In edge computing [1, 2],
geographically distributed applications can run throughout the network utilizing the
computing paradigm that relies on user or near-user (network edge) devices to con-
duct required processing. This architecture extends cloud computing with more flex-
ibility than that found in conventional networks by allowing the integration of a
massive number of components and services [35, 34, 30].

The challenges of information management derive in part from the dynamic and
distributed features of operations in such a network. In particular, to exploit fully
computing at the edge it is necessary to take account of the effect of querying on
message traffic in the network. For instance, consider a smart city [18, 10] covered
by e-services and e-resource management using a collection of sensors, communi-
cation devices, and data-processing facilities. The absence of centralized manage-
ment dictates policies designed to maximize the use of edge nodes which typically
have relatively modest storage and processing power. Edge nodes must thus work
together in information processing tasks, and this occasions the movement of data
between nodes. To minimize the message traffic, innovative strategies are required.
One such strategy detailed here is the development of an engineered overlay net-
work structured as a hypercube graph [32, 33, 23]. This strategy was originally
proposed in the International Technology Alliance project [19, 3, 20, 21]. Research
undertaken in that project partially demonstrated the feasibility of using hypercube
routing for query optimization in a Dynamic Distributed Federated Database (the
GAIAN DB) built by IBM-UK [4]. The choice of hypercube allows for determining
the number of inter-node hops by computing the Hamming distance between cor-
responding node labels. This leads naturally to reexamination of distributed query
optimization with a view to minimizing the total network traffic associated with
querying.

Assuming the presence of distributed databases connected by a hypercube net-
work, our simulation study [16] has confirmed a significant theoretical advantage of
a query optimization approach that incorporates inter-node distances into the cost
model. The query plan applied by this cost model would produce much better plans
in terms of the overall network usage for data transmission. Our study also con-
firmed a significant advantage of this cost model in the “peer-to-peer collaboration”
of databases in the network, and compared performance of the greedy algorithm to
that of dynamic programming. The latter gives useful results in the case of a small
number of participating nodes, but computational complexity limits its usefulness
for a large number of nodes. Based on these findings, we will apply practical consid-
erations to develop another approach, a so called “delegation to centrality” model,
to reduce data transmission cost in a scalable way for performing database opera-
tions in the network with a larger number of nodes. A hybrid approach that com-



Query Processing in Highly Distributed Environments 3

bines peer-to-peer collaboration and delegation to centrality is also feasible. This
approach exploits a divide-and-conquer principle such as applying peer-to-peer col-
laboration for small clusters and then gathering results by utilizing delegation to
centrality or vice verse. Therefore, we must take account of the performance dif-
ferences and trade-offs of both approaches. Fine tuning the optimization based on
advanced techniques covered in [8, 15, 31] can be introduced later. A compara-
tive performance analysis needs a systems environment with a typical distributed
database application. To this end, we have developed a relational-oriented but het-
erogeneous database application that runs on a hypercube generated by the Software
Defined Networking. In this paper, we report on these studies to showcase the engi-
neered hypercube as an efficient and practical distributed database tool, and also to
provide preliminary performance data obtained from an experiment.

2 Approach for Distributed Query Optimization

The engineered hypercube allows for determining inter-node distances cheaply, but
query performance is dependent on the number of participating nodes, and the se-
quence of operations required [7, 16, 28]. A key element in our proposed research
is the exploitation of knowledge of the network structure to facilitate optimization.
To characterize this computing situation formally, let us consider a distributed rela-
tional database environment. We can use it to provide consolidated cost estimates for
logical tables, which are in effect fragmented relations, thus decreasing the query-
execution-plan search space. Most importantly, we consider internode network dis-
tances and the role of topology. Since many nodes in a network may rely on batter-
ies and wireless radios, we should like to minimize network information transfer to
maximize network availability and lifetime.

