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ABSTRACT 
 
 

An increasing number of wildfire cases every year has caused fear around the world. Scientists 

and researchers agreed that this catastrophe occurred due to climate change. Dry and windy conditions 

had worsened the situation in the affected area. Properties and life losses have created serious concerns 

for the authority to find a solution for preparing and fighting the fire promptly. Since the late ‘70s, 

leveraging satellite technology has brought helpful insight to monitor, detect, and assess wildfire events. 

NOAA AVHRR is one of the oldest Earth Observation (EO) satellites with the main objective of 

detecting and mapping forest fires. The MODIS fire product regularly upgrades the sensor technology 

and launches the satellites into space. However, with the advancement of current technologies, a 

miniaturized satellite called CubeSat creates a novel mission design by reducing the satellite 

development time, increasing the launching batch in a constellation method, and enhancing the 

detection result wildfire. The prime limitations of CubeSat are the size, weight, and power (SWaP), 

which lead to the optimization design of the payload and the communication subsystem. The big image 

data acquired by the CubeSat creates a bottleneck effect between the satellite and the ground station 

due to the low downlink data rate. 

Deep learning (DL) techniques are improving in the computer vision area. Image classification, 

detection, and segmentation are used in neural network architecture designed by artificial intelligence 

researchers. In this study, the convolution neural network (CNN) algorithm was chosen for the pre-

processing onboard CubeSat for wildfire detection as well as for the graphical user interface (GUI) used 

on the ground post-processing. The first and crucial step was to develop a custom dataset for wildfire 

images by leveraging satellite imagery. Defining the specifications of the CubeSat payload to which the 

CNN was implemented could support selecting the accurate resolution and bands for acquiring the 

satellite images. The KITSUNE satellite is a 6-unit CubeSat platform implementing the CNN onboard 

for wildfire image classification. It serves as the secondary mission to support the main mission of a 5-

m class EO. The on-ground testing revealed that the CNN could classify wildfire occurrences on the 

satellite system using the MiniVGGNet network with an overall accuracy of 98 % and an F1-score of 

97% success rate in 137 seconds. Other models were also compared, such as ResNet and 

MiniGoogLeNet implemented on the GUI with 97% and 96% F1-score, respectively. Overall, this 

research showed the feasibility of CubeSat of executing CNN onboard in orbit, particularly for wildfire 

detection. 

Keywords: wildfire, convolution neural network, onboard classification, optical payload, CubeSat. 
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CHAPTER 1 

INTRODUCTION 

 
1.1 Overview 

Natural disasters like wildfire (or forest fire) have become a serious hazard that affects 

most of Earth’s ecosystem. Earth Observation (EO) satellites are being utilized to provide an 

informative picture of wildfire coordinates and size. A miniaturized satellite called CubeSat 

offers an advantage of launching in the constellation method due to the less development cost 

and fast delivery. Daily fire images and a high ground resolution of the CubeSat constellation 

assist the EO traditional satellite services. However, the limitation of CubeSat size creates 

significant challenges to downlinking numerous image data, which leads to a study of pre-

processing onboard CubeSat and post-processing on the ground station. 

 

1.2 Problem statements 

The EO satellites are launched into space in different orbits. Low Earth orbit (LEO), 

sun-synchronous orbit (SSO), and geostationary orbit (GEO) are the locations of active EO 

satellites. The higher the altitude of the satellite, the more challenging it is to capture a small 

fire size (<1 km2), however, it could cover a large area of Earth. The trade-off of this issue 

shows the study of deploying a swarm of EO CubeSats at the LEO that can support the EO 

traditional satellite image data. 

Furthermore, the CubeSat is known for its constraint of the communication subsystem. 

Considering the size, weight, and power (SWaP), the developers have difficulties downloading 

large image data captured by the payload to the ground station. The specification of imaging 

payload could be increased as well as the communication of downlink speed. Another option is 

implementing an algorithm to filter the image data before retrieving it to the users. Therefore, 

the CubeSat operator would only increase the chances of acquiring useful data. 

In addition, machine learning (ML) or deep learning (DL) is an effective method for 

image processing nowadays. This subset of artificial intelligence (AI) could be implemented 

onboard CubeSat. However, the problem is the lack of high-resolution satellite images for 

training the dataset. The open and freely available images are from MODIS (250 m resolution), 

Landsat-8 (30 m resolution), and Sentinel-2 (10 m resolution) that have been used by 

MCD64A1C6, FireCCI51, and BA-Net datasets. Nevertheless, these data are limited and not 

daily images. Therefore, an account should be registered for Doves satellite images of 3-m 

resolution to acquire high-resolution daily data. 
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1.3 Research motivations 

Wildfire cases have been reported every year. The authorities and experts are struggling 

to search for new solutions to overcome this catastrophe. In this study, the first research 

motivation is to help Malaysian authorities fight forest fire events by providing a start-of-art 

solution using CubeSat. The main goal is not only to monitor the occurrences happening in 

Malaysia, but the satellite images could also cover Southeast Asian countries such as Indonesia, 

Singapore, Thailand, and the Philippines. The haze produced by the wildfire repeatedly affects 

the neighbouring countries. Therefore, a constellation of CubeSat is an ideal option to detect 

and monitor across the Asian countries in low-cost development. 

CubeSat under the nanosatellite category is typically classified and considered an 

under-rated imaging mission. The bus system’s limitation creates a boundary for the developers 

to enhance the capability of CubeSat. The second motivation is to expand the potential of the 

CubeSat imaging mission for remote sensing applications. The size and power consumption of 

CubeSat have defined the selection of camera payload. In addition to the hardware design, the 

image processing algorithm onboard design is an innovative method. The software 

development would not affect the limitations of CubeSat, but it would increase the imaging 

mission’s effectiveness. 

The community of computer vision has widely used image processing tasks 

implementing AI. The main benefit of AI is fewer humans operating a particular work. 

Therefore, it could create an AI ecosystem to process satellite images on the ground as well as 

onboard satellites. Large image data captured by the satellite will burden the ground station 

operator to analyze. Hence, deploying the AI methods would considerably boost the work speed 

efficiently. For instance, remote sensing images such as natural disaster monitoring requires 

rapid actions to provide insights for the respected authorities. 

 

1.4 Research objectives 

This research aims to develop a wildfire dataset implementing the deep learning 

classification algorithm onboard CubeSat for fire detection and extend the development of the 

ground station graphical user interface (GUI) as the software for analysis. The convolution 

neural network (CNN) approach was utilized in this study for the pre-and post-processing 

image classification. The CNN pre-trained models could classify any input images as wildfire, 

cloud, land, or sea. 

The main objectives of this research are stated as follows: 

1) To investigate the wildfire problem in remote sensing applications. 

2) To design a robust and high accuracy deep learning technique implemented in 

nanosatellite class. 
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3) To test, troubleshoot, and evaluate the performance of pre and post-processing imagery 

data for nanosatellite application. 

 

1.5 Research scopes 

This study has been defined into several scopes. Firstly, the recorded wildfire events 

are more than 5 hectares worldwide. The database consists of the date, coordinate, burned area, 

cause, suppression cost, and casualty between 2010 and 2020. Smaller fire sizes and the latest 

wildfire event data were used to analyze the accuracy of the classification algorithm. 

Secondly, the images used for the dataset are visible spectrum bands (RGB) only. The 

three channels of daytime images are commonly implemented in the CubeSat imaging payload. 

However, the shortwave infrared (SWIR) range is the recommended spectrum for fire 

monitoring. Due to the limitation of the CubeSat payload, this study focused on leveraging the 

visible bands only for wildfire detection. 

In addition, the deep learning approaches were applied onboard CubeSat as the pre-

processing and on-ground computer as the post-processing. Image recognition is the technique 

applying the CNN network. Furthermore, image segmentation could provide a more valuable 

analysis of the ground segment, but the generated dataset can only work using the chosen 

technique. Thus, the feasibility of the CNN implementation was discussed thoroughly in this 

study. 

Remote sensing has a wide area of applications, including atmosphere, ocean, land, and 

cryosphere. Forest fire in the land application was the main focus of this study. The EO satellites 

are the best tool to detect, monitor, and assess wildfire. Nonetheless, the study aimed to detect 

active fires only. Smokes and red pixels were the keys to classifying wildfire accurately. Hence, 

the colour images could be utilized optimally to run the image classification onboard for this 

land application. 

 

1.6 Research novelty 

The novelty of this research was creating a new dataset consisting of four labels 

utilizing the visible bands and multi-resolution: (1) wildfire, (2) cloud, (3) land, and (4) sea. 

Other researchers have developed the wildfire dataset but are limited to the burned area size 

and particular countries using single satellite imagery. Thus, the unique dataset created in this 

study would benefit the existing datasets available generally for the remote sensing application 

and mainly for wildfires. 

In addition, the pre-trained CNN models using the dataset could reach a significantly 

high accuracy (> 95%) in classifying wildfire images onboard CubeSat in space. The energy 

required to execute the CNN algorithm was tested and verified with the limitation of CubeSat 

specification. Other deep learning techniques have been tested on ground-based applications, 
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but they are not feasible to be implemented onboard due to the computational costs. Searching 

for an optimum CNN model is certainly crucial in implementing onboard CubeSat. 

This study would also improve the amount of valuable image data to be downlinked to 

the ground station. The KITSUNE CubeSat is the platform to analyze the efficiency of the CNN 

implementation. A major issue of launching CubeSat has been identified as downlink speed. 

As the imaging payload increases the performance, the communication speed should also be 

agile. Therefore, the onboard image processing could help filter the data before downloading it 

without upgrading the CubeSat transceiver. 

Lastly, the research believes the CubeSat could help reduce forest fire damage by using 

the CNN approach onboard. Active fire data from space is valuable for the respective authority 

to create an effective plan to reduce the damage and contain the fire. Even though the study is 

limited to visible band data, the CubeSat payload could prove its capability to overcome 

wildfire cases. 

 

1.7 Thesis organization 

This dissertation will be divided into 6 chapters. Chapter 1 discussed the general 

overview of the research, problem statements, motivations, objectives, and scopes. Chapter 2 

focused on the literature review that serves as basic knowledge and background study. Several 

recent studies were reviewed to better understand the most recent developments in Earth 

observation satellites for detecting wildfires by applying deep learning techniques. 

Chapter 3 introduced the KITSUNE project and the development process of camera 

payload implementing convolution neural network onboard satellite. This part will also explain 

the dataset development, training and classification tests, as well as the graphical user interface 

(GUI) development, which were the important aspects of the proposed method in this research. 

Chapter 4 presented the results of the space environment tests, long-duration operational tests, 

training and classification tests. The space environment tests consist of the sun simulator test, 

total ionization dose (TID) radiation test, thermal vacuum test, and vibration test. The 

preliminary in-orbit data was also shown and investigated in this chapter. Since the CubeSat 

was in the initial operation, the flight data was limited to be further investigated. 

Chapter 5 discussed the study results and compared the other studies. Later in this 

chapter, a case study of developing a dedicated 6U CubeSat for wildfire detection was presented 

based on the experience and lessons learn from the KITSUNE project. Chapter 6 summarized 

the research conclusion on the proposed method, contribution to the research community, and 

recommendations for further future works. 
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CHAPTER 2 

RESEARCH BACKGROUND AND LITERATURE REVIEWS 

 

2.1 CubeSats 

2.1.1 History 

CubeSats are cubic-shaped nanosatellite classes extensively developed by 

universities and public agencies. The satellite is normally categorized in mass and 

reflected on unit (U) size, from 1U to 27U. For instance, 1U is 1.33 kg and 10 cm cubic. 

The miniaturized CubeSat was invented by Professor Bob Twiggs (Standford 

University) and Professor Jordi Puig-Suari (California Polytechnic State University) in 

1999. The first CubeSat successfully launched and operated is XI-IV from The 

University of Tokyo. Since 2003, the XI-IV has been orbiting and sending valuable 

data [1,2].  

Currently, more than thousands of CubeSats have been launched into space 

from various identities globally. The main reasons are low production costs and rapid 

development (Fig. 1). ‘Lean concept’ has been introduced in the development of 

CubeSat to enhance its reliability [3]. Practically, the optimum production time should 

be less than two years or could increase the cost. Therefore, the simple design of 

CubeSats showed advantage compared to traditional satellites. 

 
Figure 1. Lean satellites against traditional satellites. [3] 

Furthermore, uncomplicated CubeSats development has established the 

concept of a satellite constellation. For instance, BIRDS projects launched a 

constellation of 1U CubeSat for technology demonstration (Fig. 2) [4], Planet and Spire 

have more than hundreds of CubeSat fleets orbiting Earth for remote sensing 

applications [5,6]. The price of launching a swarm of CubeSats is also reasonable 

compared to a single unit of a big satellite. CubeSats have options to be launched in 

soft or hard methods. The soft launch is when the CubeSats are sent to the International 

Space Station (ISS) and deployed from the payload orbital delivery (POD). The later 
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method is similar to traditional satellites released from the rocket fairing, known as the 

piggyback payload. 

