
Bio-inspired VM Introspection for Securing Collaboration
Platforms

Huseyn Huseynov, Tarek Saadawi and Kenichi Kourai

Abstract As organizations drastically expand their usage of collaborative systems and multi-user appli-
cations during this period of mass remote work, it is crucial to understand and manage the risks that such
platforms may introduce. Improperly or carelessly deployed and configured systems hide security threats
that can impact not only a single organization, but the whole economy. Cloud-based architecture is used in
many collaborative systems, such as audio/video conferencing, collaborative document sharing/editing,
distance learning and others. Therefore, it is important to understand that safety risk can be triggered by
attacks on remote servers and confidential information might be compromised. In this paper, we present
an AI powered application that aims to constantly introspect multiple virtual servers in order to detect
malicious activities based on their anomalous behavior. Once the suspicious process(es) detected, the ap-
plication in real-time notifies system administrator about the potential threat. Developed software is able
to detect user-space based keyloggers, rootkits, process hiding and other intrusion artifacts via agent-less
operation, by operating directly from the host machine. Remote memory introspection means no software
to install, no notice to malware to evacuate or destroy data. Conducted experiments on more than twenty
different types of malicious applications provide evidence of high detection accuracy.

1 Introduction

Collaborative platforms, groupware, or multi-user applications allow groups of users to communicate and
manage common tasks. Many companies, industrial infrastructures, government agencies and universities
rely on such applications periodically. All of these systems contain information and resources with dif-
ferent degrees of sensitivity. The applications deployed in such systems create, manipulate, and provide
access to a variety of protected information and resources.

Balancing the competing goals of collaboration and security is difficult because interaction in collab-
orative systems is targeted towards making people, information, and resources available to all who need
it, whereas information security seeks to ensure the availability, confidentiality, and integrity of these ele-
ments while providing it only to those with proper authorization. Protection of contextual information and

Huseyn Huseynov1, Tarek Saadawi2

Department of Electrical Engineering, City University of New York, City College, New York, NY, United States
hhuseynov@ccny.cuny.edu1, saadawi@ccny.cuny.edu2

Kenichi Kourai
Department of Computer Science and Networks, Kyushu Institute of Technology, Fukuoka, Japan
kourai@ksl.ci.kyutech.ac. jp

1

mailto:hhuseynov@ccny.cuny.edu
mailto:saadawi@ccny.cuny.edu
mailto:kourai@ksl.ci.kyutech.ac.jp

2 Huseyn Huseynov, Tarek Saadawi and Kenichi Kourai

resources in such systems therefore requires a constant automated mechanism that will address necessary
vulnerability points.

Among the several areas of security under consideration for collaborative environments, authorization
or access control is particularly important because such systems may offer open access to local desk-
tops or resources through network. In such environments, some applications can gain privilege to access
text-based chat, audio/video files, shared whiteboard or any other data. Users need a mechanism not only
for identifying collaborators through proper authentication, but to manage files, applications, system pro-
cesses and so forth. Proposed application aims to eliminate these needs for users. In this paper, we present
a single solution to detect malicious applications that tries to surreptitiously gain access to personal files.
This solution provide secure environment by constantly checking servers for the presence of keylog-
gers, rootkits, trojans and other malicious applications using cutting edge artificial immune system (AIS)
based technology [1, 2]. Crucial part of proposed architecture is KVMonitor - the virtualization mod-
ule that collects data (interrupts, system calls, memory writes, network activities, etc.) by introspecting
remote servers [3].

The rest of this paper is organized as follows: Section 2 provides a brief background on security for
collaboration platforms and list of potential threats. Section 3 explains the negative selection algorithm
(NSA) and artificial immune system based IDS. Section 4 describes our proposed end-to-end intrusion
detection approach for cloud based collaboration platforms. Section 5 provides a detailed performance
evaluation of the proposed security approach. Section 6 draws conclusion and discusses future work.

2 Security and Privacy in Collaboration Platforms

Collaboration and communication, hence it is very common for organizations of all sizes to use tools that
facilitate connection between their employees. However, with the advancement in technological collab-
oration platforms, the risk level also goes up. Hence, the people who hold the authority to adopt such
platforms must be aware of some hygiene practices to mitigate risks.

Security in collaboration platforms starts with hardening the security of Virtual Machines deployed
in the cloud servers. For example, with cloud computing, user data is usually stored in the cloud service
providers (CSPs) data centers across the globe, unknown to the user. The security of such data is crucial in
any network environment and even more critical in cloud computing, given the fact that files are constantly
replicated across different geographical zones. Several possibilities of attacks exist in this realm. One of
the most threatening is the insider attack, which also considered as one of the largest threats in this
decentralized cloud computing environment.