2.1 Problem Definition

How to distribute the date over the nodes in a network could affect the relative ad-
vantage of query optimization. This is especially true when the data is widely spread
over the network. The optimization problem involves finding the most cost efficient
way of performing the actions specified in a query. For the distributed processing
environment, the optimization must take account of the amount of data exchanged
between nodes over the network. First of all, let us define a query Q to be expressed
in the form

Q(R1, . . . ,Rm) = R1 ◦R2 ◦ · · · ◦Rm

where Ri (1 ≤ i ≤ m with m > 2) are relations in a relational database, and the
operator ◦ is a set-oriented operation, either union (∪), intersection (∩), subtraction
(−), or join (./). The query is expressed in standard relational algebra notation —
parentheses may be added to specify explicitly the order of operations. To start with
the most fundamental optimization, we do not nail down the details of select and



4 Kawaguchi et al.

project operations, nor include aggregate operations for Q such as computing an
average and sum of values which will be applied after consolidating all the data in
some way. Furthermore, we do not handle a trivial query so as to dispatch Q to each
database and gather its response to construct a final result. We are most interested in
dealing with a complex decision support or analytic query that mandates shuffling
R1 through Rm over the network. To shed light on such an application, consider the
following examples.

Example 1. Suppose there is a criminal investigation involving sophisticated drug
smuggling into country A from country B. Furthermore, suppose that international
law enforcement can access a relation R1 holding records of recent immigrants from
A, and a relation R2 holding records of recent immigrants from B. The country A
owns R1 while the country B owns R2. Suppose also that law enforcement has ob-
tained records of convictions of their spouses, as a relation R3. A relation R4 holds
records of those who filed customs declarations at country A, and a relation R5
holds records of those who filed customs declarations at country B. Relations R4
and R5 are owned by A and B, respectively. Law enforcement could apply a query
Q(R1, . . . ,R5) = (R1∩R2) ./ R3− (R4∪R5) to identify individuals suspected of be-
ing drug smugglers and thereby prevent criminal acts or to take preventive measures
to enhance security at immigration. The distributed query Q enables the two coun-
tries to obtain information without constructing a shared, centralized database.

Note that the relation instances could be concrete instances or temporary material-
izations resulting from some localized operations at the hosting nodes. Note also
that the schemas of those that appear in the operands of union, intersection, and
subtraction are assumed union-compatible (i.e., having identical structure). These
presuppose availability of a spectrum of optimization methodologies, especially for
select and project relational operations. For instance, selection of date and time win-
dows as well as age ranges for R1 and R2 can be applied for reducing data space prior
to data gathering and consolidation. A sophisticated query optimizer may be able to
parse the query and rewrite it to apply predicate conditions applicable for data se-
lection at each site, thereby reducing the amount of data to exchange for the final
computation.

2.2 Communication-cost in Distributed Query Optimization

For a typical query the total number n of nodes in the network is much larger than
the number m of the data-hosting nodes. The challenge is to find an optimal dis-
tributed execution plan for this m-fold set query such that the plan guarantees the
smallest total amount of data transmission over the n-node network. Specifically,
our approach is to investigate the next two types of optimization paradigm:

Peer-to-peer collaboration: a pair of nodes hosting Ri and R j will communi-
cate and send the instance, either from Ri to R j or vice verse. The sent node will
compute Ri ◦R j and communicate again to combine its result with a partial result



Query Processing in Highly Distributed Environments 5

held by another node in the party of data-hosting nodes. The peer-to-peer collab-
oration will continue until it derives the final result. Deriving the execution plan
relies on the estimate of the result size at each ◦ operation; the estimate cascades
to approximate the size of the next operation. The plan may improve by reflect-
ing the actual result size, but this may be at the expense significant computational
overhead.
Delegation to centrality: a group of m-nodes hosting relations will send their
data instances to a so-called central node that can be reached by the smallest to-
tal distance from the group. The central node will then execute the query using
local optimization for those gathered instances and hold the result. The central
node could be one of the group or a certain node that does not host any relation
at all but has the power to process the query. Similarly, the central node is not
necessarily the node that generated the query. The algorithm will select the cen-
tral node to minimize the overall data transfer with the data server nodes at query
processing.