 
Figure 2. BIRDS-1, 2, 3, 4, and 5 projects from multi-nations. 

2.1.2 Type of missions 

Traditional satellites and CubeSats have been developed to have specific 

missions. Remote sensing, communications, education, scientific, and technology 

development are the mission types for CubeSat, which depend on organizations (Fig. 

3). For example, schools and universities commonly choose to go with education and 

technology demonstrations. 

 

Figure 3. Kyutech database of CubeSat mission classification (1 – 10 kg) 

between 2003 and 2020. 

On the other hand, space companies and agencies launch complex 

interplanetary missions. Mars Cube One (MarCO) is the first deep-space CubeSats 

beyond the low Earth orbit (LEO), which launched in 2018 [7]. It consists of two 6U 

CubeSats given mission as a relay data in real-time during InSight landing on Mars. 
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Therefore, the CubeSats show a promising platform for future complicated missions, 

which have been implemented in the traditional satellites. 

Lunar and asteroid CubeSats are other state-of-the-art missions. Most of these 

planned missions used satellite platforms between 6U to 12U. The challenging task is 

to maintain the orbital, which requires a high-precision of attitude and orbit control 

system (AOCS), which 6U platform and above are the feasible options. For instance, 

to support the NASA Artemis program, a 12U CubeSat named CAPSTONE was 

planned to launch to the Moon in June 2022 [8]. Furthermore, LICIACube is a 6U 

CubeSat travelled with a DART satellite and will deploy in September 2022 [9]. Finally, 

when these missions are fully demonstrated, it would confirm the reliability of 

developing CubeSat for any missions similar to the big satellites. 

2.2 Remote sensing satellites 

2.2.1 History 

The term ‘remote sensing’ comes from Evelyn Pruitt in the 1960s. Remote 

means to imply a measurement indirect contact sensor. It is mainly applied to the 

instruments of satellites and aircraft. Since the 1960s, these sensors have been 

miniaturized and fit into small satellite classes. Optical and microwave payloads work 

through the reflection and emission of electromagnetic radiation from Earth. The first 

EO satellite was TIROS (Television and Infrared Observation Satellite), launched by 

the US in April 1960 [10]. The 122 kg of satellite mass was able to record the first TV 

images of Earth from space. 

Remote sensing (RS) satellites, also known as EO satellites, are important 

applications utilized in space after communication and navigation. Without the data 

from RS satellites, scientists could not predict weather conditions such as air pressure, 

temperature, speed, and humidity. Currently, several weather satellites are actively 

monitoring Earth in different orbits. NOAA-15/18/19, 20 and Suomi-NPP satellites are 

in the near-polar orbit, while GEOS satellites are stationed at GEO (Fig. 4). Hence, 

different altitudes complement each of the EO satellites for particular missions. 
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Figure 4. Active weather satellites orbiting in near-polar and geostationary 

orbits. [11] 

2.2.2 Optical imaging sensor 

Generally, optical imaging sensors have been installed as the payload of EO 

satellites. The electromagnetic spectrum of the sensor is within the visible (VIS) and 

the infrared (IR) range. Visible light spectrum wavelength covers the red, green, and 

blue bands (RGB) between 0.4 and 0.7 µm. The advantages of the VIS sensor are the 

high-resolution, small size, lightweight, and reasonable price, which lead to the first 

choice of implementing onboard satellite. However, this wavelength has limitations in 

penetrating the cloud for optimum ground sensing. 

On the other hand, the IR or thermal bands have three different wavelengths:  

short-wavelength infrared (SWIR), medium-wavelength infrared (MWIR), and long-

wavelength infrared (LWIR), which are from 1.3 to 15 µm range (Fig. 5). Compared 

to the VIS sensor, the resolution of IR is considerably low. The size, weight, and power 

consumption are affected due to the requirement of installing a cooling system on the 

IR sensor. It also has the advantage for various remote sensing applications, but the 

cost is quite expensive. 
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Figure 5. Electromagnetic spectrum in wavelength. 

2.2.3 Land applications 

EO satellites are built to detect, monitor, and assess changes on Earth. The 

applications could be divided into atmosphere, ocean, land, and cryosphere. Examples 

of land applications are monitoring vegetation, deforestation, floods, drought, and 

forest fire. Climate change increases disaster cases, particularly wildfires during the 

summer [12-14]. According to the United Nations Environment Programme and 

GRID-Arendal report, wildfires will become 50% more frequent globally by the end of 

the century [15]. Experts have warned the governments to focus on preventing and 

preparedness for wildfires. Therefore, EO satellites are the best tool for providing 

information on this catastrophe. 

The 2020 Food and Agriculture Organization of the United Nations report 

states that Earth is covered by 31% (4.06 billion hectares) of the global land. Most of 

the forest area is in Russia (20.1%), Brazil (12.2%), Canada (8.5%), the USA (7.6%), 

China (5.4%), and Australia (3.3%). The green lands are gradually demolished due to 

unintentional occurrence that burns in grassland or forest. Wildfires (or forest fires) 

have two potential causes, which are natural phenomena or sparked by human actions. 

Lightning and dry weathers, such as drought are the major causes of the catastrophe. 

Over the past two decades, an average of 70,072 wildfires occurred annually in the 

USA, of which 2.8 million hectares were affected [16]. Furthermore, the extreme 

weather events in 2021 have increased the incidence of wildfires around the globe, such 

as in Turkey, Greece, Italy, France, Algeria, Lebanon, Jerusalem, and Siberia, which 

were recorded as the worst in decades in several countries [12-14]. Several studies have 

been conducted and analyzed the wildfire in Brazil forest (2001-2019), Russia, Canada, 

the USA, China, and Australia (2001-2018) [17,18]. Nonetheless, the criminal act of 

arson has been found in most incidents involving extraordinary wildfires. For instance, 

the Siberian wildfire in 2019 was caused by illicit logging that destroyed 31,000 km2 

of the forest area [19]. The consequences of wildfire are on the green forests, 

environments, economic losses, and casualties [12]. Hence, the EO satellite technology 
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has been improved to ensure the authorities can utilize aerial images to prevent 

wildfires from worsening. 

Bird view could bring intelligence of ground variation by utilizing aircraft, 

unmanned aerial vehicles (UAV) and satellites. A study has been conducted to 

determine the merit and demerit of using these platforms [10, 20]. Finally, satellites are 

considered to have more advantages because of (1) large area and coverage, (2) 

frequent and repetitive coverage of area interest, (3) quantitative measurements of 

ground features, (4) relatively low-cost per unit area of coverage, and (5) ability to do 

semiautomated processing and analysis. The debates have been continuously involving 

satellite development and launching costs, but researchers have continued utilizing 

satellite data since the 1960s. 

Historically, one of the oldest EO satellites for forest fire detection, and 

mapping is the NOAA AVHRR. The MODIS fire products began in 1978 with the 

launch of TIROS-N [10]. NOAA has launched the updated payload onboard satellites, 

with NOAA-15, 18, 19, and 20 orbiting Earth. Other space agencies are also sending 

the EO satellites in different orbits. For instance, Himawari-8 (JAXA), Meteosat-8 

(ESA), and GOES-16 (NASA) in the GEO, while Sentinel-2 (ESA) and Landsat-8 

(NASA) in the sun-synchronous orbit (SSO). 

 

2.2.4 Earth observation satellites and CubeSats 

Nowadays, the EO CubeSats have been launched to produce RS data besides 

the traditional EO satellites. Several studies discussed the limitations of these EO 

satellites [21]. The comparisons are on the size, weight, power generation, imaging 

payload type, and fire size detection. The traditional EO satellites win for most 

specifications, except that they only detect the smallest fire size of 2 km using a thermal 

sensor [22]. A constellation of CubeSats, such as Planet’s Doves has the capability to 

capture in-meter fire size utilizing multispectral imaging payload [23]. Therefore, 

combining traditional EO satellites and CubeSats would benefit the authorities in 

acquiring knowledge of fire ecology. The advantages and disadvantages of the 

traditional EO satellites that are actively used for fire detection are summarized in Table 

1. 
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Table 1. List of traditional EO satellite sensors used in fire ecology research. 

 
 

2.3 Machine learning and deep learning 

Deep learning (DL) is a subfield of machine learning (ML) and a subfield of artificial 

intelligence (IA). Both DL and ML are similar in using a classifier between input and output. 

The dissimilarity is the approach where ML applied algorithms of a decision tree, k-nearest 

neighbour (kNN), or random forest (RF). The handcrafted feature extraction algorithms (SIFT 

and SURF) could be included before the ML classifier to increase the accuracy of output 

prediction. However, the DL operates by the feature extraction (edges, corners, and object 

parts) with the classification method. The DL algorithm could learn automatically from the 

training process based on experiences and examples. A dataset was labeled and categorized 

first before the training and validation operations. Increasing the amount of data could 

significantly increase the performance, which is true for the DL and not ML (Fig. 6) [24]. Hence, 

the DL approach overcomes the ML in terms of accuracy. 

 
Figure 6. Deep learning against traditional feature extraction and machine learning. 
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The DL consists of three learning types; supervised, unsupervised, and semi-supervised. 

Supervised learning is teaching the algorithm with the labeled dataset; otherwise, it is 

unsupervised. Learning without a teacher is more challenging as the algorithm randomly learns 

and classifies the output with an unlabeled result. Ultimately, semi-supervised learning is a 

unique approach where the algorithm is taught and self-learning throughout the outcome. Thus, 

the best practice is to start with direct learning, supervised. 

Computer vision's most common deep learning applications include image 

classification, detection, and segmentation. What is in the image? What is there in the image, 

and where is it? Which pixels belong to which object? These are questions related to deep 

learning utilization, respectively. The computer vision for EO satellite image data has been 

analyzed for various applications, especially wildfire images [25]. It could be a pixel depth of 

one (grayscale image) or three (colour image). The number of channels definition is crucial in 

the first step of creating a dataset. 

 

2.3.1 Neural networks (NN) 

Neural networks are the blocks in the DL systems. The architecture, node types, 

and training algorithms would define the network. Neural is an adjective form of 

neuron, and a network presents a graph-like structure. Therefore, an artificial neural 

network (ANN) is defined as a computation system that resembles or inspire by the 

neural connections in human nervous systems. A simple NN architecture could be 

expressed as inputs, hidden layers (weights), and output (figure). Each node in the 

figure performs simple computation, while each connection carries a signal. The hidden 

layers are labeled by weight to indicate whether the signal is amplified or diminished 

from one node to another. Thus, the connection weights are modified using a learning 

algorithm. 

The inputs could be in vectors to systematically present the contents of an 

image, which are the raw pixel intensities of an image in the context of DL. Each input, 

x, is connected to a neuron through a weight vector, W. An activation function, f, could 

be applied by simply taking the weighted sum of inputs to generate output values. The 

most straightforward activation function is the step function implemented by the 

Perceptron algorithm.  

The activation function of sigmoid, hyperbolic tangent (tanh), and rectified 

linear unit (ReLU) are other options in the DL network. The first two activation 

functions have a considerably smooth graph, but the gradients are ruined when the 

neurons become saturated because the delta of the gradient will be severely small. On 

the other hand, ReLu, known as a ramp function, was introduced by Hahnloser et al. 
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[26]. The advantages of the ReLU function are not saturable and exceedingly 

computationally efficient.  

The most familiar NN architecture is the feedforward network. For instance, a 

network has three input nodes; the first hidden layer with two nodes, the second hidden 

layer with three nodes, and the output layer with two nodes, as illustrated in Fig. 7. The 

network only allowed nodes in the first layer to nodes in the second layer without 

backward or inter-layer connections. Each node in the input layer connected to each 

output node is called a fully-connected (FC) layer. Meanwhile, it is called a recurrent 

neural network in the case of feedback connections. Hence, the feedforward network 

is applied in the convolution neural networks (CNN) architecture for simplicity. 

 
Figure 7. Example of 2 hidden layers of neural networks. 

 

Convolution neural networks (CNN) are the most important building blocks in 

image processing that multiply two matrices followed by a sum of the elements. 

Blurring, smoothing, and sharpening an image are several examples of applying 

convolution. Each image pixel is convolved with a kernel, and the output is stored. For 

example, Laplacian or Sobel kernels are used to detect edge-like regions of an image 

[24]. The advantage of employing CNN is that it could overcome the challenge of 

manually hand-define kernels for various image processing operations. 

The building of the CNN blocks consists of an input image that transforms it 

through several hidden layers. Convolutional filters (CONV), nonlinear activation 

functions (ReLU), pooling (POOL), backpropagation, batch normalization (BN), 

dropout (DO), and fully connected (FC) are examples of blocks that could be 

implemented in the CNN model. The CONV layer is the basis of building a CNN block 

comprising several filters K, receptive field size F, stride S, and amount of zero-

padding P, where the output is shown in Equation 1. Later, an activation function like 
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ReLU is used after a CONV layer. The output of an activation layer is regularly similar 

to the input dimension. 

𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 × 𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 × 𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜       (1) 

where, 

𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = ((𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝐹𝐹 + 2𝑃𝑃)/𝑆𝑆) + 1,  

𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = ((𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝐹𝐹 + 2𝑃𝑃)/𝑆𝑆) + 1, 

𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐾𝐾 

The methods to reduce the size of input volume are by implementing CONV 

layers with a stride > 1 and pooling (POOL) layers. The POOL layer has the main 

function of continuously reducing the spatial size of the input, the parameters and 

computation time, as well as controlling the overfitting. The parameters required for 

this layer are F (known as pool size) and S, which gave an output as shown in Equation 

2. 

𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 × 𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 × 𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜       (2) 

where, 

𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = ((𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝐹𝐹)/𝑆𝑆) + 1,  

𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = ((𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝐹𝐹)/𝑆𝑆) + 1, 

𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜𝑝𝑝𝑢𝑢𝑢𝑢 = 𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

Batch normalization (BN) layers significantly decrease the number of epochs 

in the training process and increase the classification accuracy [27]. The placement of 

the BN layer is normally after the nonlinear activation layer. Furthermore, the dropout 

(DO) layer is a regularization form to avoid overfitting by raising the testing accuracy. 

For example, the DO layer is set with probability, p = 0.5, given a result of randomly 

dropping 50% of the connections. To generalize the network, DO will ensure that 

multiple and redundant nodes will remain active in similar inputs. The most common 

placing of the DO layer is between the fully connected (FC) layers. Finally, FC layers 

(one or two) are applied at the end of the network using a softmax classifier. The main 

function of FC layers is to fully connect all activations in the previous layer, which 

shows the final output for each class in probability value.  

Generally, a deeper network is applied due to many labeled training data and 

challenging classification problems. Various network architectures have been 

introduced with considerably high accuracy results. Simple to complex CNN models 

were used in this study to feed with the new dataset created. 

(1) ShallowNet 

As the name represents, the architecture of ShallowNet consists of a few layers 

only. The network was introduced by Adrian Rosebrock, which can be 
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summarized as 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 → 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 → 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 → 𝐹𝐹𝐹𝐹  (Fig. 8) [24]. The 

ShallowNet is a considerably simple CNN model that could achieve 90% 

classification accuracy with low computational cost. 

 
Figure 8. ShallowNet architecture. 

(2) LeNet 

The LeNet architecture was first introduced by Yann LeCun in 1998, mainly 

for optical character recognition (OCR) [28]. The network comprises 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 → 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 → 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 → 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 → 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 → 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 → 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 → 𝐹𝐹𝐹𝐹 →

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 → 𝐹𝐹𝐹𝐹 (Fig. 9). In the current LeNet implementation, the ReLU layers 

were used instead of the original TANH layer. For instance, LeNet could obtain 

98% classification accuracy using the MNIST dataset. Hence, this network was 

considered a ‘shallow’ deep learning model for image classification 

applications. 

 
Figure 9. LeNet architecture. 

(3) MiniVGGNet 

Simonyan and Zisserman created the VGGNet in 2014, with higher depths (16 

and 19 layers) [29]. The smaller and simpler version named MiniVGGNet was 

developed by Adrian Rosebrock, where the network can be summarized as 



24 
 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 → 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 → 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 → 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 → 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 → 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 → 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 →

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 → 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 → 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 → 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 → 𝐹𝐹𝐹𝐹 → 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 → 𝐹𝐹𝐹𝐹 (Fig. 10) [24]. The 

BN and DO layers were also added to the network to decrease the overfitting 

as well as increase the classification accuracy. Overall, this network increases 

in depth compared to ShallowNet and LeNet. 

 
Figure 10. MiniVGGNet architecture. 

(4) AlexNet 

The original work that introduced the AlexNet architecture was Krizhevsky et 

al. in 2012 [30]. The network applies five CONV layers. The architecture 

consists of 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 → 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 → 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 → 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 → 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 → 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 →

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 → 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 → 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 → 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 → 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 → 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 → 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 →

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 → 𝐹𝐹𝐹𝐹 → 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 → 𝐹𝐹𝐹𝐹 → 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 → 𝐹𝐹𝐹𝐹  (Fig. 11). However, the pre-

trained model generated using this network was considerably large. 

 
Figure 11. AlexNet architecture. 
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(5) MiniGoogLeNet 

Szegedy et al. introduced the GoogLeNet architecture to reduce the network 

size while increasing the depth. They also implemented a technique of a 

network in a network (or micro-architecture) for the overall architecture. In 

addition, a simpler version of GoogLeNet named MiniGoogLeNet (also known 

as Miniception) was developed by Chiyuan Zhang in 2017 [31]. The network 

can be summarized as: 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 → 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 → 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 →

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 → 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 → 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 →

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 → 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 → 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 →

𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 → 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 → 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 →

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 → 𝐹𝐹𝐹𝐹 . The inception module merges two CONV layers, while the 

downsample module combines CONV and POOL layers. Therefore, the 

MiniGoggleNet model could obtain more than 95% accuracy with a small 

network size. 

(6) ResNet 

The extremely deep network of CNN is the ResNet, which has more than 50 

layers. The architecture was introduced by He et al. in 2015 and won first place 

in ILSVRC 2015 challenges [32]. They also updated the architecture by 

implementing a new residual module concept, which is substantially deeper 

than the previous network. Finally, this model was the deepest network utilized 

in this study and the memory was limited during the training process. 

 

In addition to the existing DL models, other parameters, such as pre-processors, 

data augmentation, optimizers, learning rate, and loss function are important for the 

model tuning. The image pre-processors could be simply re-sized fixed width and 

height (W x H), mean, patch or crop pre-processing. An optional method is adding the 

data augmentation into the model by shifting the W x H, flipping horizontal/vertical, 

rotational, shear or zoom to achieve higher classification accuracy. Furthermore, the 

available optimizers are stochastic gradient descent (SGD), Momentum, Adam, and 

RMSprop. A study has been conducted to compare the most effective optimizers used 

for image classification, concluding that the optimization method depends on the 

problem [33]. 

Moreover, the learning rate defines the step size. The objectives were to reduce 

overfitting and to obtain higher classification accuracy. The smaller the learning rate, 

the smaller the weight will be updated. Based on the loss and accuracy of the 

training/validation graph, the spikes are related to the learning rate. A learning rate 

scheduler could be implemented in the network to reduce the loss and the training time. 
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Lastly, the loss functions were binary or categorical cross-entropy. In the case of more 

than two labels, categorical cross-entropy was the appropriate option. The function 

determined how well the predicted class labels agreed with the ground-truth labels. The 

higher the level of agreement, the lower the loss, which means increasing the 

classification accuracy. Thus, the main goal was to minimize the loss function. 

 

2.4 Single-board-computer (SBC) 

2.4.1 Commercial-off-the-shelf (COTS) 

Single-board-computer (SBC) or computer-on-module (COM) is a 

miniaturized and compact computer that consists of important embedded components 

such as flash memory, random access memory (RAM), central processing unit (CPU), 

and graphical processing unit (GPU). The tiny computer is available in various 

specifications at a reasonable price. In this study, the SBCs that work with deep 

learning environments mainly have been considered, which is the operating system 

(OS). An open OS is most likely to be selected as it could install the image processing 

libraries. For instance, Linux has been used in multiple onboard spacecraft as well as 

on the launch vehicle processors [34]. Therefore, the availability of source code and 

tools development of the OS with space use heritage is important in choosing the SBC. 

The prominent SBCs for deep learning environments are Raspberry Pi, Nvidia 

Jetson, Beagle bone, Radxa, and Spresense development boards. A market study should 

be conducted to identify the most viable CubeSat platform, considering the limited 

requirements and space environment tolerance. The Nvidia Jetson has an advantage 

over the other SBCs because of GPU availability. An additional accelerator device such 

as Google Coral TPU (Tensor Processing Unit) and Intel Movidius VPU (Vision 

Processing Unit) enables compute-efficient deep learning inference at excellent 

performance but could consume additional power onboard CubeSat. These accelerators 

have space heritage that is optional to integrate with the SBC. Overall, the comparison 

of SBCs is summarized in Table 2. 
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Table 2. List of single-board-computers available for deep learning. 

 
 

2.4.2 Available AI boards for CubeSats 

CubeSat-based companies are offering a readily developed board build-in with an AI 

environment. A Russian private company named SPUTNIX LLC was established in 2011, 

providing cost-effective solutions for microsatellite technology. OBC SXC-MB-04-RPI is a 

product that could integrate with RPi CM3 or CM3+ [35]. The board provides various interfaces 

such as UART, SPI, I2C, USB, and Ethernet. The board size and power consumption are within 

the 1U CubeSat platform. Ultimately, it has a space heritage where the CubeSat developer has 

a high-confident that would work in space. 

On top of that, an AI miniaturized system named S-A1760 Venus was developed by 

Aitech company from the USA [36]. The company was founded in 1983 that provides 

commercial and military embedded computing solutions. The S-A1760 is aluminium shielded 

and integrated with NVIDIA Jetson TX2i that qualified for lower orbit space applications. The 

product provides additional interfaces and a mini SATA SSD for optional requests. The system 

consumed 1.5U space and 8 W power utilization. Overall, the S-A1760 datasheet does not 

mention space heritage but has been tested vigorously in the space environment tests. 

A New Space company based in Poland, KP Labs, has developed a high-performance 

data processing unit for AI applications called Leopard [37]. The company offers several other 

products for space exploration by advancing autonomous spacecraft operations. The Leopard 

is embedded with quad-core ARM A53 and FPGA supporting CAN, LVDS, SPI, UART, and 

Ethernet interfaces. The product is equipped with 16 GB of flash-based data storage and 16 GB 

of RAM. Furthermore, the board fits in the 1U CubeSat, but the power consumption is 

considerably high (7.5 W), which is not feasible for a 1U platform. The Leopard has been used 

for Intuition-1 6U CubeSat, which is planned to be launched at the end of 2022. 
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2.5 AI CubeSats 

The high-performance computing tools have made it difficult for CubeSat makers to 

execute image processing onboard in space. The CP8 IPEX 1U CubeSat was the first AI 

CubeSat that successfully demonstrated machine learning of the random forest (RF) model in 

orbit [38]. The CubeSat was orbiting in LEO from December 2013 to January 2015 with a 

mission to deploy onboard cloud detection. Five units of OV3642 cameras (200 m resolution) 

and a computer-on-module of Gumstix Earth Storm were integrated to classify 4-pixel 

categories (cloud, outer space, haze/limb, and surface). The IPEX had processed over 5000 

images using the onboard classifier, which consumed less than 1 W of power and took about 

29 sec to classify. Several downlinked IPEX images with the classification results were reported 

[38]. Thus, the successful mission by CalPoly and NASA JPL proved the feasibility of ML 

onboard CubeSat. 

  The second CubeSat equipped with AI onboard processing is a constellation of 2 Phi-

Sat-1 6U CubeSat that was launched in September 2020 and is currently orbiting in LEO. The 

ESA mission was equipped with a hyperspectral camera to classify cloud-covered images [39]. 

The CubeSat uses a deep CNN model, which could classify images at about 325 msec. An Intel 

Movidius VPU was integrated to classify images rapidly that consumed about 1.8 W of power. 

The CubeSat managed to capture several images with different cloud types and apply DL 

onboard, giving the probability of cloud-covered on the captured images [39]. Hence, the Phi-

Sat-1 CubeSat enhanced and verified the CubeSat capability of running a complex deep 

learning model onboard. 

  The latest successful AI CubeSat operated in orbit is the RSP-01 1U CubeSat (known 

as Selfie-sh). The CubeSat was developed by a private Japanese company named Rymansat 

that was launched in February 2021 and was deployed from the ISS. The main mission was to 

take a ‘selfie’ with Earth by extending its telescopic arm in space, while CNN's sub-mission of 

conducting image recognition and chatbot function [40]. Removing blur, noise, and sunlight 

were executed automatically using the RPi Zero onboard CubeSat. Overall, the missions were 

well-executed and confirmed the feasibility of CNN onboard the 1U platform. 

Autonomous CubeSat projects have been proposed for future missions. Several AI 

CubeSats are planned to be launched in the end of 2022 such as Ke Ao (1U) [41], QlevEr-Sat 

(2U) [42], Intuition-1 (6U) [43], MANTIS (12U) [44], Hyperion 1 [45], and Skyris [46]. The 

previous successful missions of CP8 IPEX, Phi-Sat-1, and RSP-01 became practical examples 

of how machine learning and deep learning could be implemented onboard CubeSat with 

noticeable limitations. Therefore, the state-of-the-art image processing onboard has been 

verified, and more land applications should be investigated further. 
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CHAPTER 3 

RESEARCH METHODOLOGY 

 
3.1 Overview 

This chapter explains the research methodology for developing the CubeSat platform, 

wildfire database, image dataset, CNN algorithm, and wildfire graphical user interface (GUI). 