The heterogeneity and diversity of the cloud computing environment opens up a series of avenues for
malicious attacks and privacy issues that could constitute a major threat to the entire system. These threats
can be classified from three different perspectives: network, application and virtualization.

• Security threats from a network perspective. Denial of Service (DoS) attack is an age-long threat
in various computing and networking areas. DoS creates an artificial scarcity or lack of online and
network services. It could happen in the form of distributed denial-of-service (DDoS) or wireless jam-
ming and could be launched on both the virtualization and regular network infrastructures. In case of
Software Defined Networks (SDN), DoS attacks have limited scope, as described in [4], DoS attack on
the network edge will affect only the attacked vicinity and not the entire network. Therefore, due to the
autonomous and semi-autonomous nature of edge data centers, the attack might not lead to a complete
disruption of the core network infrastructure. Another known network-based attack technique is Man-
in-the-Middle (MitM), characterized by the presence of a third malicious party interposed between
two or more communication parties and secretly relaying or altering the communication between such
parties. The potency of an MitM attack on mobile networks has been proven in various works and

Bio-inspired VM Introspection for Securing Collaboration Platforms 3

Fig. 1: Network layers in Cloud Computing Infrastructure

literature [5, 6]. Such attacks would be even more threatening for the SDN scenario, considering that
SDN heavily relies on virtualization, hence launching an MitM attack on multiple VMs could very
easily affect all other elements on both sides of the attack.

• Security threats from system and application perspective. Third party applications running in re-
mote servers can pose a fatal security threats by exposing virtual machines to different malicious
applications. When virtualization software such as hypervisor or container engine is attacked, remote
applications can fail and data can be leaked. Interim attacks through manipulated or malware-infected
remote applications or spread of infection to other cloud-based software and data leakage can occur.
Keyloggers, rootkits, spyware, adware, ransomware, worms, trojans and other nefarious threats are
considered as potential risk factors for virtual machines. Exploitation of vulnerabilities in open SDN
systems can occur, also known as hyperjacking, in which a hacker takes control over the hypervisor
that creates the virtual environment within a VM host.

• Security threats from a virtualization perspective. While virtual machines are relatively secure be-
cause they provide a completely isolated computing environment, containers are vulnerable since they
share a single operating system. One of the possible threats in SDN is VM manipulation, which mainly
affects the virtualization infrastructure. The adversary in VM manipulation is mostly a malicious in-
sider with enough privileges or a VM that has escalated privileges. In addition, arbitrary container
access manipulation can lead to a control takeover attack on the container, and there is a possibility of
data manipulation or data leakage through open API vulnerabilities in cloud-based applications.

Proposed work mainly lies on detecting security threats in Virtual Machines within system and ap-
plication perspective. Designed approach employs artificial immune system (AIS) based algorithm for
anomaly detection. One significant feature of the theory immunology is the ability to adapt to changing

4 Huseyn Huseynov, Tarek Saadawi and Kenichi Kourai

environment and dynamically learning. AIS is inspired by the human immune system (HIS), which has
the ability to distinguish internal cells and molecules of the body against diseases [1].

3 Artificial Immune System based Intrusion Detection

Anomaly-based intrusion detection system monitors network traffic and user/system activity for abnormal
behavior. Unlike the signature-based detection method, the anomaly-based IDS can detect both known
and unknown (zero-day) attacks. Hence, it is a better solution than the signature-based detection tech-
nique if its system is well designed [4]. Therefore, efficiency of anomaly-based IDS depends on multiple
requirements such as what kind of algorithms have been deployed, what is the main target, understanding
generated input data, application run-time and so on.

Artificial Immune System (AIS) is a type of ”adaptive systems”, inspired by theoretical immunology
and observed immune functions, principles, and models, which are applied to problem-solving. Immunol-
ogy uses models for understanding the structure and function of the immune system. Simplification of
such biological immune system models can produce AIS models that when applied to determined prob-
lems, could be the basis of artificial immune system algorithms and consequently computer programs
[1]. An important mechanism of the adaptive immune system is the ”self/nonself recognition”. The self-
nonself (SNS) model is an immunology model that has been successfully utilized in AIS in the design
of IDS systems to detect malicious activities and network attacks in a given operating system. Immune
system is able to recognize which cells are its own (self) and which are foreign (nonself); thus, it is able
to build its defense against the attacker instead of self-destructing [2].

