
Robust Unsupervised Anomaly Detection with Variational

Autoencoder in Multivariate Time Series Data

(多変量時系列データの変分オートエンコーダによるロバストな教示なし異常検知)

UMAPORN YOKKAMPON

Table of contents

Page

Table of Contents .. i

Chapter 1: Introduction .. 1

1.1 Background... 1

1.2 Problem statement .. 5

1.3 Research purpose .. 6

1.4 Overview of the thesis .. 6

Chapter 2: Background & Theory ... 8

2.1 Time Series ... 8

 2.1.1 Definition of time series ... 8

 2.1.2 Univariate and Multivariate time series .. 8

 2.1.3 Autocorrelation ... 9

 2.1.4 Decomposition .. 11

 2.1.5 Trend ... 12

 2.1.6 Seasonality .. 12

 2.1.7 Cycles ... 13

 2.1.8 Stationarity .. 14

2.2 Anomaly Detection ... 15

 2.2.1 Types of Anomalies in Time Series ... 16

 2.2.2 Data Labels ... 18

 2.2.3 Types of Anomaly Detection .. 18

 2.2.4 Output of Anomaly Detection .. 20

2.3 Artificial Neural Networks ... 22

 2.3.1 Training an Artificial Neural Network ... 25

 2.3.2 Convolutional Neural Network .. 26

 2.3.3 Recurrent Neural Network .. 27

 2.3.4 Long Short Term Memory .. 30

2.4 Autoencoders .. 32

2.5 Variational Autoencoders ... 35

2.6 Moving Average ... 45

 2.6.1 Exponentially Weighted Moving Average ... 45

 2.6.2 Linearly Weighted Moving Average .. 46

2.7 Attention Mechanism ... 46

2.8 Evaluation metrics .. 47

2.9 Deep learning anomaly detection methods (DNN) .. 50

2.10 Related Work .. 52

2.11 Summary... 54

Chapter 3: Methodology ... 56

3.1 Problem Statement.. 56

3.2 Methodology... 57

 3.2.1 Standardization ... 57

 3.2.2 Generate Attribute Matrices ... 58

 3.2.3 Convolutional Encoder ... 59

 3.2.4 Variational Layer .. 60

 3.2.5 Attention-based ConvLSTM .. 61

 3.2.6 Convolutional Decoder ... 62

 3.2.7 Weighted Mechanisms ... 63

 3.2.8 Activation Function .. 63

 3.2.9 Loss Function ... 66

 3.2.10 Threshold Setting Strategy ... 67

3.3 Summary... 69

Chapter 4: Experiments and Discussion .. 70

4.1 Datasets description .. 70

4.2 Experimental setup ... 71

4.3 Anomaly detection results .. 73

 4.3.1 Overall performance ... 73

 4.3.2 Ablation study ... 78

 4.3.3 Robustness evaluation .. 81

 4.3.4 Threshold setting strategy comparison ... 84

4.4 Discussion... 88

4.5 Summary... 89

Chapter 5: Conclusions ... 90

5.1 Conclusions .. 90

5.2 Recommendations for future research .. 91

References ... 92

Appendix ... 102

A. Publications and Presentations from the Present Research Work 102

List of Figures .. 104

List of Tables ... 105

Acknowledgements .. 106

1

Chapter 1

Introduction

1.1 Background

In data mining, a time series [1] is a sequence of data points collected over time [2]. Such

a sequence forms the basis of methods for tracking changes over time. Time series data can

track changes in milliseconds, days, months, or even years. Time series data plays an important

role in virtually all areas of science, engineering, commerce, and industry. Since data points in

time series are collected at intervals, there is a relationship between successive observations,

proportional or not, which distinguishes time series data from other kinds of data. There are

two types of time series data. One is a univariate time series based on a single time dependent

variable (or dimension). The other is a multivariate time series based on two or more time

dependent, interrelated variables (or dimensions). One of these important fields of time-series

is anomaly detection. Time-series anomaly detection has very important significance and has

become a necessary part of the modern manufacturing industry and information services

because undetected anomalies may cause serious damage.

Currently, there have been many studies on anomaly detection of time series data [3-6].

Anomaly detection is the identification of unexpected data points, i.e., events or items that

differ significantly from what is expected. Three types of time series anomalies have been

identified, namely, point anomalies, contextual anomalies, and collective anomalies [7]. Point

anomalies are points that exist far outside the range of the entire data set, which can occur in

any type of data. Contextual anomalies are values that deviate significantly from most of the

data points in the same context, which can only occur in relative data. Collective anomalies

occur when a subset of the data points deviates substantially from the entire dataset. Anomaly

detection is critical in many real world applications, such as the analysis of potentially

fraudulent transactions, sensor network faults, medical diagnosis errors, abnormal equipment

behavior, etc. For example, detecting bank transaction fraud could save 32 billion dollars

2

worldwide by 2020 [8]. Gupta et al. [9] studied abnormal changes in GDP components over

time, and Keogh et al. [10] checked whether an electrocardiogram had abnormal fluctuations.

Therefore, the industry needs to be able to detect anomalies in its system.

In recent years, due to the development of industry and the Internet of Things [11-15],

multivariate time-series anomaly detection technology has made great progress [16-19]. We

can obtain more reliable time-series data from the devices by configuring a multisensor system.

However, processing these data from sensors is a major problem. First, the data collected by

different sensors may have different attributes, frequencies, and dependencies. Therefore,

preprocessing these data is a very time-consuming task and may require some domain

knowledge. Jin et al. [20] proposed an innovative learning framework for multivariate air

pollutant concentration prediction. This method, which separated the features and trends by

decomposing the original data into high-frequency parts and low-frequency parts to learn them

respectively in a multi-channel module, provided a great idea for us to acquire the features of

multivariate time series. In addition to the problems mentioned above, there are still some

unavoidable problems; for example, it is difficult to set an accurate boundary for normal and

abnormal data, or the data collected by different sensors may contain noise due to other factors.

These data with serious noise may look similar to anomalies [19], lead to false alarms [21], and

affect the performance of algorithms [7]. The fact that the amount of normal data is much larger

than the amount of abnormal data is another problem, and the problem of extremely unbalanced

data has become another major trouble spot in time-series anomaly detection [22].

The occurrence of anomalies in multivariate time series data typically involves multiple

features. Sequential analysis of individual features cannot accurately locate all the anomalies

because several variables have to be examined simultaneously when analyzing data segments.

Moreover, encoding the inter-correlations between different pairs of time series also needs to

be considered. Clearly, detecting anomalous parts of multivariate time series is a challenging

problem.

3

To establish an automatic detection system of anomalies in time-series, many researchers

have proposed many effective models and methods to deal with time-series data. Many scholars

have been studying time-series modeling including ARIMA [23], SVM [24], and CNN [19].

Since the data used for anomaly detection usually have no clear labels and the amount of

abnormal data is very small, many unsupervised discriminative approaches are used for

anomaly detection, including OCSVM [25], iForest [26], and LSTM-ED [27]. Although these

unsupervised methods have made some progress in the field of time-series anomaly detection,

many models still cannot detect anomalies effectively.

Over the last decade, there has been an increased enthusiasm around deep neural

networks (DNNs) [28] which aim to learn deep latent representations of the multivariate time

series to infer a model of variability used for anomaly grading in unseen data. As a result of

the good performance demonstrated by DNNs in multiple fields [29, 30, 31], in recent years,

there has been a boom in DNN-based methods for multivariate time series anomaly detection

(Table 1.1).

Machine learning techniques are increasingly being adopted to detect anomalies because

they can capture different characteristics of time series and detect anomalies effectively.

Various anomaly detection methods for multivariate time series data have been developed.

Especially noteworthy are methods based on dimension reduction. These methods aim to

reduce the dimension of the space defined by a data set while retaining the important features

of the original data. Dimension reduction methods differ according to their handling of feature

selection and feature extraction; these methods may be linear or non-linear. The Autoencoder

is particularly important in this area. This method attempts to compress and thus map input

data to reduced dimensional space and then use an encoding-decoding process to reconstruct

the input data set. A newer dimensionality reduction method is Variational Autoencoder (VAE),

which evolved from Autoencoder. VAE is a type of neural network that can learn to compress

data in a completely unsupervised way. This method outperforms Autoencoder by imposing a

probability distribution on the latent space, with a given mean and variance, and using a sample

4

from this distribution to reconstruct the data. Despite considerable progress, VAE based

anomaly detection for imbalanced data has not received much attention.

Therefore, our goal is to study and develop specific approaches to detect anomalies in

multivariate time series data, which takes account of the correlation between the series.

Multivariate time series data usually contains noise and masks the true anomalies. Also, we

need to consider the characteristics of the data itself and consider the threshold because, when

facing the imbalance issue of normal and abnormal samples, the existing threshold setting

strategy is insensitive to imbalanced datasets. The main contributions of our proposed

framework are as follows.

• The novel MSCVAE framework is designed to detect anomalies in multivariate time

series data. MSCVAE constructs multi-scale attribute matrices to characterize multiple levels

of the system states across different time steps and then uses a convolutional variational

autoencoder to extract the characteristics of the time series input. Specifically, we use an

attention-based Convolutional Long-Short Term Memory (ConvLSTM) network to capture the

temporal patterns and also to reconstruct the attribute matrices. Moreover, the weighted

mechanism is introduced into the last layer of decoding, which helps to give different weights

to every data point of sequence in each sliding window.

• We propose a novel threshold setting strategy based on a confusion matrix to optimize

threshold selection of anomaly detection, which will help to improve the model robustness

under conditions of imbalance between normal and abnormal data in multivariate time series.

• Experiments have been conducted on four datasets in order to verify the effectiveness

of the proposed framework and the new threshold setting strategy. The results demonstrate that

our method is superior to competing models in terms of anomaly detection performance and

robustness under different ratios of imbalanced datasets.

5

Table 1.1 Deep learning-based methods for anomaly detection in multivariate time series from
2018 to 2021

Methods Description Datasets

DAGMM [31] Deep Autoencoding Gaussian Mixture Model
MSL, SMAP, SMD,
SWaT, WADI

AE [32] Autoencoder
MSL, SMAP, SMD,
SWaT, WADI

Donut [33] Variational Autoencoder Private

USAD [34] Adversely trained Autoencoders
MSL, SMAP, SMD,
SWaT, WADI

Bagel [35] Conditional Variational Autoencoder Private

OmniAnomaly [36] Gated Recurrent Unit and Variational Autoencoder
MSL, SMAP, SMD,
SWaT, WADI

MAD-GAN [37] Generative Adversarial Networks
SWaT, WADI,
KDDCUP99

LSTM-VAE [38] LSTM-Variational Autoencoder
MSL, SMAP, SMD,
SWaT, WADI

DeepAnT [5] Convolutional neural network Yahoo Webscope

MSCRED [39] Multi-Scale Convolutional Recurrent Encoder-Decoder
Power Plant,
Synthetic

MTS-DCGAN [21] Deep Convolutional Generative Adversarial Network
Genesis, Satellite,
Shuttle, Gamma

FuseAD [40] ARIMA and Convolutional neural network
Yahoo Webscope,
NAB

RADM [41] Hierarchical Temporal Memory and Bayesian Network NAB

MTAD-TF [42] Convolutional and Graph Attention Network MSL, SMAP, SMD

1.2 Problem statement

Since the main problem is that industries require more than 99% anomaly detection

accuracy, we need to consider several reasons to achieve this problem. First, there is a close

time dependence between multidimensional time-series data, and general density-based

methods and clustering models cannot capture the dependence between series. Second,

multivariate time-series from the real world containing relatively severe noise may reduce the

generalization ability of the detection model. Finally, the problem of data imbalance will cause

the model to be unable to fully obtain the relationship between normal data and abnormal data,

which will lead to a poor detection effect. Thus, all problems will be considered and solved by

the proposed framework in this thesis.

6

1.3 Research purpose

The general objective of this research is to study and develop an unsupervised anomaly

detection algorithm for multivariate time series data. The specific objectives are established as

follows:

1) To create a new framework Multi Scale Convolutional Variational Autoencoder

(MSCVAE) for detecting anomalies in multivariate time series.

2) To build the new Error Rate (ERR) based threshold setting strategy of anomaly

detection, which will help to improve the model robustness under conditions of imbalance

between normal and abnormal data in multivariate time series.

3) To verify the effectiveness of the proposed framework and the new ERR based

threshold setting strategy on four benchmark datasets and compare the performance with other

algorithms.

1.4 Overview of the thesis

The thesis organization outline consists of five chapters that cover the background

history, research objectives, fundamentals of the time series, autoencoder and variational

autoencoder, experiment, and discussion of the results. Finally, the conclusions and

suggestions for further work are explained in detail and related information. The particular

explanation of each chapter will be explained as follows:

Chapter 1 in this introduction chapter explains the background and problem of anomaly

detection in multivariate time series data. The objective and contribution are to develop an

anomaly detection architecture system that combines the deep learning method to detect

anomalies in many practical settings. Finally, this chapter clarifies the particular objective.

Chapter 2 presents the fundamental basis of the time series and its characteristics. Then

the problem of anomaly detection in time series is in detail, followed by the concepts of the

artificial neural networks, autoencoders, variational autoencoders, and evaluation metrics, and

cover all methods used in this thesis.

7

Chapter 3 outlines the practical methods used for anomaly detection in multivariate

time series data and their implementation in the proposed algorithms. The chapter introduces

the problem we aim to study and then shows how to generate attribute matrices, which is the

pre-processing process. Next, we elaborate on the proposed framework in detail. Furthermore,

we introduce in detail the new threshold setting strategy to optimize anomaly detection

performance under an imbalance of normal and abnormal data.

Chapter 4 presents the results of the thesis. The chapter begins with an explanation of

the four standard datasets used in this thesis. Afterward, the experimental setup and anomaly

detection results are presented. This is followed by results from the ablation study, robustness

evaluation, and threshold setting strategy comparison.

Finally, chapter 5 conclusion summarizes the thesis with three parts of the proposed

framework. Firstly, in pre-processing data, we calculate an attribute matrices based inner-

product for each time step, which contains the relationship between its own information and

the information of a sub-sequence. That is why we can amplify features and reduce noise.

Second, attention-based ConvLSTM is applied to select adaptively relevant hidden states

(feature maps) across different time steps. That is why we can capture the temporal patterns.

Third, a new error rate (ERR) based threshold setting strategy is applied to optimize anomaly

detection performance under an imbalance of normal and abnormal data. Finally, the ideas for

improvements for future work are presented.

8

Chapter 2

Background & Theory

In this chapter, related preliminary knowledge is presented and discussed for a better

understanding of this thesis. The chapter begins with an introduction to time series, anomaly

detection, artificial neural network, fundamental theories such as Autoencoder, Variational

Autoencoder, and evaluation metrics, which are used to detect the anomalies in multivariate

time series data.

2.1 Time Series

2.1.1 Definition of time series

A time series is defined as a sequence of ordered continuous values representing a

numerical variable’s evolution over time. It is the measurement of a system evolving in time

with numerical attributes: for example, the temperature of a computer server, the value of a

company’s stock, or the electrical activity of the heart (ECG). Therefore, a time series is any

sequence of observations indexed by time. A time series carries a lot of information about the

measuring system. This information can be used to ensure the proper functioning of the system.

Time series are used in statistics, signal processing, pattern recognition, finance,

weather forecasting, astronomy, communications engineering, and largely in any applied

science and engineering domain that involves temporal measurements.

Time series analysis comprises methods for analyzing time-series data to extract

meaningful statistics and other data characteristics. The difference between a simple regression

task and a time series analysis is that, in the latter case, the model must not only learn the

correlation between characteristics but also the correlation with time.

2.1.2 Univariate and Multivariate time series

Researchers have defined two main categories of time series.

9

Definition 1. (Univariate time series) A univariate time series { }t t TX x  is defined as an

ordered set of real-valued observations, tx , where each observation is recorded at a specific

t T   .

Definition 2. (Multivariate time series) A multivariate time series { }t t TX x  is defined as

an ordered set of k -dimensional vectors, each of which is recorded at specific time t T  

and consists of k real-valued observations, 1(,...,)t t k tx x x .

A univariate detection method only considers a single time-dependent variable,

whereas a multivariate detection method is able to simultaneously work with more than one

variable.

Moreover, the detection method can be univariate even if the input data is a multivariate

time series because an individual analysis can be performed on each time-dependent variable

without considering the dependencies that may exist between the variables.

In contrast, a multivariate technique cannot be used if the input data is a univariate time

series.

2.1.3 Autocorrelation

Since a time series is a sequence of values for different timestamps, it could be useful

to find the temporal correlation within the same features.

Just as correlation measures the extent of a linear relationship between two variables,

autocorrelation measures the linear relationship between lagged values of the same feature of

a time series (hence the name autocorrelation).

There are several autocorrelation coefficients, corresponding to each panel in the lag

plot. For example, 1r measures the relationship between ty and 1 2,ty r measures the

relationship between ty and 2ty  and so on.