The study started with the literature review in Chapter 2, which is important to determine the 

research field and identify the research novelty. Several studies have been published to 

investigate the feasibility of implementing CNN onboard CubeSats, but no such studies applied 

to classifying wildfire images. The components are illustrated in Fig. 12. 

 
Figure 12. Flowchart of the study methods. 

 

3.2 KITSUNE CubeSat 

3.2.1 Overview 

KITSUNE project collaborates between international academic institutions and the 

private sector in Japan: Kyushu Institute of Technology (Kyutech), Harada Seiki Co. Ltd. 

(HSK), and Addnics Corp. The ‘fox’ (in Japanese) utilized a 6U CubeSat platform, where the 

design and development were conducted in Kyutech. The team member comes from 18 multi-

nation who are mostly postgraduate students. Furthermore, the development timeline started in 

September 2019 and deployed from the Japan Aerospace Exploration Agency (JAXA) KIBO 

module to the low Earth orbit (LEO) on 24 March 2022. Currently, the KITSUNE passed the 

initial operation phase, and the missions were executed accordingly. 

 

3.2.2 Missions 

KITSUNE is an acronym of the mission and development objectives; Kyutech 

standardized bus, Imaging Technology System, Utilization of Networking, and Electron 

content measurement. The 6U CubeSat platform comprises a 3U imaging payload, 2U main 
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bus system, and 1U SPATIUM-2 (space precision atomic-clock timing utility mission). Four 

main mission objectives are introduced as follows: 

1) Earth observation with a 5-m-class resolution of visible images 

2) Development of a 2U Kyutech standard bus system 

3) Downlink of a low-resolution 2 MP image from a secondary camera by C-band 

uplink 

4) Demonstration of C-band communication with the main and mobile ground 

station (GS) 

The task management was divided between the collaborators. HSK engineers and the 

Kyutech camera team were responsible for the imaging mission. The Kyutech bus system team 

solely developed the 2U main bus systems. The Addnics engineers and Kyutech 

communication team were in charge of the C-band missions (3 and 4). Amateur radio 

frequencies (UHF and C-band communications) controlled the main bus system. Meanwhile, 

the SPATIUM-2 mission was not discussed in this study as it is out of the research scope. 

The concept behind KITSUNE is to capture artificial coloured patterns or figures 

inside a 100 m2 space for entertainment and social reasons in the early phases of development. 

The main goal is to deliver a 5-m-class imaging service in line with the mission statement. 

The wildfire image classification is incorporated as a secondary goal to optimize the 

usefulness of the image payload. As a result, the following success criteria were developed to 

categorize the mission outcomes: 

1) Minimal success with downlinking an out-of-focus image to the ground 

station 

2) Full success with capturing any letters or characters done by a group of 

people within a 100 x 100 m2 space 

3) Extra success with capturing images with 5-m-class resolution (6 m/pixel) 

and correctly classifying wildfire images 

The payload system requirements were introduced concerning the mission statements 

and objectives. To support the listed system requirements, the design and verification 

requirements are shown in Table 3. 
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Table 3. The camera system, design and verification requirements. 

No System 
requirements Design requirements Verification requirements 

1 Fit inside 3U size 
1) Lens diameter < 90 mm 
2) CCB size ≤ 90 x 90 mm 
3) Full length ≤ 327.5 mm 

Ensure the physical size 

2 Within the weight 
budget Total weight ≤ 7 kg Ensure the mass of the payload 

3 
CCB should 
withstand the space 
and environment 

1) Temperature: -20 to +50°C 
2) Radiation: 200 Gy 
3) Vacuum condition 

1) RPi communicate with OBC, 
camera sensor, and C-band 

2) RPi interfaces work stable 

4 
The camera should 
withstand the space 
environment 

1) Operation temperature: -20 
to +55°C 

2) Vacuum condition 

Ensure the camera takes clear 
photos in the worst hot and 
cold cases 

6 Capture patterns 1) GSD: < 6 m/pixel 
2) Swath: 20 km 

Ensure the payload 
specification 

7 Retrieve good-
quality images 

1) JPG compression > 90% 
2) RGB images of no false 

colours 

1) Images visual check 
2) Retrieval of PNG and JPG 

files 

8 Power 
compatibility Total energy < 10 Wh/ orbit 

1) Payload consumes less than 
total available energy per orbit 

2) Rush current < OCP setting 

9 Prepare images for 
downlink 

1) Store > 5 images in C-
band flash memory 

2) Send thumbnail to OBC 
over UART 

1) Uplink command over UHF 
2) Image transfer to C-band 
3) Ensure the payload is ready 

 
3.2.3 Camera controller board (CCB) design and fabrication 

Kyutech bus system team has developed the bus systems for 1U CubeSat, BIRDS 

project [4]. The 2U main bus systems were developed for KITSUNE CubeSat. Onboard 

computer (OBC), electrical power system (EPS), attitude determination and control system 

(ADCS), and communication system (COM) were well-arranged horizontally on a backplane 

board (BPB) (Fig. 13). The main purpose of integrating the BPB was to avoid failure from the 

harness connections. The OBC of KITSUNE has a pair of PIC microcontrollers that served as 

a command and data handling (C&DH) and communication to transmit the beacon of the 

CubeSat. In addition, the EPS has the important task of supplying sufficient power to the other 

bus systems and payload. It consists of 34 solar cells attached to each axis of the solar board, 

except the -Z-axis and the 14 W (maximum generation) of rechargeable batteries. Furthermore, 

a commercial off-the-shelf (COTS) active control module named MAI-401 was implemented 

in the KITSUNE bus system. The module has reaction wheels and sun sensors integrated and 

connected to a GPS and magnetometer from the other board. The GPS was installed on the 

solar panel, while the magnetometer was connected with a 10 cm harness distance from the 

ADCS module to avoid the electromagnetic noise of the reaction wheels. Finally, the C-band 

and the ultra-high-frequency (UHF) transceivers were installed in the KITSUNE for uplink and 
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downlink purposes. The C-band transceiver was used to downlink the full image data captured 

by the payload, while the UHF sends uplink commands and downlinks the thumbnail images, 

telemetry, and continuous wave (CW) beacon. Therefore, the bus systems are crucial for the 

successful imaging mission as they are related and connected, as shown in Fig. 14. 

 
Figure 13. KITSUNE 2U main bus system configuration (left) and the satellite overview with 

3U imaging payload (right). 

 
Figure 14. KITSUNE main mission subsystem block diagram. 

 

Three important components in the 3U imaging payload were connected to the 2U main 

bus system via a harness. The camera controller board (CCB), camera sensor (CAM), and 

camera lens were well-designed to achieve the mission objectives and requirements (Table 4). 

A Raspberry Pi Compute Module 3+ (RPi CM3+) was installed on CCB, connecting and 

controlling a COTS CMOS camera sensor (31.4 MP). Meanwhile, a 300-mm custom-made 

RICOH lens could capture a full resolution of 6464 x 4852 pixels (Fig. 15). To achieve a 5-m 

resolution, the sensor pixels and optic focal length of this payload have been selected. The 
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ground spatial distance (GSD) could be calculated using Equation 3 to give the results of image 

output resolution and field of view (FOV): 

𝐺𝐺𝐺𝐺𝐺𝐺 = ℎ×tan (𝐹𝐹𝐹𝐹𝑉𝑉𝐻𝐻)
(𝜌𝜌𝐻𝐻 2⁄ )

         (3) 

where ℎ is the satellite’s altitude, FOVH is the field of view for horizontal, and ρH is the pixel 

number of the image sensor for horizontal. 

Table 4. Summary of imaging payload properties. 
Components Details 
Sensor 
Number of pixels 31.4 MP 
Sensor type CMOS 
Shutter method Global shutter 
Shutter speed 30 µs to 10 s 
Interface Ethernet 
Data transmission 
speed 

100 Mbps 

Power supply +12.0 V 
Camera controller board 
Model Customized board with Raspberry Pi Compute Module 3+ 
Operating system GNU/Linux Ubuntu distribution version 18.04 
CPU ARMv8, 1.2 GHz 
Memory 32 GB (eMMc), 1 GB (RAM) 
Image capturing 
speed 

0.42-8.75 frames per second (depending on image resolution) 

Interface Ethernet (sensor), USB (programming, UART (OBC and C-band 
board) 

Power supply +5.0 V 
Optics 
Focal length 300 mm 
Temperature 
control 

Active control and multi-layer insulator 

Heaters Polyimide heaters 
Heater power 
supply 

7.4-8.4 V (unregulated power line) 

Temperature 
sensors 

Radial glass thermistor (G10K3976) 
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Figure 15. KITSUNE imaging payload. 

 

The CCB was embedded with RPi CM3+ to control the CAM sensor through 

100Mbps Ethernet and GPIO power cables. Three temperature sensors and two heaters 

attached to the lens were also connected to the bottom of CCB via harnesses (Fig. 16). The 

codes were saved in the RPi, interfacing with the OBC, C-Band, and ADB subsystems 

through 30-pin cables to the BPB. The parameter that can be set to the CAM sensor is shown 

in Table 5. 

 
Figure 16. Camera Controller Board (CCB) design: (A) Raspberry Pi Compute Module 3+; 

(B) CCB-backplane board; (C) CCB-CAM sensor LAN cable hole; (D) RJ45 connector; (E) 

CCB-CAM sensor power cable hole; (F) temperature sensor connectors; (G) heater 

connectors. 

Table 5. Summary of CAM sensor setting. 
CAM sensor setting Details 

Resolution 6464 x 4852 (full) and 160 x 120 (thumbnails) 

Image format Jpeg and png 

Automatic mode Automatic gain and exposure 

Gain 0-24 dB (analog) and 25-48 dB (digital) 
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Number of images Up to 6 images/cmd 

Compression quality 10 to 100% 

Exposure time 47 µsec to 10 sec 

 

A deep learning environment was installed on the RPi CM3+ with the necessary 

libraries. The operating system of Ubuntu 18.04 (aarch64-linux-gnu) was based on the ARM 

processor, which was matched with the RPi CPU. Due to memory limitation, a memory 

swapping method of ‘zram’ was installed. Other than OpenCV and TensorFlow, associated 

packages were also installed for deep learning development. The 60 steps of installation are 

listed as follows [47,48]: 

1 $ sudo apt-get install zram-config 

2 $ sudo nano /usr/bin/init-zram-swapping 

3 Edit line of ‘mem=$(((totalmem / 2 / ${NRDEVICES}) * 1024 * 5)) 

4 $ sudo reboot 

5 $ sudo apt-get install build-essential cmake gcc g++ git unzip pkg-config 

6 $ sudo apt-get install libjpeg-dev libpng-dev libtiff-dev 

7 $ sudo apt-get install libavcodec-dev libavformat-dev libswscale-dev 

8 $ sudo apt-get install libgtk2.0-dev libcanberra-gtk* 

9 $ sudo apt-get install libxvidcore-dev libx264-dev 

10 $ sudo apt-get install python3-dev python3-numpy python3-pip 

11 $ sudo apt-get install python-dev python-numpy 

12 $ sudo apt-get install libtbb2 libtbb-dev libdc1394-22-dev 

13 $ sudo apt-get install libv4l-dev v4l-utils 

14 $ sudo apt-get install libopenblas-dev libatlas-base-dev libblas-dev 

15 $ sudo apt-get install liblapack-dev gfortran libhdf5-dev 

16 $ sudo apt-get install libprotobuf-dev libgoogle-glog-dev libgflags-dev 

17 $ sudo apt-get install libc-ares-dev libeigen3-dev 

18 $ sudo apt-get install protobuf-compiler 

19 $ sudo wget -O opencv.zip https://github.com/opencv/opencv/archive/4.5.0.zip 

20 $ sudo wget -O opencv_contrib.zip 
https://github.com/opencv/opencv_contrib/archive/4.5.0.zip 

21 $ unzip opencv.zip 

22 $ unzip opencv_contrib.zip 

https://github.com/opencv/opencv/archive/4.5.0.zip
https://github.com/opencv/opencv_contrib/archive/4.5.0.zip
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23 $ mv opencv-4.5.0 opencv 

24 $ mv opencv_contrib-4.5.0 opencv_contrib 

25 $ rm opencv.zip 

26 $ rm opencv_contrib.zip 

27 $ cmake -D CMAKE_BUILD_TYPE=RELEASE \ 
        -D CMAKE_INSTALL_PREFIX=/usr/local \ 
        -D 
OPENCV_EXTRA_MODULES_PATH=~/opencv_contrib/mo
dules \ 
        -D ENABLE_NEON=ON \ 
        -D BUILD_TIFF=ON \ 
        -D WITH_FFMPEG=ON \ 
        -D WITH_GSTREAMER=ON \ 
        -D WITH_TBB=ON \ 
        -D BUILD_TBB=ON \ 
        -D BUILD_TESTS=OFF \ 
        -D WITH_EIGEN=OFF \ 
        -D WITH_V4L=ON \ 
        -D WITH_LIBV4L=ON \ 
        -D WITH_VTK=OFF \ 
        -D OPENCV_ENABLE_NONFREE=ON \ 
        -D INSTALL_C_EXAMPLES=OFF \ 
        -D INSTALL_PYTHON_EXAMPLES=OFF \ 
        -D BUILD_NEW_PYTHON_SUPPORT=ON \ 
        -D BUILD_opencv_python3=TRUE \ 
        -D OPENCV_GENERATE_PKGCONFIG=ON \ 
        -D BUILD_EXAMPLES=OFF .. 