Fig. 1 Query process on hypercube

The heart of distributed query optimization is to
minimize the overall amount of data transmis-
sion on the network as data has to move over the
network to perform operations. Classic query op-
timization assumes that there is no cost associ-
ated with obtaining knowledge of internode dis-
tances or the overhead of data transmission. One
critical measure of message traffic is the amount
of data to be moved multiplied by the distance
moved [16, 17]. Thus, message traffic associated
with querying can be reduced by minimizing the
product of data size and distance of travel as a net-
work hop count at each operation involving sev-
eral participating nodes in the execution of a query. Our previous study of [22, 16]
showed that better plans could be found with the use of internode distances than
without. The reasoning here is to minimize the bandwidth usage of the entire net-
work system. Reducing the total occupancy of data in the network will mitigate
network congestion and yield faster query response time; the longer the distance
to send data, the higher the occupancy of data in the network and thus the slower
the query response time. This is especially true when the network accommodates a
large number of queries requiring data from different nodes.

Example 2. Consider the processing of a query Q(R1,R2,R3) = R1 ./ R2−R3 on
the hypercube illustrated in Fig. 1. The size of each table is ‖R1‖= 15MB, ‖R2‖=
12MB, and ‖R3‖ = 25MB. If the estimate [9, 14] of the result size ‖R1 ./ R2‖ is
8MB, peer-to-peer collaboration derives an execution plan as (1) send R2 to R1,
compute R1 ./ R2 at R1’s site, and send R3 to R1’s site to compute the final result,
(2) do (1) but send the result of R1 ./ R2 to R3 instead, (3) do (1) but start by sending
R1 to R2, and (4) do (3) but send the result of R1 ./R2 to R3 instead. The transmission
cost is respectively (1) ‖R2‖×2+‖R3‖×3 = 99MB, (2) ‖R2‖×2+‖R1 ./ R2‖×



6 Kawaguchi et al.

3=48MB, (3) ‖R1‖×2+‖R3‖×1= 55MB, (4) ‖R1‖×2+‖R1 ./R2‖×1=23MB.
Therefore, peer-to-peer method will select plan (4).

On the other hand, the delegation to centrality method finds a server node eli-
gible to gather data and process the query. Suppose there are three servers with the
requisite processing capabilities: for R1 to be a center, the total amount of data trans-
fer is ‖R2‖×2+‖R3‖×3 = 99MB. for R2, ‖R1‖×2+‖R3‖×1 = 55MB, for R3,
‖R1‖×3+‖R2‖×1 = 57MB, and therefore R2 should act as a center.

A plan computation for the peer-to-peer collaboration is particularly demanding.
For example, if 3 nodes R1,R2, and R3 are participating in a join R1 ./ R2 ./ R3, it is
necessary to examine 3!/2 sequences of the form due to the commutative property
of join operation to determine which one gives the minimum cost. The evaluation of
Example 2 by adjusting to ((R1−R3) ./ (R2−R3))−R3 for possible optimization
is costly and clearly a brute force approach to solving this problem is of exponential
complexity.

An alternative is to designate a node that is relatively central to those providing
data for the query, and sending all the data to that node to complete the relational
operation [17]. The first step in this delegation procedure is finding the central node.
The simplest way to do this is by means of the Floyd-Warshall algorithm [13, 12], a
dynamic programming approach for finding the shortest paths between every pair of
vertices in the subgraph formed by the nodes involved in the query operation. From
the matrix of shortest distances produced by this algorithm, a central node can be
chosen by comparing the sums of data times distance for each of the nodes in the
subgraph. Floyd-Warshall executes in O(m3) steps where m is the number of nodes
serving as data servers.