The value of kr can be written as:

1

1

() ()

()

T

t t k
t k

k T

t
t

y y y y

r
y y


 



 







 (2-1)

10

where T is the length of the time series. The autocorrelation coefficients make up the

autocorrelation function or ACF.

The autocorrelation plot can also be used to view if the time series has a trend or

seasonal behavior. When data have a trend, the autocorrelations for small lags tend to be large

and positive because observations nearby in time are also nearby in size. Therefore, the ACF

of trended time series tends to have positive values that slowly decrease as the lags increase.

When data are seasonal, the autocorrelations will be larger for the seasonal lags (at

multiples of the seasonal frequency) than for other lags.

When data are both trended and seasonal, these effects are combined.

Fig. 2-1 Autocorrelation plot

The autocorrelation plot in Figure 2-1 represents the temporal correlation of the

temperature recorded in Barcelona during 2019. It is possible to observe that the correlation

between a day and the four preceding days is very strong, this means that the temperature of

one day depends on one of the days immediately before. Moreover, the autocorrelation plot has

peaked with lags equal to 10 and 30 (one month); thus, for a given day dt has a strong

correlation with the temperature of dt−1:t−4 but also with temperature further back in time. We

can conclude by saying that the time series considered as an example is stationary with no

associated trend because the autocorrelation decreases quickly for small lags but with a likely

seasonal behavior.

11

2.1.4 Decomposition

Time series data can exhibit a variety of patterns, and it is often helpful to split a time

series into several components (trend, seasonality, and cycles), each representing an underlying

pattern category.

During the decomposition, the trend and cycle are usually combined into a single trend-

cycle component. Hence, a time series can be viewed as a combination of three components: a

trend-cycle component, a seasonal component, and a remainder component (containing

anything else in the time series).

Often this is done to help improve understanding of the time series, but it can also be

used to improve forecast accuracy.

When decomposing a time series, it is sometimes helpful to first transform or adjust the

series in order to make the decomposition (and later analysis) as simple as possible.

An additive decomposition is when:

,t t t ty S T R   (2-2)

where ty is the data, tS is the seasonal component, tT is the trend-cycle component, and tR is

the remainder component, all at period t . Alternatively, a multiplicative decomposition would

be written as

.t t t ty S T R   (2-3)

The additive decomposition is the most appropriate if the magnitude of the seasonal

fluctuations, or the variation around the trend-cycle, does not vary with the level of the time

series. When the variation in the seasonal pattern, or the variation around the trend-cycle,

appears to be proportional to the level of the time series, then a multiplicative decomposition

is more appropriate. Multiplicative decompositions are common with economic time series.

12

Many time series include trends, cycles, and seasonality. When choosing a forecasting

method, the first step is to identify patterns in the time series data, and then choose a method

that is able to capture those patterns properly.

2.1.5 Trend

Trend is a pattern in data that shows the movement of a series to relatively higher or

lower values over a long period of time. In other words, a trend is observed when there is an

increasing or decreasing slope in the time series. The trend usually happens for some time, then

disappears, and it does not repeat.

In Figure 2-2, the antidiabetic drug sales in Australia show a clear and increasing trend

of sales during the years.

Fig. 2-2 Monthly sales of antidiabetic drugs in Australia [43]

2.1.6 Seasonality

A seasonal pattern occurs when a time series is affected by seasonal factors such as the

time of the year or the day of the week. Seasonality is always a fixed and known period.

For example, the monthly sales of antidiabetic drugs (Figure 2-3) show seasonality

which is induced partly by the change in the cost of the drugs at the end of the calendar year.

13

In this case, it is clear that there is a large jump in sales in January each year. Actually,

these are probably sales in late December as customers stockpile before the end of the calendar

year, but the sales are not registered with the government until a week or two later. The graph

also shows that there was an unusually small number of sales in March 2008 (most other years

show an increase between February and March). The small number of sales in June 2008 is

probably due to the incomplete counting of sales at the time the data were collected.

Fig. 2-3 Example of seasonality [43]

2.1.7 Cycles

 A cycle occurs when the data exhibit rises and falls that are not of a fixed frequency.

These fluctuations are usually due to economic conditions, and are often related to the

“business cycle.” The duration of these fluctuations is usually at least 2 years.

Cyclic behavior is quite different from seasonal behavior. If the fluctuations are not of

a fixed frequency, then they are cyclic; if the frequency is unchanging and associated with some

aspect of the calendar, then the pattern is seasonal.

14

In general, the average length of cycles is longer than the length of a seasonal pattern,

and the magnitudes of cycles tend to be more variable than the magnitudes of seasonal patterns.

The monthly housing sales in the USA, in Figure 2-4, show strong seasonality within

each year, as well as some strong cyclic behavior with a period of about 6–10 years.

Fig. 2-4 Example of a cycle [43]

2.1.8 Stationarity

Intuitively, a stationary time series is a time series having the same characteristics over

every time interval, or in other words, whose properties do not depend on the time at which the

series is observed. Formally, we can express it as follow:

Definition 3. tX is a stationary time series, if :s   the distribution of (,...,)t t sx x  is equal.

The above definition implies that a stationarity time series ,...,t Tx x will have the following

characteristics:

1. Constant mean, Therefore, no trend exists in the time series.

2. The time series has constant variance.

3. There is a constant autocorrelation over time.

4. The time series has no seasonality, i.e., no periodic fluctuations.

Most of the time series is not stationary, but some methods could help to make the data

close to the stationarity.

15

Differencing One of the most used methods is differencing because it can happen that a time

series is not stationary, but the differences between consecutive observations are. Therefore the

time series after the transformation is given as 1t t tx x x    .

Is it always better to have stationary time series? Machine learning methods are used when

the classical methods fail, and better results are needed. It is impossible to know how to best

model unknown nonlinear relationships in time series data, and some methods may result in

better performance when working with non-stationary observations or some mixture of

stationary and non-stationary views of the problem.

In conclusion, stationary time series are not always preferred, but this is part of the

feature engineering/selection when using machine learning methods.

2.2 Anomaly Detection

Fig. 2-5 Example of Anomaly from expected behavior

An anomaly can be defined as an unexpected observation with respect to a set of other

pre-established observations considered normal. More formally, in a set X containing n

observations noted ix , then px A will be considered as abnormal if it differs, by its

characteristics, from the other observations, i.e., from those contained in the set /{ }pA x . The

definition of the term anomaly is specific to the use case. The most common one in the field of

16

detection is an observation that is different from the others by its singularity: it could result

from a set of rules which are different from the other observations [44]

Anomalies in time series, also called outliers, are points or sequences of points that do

not correspond to normal behavior [2]. The concept of normal behavior is difficult to formalize.

Therefore, another possible definition for anomalies could be a pattern in data that is not

expected compared to what has been seen before [2]. In fact, an implicit assumption is that

anomalies are rare events. Anomalies should not be confused with the noise present in the time

series. Noise is a phenomenon that, unlike anomalies, has less interest in being analyzed.

However, anomalies may indicate a significant problem in several applications. For

example, an anomaly in industrial control systems may indicate a malfunction, financial

anomalies may be the result of fraud, or they may indicate diseases in healthcare. As a critical

task, many methods have been developed to address it [45, 46].

Anomaly detection refers to the task of identifying an unseen observation ˆ ,tx t T ,

based on the fact that it differs significantly from X , thus assuming that X contains only

normal points. The amount by which the unseen sample t̂x and the normal set X differ is

measured by an anomaly score, which is then compared to a threshold to obtain an anomaly

label.

2.2.1 Types of Anomalies in Time Series

In recent years, due to the increase of the complexity of the reality that we want to

model, also the complexity of the anomalies is increased. Therefore, it is necessary to have

tools to analyze such data, learn the patterns, and autonomously detect anomalies.

For this reason, Deep anomaly detection (DAD) methods have been shown to detect all

three types of anomalies with great success.

Deep learning models can detect anomalies in both univariate and multivariate data,

whether the anomaly afflicts a single sensor or more time-dependent variables. In other words,

we can find anomalies in one or more features in the case of multivariate time series.

17

There are mainly three types of anomalies that are studied in the literature, namely point

anomalies, sequential anomalies, and contextual anomalies [2]. A brief description of those is

given below.

 Point Anomalies: If a single point deviates from the considered normal pattern it

is referred to as a point anomaly. This is the simplest form of an anomaly. An

example of a point anomaly is if a process value suddenly is very low or high. An

illustration of this is given in Figure 2-6(left), where the anomaly is marked in red.

 Sequential Anomalies: If a sequence or collection of points is anomalous with

respect to the rest of the data, but not the points themselves, it is referred to as a

sequential or collective anomaly. Since this thesis deal with anomalies in time

series we will refer to this type of anomaly as a sequential anomaly. An example

of a sequence anomaly is if a sensor that records process values fails and from that

point outputs the same process value, which is illustrated in Figure 2-6(center).

Note that these values are not considered anomalous themselves, but their sequence

of them is.

 Contextual Anomalies: If a point or a sequence of points are considered as an

anomaly with respect to its local neighborhood, but not otherwise, it is referred to

as a contextual anomaly. For example, suppose a process can target different

qualities at different times resulting in changes of the process values for each

quality. Let the qualities result in process target values of three different levels 1,

2 and 3. If the process is running a quality at level 2 and there is an instance of a

process value close to those of level 3 this is a contextual anomaly, however,

globally a process value close to level 3 is not anomalous when running the quality

of that level. This is illustrated in Figure 2-6(right).

18

Fig. 2-6 Point anomaly (left), sequential anomaly (center) and contextual anomaly (right)

2.2.2 Data Labels

The labels associated with a data instance denote if that instance is normal or

anomalous1. It should be noted that obtaining labeled data that is accurate and representative

of all types of behaviors, is often prohibitively expensive. Labeling is often done manually by

a human expert and hence requires substantial effort to obtain the labeled training data set.

Typically, getting a labeled set of anomalous data instances which cover all possible types of

anomalous behavior is more difficult than getting labels for normal behavior. Moreover,

anomalous behavior is often dynamic in nature, e.g., new types of anomalies might arise, for

which there is no labeled training data. In certain cases, such as air traffic safety, anomalous

instances would translate to catastrophic events, and hence will be very rare.

2.2.3 Types of Anomaly Detection

In terms of anomaly detection, there are generally three different mechanisms:

supervised approach, semi-supervised approach, and unsupervised approach [2, 7]:

1. Supervised anomaly detection: refers to setups where fully labeled training and validation

datasets are available. In this case, the anomaly detection problem degenerates into a

classification problem, where the labels of the two categories are often highly imbalanced.

However, acquiring thoroughly labeled datasets for anomaly detection is unrealistic due to the

following two reasons: 1) data collection and labeling process is time-consuming and labor-

19

intensive in real-world practice; 2) there will always be potentially unseen novelties in testing

or new data.

In other words, since anomalous patterns are in theory countless, it would never be

possible to collect all potential features and characteristics of the anomaly class during training.

2. Semi-supervised anomaly detection: approaches that assume the training dataset

comprises merely normal (non-anomalous) data [38, 47]. Since only one class is present in

training data, the semi-supervised approach in anomaly detection is also known as one-class

classification. The basic idea of semi-supervised approaches is to train and validate a model

that only fits on normal patterns, and the anomalous data would have a far larger model loss

compared to non-anomalous data. Therefore, this loss could be treated as an anomalous score

during testing or implementation. Nevertheless, building such a one-class training dataset

would still require great efforts and investments [48], which makes such semi-supervised

models non-generic.

3. Unsupervised anomaly detection: setups where no assumption of data labels is required

[12, 31, 36], which is the most realistic and generic approach in practice. Under some

circumstances, semi-supervised anomaly detection could be adapted and transformed to

unsupervised anomaly detection by tolerating the minority anomalous samples in training data.

Considering the scope and purpose of this research, this thesis only investigates and

studies unsupervised anomaly detection methods. We also include some semi-supervised

anomaly detection algorithms that could be transformed into unsupervised anomaly detection

models.

An important implicit assumption of unsupervised anomaly detection is:

Assumption 1. Normal records happen far more frequently than anomalous records.

Consequently, unsupervised models would only learn normal patterns during training and thus

be capable of spotting anomalies during testing.

20

Apparently, Assumption 1 would not stand when either 1) normal data does not

dominantly outnumber anomalies in training data or 2) the unsupervised model does tolerate

the rare anomalous pattern and therefore fails to detect similar anomalies in testing.

To mitigate this weak assumption, unsupervised anomaly detection designs are broadly

and commonly built upon Encoder-Decoder architecture, where an encoder first generates a

latent representation of the input sequence such as sentences, time series, and videos, then a

decoder reconstructs another sequence of variables from the encoded data. Since the Encoder-

Decoder structure is often applied in sequence modeling and processing, this architecture is

also frequently referred to as Sequence to Sequence (seq2seq) models [49], which originates

in the natural language processing (NLP) field, and is now widely used in machine translation

[50], video captioning, and time series forecasting. Within the scope of this thesis, Encoder-

Decoder models and seq2seq models represent the same architectures, where the model outputs

are reconstructions of the inputs. In general, seq2seq designs are applied in anomaly detection

under the following assumption [39, 47]:

Assumption 2. Only normal patterns could be effectively reconstructed through the model.

Based on Assumption 2, an anomaly scoring mechanism based on intrinsic data patterns

could be adopted to distinguish between normal and anomalous data points [7]. Some typical

evaluation metrics include loss distances and data densities. For example, under Assumption 2,

an Encoder-Decoder model would fit on the data points in Figure 2-5 such that only blue points

could be effectively reconstructed. After parameter tuning, the model would be tuned into an

estimator of the light blue curve. During testing, we could adopt the 2l norm with respect to

the light blue curve as the anomaly detection metric, and all the points whose 2l norms are

larger than a certain threshold would be classified as anomalous.

2.2.4 Output of Anomaly Detection

An important aspect for any anomaly detection technique is the manner in which the

anomalies are reported. Typically, the outputs produced by anomaly detection techniques are

one of the following two types:

21

Scores

Scoring techniques assign an anomaly score to each instance in the test data depending

on the degree to which that instance is considered an anomaly. Thus, the output of such

techniques is a ranked list of anomalies. An analyst may choose to either analyze top few

anomalies or use a cut-off threshold to select the anomalies.

Labels

Techniques in this category assign a label (normal or anomalous) to each test instance.

Several techniques, internally, calculate a score for each test instance and use either a threshold

or a statistical test to assign a label.

Scoring based anomaly detection techniques allow the analyst to use a domain specific

threshold to select the most relevant anomalies. Techniques that provide binary labels to the

test instances do not directly allow the analysts to make such a choice, though this can be

controlled indirectly through parameter choices within each technique.

Taxonomy

The taxonomy consists of three classes of anomaly detection methods for multivariate

time series. These are: conventional approaches, machine learning-based and DNN-based

methods.

Conventional approaches, which are also referred to statistical methods by some

authors [51], rely on the assumption that a stochastic model generates the observed data and

their aim is to estimate a model’s parameters from the data and then use the model for

prediction [52]. It is often the case that the model hypothesis is considered linear.

The boundary between conventional and machine learning-based approaches is not

fully clear. Machine learning-based models produce predictions about the results of complex

mechanisms by mining databases of inputs for a given problem, without necessarily having an

explicit assumption about a model’s hypothesis. In this setup, a method aims to learn a function

that operates input data to predict output responses [52].

22

Finally, DNN-based methods are a subclass of non-linear machine learning based

methods that use neural networks with multiple layers [28].

2.3 Artificial Neural Networks

The field of Artificial Neural Network (ANN) has its origin in neurobiology. The

human brain consists of a complex network of approximately 100 billion nerve cells, or neurons,

being connected by synapses. In this biological scenario, neurons communicate over the

synapses with electrical impulses and a single neuron typically receives many thousands of

signals from other neurons. The voltage of an impulse depends on the strength of the actual

synapse connection. The total strength of all signals to a neuron can be regarded as the sum of

all impulses and each neuron has a threshold mechanism, where signals exceeding it will result

in the neuron generating its own voltage impulse[53].

Fig. 2-7 A basic artificial neuron, showing inputs x1 and x2, each paired with respective weight.

The activation function node processes a linear combination of x and w, outputting a

value based on the function f .

The equivalent functions of the artificial neuron work very similar to the biological and

the same glossary is often used in both cases. The principles of an artificial neuron are shown

in figure 2-7. The artificial network consists of nodes being interconnected by edges and the

strength of the biological synapses is modeled by the edges having a multiplicative weight

23

factor. The neuron calculates a weighted sum based on all its inputs, resulting in a value that is

used in the activation function. The activation function, sometimes also called transfer function,

acts as a threshold and there are many different types of functions depending on the desired

outcome.

Each hidden unit h calculates a weighted sum ha of its n inputs and each respective

weight ijw . The activation function is then applied to ha , to calculate the actual output from

each unit:

1

n

h ih i
i

a w x


  (2-4)

Two of the most common activation functions used in ANNs are the hyperbolic tangent

function,

2

2

1
tanh()

1

x

x

e
x

e





 (2-5)

limiting all values to [-1, 1], and the logistic sigmoid function ()x with a range of [0,

1][54].