28 $ make -j4 

29 $ sudo make install 

30 $ sudo ldconfig 

31 $ make clean 

32 $ sudo apt-get update 

33 $ sudo /etc/init.d/dphys-swapfile stop 

34 $ sudo apt-get remove --purge dphys-swapfile 

35 $ sudo apt-get install python-pip python3-pip 

36 $ sudo pip uninstall tensorflow 

37 $ sudo pip3 uninstall tensorflow 

38 $ sudo -H pip3 install --upgrade setuptools 

39 $ sudo -H pip3 install numpy==1.19.5 

40 $ sudo -H pip3 install pybind11 
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41 $ sudo -H pip3 install Cython==0.29.21 

42 $ sudo -H pip3 install h5py==2.10.0 

43 $ sudo -H pip3 install gdown 

44 $ gdown 
https://drive.google.com/uc?id=1X2mhbsG1p_RK_rKJrLCwh3cEA0Kwv6Zr 

45 $ sudo -H pip3 install tensorflow-2.4.0-cp36-cp36m-linux_aarch64.whl 

46 $ sudo rm -r /usr/local/lib/libtensorflow* 

47 $ sudo rm -r /usr/local/include/tensorflow 

48 $ sudo apt-get install wget curl libhdf5-dev libc-ares-dev libeigen3-dev 

49 $ sudo apt-get install libatomic1 libatlas-base-dev zip unzip 

50 $ gdown https://drive.google.com/uc?id=1c2-3HYH-
HQdvczmRNKAKE89aPYTHziul 

51 $ sudo tar -C /usr/local -xzf libtensorflow_cp36_64OS_2_4_0.tar.gz 

52 $ sudo pip install opencv-contrib-python 

53 $ sudo pip install scikit-image 

54 $ sudo pip install pillow 

55 $ sudo pip install imutils 

56 $ sudo pip install scikit-learn 

57 $ sudo pip install matplotlib 

58 $ sudo pip install progressbar2 

59 $ sudo pip install beautifulsoup4 

60 $ sudo pip install pandas 

 

The total time of installation could consume more than two hours depending on the 

clock frequency and the availability of the RAM. Finally, the installed libraries should be 

confirmed, as shown below: 

1 $ python3 

2 >>> import tensorflow as tf 

3 >>> tf.__version__ 

4 ‘2.4.0’ 

 
3.3 Wildfire database 

An extensive study has been conducted to collect 715 wildfire cases from 2010 to 2020 

around the world (Fig. 17). The online news, research papers, and fire department reports are 

reliable sources for collecting wildfire details [49-51]. Multiple sources on a particular wildfire 

https://drive.google.com/uc?id=1X2mhbsG1p_RK_rKJrLCwh3cEA0Kwv6Zr
https://drive.google.com/uc?id=1c2-3HYH-HQdvczmRNKAKE89aPYTHziul
https://drive.google.com/uc?id=1c2-3HYH-HQdvczmRNKAKE89aPYTHziul
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event are very helpful in generating a wildfire database, which consists of the dates, locations, 

coordinates, burned areas, causes, suppression costs, and casualties. Other wildfire databases 

are also being referred to and compared, such as the Monitoring Trends in Brun Severity 

(MTBS), National Interagency Fire Center (NIFC), Global Fire Emissions Database (GFED), 

Fire-CCI dataset, and TERN AusCover dataset [52-54]. The dissimilarities are the burned area 

size and only particular regions and countries. As stated in the research scope, the study covered 

global wildfire events with more than 0.05 km2 fire sizes. It is classified into alphabet values 

from A (> 0 km2) to L (> 4046 km2) based on the National Wildfire Coordinating Group 

(NWCG). Most of the wildfire cases recorded are from British Columbia (Canada), California 

(USA), Victoria and New South Wales (Australia). Frequent forest fires with complete wildfire 

reports at these locations make an excellent choice to include in the database. In addition, the 

smallest burned area is 0.05 km2 happened at Gyeongsanbukdo Pohang, South Korea, on 3 

October 2013. Meanwhile, the largest fire that burned 338,000 km2 occurred in many parts of 

Australia between June 2019 and May 2020. The black summer bushfire was the worst 

Australia has recorded and the largest fire of the 21st century [55]. 

 
Figure 17. Wildfire events recorded in the database. 

 

3.4 Dataset development 

Influential criteria to achieve high accuracy of image classification is the solid dataset. 

The dataset could be binary (good or bad) or categorical (multi-labels). For instance, the 

algorithm aims to classify either wildfire image or not, which is easier to create the dataset of 

two labels only. Instead of having binary results, the dataset could be extended into several 

labels. This study mainly intends to classify wildfire images, but other labels such as cloud, 

land, and sea were also included. Therefore, having a 5-m resolution imaging payload on 

CubeSat, a mass of remote sensing applications was applicable to be classified. 
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Since the wildfire database has been developed, the satellite images could be retrieved 

to build a custom-made dataset. Doves (3-m resolution), Sentinel-2 (10-m resolution), Landsat-

8 (30-m resolution), and MODIS (250-m resolution) image data have been downloaded 

accordingly. The images were acquired from the Sentinel Hub EO browser (free registered 

account) as well as the Planet Explorer (the Education and Research Standard registered 

account). The reason for acquiring multi-resolution image data is to have a robust dataset for 

KITSUNE and other CubeSats imaging missions within the resolution range. Furthermore, 

previous studies have shown the capability of utilizing multispectral bands, particularly for 

wildfire applications [18,56,57]. The results were excellent, with considerably high accuracy 

of fire detection. However, the approaches were limited to a particular spectral band of image 

data. In this study, the research scope utilizes the visible 3-band (RGB) images. Hence, only 

the visible data from the listed satellites have been utilized to match the imaging payload of 

KITSUNE. 

 

3.5 Training dataset 

After the dataset has been created, a DL algorithm could be trained properly. The four 

labels in the dataset were manually organized with 1500 images each, which were: (1) wildfire, 

(2) land, (3) cloud, and (4) sea. To compare the training accuracy, the dataset was divided into 

two types, 1000 and 1500 images/label. Furthermore, the configuration of the CNN models was 

defined in the training script. The training was run in Colab, which generated the pre-trained 

model in the ‘.hdf5’ file, classification report, and the confusion matrix. Distinct parameters 

were tuned extensively, which were (1) input pixel, (2) data augmentation, (3) CNN models, 

(4) optimizers, and (5) learning rate, as illustrated in Fig. 18. Moreover, the dataset was split 

into training and testing sets, 75% and 25%, respectively. The process was written in the script 

and ran automatically and efficiently. 

 
Figure 18. The CNN training algorithm pipeline. 
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The first parameter of tuning was the input pixel size. The dataset was pre-processed 

with a simple image resize of fixed width and height: 100 x 100, 128 x 128, and 224 x 224 

pixels. Below the pixel size will reduce the valuable pixel of high-resolution data, while above 

the pixel size was not feasible due to the limited Colab memory. Secondly, data augmentation 

was implemented as it could increase classification accuracy. The method was shifting, flipping, 

rotating, shearing, and zooming the dataset. Despite an optional parameter, the rationale was 

that the satellite would capture the Earth’s surface in different rotations and angles. Thirdly, the 

training dataset fed an ML model and six DL models. K-nearest neighbour (k-NN) was initially 

used to compare ML and DL models. Six CNN models: (1) ShallowNet, (2) LeNet, (3) 

MiniVGGNet, (4) AlexNet, (5) MiniGoogLeNet, and (6) ResNet were selected from low to a 

high number of layers. Finally, the optimizers used were stochastic gradient descent (SGD) and 

ADAM, while the learning rate was set between 0.1 and 0.001. Other researchers have 

suggested these tuning parameters and discussed them in Chapter 2. Furthermore, the loss 

function was only set to the categorical cross-entropy due to four labels in the dataset. The final 

output of these tuning parameters was the pre-trained model in the ‘.hdf5’ file, which was then 

copied into the RPi CM3+ memory for further classification. 

The performance of the CNN models depended on the number of correct and incorrect 

predictions. True positive (TP) referred to the pixels assigned as the target object in the ground 

truth and predicted result. If the pixels were identified as the target object in the prediction only, 

not in the ground truth, they are called false positive (FP). False negative (FN) and true 

negatives (TN) are vice versa from the FP and TP, respectively. These four parameters are 

important to illustrate the confusion matrix and calculate the performance report. Accuracy (A), 

precision (P), recall (R), and F1 score were the evaluation metrics that have been generally used 

to analyze the CNN networks thoroughly. The formula is shown in Equations (4)-(7), 

accordingly. 

𝐴𝐴 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
(𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹)

          (4) 

𝑃𝑃 = 𝑇𝑇𝑇𝑇
(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)

           (5) 

𝑅𝑅 = 𝑇𝑇𝑇𝑇
(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)

           (6) 

𝐹𝐹1 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 2 × 𝑃𝑃 × 𝑅𝑅
𝑃𝑃 + 𝑅𝑅

         (7) 
 

3.6 Classification test 

The image classification test was conducted onboard the CubeSat. The script worked 

given two inputs: the image captured by the payload and the pre-trained CNN models. Separate 

two uplink commands (or schedule commands) have to transmit to the CubeSat for executing 

the classification script. The result was appended to the image captured, which will not damage 
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the image data retrieved on the GS. Nevertheless, it is also possible to downlink the 

classification result by only downloading the end of packet data for swift insight. 

 

3.7 CoFFI graphical user interface (GUI) 

To visualize the image data with analysis results, a graphical user interface (GUI) was 

created, as shown in Fig. 19. PySimpleGUI was chosen as the Python GUI framework. The 

GUI called classification of forest fire imagery (CoFFI) enables loading the raw captured image 

and running the six CNN models. Each model gave a different result in percentage, which 

depends on the accuracy of the pre-trained models. 

 
Figure 19. The CoFFI GUI window. 
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CHAPTER 4 

RESULTS 

 
4.1 Overview 

This chapter shows the research results with descriptive analysis during the space 

environment tests (sun simulator, total ionization dose radiation, thermal vacuum, and vibration 

tests), long-duration operational, training and classification tests, and in-orbit data. 

 

4.2 Space environment tests 

Numerous functional tests (FT) were performed to establish the communications and 

interfaces between each subsystem and the imaging payload. To achieve a reliable result, the 

pre-, during, and post-FT of space environment tests should be conducted similarly to the 

mission satellite operation in orbit. The space environment tests consist of the sun simulator 

test, total ionization dose (TID) radiation test, thermal vacuum test (TVT), and vibration test 

(VT), while the long duration operational test (LDOT) was conducted afterwards. Hence, each 

test was significantly important for a successful mission as the CubeSat will orbit in a harsh 

space environment. 

 

4.2.1  Sun simulator test 

The camera sensor used in the KISUNE imaging payload was a complementary metal-

oxide-semiconductor (CMOS) type. Normally, the sun simulator test is conducted for solar 

panels. However, in this study, the test aimed to study the effects of sunlight on the CAM sensor 

and verify the survival of the sensor facing directly towards the sun. The light intensity used 

for this test was 1367 W/m2, which was measured by the pyranometer, as illustrated in Fig. 20. 

The exposure time was three minutes, increasing at 10-sec intervals. Even though the device 

under test (DUT) was not similar to the KITSUNE CAM sensor in terms of resolution, the pixel 

size, shutter type, and sensor manufacturer were identical. The main reason to use IMX296C 

(1.6 MP) instead of IMX342 (31.4 MP) was that the price is noticeably inexpensive. 
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Figure 20. Sun simulator test setup. 

 

A thermocouple was placed behind the camera sensor to observe the temperature 

change during the sun simulator test. Before the test started, the distance between the sun 

simulator machine and the camera payload was measured using a reading from the pyranometer, 

which was 10 mV. The test procedures are listed as follows: 

1) Take photos of a white background as the pre-functional test 

2) Disconnect the CAM sensor from the RPi CM3+ 

3) Expose the CAM sensor to the sun simulator 

4) Record the temperature reading using the digital multimeter 

5) Turn off the sun simulator machine 

6) Re-connect the CAM sensor to the RPi CM3+ 

7) Take photos of the white background again 

8) Repeat steps 2 to 7 by increasing the exposure time to 10 s. 