3 Delegation to Centrality: Simulation Study

To investigate the effect that a central node exerts on data transmission and network
congestion, we have implemented a simulation utilizing the Python NetworkX [26]
package. A patent [5] filed by IBM-UK for deriving a hypercube center in linear
time does not work for our case because the derived center may not be able to act
as a server. The delegation of work must occur at a node equipped with sufficient
processing power as well as software and hardware that enables it to process queries.
We have developed a new method to find an appropriate center, choosing one of the
m-servers from the n-node network.

3.1 Experimental Method

As illustrated in Fig. 2, the simulator generates an n-node random geometric
graph [27] with a single connected component in which m-nodes representing data
servers are colored red, and the network center (node 39) derived by the Warshall-
Floyd method for the entire network is colored yellow. It then constructs a subgraph
that connects m-nodes and finds a center (node 47) colored here sky blue. Note that



Query Processing in Highly Distributed Environments 7

Fig. 2 Random geometric graph and derived centers

the figure shows a small-scale network with m = 10 and n = 50 for purposes of il-
lustration. While this is a center of the m-node subgraph, it may not be a data server
as the figure indicates. Hence, the simulator reconstructs an m-node subgraph con-
necting only servers by finding pair-wise shortest distances of m-nodes and applying
the Warshall-Floyd method again to find a center. The figure shows the server cen-
ter colored dark blue. We conducted a series of experiments by setting out different
combinations of n and m and different network structures to derive the average total
size (product of data size and network hop count) to observe the growth of data cir-
culating in the network. Specifically, for each combination of n and m, we generated
10 different graphs and for each such graph we generated 10 sets of different data
sending schemes to average the total size of data transmission. In other words, the
measure was derived from 100 simulation experiments.

3.2 Experimental Result

Here we present one result from the experiment set, with the following configura-
tion: n = 500, m = 50, 100, 150, 200, and 250. Data servers are randomly selected
from 1/4 of m nodes, and each will have a data segment whose size (in arbitrary
units) is drawn from a uniform distribution [10, 100]. The following explains the
plot and values in Fig. 3.

(1) The worst (and largest) data amount to be transferred due to the choice of the
most distant node for data processing.



8 Kawaguchi et al.

(2) The data amount to be transferred by choosing a node at random among m-nodes
for data processing.

(3) The data amount to be transferred by selecting the center without the use of data
weights.

(4) The best (and smallest) data amount to be transferred by deriving the center that
minimizes data transfer by the use of data weights.

m (1) worst (2) random (3) fixed (4) best

50 396.04
(184,4%)

257.82
(120.1%)

245.94
(114.5%)

214.76
(100%)

100 774.60
(169.5%)

572.90
(125.3%)

474.08
(103.7%)

457.12
(100%)

150 1,105.10
(164.9%)

861.78
(128.6%)

713.56
(106.5%)

670.30
(100%)

200 1,464.72
(175.3%)

1,032.70
(123.6%)

878.22
(107.5%)

835.52
(100%)

250 1,937.28
(163.0%)

1,477.52
(124.3%)

1,223.00
(102.9%)

1,189.08
(100%)

Fig. 3 Experiment result with n = 500 and m = 50∼ 200

The percentage values in the table are relative to the results in the best cases. The ex-
perimental results shown in Fig. 3 highlights a finding that a network center derived
from an m-node subgraph, not taking account of the amount of data to be trans-
ferred, gives near-optimal performance in every case. The experiments with other
variations produced similar results. This outcome could be due to the relatively high
capacity of the transmission links, which apparently did not allow for distinguishing
transmission times. However, the result we observed could generalize to a network
with a large number of participating servers in which the volume of data to be ex-
changed is reasonably uniform. In this case, the delegation to centrality method
could choose a center from m-nodes based solely on distance considerations, not
making use of information about the amount of data to exchange. Our finding indi-
cates that in principle the investment made in the server located in the fixed center of
m-nodes should be most advantageous if the network structures of the group of data
hosting sites are fairly stable. On the other hand, an unsupervised choice of center,
i.e., random selection, will perform less well requiring about 20% more data being
transmitted.