1
()

1 x
x

e
 


 (2-6)

A third activation that has become popular in the last few years is the Rectified Linear

Unit (ReLU) function,

() max(0,)f x x (2-7)

ReLU works simply by being a thresholded zero and has been found to accelerate

convergence when training ANNs. [55]

In the last layer of the neural network, the output nodes calculate the resulting value of

the whole network in the same way as the nodes earlier. However, it is not necessary for the

24

output nodes to use the same activation function and that choice depends on the task being

solved. In the case of a multiclass classification with K classes, a common approach is to apply

the softmax function, seen in equation 2-8. The function ensures that the sum of all the outputs

is one. [56]

1

(z) for 1,...,
j

n

z

j K z

n

e
f j K

e


 


 (2-8)

Fig. 2-8 An Artificial Neural Network of feedforward type consisting of an input layer,

two hidden layers and a single node as output layer.

Multiple artificial neurons create a Neural Network (NN) and the nodes are commonly

structured in layers, as can be seen in figure 2-8. The layers in the network are arranged with

input and output layers, with a number of hidden layers in-between. The structure of the

connections between layers depends on the type of network; one significant difference is

whether connections are forming cycles or not. Feedforward Neural Network (FNN) is an

acyclic network and the most widely used type is the Multilayer Perceptron (MLP), which is

the type shown in figure 2-8. ANNs consisting of cycles are called recurrent, or feedback,

neural networks, and are discussed further in section 2.3.3.

25

2.3.1 Training an Artificial Neural Network

Training an ANN is performed by exposing the network to typical data and adjusting

the weights, such that the correct output can be reproduced given a specific input. The most

commonly used procedure is performed in two steps, containing a forward pass and a backward

pass. The forward pass consists of processing the input data, as seen in figure 2-7, in each

neuron of each layer in the network.

The goal of training the network is to minimize the error between the calculated output

Ŷ and the target output Y . A commonly used error function is Mean Squared Error (MSE),

2

1

1ˆ ˆ(,) ()
N

i i
i

MSE Y Y Y Y
N 

  (2-9)

which is used in cases where the outputs are numerical values. There are cases where the

predictions from the model are distributions instead of numerical values, which is the case of

the softmax function in equation 2-8. In this case, Categorical Cross Entropy (CCE) is a

frequently used error function. CCE is an error function between two distributions Y and Ŷ ,

where Y is the true case and Ŷ is an approximation of Y . Each distribution consists of a number

of probability values, where 0 represents definitely false and 1 definitely true. This type of

metric punishes heavily a wrong prediction having a high probability. Categorical Cross

Entropy is defined as CCE(Y , Ŷ) and each distribution p and q have N number of classes.

1

ˆ ˆ(,) - log()
N

i i
i

CCE Y Y Y Y


  (2-10)

While training aims to minimize the error, the risk of only following the least amount

of error introduces the risk of overfitting. A model that overfits its training data will have

weights so targeted at the specific data of the training, which results in a bad ability to

generalize when introduced with slightly different data. To counteract this, a concept called

regularization was introduced as a complement to the error function. The regularization term

discourages the network to model the data perfectly using too many parameters, by penalizing

26

the loss with an additional term. The combination of an error function and regularization is

often called the objective function, which is the term used in this thesis [57].

Several optimization techniques minimize the objective function; one of the most

fundamental is gradient descent. The idea of gradient descent is to use the derivative of the

objective functions relative to the weights of the network and adjust the weight with a fixed

step size in the negative direction [54].

Backpropagation is a method of calculating the gradient and it is basically just a

repeated application of the chain rule, as seen in equation 2-11, working backward from the

output through the hidden layers. The notations in the equations are as follows, O is objective

function, a is calculated output (as seen in equation 2-4), y is expected output.

O O y

a y a

  
  

 (2-11)

As seen in equation 2-12, the calculation of the derivatives relative to the weights ijw ,

which is used in gradient descent. [54]

j

ij j ij

aO O

w a w

 
  

 (2-12)

2.3.2 Convolutional Neural Network

CNNs are a kind of feedforward neural networks for processing data that has a grid-

like topology. For instance, image data are basically multiple channels of 2D pixels, and can

be evaluated as 2D grid of pixels. Compared to other neural networks, CNNs adopt convolution

operation instead of general matrix multiplication in at least one of their layers.

The convolution between two continuous functions ()f t and ()g t is defined as:

()() ()g(t)df g t f   



  , (2-13)

while the convolution between two discrete functions []f n and []g n is:

()[] []g[]
m

f g n f m n m




  . (2-14)

27

In the case of CNNs, f corresponds to the input, while g is referred to as kernel or filter.

The output of the operation is called a feature map. Convolutions are used in CNNs to extract

local information and features from data. In particular, each kernel is applied to the entire input,

allowing it to look for similar patterns or features regardless of locations or translations. In

other words, the kernels of CNNs are location invariant.

Figure 2-9 Convolution operation in CNNs.

Figure 2-9 shows an example of a convolution operation used in CNNs. The input is a

3 × 3 2D matrix, while the kernel is a 2 × 2 2D matrix. The output of the highlighted sub-matrix

is derived as a demonstration, where each individual element within the region is involved in

the calculation. The kernel processes all such sub-matrices before outputting the feature map.

Compared to MLP, the weights of parameters in CNNs are shared, which relieves the

computation burden caused by potentially large numbers of hidden layers. Moreover, CNNs

do not require the input to be flattened into 1D vectors, thus preserving the spatial or high-

dimensional information that is otherwise discarded by MLP.

2.3.3 Recurrent Neural Network

As discussed in section 2.3, connections between neurons are never allowed to form

cycles in regular feedforward neural networks. This limits the network’s ability to make

assumptions of relations between data samples because the state of the network is lost after

Input Data

Kernel

Convoluted feature

28

each sample has been processed. These networks are therefore not as suitable for processing

tasks with data sequences related in time or space, such as words in sentences and time series.

[58] Taking the example of wanting to predict the next word in a sentence of written text, it is

advantageous for the network to consider words that are much earlier in the sentence for a more

accurate prediction.

Recurrent Neural Networks (RNN) were introduced with the task of being able to pass

along the current state for future sequence steps to use. This may seem like a minor extension

of the functionality of the MLP, but the implications are extensive. While basic neural networks

are limited to only mapping an input to a corresponding output given a set of weights, the RNN

can model whole sequences of dependent items in regard to both input and output. This is turn

means that an RNN, theoretically, can model the entire history of previous inputs and outputs

[54]. Comparing this to the fixed context window that a regular neural network handles, the

strength of the RNN starts to show.

An RNN works particularly well with modeling any type of sequential data, and it is

commonly used in word prediction and machine translation applications. Another big use case

is in image and video processing, since even inherently non-sequential data, such as a single

image, can be represented as a sequence using transformations. [58]

Figure 2-10 Recurrent Neural Network

29

The recurrent part of the RNN comes from the network performing the same operation

for every element of a sequence, having the output from one element as extra input to the next.

As can be seen in figure 2-10, a way of visualizing this is to unroll the loop and more clearly

show that the network processes the input of each step in the sequence. A sequence containing

five words would in this way be shown as a 5-layer network, one layer for each word.

Inspecting a single layer unit, as shown in figure 2-11, shows a single activation

function combining the current input and the output from the previous sequence step. The same

activation functions can be used in the RNN as in MLP, and an often used function is the

hyperbolic tangent function (tanh), which is shown in equation 2-5.

Figure 2-11 In the unrolled visualization of an RNN, each layer unit has an activation

function, in this case the hyperbolic tangent function (tanh) [59].

By using the abstraction of unfolding the RNN, it makes it clearer that the same

backpropagation procedure, as described in section 3.2, can be used to propagate back across

several steps. This algorithm is called Backpropagation Through Time (BPTT) and is

essentially the same as regular backpropagation, with the important distinction that the

gradients are summed at each step t of the sequence, see equation 2-15. This is relevant in the

case of an RNN, since the network passes along parameters across sequence steps, in contrast

to a regular ANN. [60]

30

t

t

OO

w w


 

  (2-15)

A negative aspect of the RNN is that, while it can model the dependencies between

items in a sequence, it suffers from the difficulty of learning long-range dependencies. This

imposes a problem for example when modeling language, since the meaning of a sentence often

relates to words that are not close. For example, in the sentence “The man who wore a wig on

his head went inside”, the meaning is about the man going inside, not the wig. [61] The

underlying problem is called vanishing gradient and relates to the workings of backpropagation,

explained in equations 2-12 and 2-15. Due to the way the propagation is a multiplicative

operation with the gradients, the contribution of input at time t will be multiplied with an

increasingly smaller factor. This results in the gradient shrinking exponentially fast. The

problem can also be the opposite, depending on the activation functions, with an exploding

gradient, with a gradient so much larger in the earlier layers that others have no effect at all. It

is worth noting that neither of these problems is exclusive to the RNN, but they are more

apparent compared to a regular FNN due to the design of an RNN being as deep as the sequence

length [58, 61].

2.3.4 Long Short-Term Memory

Long Short-Term Memory networks (LSTM) were introduced by Hochreither and

Schmidhuber [62] in 1997 as a special type of RNN, aiming to solve the vanishing gradient

problem. Having been specifically designed to handle long-term dependencies, LSTMs quickly

became popular as an alternative to the RNN in applications such as natural language

processing. [59]

As seen in figure 2-12, the structure of the LSTM can be visualized in an unfolded

manner similarly to the RNN in figure 2-11. Where the RNN functions with a single layer, the

LSTM has four co-operating layers. The main addition introduced in the LSTM was the cell

state C, which acts as a memory channel. This means that, instead of a single output, two

31

outputs, to and th , are calculated per step. These are affected by the four layers in different

ways, as described below [59].

Figure 2-12 Structure of an LSTM memory [59]

The first sigmoid () layer acts as a “forget gate”, taking both the previous output 1th 

and current input tx into consideration when deciding how much of the cell state 1tC  should

be remembered. The result is tf , as shown in equation 2-16, where tf = 1 keeps 1tC  as it is

and tf = 0 completely disregards it.

 1()t h f t x f t ff W h W x b    (2-16)

The next two layers act together deciding the information that will be added to the cell

state. The first part is a sigmoid layer, which calculates a vector using equation 2-17 deciding

how much of each state value that should be updated. The second layer is a tanh layer, which

bears a resemblance to the single layer of the RNN as seen in figure 2-11. As shown in equation

2-18, this layer calculates values that potentially could be important to store in the cell state.

1()t hi t xi t ii W h W x b    (2-17)

1tanh()t hC t xC t CC W h W x b   (2-18)

32

The actual update of the cell state is performed with an addition operation between the

candidate values calculated in t ti C  and the current cell state, as shown in equation 2-19.

Performing this as an additional means that new information can unobstructedly be added to

the cell state.

1t t t t tC f C i C     (2-19)

The final part of the LSTM block calculates the output of this step t . As shown in

equations 2-20 and 2-21, this is performed in two steps. A sigmoid layer is yet again used as a

masking vector to , using information in the input to decide what parts of the cell state that is

going to be outputted. The cell state is used together with a basic activation function tanh and

then combined with to , resulting in the output th consisting only of the parts that are calculated

to be significant.

1()t ho t xo t oo W h W x b    (2-20)

tanh()t t th o C  (2-21)

2.4 Autoencoders

An auto-encoder [28, 32] is a type of neural network used in unsupervised learning in

which the network is composed of an encoder and a decoder sub-models. The encoder forces

a compressed representation of the input in smaller dimensions and the decoder attempts to

recreate the input from the compressed version provided by the encoder.

Auto-encoders are applied to many problems, from facial recognition, feature detection,

and data denoising. They represent data within multiple hidden layers by reconstructing the

input data, effectively learning an identity function. When trained solely on normal data

instances, they fail to reconstruct the anomalous data samples producing a large reconstruction

error. These points associated with a high residual error are considered anomalies.

33

The choice of autoencoder architecture depends on the nature of data, convolutional

networks are preferred for image datasets while Long short-term memory (LSTM) based

models are able to capture the time dependency in sequential data.

The deep of an autoencoder depends on the dimension of the input data. The more

dimensions, the more layers are needed to extract all the relevant information during training.

The type of learning is unsupervised because the model does not require any

information about the labels, making it very popular and widely used in literature.

The encoder takes the input data xdx to a latent space(code) zdz .

 1 1(Wx b)z   (2-22)

where z is latent space or code, 1 is an activation function, W x zd d is a weight matrix and

1b zd is a bias vector of an encoder.

Fig. 2-13 The architecture of an autoencoder

Autoencoders consist of an encoder and a decoder. The encoder takes the input data

xdx to a latent space(code) zdz .

 1 1(Wx b)z   (2-23)

34

where z is latent space or code, 1 is an activation function, W x zd d is a weight matrix and

1b zd is a bias vector of an encoder.

The decoder maps z to the reconstruction x̂ of the same dimension as x .

 2 2ˆ (Wz b)x    (2-24)

where x̂ is the reconstruction or output of the autoencoder, 2 is an activation function of the

decoder, W x zd d is a weight matrix and 2b xd is a bias vector of a decoder.

 The autoencoders are trained to minimize a reconstruction loss function ˆ(,)L x x , which

measures how well the decoder performs and how the model learns how to reconstruct the data

from the encoded representation to be as close to the original input as possible.

The Mean Squared Error (MSE) is the most common loss function.

2

ˆ ˆ(,) -L x x x x (2-25)

2

2 1 1 2ˆ(,) - ((W((W b)) b))L x x x x    (2-26)

Autoencoders can be under complete which is one of the simplest types of autoencoders,

i.e., under complete autoencoders latent code z has a lower dimensionality than the input space

x, which is forced to learn a compressed representation of the data. An autoencoder can be used

for dimensionality reduction tasks in this framework. If the autoencoder has just one hidden

layer and if the functions are linear and the loss is the mean squared error, an autoencoder is

provably equivalent to Principal Component Analysis (PCA), while the weights to the K hidden

units will span the same subspace as the first K principal components of the data. Furthermore,

if the activation functions are non-linear, autoencoders can find non-linear representations of

the data and, therefore, they are a powerful generalization of PCA that has experimentally

demonstrated impressive results in the past.

35

2.5 Variational Autoencoders

Autoencoders were traditionally mainly used for dimensionality reduction and

representation learning. More recently, theoretical connections to latent variable models have

resulted in the variational autoencoder (VAE) [63]. VAE is a generative model with a

probabilistic background, which can exploit its ability to model very complex distributions in

a latent space in order to detect anomalies.

Fig. 2-14 The architecture of a Variational autoencoder

Probabilistic latent variable models

Probabilistic Latent Variable Models (LVM) constitute a broad class of explicit

generative models, they represent a common approach to the unsupervised representation

learning problem. LVMs utilize auxiliary variables to express complex distributions that seize

more realistically natural aspects of the Universe. The observed variable x is supposed to be

generated by a stochastic process based on an unobserved continuous variable :z firstly, the

hidden z is generated from a prior distribution ()p z , then x is generated from a conditional

distribution ()p x z . The unobserved variable z can be interpreted as a latent representation.

Generally, the goal is twofold: to model the joint distribution (,)p x z and to infer the ()p z x

distribution for representation learning by employing a LVM, which can be thought of as a

simple directed graphical model [64], as illustrated on Figure 2-15. The LVMs hold the

36

potential to automatically discover the underlying generative process and yield interpretable

latent representations that reflect the true generative factors of a particular phenomenon.

Fig. 2-15 The VAE as a graphical model

The main difference between other explicit density models and the probabilistic latent

variable models lies in the posterior distribution over the latent variables ()p z x , derived from

Bayes’ theorem. This distribution expectedly lies on a low dimensional manifold that can

provide insights into the internal representation of the data [65]. The further motivation behind

introducing a hidden variable is that the joint distribution can be defined as a product of simpler

distributions using the law of total probability: (,) () ()p x z p x z p z   . The prior distribution

over latent variable z is usually predefined, significantly simplifying the computations

required for likelihood estimation.

Maximum Likelihood - Learning from observed data

One convenient procedure to train a generative model on a given dataset  ()

1

Ni

i
X x




and find a suitable parametrization of the model distribution ()p x is to use Maximum

Likelihood Estimation (MLE). MLE determines an optimal   parameter. If it exists under

which the likelihood of each datapoint from X is as high as possible. This also means placing

more probability mass around the regions of the input space containing more samples from X .

For computational simplicity and numerical stability, maximizing the logarithm of likelihood

function (;) log (X)X p  is more favorable than the likelihood ()p X , since likelihoods,

37

being products of the probabilities of many data points, tend to be very small. Consequently,

the generative model parameters are sought as argmaxlog ()p X


  .

Since it is assumed that the training dataset consists of independent, identically

distributed observations, maximizing the log-likelihood of the data is equivalent to maximizing

the log-likelihood of each individual data point separately:

(1) () ()

1

log (X) log[() . . . ()] log ()
N

N i

i

p p x p x p x   


  

MLE of  requires the maximization of the sum, or equivalently the average of log-

likelihoods assigned to the training data points, which gives an estimation of
()

log ()
x p x

p x
 .