The black background was also captured to compare with the white colour. To have 

reliable results, the RGB images captured after exposure were converted to grayscale colour. 

Fig. 21 shows that the standard deviation value changed significantly after the CAM sensor was 

exposed to the sun simulator machine in less than a second, in addition to the temperature 

measured during the test. The intensity of grayscale images was analyzed through the histogram 

chart before, after a second, 180 sec, and six-day test. Fig. 22 shows that the intensity value 

shifted towards the dark region (to the left histogram) at 0.03% only after the CAM sensor was 

exposed to the sun simulator machine for 3 minutes. However, the CAM sensor recovered after 

the sixth day of the test showing the intensity value returned as before. Therefore, the sun 

simulator test verified the functionality of the CAM sensor, which was restored even after being 

exposed to the sun. The performance of the CNN algorithm was not investigated as it was 

unrelated to the test objective. 
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Figure 21. The standard deviation value of pixel number and sensor temperature reading 

during the sun simulator test. 

 
Figure 22. The number of pixels against the intensity before the test (blue), after less than 1 

sec exposed (orange), and after 180 sec exposed (yellow). 

 

4.2.2 Total ionization dose (TID) radiation test 

The total ionization dose (TID) radiation test was the second space environment test. 

In space, the radiated particles would cause catastrophic damage to the electrical components 

of the satellites. Space radiation consists primarily of the ionizing radiation that exists in the 

form of high-energy and charged particles from the trapped radiation, galactic cosmic radiation 

(GCR), and solar particle events (SPE). The primary objective of the TID test was to 

demonstrate that the device under units (DUTs) remains operational and that the interface 

communication was stable in the radiated environment. The DUTs were RPi CM3+, RPi CM4, 

and Radxa Zero. The central processing unit (CPU) and the embedded multimedia card 
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(eMMC) were the vital components that needed to be observed continuously by executing the 

‘flash test’ script. The additional DUTs were tested to acquire a comparison result. Moreover, 

the next objectives were to verify that the DL algorithm for training and classification tests 

could be executed, as well as to measure the power consumption (on RPi CM3+ only) during 

the TID test. The DUTs were directly exposed to a radiation source of Co-60 in the chamber 

facility at the Center for Accelerator and Beam Applied Science, Kyushu University, Japan, as 

shown in Fig. 23. The test consumed six hours, equivalent to 200 Gy simulated for two years 

in LEO. Several tests were also conducted by Toumbas [58] on RPi CM3 and by Slater et al. 

[59] on Jetson Nano GPU. The main differences between this study and previous studies were 

the type of DUTs, radiation source and radiated energy. 

 
Figure 23. The total ionization dose (TID) radiation test setup. 

 

The first objective was established by running a pseudo-random number generator 

named ‘flash test’ code. A known seed was utilized to produce files with equally spread byte 

values. Each file was seeded individually, resulting in files that were all distinct. The same test 

can be performed numerous times, and the test files will be identical each time. During the TID 

test, 75 files were created and compared to the same number of files made on the computer 

earlier. Later, the sha256 algorithm was used to hash each created file. This hash function had 

the benefit of providing a 256-bit result that was noticeably different, even if the change was 

only a single bit. Hash collisions across different files were also improbable, and none have 

been recorded for the sha256 technique. The time taken to create each batch of 15 files differed 

among the three DUTs: 32 min for RPi CM3+, 16 min for RPi CM4, and 17 min for Radxa 

Zero. After all 15 files were generated, a 30 min delay was added for manually running the 

training and classification algorithms. The three DUTs hashes were compared between the 

reference test data (before the TID test), the actual test data, and the post-functionality test data 

on the following TID testing day. The results showed no inconsistency for every 75 files for all 
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three DUTs. Nonetheless, the Radxa Zero found no communication after the flash test5 and did 

not recover until the test ended. Hence, the eMMC of the RPi CM3+ and CM4 could stay 

operationally stable for two years in orbit. 

The important step of the TID test in this study was to observe the performance of 

training and classification algorithms using the ShallowNet model only for simplicity. Both 

scripts ran sequentially after flash test4 and flash test5. RPi CM3+ took 16 min (800 MB of 

memory) for the training test, while 36 sec (497 MB of memory) for the classification test. On 

the other hand, RPi CM4 consumed less time for the training and classification tests: 10 min 

(856 MB of memory) and 13 sec (517 MB of memory), respectively. Radxza zero attained some 

computational data before it failed (at the second training test), which was that 10 min (743 MB 

of memory) for the training test and 17 sec (429 MB of memory) for the classification test. 

Therefore, the memory of DUTs was consumed considerably similar to both execution codes, 

but the processing time was significantly distinctive. The RPi CM4 was the fastest in training 

and classification algorithms compared to RPi CM3+ and Radxa Zero due to considerably 

higher CPU clock speed, as summarized in Table 6. 

Table 6. Summary of test results corresponding to the DUTs. 

 
 

The second objective was verified by measuring the power consumption of RPi CM3+ 

only during the TID test. The flash test script was executed five times and two times for the 

CNN algorithms (training and classification tests) in a second of the time sampling. Fig. 24 

shows the power reading throughout the test corresponding to the total dose exposed to the RPi 

CM3+. However, an anomaly was observed during the test, starting right before the flash test5 

(at 4 h). Based on Fig. X, the RPi CM3+ consumed extra power without running any code. It 

revealed that a single event latch-up occurred at the time of 133 Gy being exposed to the DUT. 

The anomaly was recovered after executing the DL training test2 (at 4 h 55 min) as well as after 

rebooting (soft and hard resets) the RPi CM3+ at the end of the test. The issue was verified by 

observing the memory consumption and comparing the result with the pre-and post-

functionality tests. Overall, the energy and memory consumed by the RPi CM3+ were 
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significantly similar between all functionality tests, about 1 W.h (800 MB) for the training test 

and 0.03 W.h (445 MB) for the classification test. Therefore, the mission design of turning on 

the RPi CM3+ only during the mission execution was acceptable as it could overcome the issue 

when the single event latch-up occurred. 

 
Figure 24. Power consumption of Raspberry Pi Compute Module 3+ during radiation test. 

 

4.2.3 Thermal vacuum test (TVT) 

The thermal vacuum test was conducted to simulate the satellite operation in extreme 

environments, the worst hot and cold in a vacuum condition. The KITSUNE payload has been 

tested in the unit system as well as in the satellite system levels. The objectives were to verify 

the functionality of the imaging payload and the feasibility of executing the CNN algorithms. 

The external solar panel boards of the KITSUNE flight model (FM) experienced two cycles 

between -30 and +50 degrees Celsius. The temperature range was based on the BIRDS project 

[4] and ISO 19683-design qualification and acceptance tests of small spacecraft and units. The 

CubeSat was precisely placed inside the thermal chamber, and a collimator lens was arranged 

at the outer chamber to test the image focus by pointing towards the pattern lens through the 

chamber window. An additional light source was also positioned facing the target lens to have 

a clear image captured during the test, as illustrated in Fig. 25. Hence, the TVT was a crucial 

test for the satellite developer to confidently demonstrate a workable mission in space. 
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Figure 25. The thermal vacuum test setup. 

 

The temperature readings of the camera controller board (CCB), camera sensor (CAM), 

and average external panels were plotted in Fig. 26. The panels’ temperature verified that 

KITSUNE experienced two thermal cycles with a designated temperature range. The results 

also showed that the temperature corresponding to the CCB and CAM, and average external 

panels increased significantly in a short period during the FT of the imaging mission. However, 

during FT 5 and 6, the temperature reading of CCB was raised sharply. The reason was that the 

CNN model was trained for several minutes and correlated with the power consumption of the 

CCB. Thus, FT 5 and 6 were highlighted in this study for the deep learning execution onboard 

CubeSat, while the rest of the FTs were tested for other KITSUNE missions. 

 
Figure 26. The functionality tests (FTs) correspond to the thermal cycles. 

 

The first objective was carried out by executing the imaging mission in each FT point. 

Image focus was analyzed using several normalized focus measure operators: Gradient-based, 

Laplacian-based, wavelet-based, statistic-based, and discrete cosine transform-based. As 

discussed by Pertuz et al., the Gradient-based and Laplacian-based were the best measure 

operator for the image edges [60]. Five operators have been chosen in this study: (1) Gaussian 
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derivative, (2) Tenengrad variance, (3) modified Laplacian, (4) diagonal Laplacian, and (5) 

variance of Laplacian, which were the top in the ranking according to the Sony camera relative 

quality. Ultimately, the diagonal Laplacian operator has been chosen as the significantly 

suitable approach due to the consistency in TVT and VT results. Based on Fig. 27, the highest 

focus measured was at FT4, 100% focus at +12.5 degrees Celsius in vacuum conditions, with 

a number closer to 1.0 indicating better focus. Meanwhile, the FT0 image was the lowest focus 

measure, which was 74.3% at atmospheric room temperature. The camera focus was 

significantly affected by the pressure level (atmospheric or vacuum) and temperature 

differences, as shown in Figure 9, where FT1 (in vacuum condition) was higher in focus 

measured than FT0 (in atmospheric condition), increased by 6.3%. In the same vacuum 

condition, FT2 showed better focus, which increased by 17.8% from the FT1 result because of 

the different lens temperatures measured. Therefore, the KITSUNE FM camera payload could 

have an optimal focus (above 95.0% focus measured) between -1.8 and +12.5 degree Celsius, 

based on the TVT results in the vacuum conditions. 

 
Figure 27. Result of normalized focus measured on the image of the target lens captured 

during each functionality test (FT) with the lens temperature measured during (a) 

FT0*(atmospheric condition), (b) FT1, (c) FT2, (d) FT3 and (e) FT4. 

The TVT was also conducted to verify the feasibility of a deep learning algorithm in 

orbit. The power consumption readings at FT 5 and 6 were plotted: cold soak (blue line) and 

hot soak (orange line, respectively with the vertical dash lines indicating the start and end of 

execution time (Fig. 28). The training test during FT 5 consumed a shorter execution time than 

FT 6, 734 sec (667 MB) and 1664 sec (675 MB), respectively. On the other hand, the 

classification test of FT 5 and 6 took 26 sec (284 MB) and 36 sec (301 MB), respectively. Fig. 
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28 also shows the relationship between the power consumption and the temperature readings 

in KITSUNE FM during the training and classification test execution. The training test 

consumed about 1.12 W.h during the cold and 2.08 W.h during the hot soak environments. The 

CPU performance of RPi CM3+ will be affected during the worst hot condition. Overall, the 

image classification could be feasibly executed due to the shorter computational time, which 

will only be implemented in the KITSUNE mission. 

 
Figure 28. Power consumption of Raspberry Pi Compute Module 3+ (5 V) during the cold 

soak (blue) and hot soak (orange). 

 

4.2.4 Vibration test (VT) 

The last space environment test was the vibration test aimed to imitate the CubeSat 

during the rocket launching. For KITSUNE, the acceleration profile used was the Orbital 

Cygnus vehicle as planned during the development process. Three-axis were tested in the 

qualification test (QT) level using 5.77 Grms of random vibration for 120 seconds. To verify 

that the camera payload was in good shape, two methods were conducted by inspecting the lens 

and comparing the images captured between the pre-and post-functionality tests. Each axis 

change should be examined carefully for cracks or shifted screws (Fig. 29). A similar method 

was also used to check the focus changes on the captured images between pre-FT, after YZ-

axis FT, and post-FT. The result showed no significant changed in the image focus of about ± 

3%. Moreover, the CCB was working well without any errors with the communication interface. 

Overall, the VT was necessary for the successful mission and the safety of the launch vehicle. 
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Figure 29. Vibration test on KITSUNE flight model at Z-axis (left) and lens and screws 

checked (right). 

 

4.3 Long duration operational test (LDOT) 

After the space environment tests were completed, the long-duration operational test 

(LDOT) was carried out. The LDOT was significantly important to validate the software design 

of the camera payload as well as the DL algorithm. Each mission scenario was executed with 

multiple uplink commands to the CubeSat in real wireless UHF and C-band communications. 

The KITSUNE FM was stationed in the clean room with the ground station radio and terminal 

node controller (TNC). Meanwhile, a serial cable was only connected to the CubeSat for 

monitoring and debugging purposes, as shown in Fig. 30. The test was conducted over several 

days to find software bugs and resolve them. The important point was to estimate the accurate 

timing of mission execution. The leading question was to verify whether the camera mission 

and DL algorithm could be executed sequentially in a pass window or later pass. In addition, 

the power consumption during the LDOT was observed and plotted for four passes of 

KITSUNE in orbit. The CubeSat was also connected to a power supply where battery charging 

and discharging conditions were programmed to demonstrate the mission feasibility. 