4 Implementation by Software Design Networking

The objectives of this research are to investigate the performance characteristics of
the above method and to develop and deliver the tools for achieving optimal or semi-
optimal performance of the set-oriented relational algebra operations in data dis-



Query Processing in Highly Distributed Environments 9

tributed environments. The tools will be designed to work in random and engineered
networks as well as in more constrained environments such as low-bandwidth dy-
namic networks established across a set of co-operating organizations. Further re-
search is needed to determine the precise conditions of data distribution that favor
use of such set-oriented operations either prior to or post query operations. The
distributed query optimization in this comprehensive level of work has not been ad-
dressed in the existing literature. Therefore, we believe a successful outcome of our
research will contribute to the solution of an outstanding problem.

4.1 Systems Framework

Our initial approach is to implement an operating systems environment consist-
ing of a set of independent processes serving virtual data hosts. Communication
among these processes can be achieved efficiently by means of a hypercube over-
lay network implemented with commonly available software-defined networking
tools. Distributed applications can be built based on multiple open-source, het-
erogeneous, relational database systems such as MariaDB, PostgreSQL, Firebird,
SQLite3. These databases connect through a network maintained by the Open-
Flow [25] environment and the software-oriented Address Resolution Protocol im-
plemented with Ryu [29] component packages. Portability of the system is ensured
through the use of the Ubuntu 18.04 operating system built with a Mininet [24]
virtual machine.

Our experimental system will create a static hypercube to accommodate a pre-
determined number of nodes, and will activate an overlay structure by accessing a
designated IP address that hosts a specific database system. We have built several

Fig. 4 Distributed data processing application environment

distributed query processing applications designed to gather data from a publicly
available data repository system, namely New York City OpenData [11]. Collections
of interest in this system include records of parking violations, housing litigation,
arrests, complaints, etc. Fig. 4 shows the software structure of our distributed ap-



10 Kawaguchi et al.

plications: the system will (1) erase central server’s common data repository at the
start of query execution, (2) deposit central server’s data segment to the common
repository, (3) communicate with other databases through websocket to access their
data segments and obtain them as Json streams, (4) unpack Json streams and insert
data segments to the common repository each as a database transaction, (5) execute
query as view selections, and (6) report response time spent for steps (1) through
(5).

4.2 Preliminary Performance

A preliminary performance measure has been obtained from one distributed appli-
cation that manipulates ’arrest records’ and ’complaint records’ stored in OpenData.
The two data sets are divided into four databases as shown in Table 1. The queries
retrieve the following: (1) the number of arrests from the three boroughs with the
most complaints (2) the top 10 offenses complained about in boroughs that do not
have the fewest arrests (3) the percentage of arrests per complaint across all bor-
oughs for all racial groups.

The four database are placed in a 16-node (24) hypercube and two sets of ex-
periments were done to measure the data preparation time (steps (1) through (4)
in Fig. 4) and query response time (step (5) in Fig. 4). The response times in Ta-
ble 1 indicate the time spent by each of the four central database to complete the
above three queries. The experiment showed that the insertion time to Firebird was
long compared to other three databases, and that in this kind of light-weight data
congestion there would be no significant difference in the database locations in the
hypercube. Comparison of performance between a hypercube overlay network and

Table 1 OpenData’s record distributions and response time on hypercube

Database Data Period Arrest
Row Count

Complaint
Row Count

Min. Distance
(1 hop away)

Max. Distance
(3 hop away) Query Time

Firebird Jan. – Mar. 44,822 106,111 226.8 sec 226.9 sec 4.3 sec
SQLite3 Apr. – Jun. 29,959 89,075 43.6 sec 46.2 sec 1.2 sec
MariaDB Jun. – Sep. 28,593 107,990 41.3 sec 41.2 sec 1.1 sec

PostgreSQL Oct. – Dec. 37,039 101,253 36.7 sec 38.3 sec 1.3 sec

a set of randomly built networks is underway.