For the efficient optimization of this MLE objective, the Stochastic Gradient Descent (SGD)

is used in the field of deep learning, where large datasets are processed [66]. Stochastic

Gradient Descent randomly draws mini-batches from X and estimates the gradients of the

objective with respect to  using the data points of a single mini-batch

()

()1 1
: log () log ()

i

i

x M

M p X p x
X M   



   . The gradient estimation is used then to

iteratively perform gradient descent to reach a local minimum of the negative MLE objective

function.

Intractable distributions

In the interest of maximizing the log-likelihood of the training data, it is enough to be

able to calculate the gradient of the log-likelihood of a single observation. However, in the case

of LVMs, when a continuous latent variable z is brought in, the marginal likelihood of

observation becomes intractable since it would require marginalization over the continuous

variable () (): log () log () ()i iz p x p x z p z dz    .

Taking the gradient of ()log ()ip x is typically infeasible as it depends upon the

evaluation of the integral, and the analytic solution is not directly available in the case of raw

datasets, nor an efficient estimation in general case.

38

Thus, the MLE objective cannot be optimized directly. Although one can observe that

the integral does not necessarily have to be calculated over all the values of :z it would be

enough to evaluate it over z values to which the training data point is mapped with high

probability, in other words where
(i)

()p z x is significantly greater than 0. Unfortunately, the

(i)
()p z x likelihood is also intractable considering that

()
(i)

()

(,z)
()

()

i

i

p x
p z x

p x





 , and the

denominator is intractable.

Evidence Lower Bound

A subtle idea to circumvent the intractability of the
(i)

()p z x distribution lies within

variational Bayesian inference [64]. The key idea taken from the variational Bayesian approach

is to approximate the true posterior distribution
(i)

()p z x with a variational distribution
(i)

()q z x defined by an inference model
(i)

()q z x that can be an arbitrary function

parametrized with  variational parameter shared across each data point. Amortizing the

variational parameters over the entire input allows us to scale this approach even to large

datasets, though this will result in a larger gap between the true and modeled log-likelihood

[67]. Finding a suitable variational parameter  results in an additional optimization problem

that requires the minimization of the distance between the true and approximate posterior

distribution. The Kullback-Leibler divergence (KL-divergence) serves as one means to

quantify how close two distributions are.

Two noteworthy properties of KL-divergence are its’ non-negativity and asymmetricity.

The below used form known as reverse KL-divergence is chosen in variational inference not

only for the reason that it results in computational simplifications but also indicates preferring

an approximation where regions of high
(i)

()q z x are accurate, rather than regions of high
(i)

()p z x . This is desire able when drawing samples from
(i)

()q z x ; however, the resulting

approximation usually underestimates the support of the true posterior.

The KL-divergence between the true posterior
(i)

()p z x and the approximate posterior
(i)

()q z x can be written as:

39

()
() () ()

()

()
(() ()) ()log

()

i
i i i

KL i

q z x
D q z x p z x q z x dz

p z x


  






 

 ()
() ()

()
[log () log ()]i

i i
z q z x

q z x p z x


  


 (2-27)

Rewriting Equation 2-27 using Bayes’ theorem reveals that the log-likelihood of a

single datapoint can be related to the KL-divergence between true and approximate posterior

distributions:

()

()
() () ()

()()

(,z)
(() ()) log () log

()
i

i
i i i

KL iz q z x

p x
D q z x p z x q z x

p x


  



 
   

 




()
() () ()

()
[log () log (,z)] log ()i

i i i
z q z x

q z x p x p x


    


 (2-28)

Rearranging Equation 2-28 yields the following:

()

()
() () ()

()()

log (z) ()
log () (() ())

log ()
i

i
i i i

KL iz q z x

p x p z
p x D q z x p z x

q z x

 
  



 
  
 
 


 (2-29)

In Equation 2-29 the KL-divergence term on the left-hand side is still intractable due to

the fact that
(i)

()p z x cannot be evaluated . Luckily the non-negativity property of the KL-

divergence can be exploited here to discard that term and, in such a way get the Evidence Lower

Bound (ELBO):

()
() () () ()

()
log () [log (,z) log ()] (, ;)i

i i i i
z q z x

p x p x q z x x


      


  (2-30)

It is worthy of note that the gap between the marginal log-likelihood of a datapoint and

ELBO is exactly the KL-divergence between the true posterior and the approximation of it, as

a consequence, the lower bound becomes tighter as the approximation is improved.

The ELBO can be written in other insightful forms too, as formulated by [Hoffman and

Johnson, 2016], which contribute to a better understanding and interpretability. One such

version is obtained by reformulating expectation terms as a KL-divergence:

40

()
() () ()

()
(, ;) [log(() log (z) log ()]i

i i i
z q z x

x p x z p q z x


       




() ()
() ()

() ()
log(() [log (z) log ()]i i

i i
z q z x z q z x

p x z p q z x
 

     
 

 

()
() ()

()
[log(()] (() ())i

i i
KLz q z x

p x z D q z x p z


   


 (2-31)

This variant of ELBO clarifies the connection of VAE with traditional autoencoders

and helps to simplify the computation needed for training, as further discussed later.

Henceforward the optimization of MLE objective can be replaced with the

maximization of the sum of individual-datapoint ELBOs with regard to both  and . This

objective simultaneously maximizes the marginal likelihood and minimizes the KL-divergence

of approximate and true posterior, therefore improving on both the generative and the inference

model. The maximization of this objective still depends upon the generally intractable ELBO

and its gradients taken with regard to both parameters, although easily calculated unbiased

estimators of them exist.

The estimation of gradients with regard to the generative model parameters can be

obtained effortlessly as Monte Carlo estimate of expectation using a single sample z :

()
() () ()

()
(, ;) [log (,) log ()]i

i i i
z q z x

x p x z q z x


        


 

()
() () ()

()
[log (,) log ()] log (,)i

i i i
z q z x

p x z q z x p x z


        


 (2-32)

A similar estimation of gradients with regard to the variational parameters cannot be

calculated since the ELBO’s expectation is taken with regard to the approximate posterior

distribution depending on , therefore, the operations of taking the gradient and the expectation

cannot be interchanged.

41

The Reparameterization Trick

 To rise above the mentioned problem, a change of variables has to be applied, also

known as the reparameterization trick. The concept is to express the random variable z as a

deterministic, differentiable transformation of another random variable  , given
()ix and

(): (, ,)iz g x   , where the distribution of  is independent from
()ix and  . Under this

reparameterization, the expectation with regard to the approximate variational distribution can

be replaced with one with regard to ()p  independent of variational parameters. The ELBO

can be rewritten then as:

() () ()
()(, ;) [log (,) log ()]i i i
px p x z q z x        , where ()(, ,)iz g x 

 As a result of reparameterization, the randomness in z is externalized and the ELBO

can be straightforwardly differentiated with regard to both  and . Likewise, in Equation 2-32

a simple Monte Carlo estimator of the gradients of ELBO can be formulated with the use of a

single noise sample ()p  and (, ,)z g x  :

() () ()
,(, ;) [log (,) log ()]i i ix p x z q z x        

 With the gradient estimates, the SDG can be used to maximize the ELBO objective just

like in the case of MLE, but the prior over the latent variables have to be defined. The choice

of prior and assumptions regarding the posterior distributions further simplifies the

optimization of the ELBO objective.

Stochastic optimization of the ELBO

 The optimization of the evidence lower bound was performed using a stochastic

optimization procedure proposed in the VAE original paper by Kingma and Welling [63]. They

called this algorithm AutoEncoding Variational Bayes (AEVB).

42

Algorithm 1 Auto-Encoding Variational Bayes Algorithm
Input:
 X : Dataset

 ()q z x : Inference model

 (,)p x z : Generative model

Output:

 , : Learned parameters

 (,)   Initialize parameters

while SGD not converged do
 ℳ ~ X (Random minibatch of data)

 ()p  (Random noise for every data point within minibatch ℳ)

 Compute ℒ (, ;  ℳ ,) and its gradients ∇ℒ (, ;  ℳ ,)

 Update  and  using a SGD optimizer

end

 The stochastic optimization procedure in the AEVB algorithm is two-fold since the

noise is introduced by the random choice of a mini-batch ℳ and by the sampling step ()p  .

Given a dataset  ()

1

Nn

n
X x


 composed by N independent and identically distributed

examples, the global evidence lower bound objective is the sum of the evidence lower bounds

of all individual data points
()nx within X .

Choice of prior and conditional distributions

 The prior ()p z over the latent variables should be a simple distribution from which

one can easily sample, therefore it is usually chosen to be a centered isotropic multivariate

Gaussian distribution. With this choice, it will be independent of the  parameters:

() () (; 0,)p z p z N z I   . The intractable true posterior
(i)

()p z x is supposed to take on an

approximate Gaussian form with approximately diagonal covariance. In this case, the

approximate posterior
(i)

()q z x can be chosen to be a multivariate Gaussian distribution with a

diagonal covariance
2(; ,)N z I   , with parameters  and  calculated as functions of a

43

datapoint
()ix depending on the variational parameters . The reparameterization of z in this

case is simply z       , where (0,)N I .

 With these choices of distributions, the KL-divergence term of ELBO in Equation 2-31

takes a closed form, and its gradients can be easily calculated, only the gradients of the other

term have to be estimated:

2 2 2 2

1

1
((; ,) (; 0,)) [1 log(()) () ()]

2

J

KL j j j
j

D N z I N z I        


    .

In the above equation J notes the dimensionality of the latent space.

 The ()p xz noise model is usually also fixed to be a multivariate Gaussian distribution
2(; ,)N z I   (or Bernoulli in case of binary input data), whose parameters  and  are

computed as a function of a single
()iz and depend on .

 With the choice of Gaussian distribution as noise model, usually the  variance is

fixed to be 1, resulting that the approximation of the expectation term of ELBO in Equation 5

can be written as:
()

2
1

log2
2

ix     , and its gradients can be calculated easily.

Bringing in neural networks

 Up to this point, it was not necessary to concretize the exact form of ()p xz and ()q z x ,

the generative and the inference model. It would be desirable to model ()p xz with a

parameterized distribution flexible enough to capture the true data distribution, and to

approximate ()p zx with ()q z x well enough. Arbitrary differentiable functions could model

conditional probability distributions. From the mathematical theory of artificial neural

networks, it is known that neural networks with suitable activation functions are universal

approximators, they can approximate any continuous function to any desired precision [68].

This offers a good choice for parametrizing the two conditional distributions with neural

networks, allowing for probabilistic reasoning about autoencoder-based generative models.

44

 The resulting VAE can be viewed as a traditional autoencoder with an additional

specific regularization term. In the VAE setup, the inference model ()q z x takes the role of an

encoder responsible for stochastically mapping the input data points to latent representations,

and similarly, the generative model ()p xz acts as a probabilistic decoder.

 The encoder and decoder are jointly trained to maximize the log-likelihood of each

training data point through the minimization of the VAE objective function:

()
() ()

()
1

(, ;) [log ()] (() ())i

N
i i

K Lz q z x
i

X p x z D q z x p z


   


   
  

 

 In the individual-datapoint ELBO, Equation 2-31, the first term is the distortion term

quantifying the reconstruction error of observation, the objective minimized by autoencoders,

while the second KL-divergence is the rate term that measures the additional number of extra

bits required to encode a sample from the true posterior using a code optimized for encoding

samples from the variational approximation of the prior [69]. The KL-divergence term can be

interpreted as a regularizer that is minimized when () ()q z x p z  for all x. This perspective

has been used to explain the tendency of VAE to discard the majority of dimensions in latent

z leading to the posterior collapse problem discussed in the next subsection along with other

drawbacks and advantages of this model.

Advantages and Disadvantages of Variational Autoencoders

 The main advantages of VAEs rely on algorithms for unsupervised learning.

Unsupervised learning is the natural procedure that cognitive mammals, i.e., human beings,

use for learning, which makes it an interesting alternative for machine learning and artificial

intelligence. This consists of the network discovering the data features on its own and using

those features to classify the data later. In this way, there is no need to define an input and

output dataset beforehand, like in supervised learning.

45

 It was also mentioned that VAEs have simple structures, which is an advantage

compared to Generative Adversarial Networks. In this way, they are easier to train, joint with

the fact that VAEs have a clear objective function to optimize (log-likelihood).

 Another advantage that variational autoencoders present against GANs is that the

quality of their models can be evaluated by means of the log-likelihood (explained in the

following sections). At the same time, GANs cannot be compared except by visualizing the

samples.

 However, VAEs present a drawback in terms of reconstruction since the generated

images are blurred when compared to the ones generated by GANS. This blurred is caused by

the imperfect reconstruction achieved by variational autoencoders.

2.6 Moving Average

2.6.1 Exponentially Weighted Moving Average

 The Exponentially Weighted Moving Average (EWMA) is a quantitative or statistical

measure used to model or describe a time series. The EWMA is widely used in finance, the

main applications being technical analysis and volatility modeling.

 The moving average is designed such that older observations are given lower weights.

The weights fall exponentially as the data point gets older; hence the name is exponentially

weighted.

 The only decision a user of the EWMA must make is the parameter alpha. The

parameter decides how important the current observation is in calculating the EWMA. The

higher the alpha value, the more closely the EWMA tracks the original time series. The

EWMA’s simple mathematical formulation is described below:

1EWMA (1) EWMAt t tx       (2-33)

where EWMA t
 is moving average at time t ,  is a degree of mixing parameter value between

0 and 1, and
tx is the value of the series in the current period.

46

This formula states the value of moving average at time t . Here is a parameter that

shows the rate at which the older data will come into calculation.

If  =1, that means only the most recent data has been used to measure EWMA. If 

is nearing 0, that means more weightage is given to older data, and if  is near 1, that means

newer data has been given more weightage.

2.6.2 Linearly Weighted Moving Average

 Linearly Weighted Moving Average (LWMA), also referred to as a weighted moving

average, LWMA is a simple moving average that places more weight on recent data. The most

recent observation has the biggest weight and each one prior to it has a progressively decreasing

weight.

-1 - 1(*) (*(-1)) ... (*(1))
LWMA

(1) / 2
t t t n

t

x n x n x

n n
  




 (2-34)

where LWMA t
 is the value of the current period at time t , n is the number of periods, and

tx

is the value of the series in the current period.

2.7 Attention Mechanism

 The idea of integrating attention in neural network models is partially inspired by the

human attention system that has the ability to select stimuli during the early stages of

processing based on elementary stimulus features [70]. An interesting example is the human

visual system that can selectively focus its attention on parts of the visual space in order to

acquire information when and where it is required and build its own representation of the scene.

 Sequence to Sequence models have their weakness in tackling long sequences (e.g.,

long time series), mainly because the intermediate fixed-length vector representation does not

have enough capacity to capture information from the entire input sequence, x. In other words,

longer sequences need to be encoded into the same fixed-length vector representation or

context vector.

47

 Rooted in the mechanism behind the human attention system, Attention Mechanisms

(AM) were proposed to overcome this limitation by allowing the decoder to attend to relevant

encoded hidden states selectively.

 Several attention models have been proposed in the past few years [71, 72], and, in

general, they operate as follows. At each timestep t, during decoding, the attention model

computes a context vector obtained by a weighted sum of the encoder’s hidden states.

 Even though attention was developed mainly in the framework of Natural Language

Processing (NLP) tasks involving text data, it can be applied to other problems dealing with

other types of data, such as time series and videos. Attention mechanisms have shown an

impressive success in a variety of applications such as machine translation [71], image

classification [73], speech recognition [74], pose estimation [75], sentence summarization [76]

and image captioning [77]. In fact, attention is a natural extension of approaches based on

Seq2Seq models for any kind of sequential data.

2.8 Evaluation metrics

There are different methods and metrics that can be of use when evaluating the

performance of a classifier. In unsupervised learning, the evaluation is heavily dependent on

the problem at hand and is often a complicated task. An anomaly threshold can be set as a

decision boundary in anomaly detection so that the algorithm can be evaluated as a regular

classifier. The classification performance can then be measured for different threshold values

to see various classifier performance attributes as the threshold increases or decreases.

The confusion matrix is commonly used to show how each test value predicts classes

compared to their actual classes. It is a table with four different combinations of detected and

actual values: True Positive or TP, False Positive or FP, True Negative or TN, and False Negative

or FN. In this way, we can assign the anomalies as positive and the normal as negative in the

anomaly detection task. The definitions of TP, FP, TN, and FN are described as follows:

True Positives (TP): The cases are abnormal and detected as anomalies.

48

True Negatives (TN): The cases are normal and detected as normal.

False Positives (FP): The cases are normal but detected as anomalies.

False Negatives (FN): The cases are abnormal but detected as normal.

Fig. 2-16 A confusion matrix

Furthermore, to evaluate the anomaly detection model, a few evaluation metrics can help

calculate anomaly detection based on the confusion matrix: precision, recall, F1-score, True

Positive Rate (TPR), and False Positive Rate (FPR).

Precision is the ratio of correctly detected anomalies to all detected anomalies.

Mathematically this is defined by the equation below.