3.1 Negative Selection Algorithm

The negative selection algorithm is based on the self-nonself model of the human immune system (HIS).
The first step of the NSA according to Forest et al. [7] involves randomly generating detectors (which is
the AIS’s equivalent of B cell in HIS) in the complementary space (i.e., space which contains no seen self
elements) and then to apply these detectors to classify new (unseen) data as self (no data manipulation)
or nonself (data manipulation). Several variations of NSAs have been proposed after the original version
was introduced (Forest et al., 1994); however, the main features of the original algorithm still remain. The
whole shape-space U is divided into a self set S and a nonself set N with

U = S∪N and S∩N = /0 (1)

There are two steps or phases in NSA, known as detector generation phase and nonself detection phase. In
the first step, a set of detectors is generated by some randomized process that uses a collection of self as the
input. Candidate detectors that match any of the self-samples are eliminated, whereas unmatched ones are
kept [2]. Algorithm 1 shows a pseudocode of a basic negative selection algorithm. At the detector gener-
ation phase, normal profiles (also called self profiles or self samples) which have been extracted from the
training data are used to generate random detectors. Each data instance in the normal profile is obtained
from the data instances captured by the system during periods of normal activity (i.e., during the absence
of any malicious applications). A detector is defined as d = (C,rd), where C = {c1,c2, ...,cm},ci ∈ R, is
an m-dimensional point that corresponds to the center of a unit hyper-sphere with rd ∈R as its unit radius.
For the generic NSA shown in Algorithm 1, rd = rs [8].

Bio-inspired VM Introspection for Securing Collaboration Platforms 5

Algorithm 1 A Generic Negative Selection Algorithm
1: function GENERICNSA(S,Tmax,rs)
2: . Where S - set of normal/self profiles, Tmax - max. number of detectors, rs - matching threshold.
3: D← /0
4: while |D|< Tmax do
5: Generate a random detector (d)
6: if d does not match any element in S then
7: D← D∪d
8: end if
9: end while

10: for All new incoming samples ν ∈ ∪ do
11: if ν matches any element in D then
12: Classify ν as a nonself sample
13: end if
14: end for
15: return D
16: end function

Fig. 2 shows a basic block-diagram of two NSA phases: detector generation process on the left and
nonself detection on the right. Randomly generated candidates that match any self samples are discarded.
The detector generation process is halted when the desired number of detectors is obtained. To deter-
mine if a detector (C,rdi) matches any normal profile, the distance (dValue) between this detector and
its nearest self profile neighbor (Xnormal ,rs) ∈ S is computed, where Xnormal is an m-dimensional point
{x1,x2, ...,xm} and corresponds to the center of a unit hyper-sphere (with rs as its unit radius). Here di is
a random candidate detector with center C and radius rdi.

Random
Candidates Match

Self
Samples

No

Yes

Add to the list
of detectors

Discard

Data Match

List of
Detectors

No

Yes

Normal (Self)

Abnormal
(Nonself)

Fig. 2: Detector generation process on the left and nonself detection on the right.

In the proposed work distance dValue is obtained using Squared (Euclidean) distance, however, de-
pending on architecture, any real valued distance measures can be used (such as Euclidean distance,
Manhattan distance, Chebyshev distance, etc.).

d(c,x) =
m

∑
i=1

(ci− xi)
2 (2)

Process of generating random candidates to cover the nonself space employs Genetic Algorithm. The
self-space consisted of a set S, a subset of [0,1]m; accordingly, a data point was represented as a feature
vector x = (x1,x2, ...,xm) in [0,1]m. At the beginning, an initial population of candidate detectors is gen-
erated at random. Such detectors then mature through an iterative process. In each iteration, the radius of
each detector is calculated as rd = dValue− rs, where rs is the variable distance around a self [1, 2].

6 Huseyn Huseynov, Tarek Saadawi and Kenichi Kourai

4 Proposed Security Approach

The proposed intrusion detection and mitigation approach, the overall architecture of which is depicted in
Fig. 3, provides security in cloud-based networks by automated, intelligent analysis of network flows and
system level forensics, followed by mitigation actions being taken in accordance with the decision of IDS
component. KVMonitor is the crucial part of nonself detection phase and provides an API for translating
a virtual address to a physical one [3]. To introspect a virtual disk with the qcow2 format, KVMonitor
uses network block device (NBD) for QEMU. By doing so, it allocates a real disk space only to used
blocks, therefore saving a disk space. Several conducted experiments confirmed efficiency of memory
introspection using KVMonitor [3].

VM

host operating system

QEMU-KVM

Virtual NIC

Virtual disk

Artificial Immune
System based

IDS

Virtual Machine
Introspection
module KVMonitor

Offload

monitor

Fig. 3: Basic architecture of proposed intrusion detection system.