5 Conclusions

We have discussed a novel method for consolidating data in an engineered hy-
percube network for the purpose of optimizing distributed query processing. The
principle approach works at an application layer to minimize data transfer, mea-
sured as the product of data quantity and network distance, by delegating the query
processing to a node that is relatively central to the network. The hypercube fa-



Query Processing in Highly Distributed Environments 11

cilitates computation of the network distance between nodes and the location of a
node to serve as the center for any data consolidation operations. We sketched the
demonstration effort and described a prototype implementation of a hypercube using
Software-Defined Networking to support query optimization in distributed, hetero-
geneous database applications. At the time of writing, we are engaged in measuring
performance and plan to report more results from our ongoing work. We will also
incorporate a two-phase exchange method, adapted from well-known semi-join op-
erations [6] to ensure that data transfer between the central node and data server
nodes will substantially reduce network congestion [17].

Current research on 5G networks shows the need for computational resources
that are neither readily available nor adequate with existing facilities in enterprise
cloud environments. IoT entails a shift to edge computing, making use of urban
datasets coupled with expertise across disciplines to address challenges in urban
environments. We believe that the approach introduced in this paper offers a viable
solution to reduce the congestion due to the high volume of data traffic in emerging
network applications. Additionally, we believe that our approach will prove useful
for collaborative projects that address problems of national importance including
health management, urban informatics, and climate science.

Acknowledgement: Authors of this paper are grateful to students in the Senior
Design courses offered during the academic year 2020–2021 at the City College
of New York. Each of the six teams produced a distributed database application
which runs on the hypercube of 24-nodes and successfully completed performance
experiments to exhibit the result in this paper.

References

1. K. Arabi. Mobile computing opportunities, challenges and technology drivers. In IEEE DAC
2014 Keynote, 2014.

2. K. Arabi. Trends, opportunities and challenges driving architecture and design of next gener-
ation mobile computing and iot devices. In MIT MTL Seminar, 2015.

3. G. Bent, P. Dantressangle, P. Stone, D. Vyvyan, and A. Mowshowitz. Experimental evaluation
of the performance and scalability of a dynamic distributed federated database. In Proceedings
of the Second Annual Conference of ITA, September 2009.

4. G. Bent, P. Dantressangle, D. Vyvyan, A. Mowshowitz, and V. Mitsou. A dynamic distributed
federated database. In Proc. 2nd Ann. Conf. International Technology Alliance, 2008.

5. G. A. Bent, P. Dantressangle, and P. D. Stone. Optimising data transmission in a hypercube
network. Technical report, IBM-UK, 2019.

6. P. A. Bernstein and D.-M. W. Chiu. Using semi-joins to solve relational queries. J. ACM,
28(1):25–40, Jan. 1981.

7. P. A. Bernstein, N. Goodman, E. Wong, C. L. Reeve, and J. B. Rothnie, Jr. Query processing
in a system for distributed databases (sdd-1). ACM Trans. Database Syst., 6(4):602–625, Dec.
1981.

8. L. Bouganim, F. Fabret, C. Mohan, and P. Valduriez. Dynamic query scheduling in data
integration systems. In 16th International Conference on Data Engineering, pages 425–434,
02 2000.

9. S. Chaudhuri. An overview of query optimization in relational systems. In Proceedings of the
seventeenth ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems,
pages 34–43. ACM, 1998.



12 Kawaguchi et al.

10. H. Chourabi, T. Nam, S. Walker, J. R. Gil-Garcia, S. Mellouli, K. Nahon, T. A. Pardo, and
H. J. Scholl. Understanding smart cities: An integrative framework. In 2012 45th Hawaii
International Conference on System Sciences, pages 2289–2297, 2012.

11. City of New York, https://opendata.cityofnewyork.us. NYC OpenData.
12. T. Cormen. Introduction to algorithms, chapter 15. The MIT press, 2 edition, 2001.
13. R. W. Floyd. Algorithm 97: Shortest path. Comm. of ACM, 5(6):345, 1962.
14. H. Garcia-Molina, J. D. Ullman, and J. Widom. Database systems - the complete book (2.

ed.). Pearson Education, 2009.
15. Y. Jiang, D. Taniar, and C. Leung. High performance distributed parallel query processing.