Precision
TP

TP FP



 (2-35)

The recall is the ratio of correctly detected anomalies to all anomalies.

Recall
TP

TP FN



 (2-36)

49

F1-score combines recall and precision into one performance metric. F1-score is the

weighted average of precision and recall. Therefore, this score takes both false positives and false

negatives into account. F1-score is very useful, especially in imbalanced data.

Precision×Recall
F1 Score 2

Precision +Recall
   (2-37)

TPR is the same as recall.

 TPR Recall Sensitivity
TP

TP FN
  


 (2-38)

FPR shows the proportion of wrongly judged anomalies in all normal samples. The

formulas of these metrics are shown below.

FPR 1-Specificity
FP

FP TN
 


 (2-39)

A receiver operating characteristic (ROC) curve is a plot that illustrates the performance

of a classification model for all threshold settings. FPR represents the x-axis, and TPR

represents the y-axis. As the threshold is altered in both directions, the FPR and TPR will range

between zero and one. As the ROC curve has been constructed, the area under the ROC curve

(AUROC) can be measured. In cases where the real function is unknown, and the integral can

not be directly calculated, approximation methods such as the trapezoidal rule can be used. The

formal definition of the trapezoidal rule can be seen in Equation 2-37. An AUROC of 0.0

reflects the model predicting the wrong output at all times, an AUROC of 0.5 means the model

has not learned anything useful, and an AUROC of 1.0 means the model is optimal at all

threshold values.

1
1

1

() ()
() ()

2

Nb
k k

k ka
k

f x f x
f x dx x x





  (2-40)

50

where: f = approximated function

x = data points

2.9 Deep learning anomaly detection methods (DNN)

DNN-based methods are a sub-category of machine learning-based approaches, which

rely on deep neural networks. Given the explosion of DNN-based methods over the last years,

they are presented as a separate category.

Auto-Encoder (AE) [32] is an artificial neural network combining an encoder and a

decoder. The encoder part takes the input window and maps it into a set of latent variables z,

whereas the decoder maps the latent variables z back into the input space as a reconstruction.

The difference between the original input vector and the reconstruction is called the

reconstruction error. Thus, the training objective aims to minimize this error. Auto-encoder-

based anomaly detection uses the reconstruction error as the anomaly score. Time windows

with a high score are considered to be anomalies.

Generative Adversarial Networks (GANs) [66] have the ability to know whether an

input sample is normal or not. A GAN is an unsupervised artificial neural network based on a

two-player minimax adversarial game between two networks, which are trained simultaneously.

One network, the generator (G), aims to generate real data, whereas the second one acts as a

discriminator (D) trying to discriminate real data from that one generated by G. The training

objective of G is to maximize the probability of D making a mistake, whereas the training

objective D is to minimize its classification error. Similarly to AE-based, GAN-based anomaly

detection uses normal data for training. After training, the discriminator is used as an anomaly

detector. If the input data is different from the learned data distribution, the discriminator

considers it as coming from the generator and classifies it as fake, i.e., as an anomaly.

The Long Short-Term Memory Variational Auto-Encoders (LSTM-VAE) [38]

combines the LSTM [62] which is a recurrent neural network architecture with a variational

auto-encoder (VAE) by replacing the feed-forward network in a VAE with a long short-term

51

memory (LSTM). The LSTM-VAE models the time dependence of time series through LSTM

networks. During encoding, the LSTM-VAE projects the input data and its time dependencies

into a latent space. It uses the latent space representation to estimate the output distribution

during decoding. Finally, the LSTM-VAE detects an anomaly when the log-likelihood of the

current data is below a threshold. S. Lin et al. [78] show that the LSTM-VAE is capable of

identifying anomalies that span over multiple time scales.

The Deep Autoencoding Gaussian Mixture Model (DAGMM) [31] jointly considers

a Deep Auto-encoder and a Gaussian Mixture Model (GMM) to model the density distribution

of multidimensional data. The Deep Autoencoder aims to generate a low-dimensional

representation and a reconstruction error for each input data time window. This representation

is used as input of a Gaussian Mixture Model (GMM). The parameters of the Deep Auto-

encoder and the mixture model are optimized simultaneously from end to end, taking advantage

of a separate estimation network to facilitate the learning-based of the parameters of the mixture

model. The DAGMM then uses the likelihood to observe the input samples as an anomaly score.

The Multivariate Anomaly Detection with Generative Adversarial Networks

(MAD-GAN) [37] is based on a Generative adversarial network (GAN) [66] architecture

composed of LSTMs. MAD-GAN uses an anomaly score called DR-score to detect anomalies.

This score is composed of the discrimination between real data and fake data of the

discriminator and the reconstruction error of the generator. Indeed, because of the smooth

transitions of the latent space, the generator produces similar samples if the entries in the latent

space are identical. Thus, we can use the residuals between the test data and their transformation

by the generator to identify anomalies in the test data.

The Multivariate Time Series Anomaly Detection Using the combination of

Temporal pattern and Feature pattern (MTAD-TF) [42] can be split into two main parts.

The first part is called Temporal convolution component. It is based on a multiscale 1D

convolution that allows to detect of temporal patterns. The second part is called Graph attention

component. It allows one to learn the correlation between features and is based on a graph

52

attention network [79]. The combination of these two parts provides a prediction. The anomaly

score is the squared error between the predicted and actual values.

Finally, OmniAnomaly (OA) [36] is a stochastic recurrent neural network for

multivariate time series anomaly detection that learns robust multivariate time series

representations with a stochastic variable connection and a planar normalizing flow that uses

the reconstruction probabilities to determine anomalies. OmniAnomaly uses the Gated

Recurrent Unit (GRU) to model the time dependencies of multivariate time series. The method

also uses a VAE to learn a mapping of the input data W to a representation in a latent space. To

model time dependencies in the latent space, OmniAnomaly uses a stochastic variable

connection technique. As suggested by [33], conditional probability can evaluate the

reconstruction. The anomaly score used is then the probability of reconstruction. A high score

means that the input can be well reconstructed. If an observation follows normal time series

patterns, it can be reconstructed with high confidence. On the other hand, the lower the score,

the less well the observation can be reconstructed and the more likely it is to be anomalous.

2.10 Related Work

Anomaly detection is challenging, and many approaches have been taken in various

applications. In past years, many classical unsupervised approaches have been developed [80-

85], including Principal Component Analysis (PCA) [86], which finds a low-dimensional

projection that captures most of the variance in the data. The anomaly score is the reconstruction

error of this projection. It is a linear algebra technique that can automatically achieve dimension

reduction. Lee et al. [87] proposed online over-sampling PCA, which makes use of online

platforms for large-scale problems. By over-sampling the minority class of the target instance,

their proposed algorithm allows them to determine the anomaly of the target instance.

One of the latest techniques for dimensionality reduction is Autoencoder [88], which is a

popular approach for anomaly detection. Autoencoders consists of an encoder and decoder,

which reconstruct data samples and use the reconstruction error as the anomaly score [89]. Zhou

53

et al. [90] proposed a deep autoencoder that combines robust PCA and deep autoencoders. It

splits data into two parts: one part can be reconstructed by autoencoders; the other is the noise

(outliers) in the data. Deep Autoencoding Gaussian Mixture Model (DAGMM) [31] jointly

considers the Deep Autoencoder and Gaussian mixture Model to model the density distribution

of multi-dimensional data.

Recently, Generative Adversarial Networks (GANs) [66] and LSTM-based approaches

[62] have also shown promising performance for multivariate anomaly detection [91,92].

Multivariate Anomaly Detection for Time Series Data with Generative Adversarial Networks

(MAD-GAN) [37] proposed an unsupervised anomaly detection method based on generative

adversarial networks (GAN) by considering complex dependencies among different time series

variables. The LSTM-based Encoder-Decoder [27] models time series temporal dependency by

means of LSTM networks and achieves better generalization capability than traditional methods.

OmniAnomaly [36] is a stochastic recurrent neural network designed to avoid potential

misguiding by uncertain instances, which uses stochastic variable connection and normalizing

flow to get reconstruction probabilities to determine anomalies. Ryota et al. [93] introduced a

convolutional neural network and environment-dependent anomaly detector to detect the object,

its attributes, and actions in the image. An environment-specific model can identify unusual

attributes likely to explain abnormal patterns. Hu et al. [94] proposed a time series anomaly

detection technique using six meta-features. This technique is a One-class Support Vector

Machine (OC-SVM) system designed to identify the abnormal states of a univariate or

multivariate time series based on local dynamics. Recently, a novel computational approach,

namely Local Recurrence Rate based Discord Search (LRRDS), was proposed to identify

discords from multivariate time series. This approach reduces the dimensionality of a time series

and can detect variable-length discords using the given time series as the normality reference

[95].

U-Net [96] shares some of the design characteristics of the system architecture described

in this paper. It is a fully convolutional neural network incorporating so-called skip channels

54

between encoding and decoding layers. This approach allows for integrating high and low level

features in a way that prevents information loss and reduces the depth of sequential layers.

However, U-net is limited in that the learning rate may be diminished in the middle layers of a

high depth case. This means the system is at risk of ignoring layers with abstract features, thus

limiting extraction of some of the complex features that could help image segmentation in

medical images. Moreover, U-Net requires rather substantial training time because of a large

number of hyper-parameters. By contrast, our system uses a more effective method consisting of

the multi-scale MSCVAE model that has an attention-based ConvLSTM network. This method

allows for capturing interesting features and key patterns to assist with anomaly detection in

multivariate time series data.

Some Variational Autoencoders (VAEs) [63, 97-100] have taken a probabilistic

approach, and autoencoders have been combined with Gaussian mixture modeling [101]. Bayer

and Osendorfer [102] used Variational Inference to learn the underlying distribution of

sequences and introduced recurrent stochastic networks. The core of these models is an RNN

extended with a latent variable. Sölch et al. [103] used a Stochastic Recurrent Network

(STORN) to detect robot anomalies using unimodal signals. Park et al. [38] presented the

combination of LSTM-VAE using multimodal sensory signals, where LSTM is used to replace

the feed-forward network in VAE. Pereira et al. [104] proposed applying a self-attention

mechanism to VAE to improve the encoding-decoding process for energy data. Despite the

intrinsic unsupervised setting, most of them may still be unable to detect anomalies effectively

since most of the methods cannot capture temporal dependencies across different time steps in

multivariate time series data.

2.11 Summary

In this chapter, the fundamental theories: Time series, Anomaly Detection, Variational

Autoencoder, Long Short Term Memory, Attention mechanism, Moving Average, and

evaluation metrics, as described above, will be used to create and develop the anomaly detection

55

framework for multivariate time series data. The methodology of using mentioned theories will

be discussed in Chapter 3.

56

Chapter 3

Methodology

This chapter presents a Multi-scale convolutional variational autoencoder (MSCVAE)

to detect anomalies in multivariate time series data. We first show how to generate multi-scale

system attribute matrices. Then, All the components/layers of the proposed model are described

in detail in this part.

3.1 Problem Statement

In this work, we focus on multivariate time series, given the historical data of n time

series 1 2(, , ...,) ,T n T
nX x x x   of length ,T and assume that there are anomalies in the

data. We aim to detect anomalous events at certain time steps after T . We use only the normal

dataset for training to characterize the various time series patterns under normal conditions.

For the validation, we also use only the normal dataset. Both normal and abnormal data are

used for testing.

Fig. 3-1 Architecture of the MSCVAE framework

57

Table 3.1 Terminology and notation used in this thesis

Notations Descriptions

X Multivariate time series dataset

T Length of time series
n Dimension of time series
w Size of sliding window

t Time step
tM Attribute matrix

()p z Prior distribution

()p z x Probabilistic encoder

(x)p z Probabilistic decoder
,0tP Input of the first layer of the encoder

(0,)N I A multivariate unit Gaussian distribution

z Latent variable

 Convolutional operation

 Hadamard product

 Deconvolutional operation

 Concatenation operation

()f  Activation function unit
,0ˆ tP Output, reconstruction at t time step

,t li , ,t lf , ,t lo 3D tensor
,t lG Candidate memory
,t lC Cell state
,t lH Current hidden state

3.2 Methodology

3.2.1 Standardization

Data scaling is a recommended pre-processing step when working with many machine

learning algorithms. Machine learning models learn a mapping from input variables to an

output variable. The scale and distribution of the data drawn from the domain may be different

for each variable. Input variables may have different units (e.g., feet, kilometers, and hours)

that, in turn, may mean the variables have different scales.

58

In this thesis, we used standardization in which we scaled the data in order to have zero

mean and unit variance. This can be thought of as subtracting the mean value or centering the

data as shown in Eq. 3-1.

ixx





 (3-1)

where: ix = sample point

 = mean of the training samples

 = standard deviation of the training samples

3.2.2 Generate Attribute Matrices

Given the importance of correlations between the different pairs of time series for

characterizing the system state [105], we generate an n n attribute matrix
tM utilizing the pair-

wise inner product of multivariate time series within this segment. This is designed to illustrate

the inter-correlations between different pairs of time series in a multivariate time series segment

from time t w to t . We adopt the method for calculating the attribute matrix proposed in [39]

to capture the similarity of shape and value scale correlations between two time series. Examples

of attribute matrices are shown in Figure 3-1, part A. The pseudocode of the algorithm for

generating the attribute matrix is introduced in Algorithm 1. For multivariate time series segment

,wX we define two time series, namely,  1, , ..., ,t w t w t
i i i ix x x x    1, , ..., ,t w t w t

j j j jx x x x   and

their correlation t t
ijm M can be computed as follows:

0

w t t
i jt

ij

x x
m

k

 


 



 (3-2)

where w is the length of sliding window, and k is a coefficient that is experiencedly set as w ,

which means the calculation of Eq. 3-2. Also, the interval between two segments is set to 10. To

characterize latent features of multivariate time series in multi scales, we construct three channel

attribute matrices with different length sliding windows (w =10, 20, 30) at each time step. To

59

further explain the attribute matrices generation process, the algorithm’s pseudocode is shown in

Table 3.2. An example of attribute matrices is shown in Figure. 3-2.

Table 3.2 Generating attribute matrices

Fig. 3-2 The example of attribute matrices

3.2.3 Convolutional Encoder

We use convolution encoders [106] to filter the noise in the data and encode the spatial

form of the system attribute matrices M. Four convolutional encoder layers are applied in our

Algorithm 1 Generating attribute matrices
Input:
 X : Multivariate time series
 T : Length of time series
 w : Length of sliding window
 n: Dimension of time series
Output:
 m: Attribute matrix
1: for i in T do
2: for j in T do
3: [1], [2], . . . , []iX x t w x t w x t    

4: [1], [2], . . . , []jX x t w x t w x t    

5: [][] i jX X
m i j

w




6: return M

60

model to extract the values of the attribute matrices in our framework. We call the input of the

first layer
,0tP at this time t for convenience.

,0tP represents the input of the first layer and

assumes that 1 1 1, 1 l l ln n dt lP      denotes the feature maps in (1) thl   layer. The output of

thl  layer is given by:

 , , 1()t l l t l l
e eP f W P b   (3-3)

where  denotes the convolutional operation, l
eW is the filter kernel of layer l , l

eb is a term of

bias,
,t lP is the output of layer l ,

, 1t lP 
 is the output of the 1l  layer (input of layer l), and

()f  is an activation function. Figure 3-1. part B illustrates the detailed encoding process of

attribute matrices.

3.2.4 Variational Layer

The prior distribution over the latent variables, ()p z , is defined as an Isotropic

Gaussian distribution, i.e. () Normal (0, I)p z  . The variational parameters of the

approximate posterior ()q z x , the mean z and the standard deviation z , are derived from

the final encoder hidden state, Conv4, using two fully connected layers with Linear and Leaky

Relu activations, respectively. Since
,()t lp P x and ()q z x both have Normal distributions,

the approximate posterior given a distribution around x , denoted ()q z x , can be represented

as a mixture of Gaussians. However, for computational convenience and following the

approach of Park et al. [38] a single Gaussian is employed, i.e.
,() ()t lq z x q z P  . The

latent variables are then obtained by sampling from the approximate posterior,

2(, I)z zz N   , using the parametrization trick,

z zz      (3-4)

where (0,)N I  is an auxiliary noise variable and  represents an element-wise product.

61

3.2.5 Attention-based ConvLSTM

The spatial feature maps are extracted by the convolutional encoder, depending on the

previous time steps. The traditional Convolutional LSTM performance might degrade as the

length of the sequence increases. Xingjian et al. [107] introduced the LSTM model to the

ConvLSTM to capture the temporal information in a video sequence. Here we have used an

attention-based ConvLSTM to obtain the temporal characteristics which can be adaptive with

different time steps. ConvLSTM consists of four convolutional layers of four ConvLSTM blocks.