 
Figure 30. The long-duration operational test of the KITSUNE flight model in the clean room. 
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The entire imaging mission was demonstrated in four passes. The initial pass was 

programmed to take six photos at the desired time and coordinate. The ADCS was also set to 

the nadir-pointing mode an hour before the camera sensor was turned on. Fig. 31a shows that 

the power consumption during the first pass consists of image capturing and copying the data 

to the OBC shared flash memory. The 12 V power line (blue line) was designated for the camera 

sensor, the CCB used the 5 V line (orange line), and the overall power (yellow line), which 

indicated the total consumption, including from the main bus subsystems. The result showed 

that 2.90 Wh of the overall energy was consumed at this pass. In addition, the CCB was 

programmed to convert the PNG images into JPG format files as well as to generate the 

thumbnails. Furthermore, the mission scenario was to downlink the thumbnails through UHF 

communication before retrieving the complete targeted PNG/JPG image data via the C-band, 

conducted in the second pass. Referring to Fig. 31b, the commands were sent as follows: 

1) Uplink command to get the last address of image data through UHF (green line) at 104 

sec 

2) Downlink six thumbnails through UHF between 160 and 192 sec 

3) Downlink complete JPG data through C-band in real-time (red line) between 507 and 

637 sec 

4) Downlink corresponding ADCS housekeeping data from the C-band between 770 and 

845 sec 

5) Finally, copy the PNG image to the C-band flash memory between 924 and 2087 sec 

The overall energy consumed during the second pass was 2.81 Wh. Moreover, the third 

pass showed the downlink of the PNG image data from the C-band flash memory (Fig. 31c). 

The short peak at the 39th second was due to the uplink command. Overall, the total energy 

consumed for the 512-sec mission was 2.33 Wh within the KITSUNE power generation. 

 
Figure 31a. Power consumption of KITSUNE camera capture mission (first pass). 
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Figure 31b. Power consumption of KITSUNE downlink JPG image (second pass). 

 

 
Figure 31c. Power consumption of KITSUNE downlink PNG image (third pass). 

 

The final pass was scheduled for the deep learning algorithm execution. The wildfire 

classification script was tested using the pre-trained CNN models saved onboard KITSUNE: 

ShallowNet, LeNet, and MiniVGGNet. The objective of this pass was to identify which models 

are applicable and correctly classify the images captured by the imaging payload. Fig. 32 

showed the complete DL execution cycle, from classifying images to saving the classified data 

into the C-band flash memory. The algorithm was executed five times using different CNN 

models and image combinations at the first 1142 sec. Six short peaks of 7 W unregulated 

power1 were observed due to the uplink command for this purpose. The result showed that the 

algorithm took about 137 sec to classify each image and consumed about 680 MB of RPi CM3+ 

memory, referring to the 5 V orange line. At the end of the test, the RPi CM3+ and C-band 

transceiver was turned on for transferring classified image data between the flash memories. In 

addition, the final classification results were appended to the image data for analysis at the GS. 
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Ultimately, the four passes verified the operation of the imaging mission and the demonstration 

of executing a DL-classification onboard KITSUNE, as summarized in Table 7. 

 
Figure 32. Power consumption of KITSUNE deep-learning execution (fourth pass). 

 

Table 7. Summary of mission execution in four passes during the long duration operational test 
(“x” means turn on and “-” means turn off). 

 
 

4.4 Training and classification test 

The wildfire dataset was trained using Google Colab Pro. It allows researchers to write 

and execute deep learning algorithms through the browser with faster GPUs. However, the 

Colab has memory limitations when executing a higher CNN layer with large input sizes such 

as ResNet 224 x 224 pixels. Other CNN models that have been used in this study were well-

suited using the Colab environment. The models were thoroughly trained with multiple 

parameters, including the input pixel size. Table 8 shows the summarized training result of the 

CNN models in the percentage of overall accuracy (OA) and F1-score of wildfire. The highest 

results corresponding to the CNN models were plotted in Fig. 33. The top three OA of the pre-

trained CNN models were ResNet (RN) with 99%, MiniVGGNet (MVGGN), and 

MiniGoogLeNet (MGLN) with a similar 98%. The F1-score of wildfire also showed the highest 
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for RN, MVGGN, and MGLN with 97%. However, only MVGGN were implemented into the 

KITSUNE with ShallowNet (SN) and LeNet (LN) due to the medium range of computational 

costs for the RPi CM3+. The six pre-trained models implemented the CoFFI GUI for the post-

processing image downlink. Several studies have shown that applying a Deep Neural Network 

for cloud detection could achieve 92% accuracy, while CNN for binary classification could 

obtain 90% accuracy [39]. Therefore, the main contributions of this study were the custom-

made training dataset and the parameter tuning of the neural network. 

Table 8. Summary of training CNN models with different input pixel sizes: overall accuracy 
(F1 score of wildfire) [model size]. 

 

 
Figure 33. Comparison of ShallowNet (SN), LeNet (LN), MiniVGGNet (MVGGN), AlexNet 

(AN), MiniGoogLeNet (MGLN), and ResNet (RN) models in overall accuracy and F1 score 

of wildfire results. 

 

In addition, the training loss and accuracy were plotted to correlate with the top three 

pre-trained CNN models in 100 epochs (Fig. 34). ResNet achieved 90% training accuracy at 

epoch six and less than 50% of training loss at epoch 70. Notably, these top three CNN models 
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were trained at different learning rates to gain the highest accuracy possible, 0.05 for MVGGN, 

whereas it was 0.005 for RN and MGLN. On the other hand, other parameters such as input 

pixel size and type of optimizers were trained to identify whether they would increase the F1 

scores of the CNN models. Fig. 35 shows the differentiation results on the ResNet pre-trained 

model. The result verified that increasing the input pixel size and dataset would not increase 

the scores, while the best optimizer implemented on the dataset was the Stochastic Gradient 

Descent (SGD) combined with the data augmentation of rotation, zoom, shift, and flip the 

images. Therefore, the optimum combination of the ResNet model parameter was 128 x 128 

pixels, SGD, and augmented the dataset. 

 
Figure 34. Training loss and accuracy of MiniVGGNet (MVGGN), MiniGoogLeNet 

(MGLN), and ResNet (RN) models. 

 
Figure 35. F1 score of wildfire results using ResNet model with different input pixel sizes and 

optimizer types (“1” and “2” indicate the learning rate of 0.005 and 0.05, respectively). 
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The confusion matrix and classification report were calculated and tabulated as 

standard techniques to verify the accuracy of CNN models. Similar analysis methods were also 

conducted to test the dataset concerning the CNN or ML classifiers [61-63]. The results were 

generated using the scikit-learn library included in the python script (Table 9). The gray color 

shows the true positive (TP) with and without the normalized values, respective to the four 

labels. The confusion matrix shows that the top three CNN models were chosen based on the 

small number of false-positive (FP) and false-negative (FN) results: 0 and 14 for MiniVGGNet, 

5 and 9 for MiniGoogLeNet, and 3 and 10 for ResNet, respectively (Fig. 36). Therefore, the 

ResNet pre-trained model was considered the best CNN network compared to MiniVGGNet 

and MiniGoogLeNet, with minor type 1 errors (FP) and type 2 errors (FN). 

Table 9. Confusion matrix of MiniVGGNet, MiniGoogLeNet, and ResNet (gray color means 
the TP value). 

 
 

 
Figure 36. The true positive, true negative, false positive, and false-negative results 

correspond to the CNN models. 
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The CNN models also tested several unprocessed images with the classification script. 

The wildfire images were retrieved from the Doves, Sentinel-2, and Landsat-8 satellites. They 

were captured during the Kincade-Maria fire in the USA in October 2019 and the Turkey 

wildfire in July 2021 (Fig. 37). The results showed the correct and incorrect classification by 

implementing the pre-trained ResNet model. Most of the images from the Sentinel-2 and 

Landsat-8 were able to predict correctly, while fewer were from the Doves images. Even though 

the dataset was extensively trained using multi-resolution images, positive classification 

remained challenging, especially for the high-resolution images. The clouds were commonly 

characterized as misclassified outcomes. Therefore, the result could be improved if a visible 

and infrared camera payload were implemented and multi-band images were added to the 

dataset. Nevertheless, in this study, wildfire-detection processing onboard the CubeSat was 

verified using a visible dataset, with the best CNN model being ResNet, MiniVGGNet, and 

MiniGoogLeNet. 

 
Figure 37. Classification test results using the pre-trained ResNet model: (a) correct; (b) 

incorrect predictions. 

 

In the last experiment, a computational cost study was also conducted. Energy 

consumption, computational memory, and model size will impact the CubeSat mission design 

and operation. Because of the CubeSat constraints, training or re-training a CNN model 

onboard was challenging and nearly impossible (without the accelerator). However, loading the 

pre-trained CNN model for classifying images onboard was likely feasible based on the results 

shown in Fig. 38. The model size was not a serious issue to be implemented in the RPi CM3+ 

due to the large flash memory storage, such as for the LeNet model. It was also not affecting 

the energy consumption and computational memory. Moreover, the CNN classification results 
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indicate that the computational cost was practical because the energy required was below 100 

mWh. However, for the safety and smooth KITSUNE operation, only the first three models 

were implemented (ShallowNet, LeNet, and MiniVGGNet). The RN model showed the highest 

energy consumption but was the smallest model size due to the very depth convolution layers 

with impressive performance. Overall, the state-of-art of CNN networks has a higher accuracy 

with great depth in a small-sized generated model. 

 
Figure 38. Result of energy consumption, computational memory, and model size for 

ShallowNet (SN), LeNet (LN), MiniVGGNet (MVGGN), AlexNet (AN), MiniGoogLeNet 

(MGLN), and ResNet (RN). 

 

4.5 KITSUNE in-orbit data 

To date, the KITSUNE is in the progress of completing the initial phase of operation. 

The main camera mission has been executed with several thumbnail data downloaded. However, 

only two full JPG images were able to be retrieved through the C-band GS (Fig. 39). The details 

of the image captured are as follows: 

1) Image ID: 28 and 150 

2) Date and time captured (JST): 10 May 2022 (07:18 AM) and 24 June 2022 (20:06 PM) 

3) Location: Hubei (China) and Barcelona (Spain) 

4) Size: 2.22 MB and 2.23 MB 

5) Exposure time: 256 µsec and 70 µsec 

6) Gain: 22 dB and 24 dB 
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(a) 

 
(b) 

Figure 39. The full JPG images downlinked by KITSUNE (a) image 28 and (b) image 150. 

 

In addition, the image was also tested and classified using the CoFFI GUI on the ground 

computer. Table 10 shows prediction results in percentage applying six CNN pre-trained 

models. Most networks classified the image as land, while ShallowNet and LeNet were 

classified as wildfire images. However, the ground truth of the image consists of clouds and 

land. The results also showed that MiniVGGNet, AlexNet, MiniGoogLeNet, and ResNet could 

classify KITSUNE images correctly with a confidence level of more than 94%. Therefore, the 
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models half correctly predicted the image, however, more full JPG images should be 

downloaded to verify the accuracy of the CNN models. 

 

Table 10. Summary of prediction results using the CoFFI GUI in different CNN models (gray 
color means the highest prediction) (ID 28 is image 28 and ID 150 is image 150). 
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CHAPTER 5 

DISCUSSION 

 
5.1 Additional discussion 

An advanced camera sensor with more than multispectral (MS) is called a hyperspectral 

(HS) imager, which is widely available on a miniaturized scale. The hyper bands of a sensor in 

a unit are significantly helpful for land applications. An AI-based integrated with HS payload 

is considered challenging regarding processing power onboard a CubeSat. Moreover, the 

downlink capabilities of CubeSat could be another challenge in addition to the power 

generation from the solar panels per orbit. Danielsen et al. [63] showed how much power was 

consumed for the onboard processing of HYPSO-1 integrated with an HS imaging payload. 

The mission utilized the Self-Organizing Maps (SOMs) on sea scenes with an overall accuracy 

of above 90%, which took 380 sec to execute. Therefore, the accuracy and computational time 

could be improved by implementing a CNN model, as the results shown in this study for 

wildfire image classification reached 99% accuracy using the energy of 87.05 mWh. It also 

indicates that the computational costs could significantly affect the ML or DL implementation 

onboard CubeSat. 

The PhiSat-1 6U CubeSat has also demonstrated the Deep Neural Network (DNN) for 

cloud detection using an HS imager. The test set achieved a 92% accuracy with a 1% FP using 

the dataset acquired from Sentinel-2. As a result, the CNN-based algorithm consumed only 0.16 

mWh of energy because of the support by the integrated Myriad 2 VPU onboard PhiSat-1. 