Comput. Syst. Sci. Eng., 16:277–289, 09 2001.
16. A. Kawaguchi, A. Mowshowitz, A. Nagel, A. Toce, G. Bent, P. Stone, and P. Dantressangle.

A model of query performance in dynamic distributed federated databases taking account of
network topology. In Annual Conference of International Technology Alliance in Network and
Information Science (ACITA2012), September 2012.

17. A. Kawaguchi, A. Mowshowitz, and M. Shibata. Semi-operational data reductions for query
processing in highly distributed data environments (extended abstract). In US-Japan Workshop
on Programmable Networking, Kyoto Japan, November 2020.

18. D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac. Internet of things: Vision, applica-
tions and research challenges. Ad Hoc Networks, 10(7):1497–1516, 2012.

19. A. Mowshowitz and G. Bent. Formal properties of distributed database networks. In Annual
Conference of the International Technology Alliance, University of Maryland, 2007.

20. A. Mowshowitz, G. Bent, and P. Dantressangle. Query optimization in a distributed hypercube
database. In Proceedings of the Third Annual Conference of ITA, September 2010.

21. A. Mowshowitz, A. Kawaguchi, A. Toce, A. Nagel, G. Bent, P. Stone, and P. Dantressangle.
Query optimization in a distributed hypercube database. In Proceedings of the Fourth Annual
Conference of ITA, September 2010.

22. A. Mowshowitz, A. Kawaguchi, A. Toce, A. Nagel, G. Bent, P. Stone, and P. Dantressangle.
Query optimization in a distributed hypercube database. In Proceedings of the Fourth Annual
Conference of ITA, 2010.

23. A. Mowshowitz, A. Kawaguchi, and M. Tsuru. Topology as a factor in overlay networks de-
signed to support dynamic systems modeling. In 13th International Conference on Intelligent
Networking and Collaborative Systems (INCoS-2021), in press, 2021.

24. Open Networking Foundation, https://mininet.org. Mininet.
25. Open Networking Foundation, https://opennetworking.org. OpenFlow.
26. N. Organization. Networkx – Network Analysis in Python. https://networkx.org.
27. M. Penrose. Random Geometric graphs. Oxford University Press, 2003.
28. J. Rothnie Jr, P. Bernstein, S. Fox, N. Goodman, M. Hammer, T. Landers, C. Reeve, D. Ship-

man, and E. Wong. Introduction to a system for distributed databases (sdd-1). ACM Transac-
tions on Database Systems (TODS), 5(1):1–17, 1980.

29. Ryu SDN Framework Community, https://ryu-sdn.org. Ryu.
30. T. Saadawi, A. Kawaguchi, M. J. Lee, and A. Mowshowitz. Secure resilient edge cloud de-

signed network (invited). IEICE Trans. on Communications, E103-B(4), April 2020.
31. D. Taniar, C. H. C. Leung, J. W. Rahayu, and S. Goel. High Performance Parallel Database

Processing and Grid Databases. John Wiley & Son, 2008.
32. A. Toce, A. Mowshowitz, A. Kawaguchi, P. Stone, P. Dantressangle, and G. Bent. Hyperd:

Analysis and performance evaluation of a distributed hypercube database databases. In Pro-
ceedings of the Sixth Annual Conference of ITA, 2012.

33. A. Toce, A. Mowshowitz, A. Kawaguchi, P. Stone, P. Dantressangle, and G. Bent. An effi-
cient hypercube labeling schema for dynamic peer-to-peer networks. Journal of Parallel and
Distributed Computing, 102:186 – 198, 2017.

34. S. Yi, C. Li, and Q. Li. A survey of fog computing: concepts, applications and issues. In
Proceedings of the 2015 Workshop on Mobile Big Data, 2015.

35. I. Yildirim. Query operations in highly distributed environment. Master’s thesis, City College
of New York, 2014.