List of detectors obtained from the detector generation phase is being used in the second phase. During
the nonself detection phase (Fig. 2), KVMonitor constantly introspects multiple VMs and returns raw
feature values to the IDS. Next, the application converts these features into the binary tuples and begins
matching process. If application finds a match for any incoming set of features among the detectors, it
is immediately notifies administrator about potential anomaly. Primary focus is made on the following
features:

• Keyboard Driver: XkbGetState(), XKeysymToString(), XkbRules().
• Memory Usage: system calls Read() and Write(), RssFile(), RssShmem().
• File System: ReadFile and WriteFile, CreateFile, OpenFile.
• Network Flow: Send, Sendto, Sendmsg, TCP socket, UDP socket.

The controller at IDS periodically collects these entries from virtual machines, which are retrieved
by the KVMonitor at regular intervals. Upon retrieval, features are converted into binary tuples for every
flow and algorithm begins matching process. While looping over the flow entries, the incoming features
are immediately sent to the IDS, without waiting to finish creation of other flow entries. One of the main
benefits of AIS based virtual machine introspection is zero load on VM, since IDS operates from the host
operating system.

Bio-inspired VM Introspection for Securing Collaboration Platforms 7

5 Experimental Evaluation

In this section, we provide an experimental evaluation of the proposed security approach using three
different types of Linux based keyloggers taken from the open source software list [9]. The experiments
were conducted on a host machine with Intel Core i5-11400 @2.60GHz processor and 16 GB RAM. The
guest machine was running on Ubuntu 18.04 LTS with allocated 2 GB memory. All malicious applications
listed in the Table 1 have been initially installed into the VM.

In order to demonstrate efficiency of proposed system, we have divided experiments into two parts.
First, after being logged in to the VM, user starts typing short sentences with periodic pauses (≈ 40-
80 characters). The text can be entered into any application (browser, text editor, etc.) running inside
VM (Chart (a)). As part of the second experiment, user types long text making certain pauses between
sentences (≈ 400-1500 characters) using any default text editor (Chart (b)). We measured time for both
scenarios considering fluctuation of several features (keyboard tracking, file access, network flow).

0 60 120 180 240 300 360 420 480 540 600
0

0.2

0.4

0.6

0.8

1

Time [sec]

N
or

m
al

iz
ed

A
PI

C
al

lF
re

qu
en

cy
V

al
ue

s

(a) API calls invoked by Firefox using Logkeys

Keyboard Tracking
File Access
Network

0 60 120 180 240 300 360 420 480 540 600
0

0.2

0.4

0.6

0.8

1

Time [sec]

N
or

m
al

iz
ed

A
PI

C
al

lF
re

qu
en

cy
V

al
ue

s
(b) API calls invoked by gedit using Blueberry

Keyboard Tracking
File Access
Network

Chart (a) shows the result of anomalous fluctuation of the features depicted by our IDS while typing
in the infected VM. The X-axis represents time in seconds and the Y -axis is normalized value of API
call frequencies. The normalized API call frequency values are the total value we get during 10 seconds
divided by the maximum value of the whole period (600 seconds). Chart (b) represents second part of the
experiment, but with a different keylogger. In this case, keylogger triggers networking features by trying
to send captures strokes over the TCP protocol to remote server.

Table 1: Three different types of keyloggers used in this experiment

Logkeys ::: Multi functional GNU/Linux keylogger. Logs all entered keystrokes including function keys [10].

Blueberry ::: Opens a stream to the keyboard event handler and gets every key press. Create logs when the buffer
gets 300 characters and sends it to the remote server over TCP protocol [11].

EKeylogger ::: Sends recorded keystrokes every 10 sec using SMTP protocol [12].

8 Huseyn Huseynov, Tarek Saadawi and Kenichi Kourai

Proposed IDS was able to detect all listed keyloggers within the first 10 seconds of their launch. This
time is allocated as an interval for VM introspection and can be reduced depending on IDS configuration.
Moreover, application efficiently detects other types of malicious applications (trojans, rootkits, adware
and so on) without human interaction. Artificial Immune System based IDS is able to track minor devia-
tions from normal profile triggered by malevolent processes. Conducted experiments on more than twenty
different malicious application demonstrate high detection accuracy and efficient VMI without any user
being engaged. The proposed security approach is promising for achieving real-time, highly accurate de-
tection and mitigation of attacks in cloud-based servers, which will be in widespread use in the 5G and
beyond era.