Details of ConvLSTM are shown in Figure 3-1. part B At time t , the results of
,t lP calculated

by Eq. 3-3. in layer l of the convolutional encoder are used as input to the thl  layer of

ConvLSTM. The other input is the time 1t  hidden state
1,t lH 

 in hidden layer l . The

ConvLSTM cell is formulated as follow:

, , 1, 1,()t l l t l l t l l t l l
pi hi ci ii W P W H W C b       

, , 1, 1,()t l l t l l t l l t l l
pf hf cf ff W P W H W C b       

, , 1, 1,()t l l t l l t l l t l l
po ho co oo W P W H W C b       

, , 1,tanh ()t l l t l l t l l
pc hc cG W P W H b    

, , 1, , ,t l t l t l t l t lC f C i G  

, , ,tanh (C)t l t l t lH o  (3-5)

where  is the sigmoid function, l
piW is the filter kernel of the input gate, l

ciW is the filter kernel

of the input gate process for the input of the hidden layer at the previous time step, and l
hiW is the

filter kernel of the cell state at the previous time step in the input gate. The input
,t lP , the cell

state ,t lC , the hidden state
,t lH , the candidate memory ,t lG , and the gates ,t li , ,t lf , ,t lo are

all 3D tensors. The symbol “  ” denotes the convolutional operator, and “ ” denotes the

Hadamard product. Figure 3-1. part B illustrates the temporal modeling procedure.

62

We follow the idea of the temporal attention mechanism mentioned in [17], which is

given by:

, ,

(,)

ˆ it l i l

i t h t

H H
 

  (3-6)

(,)

exp()

exp()

t
i

t

i t h t

s

s


 




 (3-7)

, ,() ()t l T i l
t H H
s

X
 (3-8)

where  is the rescale factor ( = 5). That is, we take the last hidden state ,t lH as the group

level context vector and measure the importance weights i of previous steps through a softmax

function.

3.2.6 Convolutional Decoder

We can reconstruct the input data using the extracted attribute output produced by the

decoder. For the convolutional decoder, we follow the procedure discussed in [39], which is

formulated as follows:

, , ,
, 1

, , , ,

ˆˆ ˆ(), 4ˆ
ˆˆ ˆ ˆ([]), 3, 2, 1

t l t l t l
d dt l

t l t l t l t l
d d

f W H b l
P

f W H P b l





   
 




 (3-9)

where  denotes the deconvolutional operation,  is the concatenation operation, ()f  is the

activation function unit (same as in the encoder). ,ˆ t l
dW and ,ˆ t l

db are the filter kernel and bias

parameter, respectively, of the thl  deconvolutional layer. We reconstruct the attribute matrix

of each layer by reversely decoding the deconvolution from layer l = 4 to layer l = 1. We then

deconvolve the result ,4to of the ConvLSTM at the last layer l = 4 and reconstruct the previous

layer matrix ,3ˆ tP . After that, the deconvolution operation is performed as a concatenation to

reconstruct the attribute matrix sequence of the 1 thl   layer. The final output
,0ˆ t n n sP  

63

(with the same size as the input matrices) denotes the representations of reconstructed attribute

matrices.

3.2.7 Weighted Mechanisms

The weighted mechanism aims to give different weights to temporal samples in each

sliding window, and newer samples get higher weights, which means newer samples will be paid

more attention. In contrast, the weights of older samples are lower, eliminating false alarms of

the new sample under the excessive influence of historical samples. Linearly weighted moving

average and exponentially weighted moving average are adopted to verify the effectiveness of

the proposed weighted mechanism.

, , ,
1 1

ˆ ˆ ˆ(*) (*(-1)) ... (*(1))
LWMA

(1) / 2

t l t l t l
t t t n

t

P n P n P

n n
    




 (3-10)

where LWMA t is the value of the current period at time t , n is the number of periods, and ,ˆ t l
tP

is the value of the series in the current period.

,
1

ˆEWMA (1) EWMAt l
t tP       (3-11)

where EWMA t is moving average at time t ,  is a degree of mixing parameter value between

0 and 1, and ,ˆ t lP is the value of the series in the current period. The coefficient  is set by

experience. According to exponential weighting in Equation 3-11, coefficient  is set as 0.15.

3.2.8 Activation Function

Activation functions are mathematical equations used in neural networks for

transforming the weighted sum of inputs from a node to its output. Activation functions can be

either linear or non-linear. In this thesis, we use four activation functions defined as follows.

64

3.2.8.1 Linear

The linear activation function, also known as “no activation” or “identity function”

(multiplied x1.0), is where the activation is proportional to the input.

The function does not do anything to the weighted sum of the input. It simply spits out

the value it was given.

()f x x (3-12)

The limitations of the Linear function are as follow:

 It is impossible to use backpropagation as the derivative of the function is a constant

and has no relation to the input x .

 All layers of the neural network will collapse into one if a linear activation function is

used. No matter the number of layers in the neural network, the last layer will still be a

linear function of the first layer. Thus, essentially, a linear activation function turns the

neural network into just one layer.

Figure 3-3 Activation Functions. Linear is used for deriving the expectation of the latent

variables and the outputs; Sigmoid and Softmax are used internally in the attention based

ConvLSTM; Leaky ReLu is used in the variance/diversity layers.

65

3.2.8.2 Leaky ReLu

Leaky ReLu is a recently developed activation function. It is designed to minimize

sensitivity to the dying ReLU problem by having a small negative slope (in the neighborhood of

0.01), which is defined by:

() max(0.01 ,)f x x x (3-13)

The advantages of using Leaky ReLU as an activation function are as follows:

 Leaky ReLU is defined to address the problem of dying neurons/dead neurons.

 The problem of dying neuron/dead neuron is addressed by introducing a small slope

having the negative values scaled by a enables their corresponding neurons to “stay

alive”.

 The function and its derivative are both monotonic.

 It allows negative value during backpropagation.

 It is efficient and easy for computation.

 Derivative of Leaky is 1 when () 0f x  and ranges between 0 and 1 when () 0f x 

The limitations of the Leaky ReLu function are as follows:

 Leaky ReLU does not provide consistent predictions for negative input values

3.2.8.3 Sigmoid

This function takes any real value as input and outputs values in the range of 0 to 1. The

larger the input (more positive), the closer the output value will be to 1.0, whereas the smaller

the input (more negative), the closer the output will be to 0.0, as shown below.

1
()

1 x
f x

e



 (3-14)

The advantages of using Sigmoid as an activation function are as follows:

 It is commonly used for models where we have to predict the probability as an output.

Since the probability of anything exists only between the range of 0 and 1, sigmoid is

the right choice because of its range.

66

 The function is differentiable and provides a smooth gradient, i.e., preventing jumps in

output values. This is represented by an S-shape of the sigmoid activation function.

The limitations of the Sigmoid function are as follows:

 Derivative of sigmoid function suffers “Vanishing gradient and Exploding gradient

problem”

 Sigmoid function is not “zero-centric” This makes the gradient updates go too far in

different directions. 0 < output < 1, and it makes optimization harder

 Slow convergence as its computationally heavy

3.2.8.4 Softmax

Softmax function is often described as a combination of multiple sigmoids. We know

that sigmoid returns values between 0 and 1, which can be treated as probabilities of a data

point belonging to a particular class. Thus, sigmoid is widely used for binary classification

problems.

The Softmax function can be used for multiclass classification problems. This function

returns the probability for a data point belonging to each individual class.

()
i

j

x

i x

j

e
f x

e



 (3-15)

3.2.9 Loss Function

The loss for a particular sequence X is given by:

()
() () ()

()
(, ;) [log(()] (() ())n

n n n
KLz q z x

x p x z D q z x p z


     
   (3-16)

Mean Square Error (MSE) is used as a reconstruction loss to optimize the parameter

values in our model. MSE is given by the following:

67

2
,0 ,0

1 1

ˆ
k k

t t

t
MSCVAE

c

P PL
 

  (3-17)

where ,0t n nP   . We employ the mini-batch stochastic gradient descent method and the

Adam optimizer to minimize the above loss. After sufficient training epochs, the learned neural

network parameters are utilized to infer the reconstructed attribute matrices of validation and

test data. Finally, we perform anomaly detection and diagnosis based on the residual attribute

matrices, elaborated in the next section.

3.2.10 Threshold Setting Strategy

VAEs map each group of attribute matrices to anomaly scores during the anomaly

detection process. The threshold setting aims to give the best boundary to distinguish normal and

abnormal samples, and then detected samples are labeled normal or abnormal by means of VAEs.

In a Receiver Operating Characteristic (ROC) curve [108], the true positive rate (TPR) is

plotted in function of the false positive rate (FPR) for different cut-off points. Each point on the

ROC curve indicates a pair of sensitivity and specificity corresponding to a specific decision

threshold. Based on the ROC-based threshold setting strategy, the best threshold is always sought

as the dot on the upper left corner or point (0,1). However, the ROC-based threshold setting

strategy is insensitive to imbalanced datasets, leading to poor performance in anomaly detection.

According to the false positive rate formula FPR
FP

FP TN



, when a large number of normal

samples are wrongly judged as anomalies, FPR changes a little. Therefore, anomaly detection

performance may be widely divergent for two threshold values that are close together. In this

case, selecting an optimal threshold among different discrete points is not easy. Moreover, Eq.

3-12 is often adopted to calculate the distance between a point on the ROC curve and the point

(0,1). The threshold corresponding to the minimum distance is selected as the best threshold.

68

However, TN is much larger than TP, which makes
2

2 2

FP

FP TN
 much smaller than

2

2 2

FN

FN TP
.

Therefore, when choosing the minimum distance, the ROC-based strategy focuses more on the

former, only choosing the smaller FN as much as possible. Eventually, it leads to a low F1-Score.

 2 2Distance (1)TPR FPR   (3-18)

2 2

2 2 2 2

FN FP

FN TP FP TN
 

 
 (3-19)

We adopt a threshold setting strategy using a confusion matrix to avoid the

abovementioned problems. The confusion matrix can effectively reflect the anomaly detection

results, even for an imbalanced dataset. Therefore, we introduce a new error rate (ERR) defined

as a function of TP, FP, FN, and TN, as shown in the formula below. The aim of the new threshold

setting strategy is to minimize ERR, which means fewer samples are misjudged. As a result, the

optimal threshold can be selected according to the minimum ERR.

ERR
FP

FP TP TN


 
 (3-20)

As indicated above, Precision, Recall, F1-Score, and ERR are utilized as evaluation

metrics for anomaly detection. Moreover, the geometric mean or G-mean [109] of sensitivity and

specificity, is suitable for evaluating the quality of binary (two-class) classifications for a

balanced as well as imbalanced dataset problem. Therefore, G-mean is used as another

evaluation metric in the following experiments.

 G-mean Recall *Specificity

TP TN

TP FN TN FP
 

 
 (3-21)

69

3.3 Summary

In this chapter, the MSCVAE proposed framework based on Variational Autoencoder

is described. We explain how to generate the attribute matrices and show the example of

attribute matrices of both normal and abnormal. Then, we encode the spatial information in

feature matrices via a convolutional encoder and model the temporal pattern with attention

based ConvLSTM. Finally, we reconstruct attribute matrices based on a convolutional decoder.

We introduce in detail the strategy of threshold setting.

70

Chapter 4

Experiments and Discussion

This chapter presents the results of the thesis. The chapter begins with an explanation

of the datasets used in this thesis. Afterward, the experimental setup and anomaly detection

results are presented. This is followed by results from the ablation study, robustness evaluation,

and threshold setting strategy comparison.

4.1 Datasets description

Four publicly available benchmark datasets were used in the experiments, namely,

Satellite, Wafer (UCR), EEG, and Opt. Descriptions of these data sets are given below, and the

details of the experiments are listed in Table 4.1.

Table 4.1 The detailed information of time series data sets

Datasets #Training #Validation #Testing Length Anomaly rate

Satellite 3,000 1,000 2,435 36 31.6 %
Wafer 4,000 1,014 2,150 152 10.6 %
EEG 8,000 2,030 4,950 14 44.9 %
Opt 2,500 970 1,746 64 2.9 %

Satellite: This dataset was generated from data purchased from NASA by the

Australian Centre for Remote Sensing. It consists of the multi-spectral values of pixels in 3x3

neighborhoods in a satellite image together with the classification associated with the central

pixel in each neighborhood. The data set is used to predict the category of the image of the

observed region of soil. Soil classes “red soil”, “grey soil”, “mixture class”, and “very damp

grey soil” constitute the normal class. The class of anomalies consists of “cotton crop”, “damp

grey soil”, and “soil with vegetation stubble”. This classification is based on multi-spectral

values, consisting of 36 time series and 6435 instances.

71

Wafer: The Wafer dataset is related to semiconductor microelectronics fabrication,

using data collected from various sensors during the processing of silicon wafers for

semiconductor fabrication. Each time series in this dataset contains measurements recorded by

one sensor in the course of processing one wafer by one tool. The dataset contains 152 attributes,

and there is a large class imbalance between normal and anomaly.

EEG: This dataset is from one continuous EEG measurement with the Emotiv EEG

Neuroheadset. The duration of the measurement was 117 seconds. The eye state was detected

via a camera during the EEG measurement and later added manually to the file after analyzing

the video frames. This dataset consists of 14 EEG attribute values and one indicating the eye

state.

Opt: The Opt dataset is used for preprocessing programs made available by NIST to

extract normalized bitmaps of handwritten digits from a preprinted form, which contains 64

parameters. It is a character recognition dataset for integers 0-9. The 32X32 bitmaps are divided

into non-overlapping blocks of 4X4 each, which generates an 8X8 input matrix. The instances

of digits 1-9 are treated as inliers, whereas the instances of the digit 0 are treated as outliers.

4.2 Experimental setup

This experiment uses the open-source machine learning library Scikit-learn, and deep

learning framework Torch, Keras, and TensorFlow to develop the baseline models and this

framework. The computer configuration is Intel(R) Core(TM) i7-9750H CPU 2.60GHz 6-Core

Processor with NVIDIA GeForce RTX 2060 GPU, 16G Memory.

 Furthermore, seventeen algorithms were used to verify the superiority of the proposed

framework, including classical anomaly detection algorithms and deep architecture models.

The classical anomaly detection algorithms include K-Nearest Neighbor (KNN), Local

Outlier Factor (LOF), Isolation Forest (iForest), One-class Support Vector Machine (OCSVM),

Gaussian Mixture Model (GMM), Principal Component Analysis (PCA), Angle-based Outlier

72

Detector (ABOD), Histogram-based Outlier Score (HBOS), Cluster-based Local Outlier Factor

(CBLOF), Multiple-Objective Generative Adversarial Active Learning (MOGAAL).

The deep architecture models include Deep Autoencoding Gaussian Mixture Model

(DAGMM), Generative Adversarial Network (GAN), Multivariate Anomaly Detection with

GAN (MAD-GAN), OmniAnomaly, Autoencoder, Variational Autoencoder (VAEs), and

Long Short-Term Memory Autoencoder (LSTM-AE). Table 4.2 presents the details of all the

algorithms.

Table 4.2 Detailed structural comparison of the algorithms

Model Kernel Dense CNN LSTM Dropout
Weighted

Mechanism

KNN × × × × × ×

LOF × × × × × ×

iForest × × × × × ×

OCSVM ○ × × × × ×

GMM × × × × × ×

PCA × × × × × ×

ABOD × × × × × ×

HBOS × × × × × ×

CBLOF × × × × × ×

MOGAAL × × × × × ×

DAGMM × ○ × × ○ ×

GAN × ○ × × × ×

MAD-GAN × ○ × ○ ○ ×

OmniAnomaly × ○ × × × ×

Autoencoder × ○ × × × ×

VAEs × ○ × × × ×

LSTM-AE × ○ × ○ ○ ×

MSCVAE × × ○ ○ × ×

MSCVAEl × × ○ ○ × ○

MSCVAEe × × ○ ○ × ○

73

4.3 Anomaly detection results

4.3.1 Overall performance

All anomaly detection models in experiments were trained with the corresponding

training subsets, consisting of normal samples. Then the models were verified using a

validation method consisting of normal samples and testing subsets, including both normal and

abnormal data. The model evaluation metrics, i.e., precision, recall, F1-Score, and G-mean,

were in the range of 0 to 1. Higher precision, recall, F1-Score, G-mean, and lower ERR indicate

better model performance. Table 4.3, Table 4.4, Table 4.5, and Table 4.6 show the confusion

matrix elements and evaluation metrics of anomaly detection models on four datasets. The bold

fonts in Table 4.3, Table 4.4, Table 4.5, and Table 4.6 indicate that the MSCVAE with

exponential weighting is superior to the other models.