Nevertheless, in this study, the MiniVGGNet model implemented onboard KITSUNE 

demonstrated a 98% accuracy, 0% FP, and consumed 0.10 Wh of energy without the accelerator 

installed. It could be claimed that the significant difference was in the power consumption 

measured from the RPi CM3+ turning on, the DL execution, and then shutting it off. The RPi 

CM3+ was designed not to be turned on constantly to prevent the SEL anomaly that was noticed 

during the TID ground test. However, the RPi CM3+ consumed only 56.56 mWh when it was 

always turned on. The other half of mWh was from the energy use of turning the RPi CM3+ on 

and off. The power could be lowered in the same manner if the CNN libraries were initialized 

and maintained during the CubeSat operation. 

Furthermore, the deep learning networks were frequently implemented on the ground-

based computer without resource limitations. The reasons and methods of processing image 

downloaded from the satellite has been discussed by Chen et al. [64]. Generally, the significant 

issue was comparing the traditional satellite and CubeSat regarding limited power and downlink 

capability. The state-of-the-art computer vision implemented onboard CubeSat mainly trained 

the satellite processor to classify the image before downloading the data. Larger satellites do 
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not argue to downlink a giga-byte of image data due to high-speed downlink communication. 

Nevertheless, the image classification onboard in this study has created an advantage for the 

nanosatellite class and was complementary to the low latency of downlink. Hence, the 

computational cost and power challenges could be improved in the mission plan strategy. 

Moreover, the learning or re-training capability should be implemented to create an 

efficient and autonomous AI-based processor. The new images captured by the CubeSat 

payload can be extensively utilized to update the default dataset and increase the accuracy of 

the CNN models. In this study, the KITSUNE design was tested and showed promising results 

for re-training, but several issues were raised. The critical question would be regarding how 

much confidence there can be that the images captured are correctly classified and sorted 

according to the label for the re-training process. Human involvement is highly necessary for 

the training process of the CNN algorithm. At the end of this study, the image classification 

was only implemented onboard KITSUNE to reduce the risk of operation failure. However, a 

different approach was discussed by Mikuriya et al. [65], where the updated classifier will be 

shared between the CubeSat and ground learning. The concept was appealing, but the method 

would burden the uplink communication to the CubeSat, where most of the CubeSat fails to 

establish the communication link. 

Despite testing only six CNN networks, other models have not been initialized yet with 

the wildfire dataset, such as Inception, Deeper-GooogLeNet, DenseNet, and U-Net. The image 

processing consists of three tasks: image classification/recognition, object detection and 

location, and image segmentation, as mentioned by Buonaiuto et al. [67]. The effectiveness 

level of image processing would significantly increase by applying these three tasks onboard 

CubeSat. In the KITSUNE design, only image classification was applied due to the limited 

resources for generating the dataset. Each task needs to train using different types of datasets. 

The availability of high-resolution and multi-band satellite images was limited but challenging 

to be downloaded for creating the dataset. Thus, most land applications required deeply high 

pixels for the analysis. 

Overall, satellite technology for remote sensing applications is vital in reducing 

wildfire impacts. Combining image classification onboard CubeSat and segmentation of the 

data on the ground could truly benefit the authorities in handling forest fires. Szpakowski and 

Jensen [22] reviewed the techniques in fire ecology, which are fire-risk mapping, fuel mapping, 

active fire detection, burned area estimates, burn severity assessment, and post-fire vegetation 

recovery monitoring. The techniques were performed in three phases: before, during, and after 

the disaster. Meanwhile, this study only covers during an active fire by classifying images 

captured onboard CubeSat. The mapping and assessment should be conducted on the ground, 

utilizing the CNN image segmentation algorithm. Overall, the idea was to create an AI 
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ecosystem onboard CubeSat and ground segments to overcome the global wildfire 

consequences. 

 

5.2 Case study of developing a 6U CubeSat for wildfire detection mission (AIWSat) 

A conceptual design of 6U CubeSat has been studied as having the main mission of 

wildfire detection. The new CubeSat, Artificial Intelligence Wildfire Satellite (AIWSat) idea 

was based on the experience and lessons learned from the KITSUNE project. This section will 

reflect several improvements from mission design to operational planning. 

 

5.2.1 Mission statement and objective 

5.2.1.1 The CubeSat shall provide a 7-m class resolution imaging service for detecting 

wildfire using deep learning approaches onboard. 

5.2.1.2 The CubeSat objective shall capture wildfire events within 10 km2 of the image 

area. 

 

5.2.2 Mission requirements 

The mission requirements consist of functional, operational requirements and 

constraints, as shown in Table 11. 

Table 11. Summary of functional and operational requirements with the constraints. 

Requirement Factors AIWSat 

Functional requirements 

Performance for 

the primary 

objective 

Orbit, altitude, 

inclination, and 

period 

AIWSat orbit shall be in low Earth orbit 

with an altitude of 400 km, an inclination 

of 51.6°, and a period of 92 min. 

 Payload AIWSat payload shall be a short-

wavelength infrared (SWIR) main camera 

and a visible (VIS) secondary camera. 

 Operational 

modes 

AIWSat payload shall have two 

operational modes: 

1. Photo mode 

2. Video mode 

 Size Wildfire payload size shall be within 

327.5 mm (L) x 90 mm (W) x 90 mm (H) 
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 Pointing and 

mapping 

Wildfire pointing and mapping shall be 

±5 km for pointing error and ±0.5° for 

mapping error 

 Resolution Wildfire payload resolution shall be as 

follow: 

1. Main camera: 7 to 9 m 

2. Secondary camera 25 to 30 m 

 Accuracy AIWSat payload accuracy shall be 7 m 

 Resources The mission payload resources shall be as 

follows: 

1. Weight: ≤ 7 kg 

2. Size: ≤ 327.5 mm x 90 mm x 90 

mm 

3. Communication: 

a. Downlink transmission 

10 Mbps 

b. Telemetry, tracking, and 

command system 

(TT&C) 

c. Mission data 

 CubeSat 

configuration 

AIWSat CubeSat’s configuration shall be 

a 6U-wide structure of 340.5 mm x 226.3 

mm x 100.0 mm, has a bus system of 

electrical power, TT&C, attitude control, 

and thermal control 

 Weight AIWSat weight shall be 14 kg 

 Electrical power 

system 

AIWSat EPS shall be provided 7 Wh 

generated from 5 solar panels on the 

system 

 Attitude 

determination 

and control 

system (ADCS) 

AIWSat ADCS shall be the earth sensor’s 

accuracy of 0.1°, sun sensor’s accuracy of 

≤ 5°, global positioning system (GPS) 

accuracy of 35 m, magnetometer, 
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gyroscope, reaction wheels, and 

magnetorquers. 

Coverage Orbit AIWSat coverage shall be orbit in low 

Earth orbit (LEO) 

 Swath width AIWSat swath width shall be an area 

abound 10 km 

 Number of 

satellites 

AIWSat shall be a 1 CubeSat only 

Responsiveness Communications 

architecture 

AIWSat communications architecture 

shall be telemetry, tracking and control 

subsystem (TT&C) using UHF and data 

relay and communication using C-band 

 Processing 

delays 

AIWSat processing delays should be ≤ 1 

hour after the observation 

 Data delivery 

time for users 

after observation 

AIWSat data delivery time for users after 

observation shall be within 24 hours 

Operational requirements 

Availability Percentage of 

CubeSat 

availability for 

mission 

operations/duty 

AIWSat availability shall be continuous 

imaging time of 10 minutes, orbital 

period of 92 minutes, and percentage of 

CubeSat availability for mission 

operations of 10.9% (could be improved 

with multiple GS networks) 

Data distribution Communications 

architecture up 

to end-users 

AIWSat communications architecture up 

to end-users shall be: 

1. Receiving and compiling 

observation requests 

2. Operation planning 

3. Satellite control and tracking 

operation 

4. Observation data reception, 

processing, and delivery 
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Data content, form, 

and format 

User needs AIWSat user needs shall be satellite 

images and observation data 

 Payload data 

form and format 

AIWSat payload data form and format 

shall be in RAW, PNG, and JPG 

Constraints 

Cost R&D, the flight 

system design, 

development, 

manufacturing 

and tests, launch 

and initial 

checkout 

AIWSat cost constraints shall be a total of 

JPY 10M 

Schedule Initial operating 

capability after 

the project start 

AIWSat schedule constraints shall be 

within two years of initial operating 

capability after the project start 

Launch vehicle Rocket launcher 

and deploy from 

ISS 

AIWSat launch vehicle shall be used any 

rocket launcher for ISS supplier 

Operational 

duration 

Mission 

operational 

AIWSat operational duration shall have a 

mission operational at least one year, and 

the aim goal shall be two years 

Reliability The bus systems 

for one year 

AIWSat reliability of the bus systems for 

one year shall be 0.9 

 

5.2.3 CubeSat configuration 

AIWSat 6U CubeSat configuration has been designed following the mission 

requirements, as illustrated in Fig. 40. The CubeSat will be embedded with the deep 

learning network installed on Raspberry Pi Compute Module 4 (RPi CM4). The main 

SWIR camera sensor (ATP013S-WC) was chosen based on the mission objective and 

requirements. 
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Figure 40. AIWSat configuration consists of 3U imaging payload, 2U main bus system, 1U 

attitude determination and control system (ADCS), and small visible camera (SVC). 
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CHAPTER 6 

CONCLUSION AND RECOMMENDATION 

 
6.1 Conclusion 

It was concluded that implementing the deep learning technique in the nanosatellite 

class is feasible and has been tested in KITSUNE 6U CubeSat throughout its development. The 

KITSUNE imaging payload design was discussed in order to achieve the main objective of 5-

m resolution. The wildfire image classification CNN algorithm was also tested as the secondary 

mission along with the functional test of the satellite system. The space environment tests were 

conducted thoroughly to verify the camera payload. Meanwhile, six CNN models were trained 

and half were implemented onboard the KITSUNE flight model. The highest overall accuracy 

from training the custom-made dataset was 99%, while 97% was the F1 score wildfire label 

using the ResNet model. However, the MiniVGGNet was implemented onboard KITSUNE 

with 98% overall accuracy and 97% F1 score wildfire, together with ShallowNet and LeNet. 

The MiniVGGNet showed considerably high results without any risks affecting the main 

mission. In addition, the space environment on-ground tests demonstrated the workability of 

the imaging mission with the deep learning algorithm. Nevertheless, the TID radiation result 

showed that the radiated environment in space might affect the image classification 

performance onboard by a single event latch-up during the test. Additional precautions should 

be planned before executing the main mission with deep learning. Ultimately, more KITSUNE 

in-orbit data could fully verify the mission’s success by capturing images with the wildfire 

feature. 

 The wildfire problem in remote sensing applications was also investigated. KITSUNE 

CubeSat is the first CubeSat that implemented a deep learning approach for wildfire detection. 

The experiences learnt from the project could benefit future CubeSat development, such as the 

Artificial Intelligence Wildfire Satellite (AIWSat). A case study has been presented in chapter 

5 for improvements needed to be made. The wildfire events could be detected more accurately 

using SWIR spectral range to discard the cloud image. Therefore, a fusion of visible and SWIR 

camera payload is an excellent design leveraging four spectral bands embedded with the deep 

learning algorithms for onboard image processing.  

 

6.2 Contribution 

As CubeSat launching has significantly increased each year, autonomous processing 

should be implemented onboard for particular applications. To date, only three CubeSats have 

shown an outstanding flight result of using machine learning onboard, two of which were 

applied for cloud detection. KITSUNE CubeSat will become the next nanosatellite to enable a 
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deep learning approach for wildfire detection. It could benefit the respective authority by 

retrieving a valuable image directly from the CubeSat. Furthermore, the lesson learnt from the 

KITSUNE project is important to develop an improvement for the future CubeSat. The case 

study could also be used for the next remote sensing satellite in Malaysia as forest fire events 

are occurring yearly due to climate change. Moreover, the deep learning network could also be 

applied for different remote sensing applications. Thus, the result will be a reference for the 

new AI CubeSat. 

 

6.3 Recommendation for future work 

Several recommendations have been identified for future work. Instead of only 

implementing the image classification technique, image segmentation is also beneficial for 

processing and analysing the captured image. It could be done onboard the CubeSat but post-

processing on-ground computer is more reliable. The computational costs of image 

segmentation onboard CubeSat should be tested first to verify the feasibility of the 

implementation. The reason is that the image segmentation will use more layers, affecting the 

CubeSat operational power. Thus, an extended study is necessary to implement image 

segmentation onboard the CubeSat. 

Furthermore, multispectral and hyperspectral imagers are pleasing candidates for 

camera sensors onboard CubeSat. The power consumption is within the allowable CubeSat 

specification. However, for wildfire applications, the spectral range is not covered by these 

imagers. SWIR is considered the accurate range to detect wildfire from space. Generally, a 

thermal sensor requires a cooling system to capture longer electromagnetic spectrum 

wavelengths. Nevertheless, the HS imager is not equipped with such a system due to the multi-

band in a camera module. Comprehensive research should be made to verify that the new 

technology of HS imager could cover the SWIR range, mainly for wildfire detection. 
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