6 Conclusions

Collaboration solutions have become key to enabling remote work, and if the proper steps are taken to
securely configure and deploy them, the risks they introduce can be mitigated. As these platforms become
used more heavily in regular business, it is increasingly imperative that organizations have threat intelli-
gence feeds in place, and vulnerabilities impacting these platforms are identified and addressed promptly.
In this paper, we provided a distributed solution to secure cloud-based servers for collaboration platforms.
We began by examining and classifying potential vulnerabilities for such systems. Next, we presented Ar-
tificial Immune System algorithm that is used in proposed application. Following by describing overall
IDS architecture and providing experimental evaluation of presented application. Our future work will
include an extension of current introspection by accessing virtual machines remotely. Initial experiments
were successfully conducted to introspect a virtual machine over the GRE tunnel. Continuous tests on
many different malicious applications provide capability to detect large attack surface in a variety of
network structures. We believe that our study helps to introduce a new model for securing collaboration
platforms and provide best practices on issues that has high impact on security and privacy.

References

[1] Obinna Igbe, Tarek Saadawi, and Ilhab Darwish. Digital Immune System for Intrusion Detection on Data Processing
Systems and Networks, March 2020. Patent No. US 10,609,057; Filed June 26, 2017; Issued March 31, 2020.

[2] Dipankar Dasgupta and Fernando Nino. Immunological Computation: Theory and Applications. Auerbach Publica-
tions, USA, 1 edition, 2008.

[3] Kenichi Kourai and Kousuke Nakamura. Efficient VM Introspection in KVM and Performance Comparison with Xen.
In Proceedings of the 2014 IEEE 20th Pacific Rim International Symposium on Dependable Computing, PRDC ’14,
page 192–202, USA, 2014. IEEE Computer Society.

[4] Rodrigo Roman, Javier Lopez, and Masahiro Mambo. Mobile Edge Computing, Fog et al.: A survey and analysis of
security threats and challenges. Future Generation Computer Systems, 78:680–698, 2018.

[5] Ivan Stojmenovic, Sheng Wen, Xinyi Huang, and Hao Luan. An Overview of Fog Computing and Its Security Issues.
Concurrency and Computation: Practice and Experience, 28(10):2991–3005, jul 2016.

[6] Lizhuo Zhang, Weijia Jia, Sheng Wen, and Di Yao. A Man-in-the-Middle Attack on 3G-WLAN Interworking. In
Proceedings of the 2010 International Conference on Communications and Mobile Computing - Volume 01, CMC
’10, page 121–125, USA, 2010. IEEE Computer Society.

[7] Stephanie Forest, Alan Perelson, Lawrence Allen, and Rajesh Cherukuri. Self-Nonself Discrimination in a Computer.
In Proceedings, Research in Security and Privacy, page 202–212, USA, 1994. IEEE Computer Society Symposium.

[8] Obinna Igbe, Ihab Darwish, and Tarek Saadawi. Distributed Network Intrusion Detection Systems: An Artificial
Immune System Approach. In 2016 IEEE First International Conference on Connected Health: Applications, Systems
and Engineering Technologies (CHASE), pages 101–106, 2016.

Bio-inspired VM Introspection for Securing Collaboration Platforms 9

[9] Top Open Source Keylogger Projects https://awesomeopensource.com/projects/keylogger, last ac-
cessed on May 2, 2021.

[10] Logkeys – a GNU/Linux Keylogger. The source code for the index construction and search is available at https:
//github.com/kernc/logkeys. Implemented on C and dual licensed under the terms of either GNU GPLv3
or later, or WTFPLv2 or later, last accessed on June 2, 2021.

[11] Blueberry – Simple Open Source Keylogger for Linux. The source code for the index construction and search is avail-
able at https://github.com/PRDeving/blueberry. Implemented on C and has open license, last accessed
on June 2, 2021.

[12] EKeylogger or simply Keylogger. The source code for the index construction and search is available at https:
//github.com/aydinnyunus/Keylogger. Implemented on Python for the purpose of testing the security of
information systems, last accessed on June 2, 2021.

https://awesomeopensource.com/projects/keylogger
https://github.com/kernc/logkeys
https://github.com/kernc/logkeys
https://github.com/PRDeving/blueberry
https://github.com/aydinnyunus/Keylogger
https://github.com/aydinnyunus/Keylogger

	Bio-inspired VM Introspection for Securing Collaboration Platforms
	Huseyn Huseynov, Tarek Saadawi and Kenichi Kourai
	Introduction
	Security and Privacy in Collaboration Platforms
	Artificial Immune System based Intrusion Detection
	Negative Selection Algorithm

	Proposed Security Approach
	Experimental Evaluation
	Conclusions
	References