Table 4.3 Anomaly detection results of Satellite dataset

Model
Confusion matrix value Performance evaluation

TP FP FN TN ERR Precision Recall F1-Score G-mean
KNN 45 75 68 51 0.4386 0.3750 0.3982 0.3863 0.4015

LOF 54 66 56 63 0.3607 0.4500 0.4909 0.4696 0.4896

iForest 51 69 58 61 0.3812 0.4250 0.4679 0.4454 0.4686

OCSVM 55 65 70 49 0.3846 0.4583 0.4400 0.4490 0.4349

GMM 72 48 73 46 0.2892 0.6000 0.4966 0.5434 0.4929

PCA 112 8 11 108 0.0351 0.9333 0.9106 0.9218 0.9207

ABOD 44 76 73 46 0.4578 0.3667 0.3761 0.3713 0.3766

HBOS 48 72 70 49 0.4260 0.4000 0.4068 0.4034 0.4059

CBLOF 51 69 62 57 0.3898 0.4250 0.4513 0.4378 0.4519

MOGAAL 52 68 78 41 0.4224 0.4333 0.4000 0.4160 0.3879

DAGMM 80 40 95 24 0.2778 0.6667 0.4571 0.5424 0.4140

GAN 85 37 78 39 0.2298 0.6967 0.5215 0.5965 0.5173

MAD-GAN 82 37 78 42 0.2298 0.6891 0.5125 0.5878 0.5220

OmniAnomaly 84 37 79 39 0.2313 0.6942 0.5153 0.5915 0.5142

Autoencoder 83 37 78 41 0.2298 0.6917 0.5155 0.5907 0.5206

VAEs 105 9 31 94 0.0433 0.9211 0.7721 0.8400 0.8394

LSTM-AE 105 11 70 53 0.0651 0.9052 0.6000 0.7216 0.7049

MSCVAE 122 4 6 107 0.0172 0.9683 0.9531 0.9606 0.9585

MSCVAEl 124 3 6 106 0.0129 0.9764 0.9538 0.9650 0.9631

MSCVAEe 125 2 4 108 0.0085 0.9843 0.9690 0.9766 0.9754

74

Table 4.4 Anomaly detection results of Wafer dataset

Model
Confusion matrix value Performance evaluation

TP FP FN TN ERR Precision Recall F1-Score G-mean

KNN 58 48 37 67 0.2775 0.5472 0.6105 0.5771 0.5964

LOF 60 46 56 48 0.2987 0.5660 0.5172 0.5405 0.5139

iForest 54 52 43 61 0.3114 0.5094 0.5567 0.5320 0.5482

OCSVM 61 45 56 48 0.2922 0.5755 0.5214 0.5471 0.5187

GMM 60 46 45 59 0.2788 0.5660 0.5714 0.5687 0.5666

PCA 61 45 42 62 0.2679 0.5755 0.5922 0.5837 0.5858

ABOD 50 50 45 65 0.3030 0.5000 0.5263 0.5128 0.5454

HBOS 49 57 41 63 0.3373 0.7075 0.5034 0.5882 0.5346

CBLOF 33 73 62 42 0.4932 0.4623 0.5444 0.5000 0.3562

MOGAAL 45 61 50 54 0.3813 0.3113 0.3474 0.3284 0.4716

DAGMM 75 31 74 30 0.2279 0.4245 0.4737 0.4478 0.4975

GAN 120 7 15 68 0.1170 0.9449 0.8889 0.9160 0.8977

MAD-GAN 112 12 21 65 0.1864 0.9032 0.8421 0.8716 0.8431

OmniAnomaly 107 10 33 60 0.2575 0.9145 0.7643 0.8327 0.8094

Autoencoder 100 12 49 49 0.0745 0.8929 0.6711 0.7663 0.7342

VAEs 90 21 12 87 0.1061 0.8108 0.8824 0.8451 0.8431

LSTM-AE 86 9 64 51 0.0616 0.9053 0.5733 0.7020 0.6981

MSCVAE 142 2 0 66 0.0095 0.9861 1.0000 0.9930 0.9852

MSCVAEl 144 1 0 65 0.0048 0.9931 1.0000 0.9965 0.9924

MSCVAEe 142 1 1 66 0.0096 0.9930 0.9930 0.9930 0.9890

75

Table 4.5 Anomaly detection results of EEG dataset

Model
Confusion matrix value Performance evaluation

TP FP FN TN ERR Precision Recall F1-Score G-mean

KNN 164 92 94 140 0.2323 0.6406 0.6357 0.6381 0.6193

LOF 152 104 123 111 0.2834 0.5938 0.5527 0.5725 0.5342

iForest 184 72 85 149 0.1778 0.7188 0.6840 0.7010 0.6791

OCSVM 163 93 96 138 0.2360 0.6367 0.6293 0.6330 0.6132

GMM 170 86 113 121 0.2281 0.6641 0.6007 0.6308 0.5926

PCA 189 67 76 158 0.1618 0.7383 0.7132 0.7255 0.7077

ABOD 160 96 111 123 0.2533 0.6250 0.5904 0.6072 0.5758

HBOS 178 78 77 157 0.1889 0.6953 0.6980 0.6967 0.6829

CBLOF 157 99 103 131 0.2558 0.6133 0.6038 0.6085 0.5865

MOGAAL 92 164 146 88 0.4767 0.3594 0.3866 0.3725 0.3674

DAGMM 194 62 173 61 0.1956 0.7578 0.5286 0.6228 0.5120

GAN 297 10 33 150 0.0219 0.9674 0.9000 0.9325 0.9186

MAD-GAN 297 26 27 140 0.0562 0.9195 0.9167 0.9181 0.8793

OmniAnomaly 296 14 38 142 0.0310 0.9548 0.8862 0.9193 0.8982

Autoencoder 225 34 142 89 0.0977 0.8687 0.6131 0.7188 0.6660

VAEs 259 16 23 192 0.0343 0.9418 0.9184 0.9300 0.9208

LSTM-AE 251 14 117 108 0.0375 0.9472 0.6821 0.7930 0.7770

MSCVAE 296 9 34 151 0.0197 0.9705 0.8970 0.9323 0.9201

MSCVAEl 297 7 24 162 0.0150 0.9770 0.9252 0.9504 0.9418

MSCVAEe 301 5 11 173 0.0104 0.9837 0.9647 0.9741 0.9683

76

Table 4.6 Anomaly detection results of Opt dataset

Model
Confusion matrix value Performance evaluation

TP FP FN TN ERR Precision Recall F1-Score G-mean

KNN 82 23 13 52 0.1465 0.7810 0.8632 0.8200 0.7736

LOF 54 51 32 33 0.3696 0.5143 0.6279 0.5654 0.4967

iForest 78 28 24 40 0.1918 0.7358 0.7647 0.7500 0.6707

OCSVM 80 25 13 52 0.1592 0.7619 0.8602 0.8081 0.7622

GMM 82 23 14 51 0.1474 0.7810 0.8542 0.8159 0.7673

PCA 90 16 12 52 0.1013 0.8491 0.8824 0.8654 0.8214

ABOD 81 24 21 44 0.1611 0.7714 0.7941 0.7826 0.7168

HBOS 77 28 19 46 0.1854 0.7333 0.8021 0.7662 0.7061

CBLOF 82 23 13 52 0.1465 0.7810 0.8632 0.8200 0.7736

MOGAAL 51 54 58 7 0.4821 0.4857 0.4679 0.4766 0.2317

DAGMM 84 22 44 21 0.1732 0.7925 0.6563 0.7179 0.5661

GAN 97 1 6 66 0.0061 0.9898 0.9417 0.9652 0.9166

MAD-GAN 104 25 2 39 0.1488 0.8062 0.9811 0.8851 0.6688

OmniAnomaly 105 28 3 34 0.1677 0.7895 0.9722 0.8714 0.6073

Autoencoder 90 9 28 43 0.0634 0.9091 0.7627 0.8295 0.7942

VAEs 89 11 4 66 0.0663 0.8900 0.9570 0.9223 0.9057

LSTM-AE 92 3 35 40 0.0222 0.9684 0.7244 0.8288 0.8209

MSCVAE 99 1 4 66 0.0060 0.9900 0.9612 0.9754 0.9730

MSCVAEl 104 5 4 57 0.0301 0.9541 0.9630 0.9585 0.9409

MSCVAEe 103 1 0 66 0.0059 0.9904 1.0000 0.9952 0.9925

The comparison experiments show that 10 classical anomaly detection algorithms and

7 deep architecture models have been implemented. Generally speaking, the ability of classical

anomaly detection algorithms is limited when facing modeling issues for multivariate time

series, and this conclusion is supported by results for the two comprehensive indexes, F1 and

G-mean. DAGMM reduces the dimension and extracts features by using neural networks,

slightly improving compared to GMM. GAN achieves similar results to DAGMM on the

Satellite dataset (shown in Table 4.3) but performs well on the other three datasets. MAD-GAN

attempts to map data into the latent space and detect anomalies via discriminant results and

77

reconstruction errors generated from the mapping process. MAD-GAN achieves good results

on the Opt dataset and gives slightly better results than OmniAnomaly. LSTM-AE performs

better on low dimension datasets than high dimension datasets (shown in Tables 4.4 and 4.5).

As an excellent sequence-to-sequence model, Autoencoder fails at temporal data and performs

well on the Opt dataset as shown in Table 4.6. VAEs achieve better results than Autoencoder

on four datasets, which suggests that a high dimension dataset is a challenge for the training of

VAEs.

 Compared to the algorithms above, three MSCVAE architecture-based algorithms are

implemented. MSCVAE, MSCVAEl, and MSCVAEe are respectively, MSCVAE model without

weighting strategy, with linear weighting strategy and exponential weighting strategy. The

comparison results demonstrate that MSCVAE with exponential weighting strategy is superior

to the other algorithms discussed above, except in the Wafer dataset, which gives slightly better

precision, recall, F1-Score, and G-mean values than MSCVAE with exponential weighting

strategy. Furthermore, we can also come to the conclusion that no matter linear or exponential

weighting strategies can improve the anomaly detection performance of multivariate time series

effectively. In other words, MSCVAE is much better than baseline methods, as it can handle both

inter-sensor correlations and temporal patterns of multivariate time series effectively.

The reasons for the superior performance of proposed framework can be summarized

as follows: (1) As a deep learning model with temporal patterns, MSCVAE can achieve good

performance with no need for supervised training. (2) VAEs with an attention-based

ConvLSTM network framework can effectively identify anomalies. (3) the proposed

framework can model both inter-sensor correlations and temporal patterns of multivariate time

series effectively.

78

4.3.2 Ablation study

An extensive study illustrates the impact of different components on the model results,

using two key modules of the proposed model: multi-scale attribute matrices and an attention-

based ConvLSTM.

4.3.2.1 MSCVAE framework without weighted mechanism case (MSCVAE case)

Three variants of MSCVAE are considered in the evaluation:

 MSCVAEw : MSCVAE framework without attention-based ConvLSTM.

 CVAEa : MSCVAE framework without the multi-scale attribute matrices.

 CVAEw : MSCVAE framework without both multi-scale attribute matrices and an attention-

based ConvLSTM.

Fig. 4-1 F1-Score and G-mean comparison of all four datasets under three different
competing models.

0

0.2

0.4

0.6

0.8

1

Satellite Wafer EEG Opt

F
1-

Sc
or

e

Dataset

MSCVAE MSCVAEw CVAEa CVAEw

0

0.2

0.4

0.6

0.8

1

Satellite Wafer EEG Opt

G
-m

ea
n

Dataset

MSCVAE MSCVAEw CVAEa CVAEw

79

F1-Scores and G-means on four datasets are reported in Fig. 4-1. We observe that the

proposed framework, MSCVAE (marked in blue), is obviously superior to the other three

competing models on anomaly detection tasks, which indicates the importance of multi-scale

attribute matrices and an attention-based ConvLSTM. However, MSCVAEw (marked in pink)

and CVAEw (marked in yellow) methods can obtain approximately equal results with all four

datasets. Besides, the results of CVAEa (marked in green) are much better than MSCVAEw and

CVAEw, which indicates the importance of an attention-based ConvLSTM. Furthermore, we see

that under all conditions, both multi-scale attribute matrices and attention-based ConvLSTM can

effectively improve the anomaly detection performance of multivariate time series.

Fig. 4-2 F1-Score and G-mean comparison of all four datasets under three different

competing models.

0

0.2

0.4

0.6

0.8

1

Satellite Wafer EEG Opt

F
1-

Sc
or

e

Dataset

MSCVAE MSCVAEw CVAEa CVAEw

0

0.2

0.4

0.6

0.8

1

Satellite Wafer EEG Opt

G
-m

ea
n

Dataset

MSCVAE MSCVAEw CVAEa CVAEw

80

4.3.2.2 MSCVAE framework with linear weighted mechanism case (MSCVAEl case)

Three variants of MSCVAEl are considered in the evaluation:

 MSCVAEl -w : MSCVAEl framework without attention-based ConvLSTM.

 CVAEl-a : MSCVAEl framework without the multi-scale attribute matrices.

 CVAEl-w : MSCVAEl framework without both multi-scale attribute matrices and an attention-

based ConvLSTM.

F1-Scores and G-means on four datasets are reported in Fig. 4-2. We observe that the

proposed framework, MSCVAEl (marked in blue), is superior to the other three competing

models on anomaly detection tasks, except in the EEG dataset.

4.3.2.3 MSCVAE framework with exponentially weighted mechanism case (MSCVAEe

case)

Three variants of MSCVAEe are considered in the evaluation:

 MSCVAEe -w : MSCVAEe framework without attention-based ConvLSTM.

 CVAEe-a : MSCVAEe framework without the multi-scale attribute matrices.

 CVAEe-w : MSCVAEe framework without both multi-scale attribute matrices and an attention-

based ConvLSTM.

F1-Scores and G-means on four datasets are reported in Fig. 4-3. We observe that the

proposed framework, MSCVAEe (marked in blue), is superior to the other three competing

models on anomaly detection tasks.

81

4.3.3 Robustness evaluation

Anomaly detection often suffers from the dataset imbalance problem, which means

there are more normal samples than anomaly samples. To combat this problem, this thesis used

the two criteria, F1-Score, and G-mean, with different rates of anomalies to evaluate the

proposed model’s robustness. Fig. 4-4 shows the chart of F1-Score and G-mean comparisons

with different rates of anomalies. The comparison results indicate that the F1-Score and G-

mean of most algorithms tend to increase as anomaly rates increase. The proposed framework’s

F1-Score and G-mean values are highest on all datasets under different anomaly rates.

Therefore, we are justified in concluding that the proposed framework has good robustness

even in the face of dataset imbalance problems.

Fig. 4-3 F1-Score and G-mean comparison of all four datasets under three different
competing models.

0

0.2

0.4

0.6

0.8

1

Satellite Wafer EEG Opt

F
1-

Sc
or

e

Dataset

MSCVAE MSCVAEw CVAEa CVAEw

0

0.2

0.4

0.6

0.8

1

Satellite Wafer EEG Opt

G
-m

ea
n

Dataset

MSCVAE MSCVAEw CVAEa CVAEw

82

(a) Satellite dataset

(b) Wafer dataset

Fig. 4-4 F1-Score and G-mean comparison all four datasets under different anomaly rate.

0

0.2

0.4

0.6

0.8

1

0.01 0.03 0.05 0.1 0.2

F
1-

S
co

re

Anomaly rate

KNN
LOF
iForest
OCSVM
GMM
PCA
ABOD
HBOS
CBLOF
MOGAAL
DAGMM
GAN
MAD-GAN
OmniAnomaly
Autoencoder
VAEs
LSTM-AE
MSCVAE
MSCVAE
MSCVAE

l
e

0

0.2

0.4

0.6

0.8

1

0.01 0.03 0.05 0.1 0.2

G
-m

ea
n

Anomaly rate

KNN
LOF
iForest
OCSVM
GMM
PCA
ABOD
HBOS
CBLOF
MOGAAL
DAGMM
GAN
MAD-GAN
OmniAnomaly
Autoencoder
VAEs
LSTM-AE
MSCVAE
MSCVAE
MSCVAE

l
e

0

0.2

0.4

0.6

0.8

1

0.01 0.03 0.05 0.1 0.2

F
1-

S
co

re

Anomaly rate

KNN
LOF
iForest
OCSVM
GMM
PCA
ABOD
HBOS
CBLOF
MOGAAL
DAGMM
GAN
MAD-GAN
OmniAnomaly
Autoencoder
VAEs
LSTM-AE
MSCVAE
MSCVAE
MSCVAE

l
e

0

0.2

0.4

0.6

0.8

1

0.01 0.03 0.05 0.1 0.2

G
-m

ea
n

Anomaly rate

KNN
LOF
iForest
OCSVM
GMM
PCA
ABOD
HBOS
CBLOF
MOGAAL
DAGMM
GAN
MAD-GAN
OmniAnomaly
Autoencoder
VAEs
LSTM-AE
MSCVAE
MSCVAE
MSCVAE

l
e

83

(c) EEG dataset

(d) Opt dataset

Fig. 4-4 F1-Score and G-mean comparison all four datasets under different anomaly rate (continued)

0

0.2

0.4

0.6

0.8

1

0.01 0.03 0.05 0.1 0.2

F
1-

S
co

re

Anomaly rate

KNN
LOF
iForest
OCSVM
GMM
PCA
ABOD
HBOS
CBLOF
MOGAAL
DAGMM
GAN
MAD-GAN
OmniAnomaly
Autoencoder
VAEs
LSTM-AE
MSCVAE
MSCVAE
MSCVAE

l
e

0

0.2

0.4

0.6

0.8

1

0.01 0.03 0.05 0.1 0.2

G
-m

ea
n

Anomaly rate

KNN
LOF
iForest
OCSVM
GMM
PCA
ABOD
HBOS
CBLOF
MOGAAL
DAGMM
GAN
MAD-GAN
OmniAnomaly
Autoencoder
VAEs
LSTM-AE
MSCVAE
MSCVAE
MSCVAE

l
e

0

0.2

0.4

0.6

0.8

1

0.01 0.03 0.05 0.1 0.2

F
1-

S
co

re

Anomaly rate

KNN
LOF
iForest
OCSVM
GMM
PCA
ABOD
HBOS
CBLOF
MOGAAL
DAGMM
GAN
MAD-GAN
OmniAnomaly
Autoencoder
VAEs
LSTM-AE
MSCVAE
MSCVAE
MSCVAE

l
e

0

0.2

0.4

0.6

0.8

1

0.01 0.03 0.05 0.1 0.2

G
-m

ea
n

Anomaly rate

KNN
LOF
iForest
OCSVM
GMM
PCA
ABOD
HBOS
CBLOF
MOGAAL
DAGMM
GAN
MAD-GAN
OmniAnomaly
Autoencoder
VAEs
LSTM-AE
MSCVAE
MSCVAE
MSCVAE

l
e

84

4.3.4 Threshold setting strategy comparison

In order to verify the effectiveness of the proposed threshold setting strategy, comparing

two threshold setting strategies via three comparative MSCVAE-based frameworks on four

datasets, shown in Table 4.7. The comparison results demonstrate that the proposed ERR based

threshold setting strategy is superior to ROC based strategy on all comparison models of

Satellite dataset, EEG dataset, and Opt dataset, and the performance of the two strategies on

Wafer dataset is quite the same. As stated, the proposed threshold setting strategy can

effectively improve the model performance of multivariate time series anomaly detection. The

bold fonts in Table 4.7 show us that new threshold setting strategy based anomaly detection

can achieve better performance.

For further analysis, we conduct the two threshold setting strategies on MSCVAE based

framework with exponential weighting strategy, and the detailed information is shown in Table

4.8, Table 4.9, Table 4.10, and Table 4.11. Table 4.8, Table 4.9, Table 4.10, and Table 4.11

show the top three thresholds on four datasets. The rank indicates the suitability of the threshold.

Therefore, the highest rank is the best threshold. As explained in formulas 14 and 15, the

threshold with the lower distance and the ERR will be a higher rank. Meanwhile, we also

calculate TP, FP, FN, F1, and G-mean corresponding metrics under different thresholds. As

stated, the proposed threshold setting strategy can effectively improve the model performance

of multivariate time series anomaly detection.

85

Table 4.7 F1-Score and G-mean values of three MSCVAE based frameworks using two

threshold setting strategies on four datasets.

Datasets (Anomaly rate)
Threshold setting strategy and

anomaly detection model
F1-Score G-mean

Satellite dataset (31.6 %) MSCVAE + ERR based strategy 0.9606 0.9585
 MSCVAE + ROC based strategy 0.8632 0.8204

 MSCVAEl + ERR based strategy 0.9650 0.9631

 MSCVAEl + ROC based strategy 0.8294 0.7567

 MSCVAEe + ERR based strategy 0.9766 0.9754

 MSCVAEe + ROC based strategy 0.8750 0.8367

Wafer dataset (10.6 %) MSCVAE + ERR based strategy 0.9930 0.9852

 MSCVAE + ROC based strategy 0.9930 0.9852

 MSCVAEl + ERR based strategy 0.9965 0.9924

 MSCVAEl + ROC based strategy 0.9952 0.9765

 MSCVAEe + ERR based strategy 0.9930 0.9890

 MSCVAEe + ROC based strategy 0.9930 0.9852

EEG dataset (44.9 %) MSCVAE + ERR based strategy 0.9323 0.9201

 MSCVAE + ROC based strategy 0.9195 0.8824

 MSCVAEl + ERR based strategy 0.9504 0.9418

 MSCVAEl + ROC based strategy 0.9270 0.9168

 MSCVAEe + ERR based strategy 0.9741 0.9683

 MSCVAEe + ROC based strategy 0.9358 0.9043

Opt dataset (2.9 %) MSCVAE + ERR based strategy 0.9754 0.9730

 MSCVAE + ROC based strategy 0.8851 0.7732

 MSCVAEl + ERR based strategy 0.9585 0.9409

 MSCVAEl + ROC based strategy 0.9223 0.9057

 MSCVAEe + ERR based strategy 0.9952 0.9925

 MSCVAEe + ROC based strategy 0.9952 0.9925

86

Table 4.8 Top three thresholds using strategies on Satellite dataset

Strategy Rank TP FP FN TN F1-Score G-mean

ERR 1 125 2 4 108 0.9766 0.9754

 2 125 3 4 107 0.9728 0.9709

 3 124 4 6 105 0.9612 0.9586

ROC 1 126 29 0 84 0.8968 0.8622

 2 125 31 3 80 0.8803 0.8389

 3 124 37 2 76 0.8641 0.8136

Table 4.9 Top three thresholds using strategies on Wafer dataset

Strategy Rank TP FP FN TN F1-Score G-mean

ERR 1 142 1 1 66 0.9930 0.9890
 2 142 2 3 63 0.9827 0.9743

 3 144 2 5 59 0.9763 0.9668

ROC 1 142 2 0 66 0.9930 0.9852

 2 140 5 3 62 0.9722 0.9518

 3 141 5 3 61 0.9724 0.9513

Table 4.10 Top three thresholds using strategies on EEG dataset

Strategy Rank TP FP FN TN F1-Score G-mean

ERR 1 301 5 11 173 0.9741 0.9683

 2 301 6 11 172 0.9725 0.9655

 3 300 8 13 169 0.9662 0.9566

ROC 1 299 23 18 150 0.9358 0.9043

 2 300 37 7 144 0.9317 0.8817

 3 299 38 13 140 0.9214 0.8682

Table 4.11 Top three thresholds using strategies on Opt dataset

Strategy Rank TP FP FN TN F1-Score G-mean

ERR 1 103 1 0 66 0.9952 0.9925

 2 102 1 1 66 0.9903 0.9877

 3 103 2 0 65 0.9904 0.9850

ROC 1 103 1 0 66 0.9952 0.9925

 2 103 2 0 65 0.9904 0.9850

 3 101 2 2 65 0.9806 0.9754

87

As stated, the ROC-based strategy pays more attention to FN and ignores FP, so it

selects the best threshold with lower FN. In contrast, the ERR-based strategy focuses on FP,

and its best selected threshold makes for similarly excellent FP performance. Consider the

experimental results in Table 4.8. The first threshold of the ERR-based strategy has 2 FP and

4 FN, and the corresponding F1-Score and G-mean are 0.9766 and 0.9754. However, the first

threshold of ROC-based strategy has 22 FP and 14 FN, and the corresponding F1-Score and

G-mean are just 0.8750 and 0.8367. ROC-based strategy fails to achieve the best threshold

because of its excessive attention to FN.

(a) Satellite dataset (b) Wafer dataset

(c) EEG dataset (d) Opt dataset

Fig. 4-5 F1-Score comparisons two threshold setting strategies on four datasets under
different anomaly rate.

0.85

0.87

0.89

0.91

0.93

0.95

0.97

0.99

0.01 0.03 0.05 0.1 0.2

F1
-S

co
re

Anomaly rate

 Strategy based on ROC

 Strategy based on ERR
0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

0.01 0.03 0.05 0.1 0.2

F1
-S

co
re

Anomaly rate

 Strategy based on ROC

 Strategy based on ERR

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.01 0.03 0.05 0.1 0.2

F1
-S

co
re

Anomaly rate

 Strategy based on ROC

 Strategy based on ERR
0.75

0.80

0.85

0.90

0.95

1.00

0.01 0.03 0.05 0.1 0.2

F1
-S

co
re

Anomaly rate

 Strategy based on ROC

 Strategy based on ERR

88

Further investigation was conducted to analyze the same proposed framework using the

two threshold setting strategies under different anomaly rates, shown in Fig. 4-5. The ERR-

based strategy achieves a better threshold than the ROC-based strategy under a low anomaly

rate on four datasets. Besides, it is clear that the difference between the two strategies decreases

as the anomaly rate increases. In short, the proposed threshold setting strategy is superior to

the traditional ROC-based strategy and can achieve an appropriate threshold even when

confronted with a dataset imbalance problem.

4.4 Discussion

 In this part, we analyze and summarize the advantages of MSCVAE. The performance

of MSCVAE is influenced by three components: the attribute matrices, an attention-based

ConvLSTM, and a novel threshold setting strategy. The results of the experiments show that

the proposed method on four standard datasets is better than the other seventeen evaluated

algorithms. The reasons why MSCVAE is superior to the other algorithms of comparison can

be summarized as follows:

First, when pre-processing data, an attribute matrices is calculated based inner-product

for each time step, which contains the relationship between its own information and the

information of a sub-sequence. That is why we can amplify features and reduce noise. The

results of EEG dataset show low improvement compared to without attribute matrices, which

can improve only 0.43%. Whereas, Opt dataset shows higher improvement compared to

without attribute matrices, which can improve by 2.92%. Since the EEG dataset contains a little

noise different from Opt dataset, which contains a lot of noise, therefore, attribute matrices can

improve the data with higher noise.

 Second, an attention based ConvLSTM is applied to select adaptively relevant hidden

states (feature maps) across different time steps. That is why we can capture the temporal

patterns of multivariate time series. The results of EEG dataset show low improvement

compared to without attention-based ConvLSTM, which can improve only 1.09%. Whereas,

Satellite dataset shows higher improvement compared to without attention based ConvLSTM,

89

which can improve by 6.34%. Since the EEG dataset has a low pattern appearance compared

to Satellite dataset, therefore, Convlstm can not have the impact to improve.

 Third, a new error rate (ERR) based threshold setting strategy is applied to optimize

anomaly detection performance under an imbalance of normal and abnormal data. The ERR

based strategy achieves a better threshold than the ROC-based strategy in Opt dataset, which

can improve the F1-Score from 88.51% to 97.54%. Since Opt dataset has very much

imbalanced: with anomalies of only 2.9% and a normal 97.1%, that is why Opt dataset can

improve better than another dataset.

4.5 Summary

 In this chapter, the overview of the proposed framework is thoroughly described and

consists of three major processes: the pre-processing part, the convolutional variational

autoencoder part, and the anomaly detection part. Experiments have been conducted on four

datasets in order to verify the effectiveness of the proposed framework and the new ERR based

threshold setting strategy.

90

Chapter 5

Conclusions

5.1 Conclusions

In this thesis, we proposed a novel MSCVAE framework to solve the anomaly detection

problem for multivariate time series data. The framework employs multi scale (resolution)

system attribute matrices which transform multivariate time series into multi scale attribute

matrices. This approach allows for characterizing the state of the entire system in different time

segments, and adopts the convolutional variational autoencoder to generate reconstructed

attribute matrices, which makes the proposed framework more robust by taking advantage of

VAEs. An attention-based Convolutional Long-Short Term Memory (ConvLSTM) network is

used to capture the temporal patterns. The framework can model both inter-sensor correlations

and temporal dependencies of multivariate time series. Finally, a new ERR-based threshold

setting strategy is adopted, instead of a traditional ROC-based threshold setting strategy, to

achieve better model performance. To verify the effectiveness of the proposed framework,

experiments on four datasets were implemented. The results demonstrate that MSCVAE can

outperform state-of-the-art baseline methods.

The work reported here justifies the following conclusions.

(1) Multi-scale attribute matrices provide an effective pre-processing method for characterizing

system states at different time segments of multivariate time series with no need of prior

knowledge.

(2) CNN structure is embedded in the encoder, and the decoder of the VAEs model is adopted to

extract the characteristics of the time series. An attention-based Convolutional Long-Short Term

Memory (ConvLSTM) network is used to capture the temporal patterns and reconstruct the

attribute matrices, providing an effective unsupervised anomaly detection method. Combined

with the proposed ERR-based threshold setting strategy, the MSCVAE based framework can

achieve excellent performance.

91

(3) Experiments on four datasets indicate that the proposed framework outperforms competing

models in detection accuracy and robustness under imbalanced datasets. An extensive

experiment was also conducted to verify that the proposed threshold setting strategy can

acquire an optimal threshold in the anomaly detection task, thus contributing to the superior

anomaly detection performance of the proposed model.

5.2 Recommendations for future research

The present framework is able to be further extended to improve the overall

performance of the proposed framework, some recommendations for future research are

suggested as follows:

1. To increase the accuracy of anomaly detection by designing effective pre-processing,

feature extraction should be developed to build a noise-insensitive framework for multivariate

time series anomaly detection using U-Net which is based on an encoder-decoder neural

network model.

2. To design the anomaly detection model that does not require a perfectly normal

training set.

92

References

[1] P. J. Brockwell, and R. A. Davis, “Time series: theory and methods,” Springer Science

& Business Media, May, 13, 2009.

[2] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,” ACM

computing surveys (CSUR), vol. 41, no. 3, pp. 15, 2009.

[3] L. Li, J. Yan, H. Wang, and Y. Jin, “Anomaly detection of time series with smoothness-

inducing sequential variational auto-encoder,” IEEE transactions on neural networks

and learning systems, vol. 32, no. 3, pp. 1177–1191, 2020.

[4] N. Laptev, S. Amizadeh, and I. Flint, “Generic and scalable framework for automated

time-series anomaly detection,” in Proc. of the 21th ACM SIGKDD international

conference on knowledge discovery and data mining, pp. 1939–1947, Aug. 2015.

[5] M. Munir, S. A. Siddiqui, A. Dengel, and S. Ahmed, “DeepAnT: A deep learning

approach for unsupervised anomaly detection in time series,” IEEE Access, vol. 7, pp.

1991–2005, 2018.

[6] H. Izakian, and W. Pedrycz, “Anomaly detection and characterization in spatial time

series data: A cluster-centric approach,” IEEE Transactions on Fuzzy Systems, vol. 22,

no. 6, pp. 1612–1624, 2014.

[7] R. Chalapathy, and S. Chawla, “Deep learning for anomaly detection: A survey,”

arXiv:1901.03407, 2019.

[8] Nilsonreport.com. Issue 1164. Nilson Report, 2019.

[9] M. Gupta, J. Gao, Y. Sun, and J. Han, “Community trend outlier detection using soft

temporal pattern mining,” in Joint European Conference on Machine Learning and

Knowledge Discovery in Databases, pp. 692–708, 2012.

[10] E. J. Keogh, J. Lin, and A. W. Fu, “HOT SAX: Efficiently finding the most unusual time

series subsequence,” in Proc. 5th IEEE Int. Conf. Data Mining (ICDM), pp. 226–233,

2005.

[11] S. Plakias, and Y. S. Boutalis, “Exploiting the generative adversarial framework for one-

class multi-dimensional fault detection,” Neurocomputing, vol. 332, pp. 396–405, 2019.

93

[12] K. Hundman, V. Constantinou, C. Laporte, I. Colwell, and T. Soderstrom, “Detecting

spacecraft anomalies using lstms and nonparametric dynamic thresholding,” in Proc. of

the 24th ACM SIGKDD international conference on knowledge discovery & data mining,

pp. 387–395, Jul. 2018.

[13] D. Kwon, K. Natarajan, S. C. Suh, H. Kim, and J. Kim, “An empirical study on network

anomaly detection using convolutional neural networks,” in Proc. of IEEE 38th

International Conference on Distributed Computing Systems (ICDCS), pp. 1595–1598,

Jul. 2018.

[14] S. Zavrak, and M. Iskefiyeli, “Anomaly-based intrusion detection from network flow

features using variational autoencoder,” IEEE Access, vol. 8, pp. 108346–108358, 2020.

[15] B. Yan, and G. Han, “Effective feature extraction via stacked sparse autoencoder to

improve intrusion detection system,” IEEE Access, vol. 6, pp. 41238–41248, 2018.

[16] S. Du, T. Li, Y. Yang, and S. J. Horng, “Multivariate time series forecasting via

attention-based encoder–decoder framework,” Neurocomputing, vol. 388, pp. 269–279,

2020.

[17] M. Goldstein, and S. Uchida, “A comparative evaluation of unsupervised anomaly

detection algorithms for multivariate data,” PloS one, vol. 11, no. 4, pp. e0152173, 2016.

[18] J. Li, H. Izakian, W. Pedrycz, and I. Jamal, “Clustering-based anomaly detection in

multivariate time series data,” Applied Soft Computing, vol. 100, pp. 106919, 2021.

[19] M. Canizo, I. Triguero, A. Conde, and E. Onieva, “Multi-head CNN–RNN for multi-

time series anomaly detection: An industrial case study,” Neurocomputing, vol. 363, pp.

246–260, 2019.

[20] N. Jin, Y. Zeng, K. Yan, and Z. Ji, “Multivariate air quality forecasting with nested long

short term memory neural network,” IEEE Transactions on Industrial Informatics, vol.

17, no. 12, pp. 8514-8522, 2021.

[21] H. Liang, L. Song, J. Wang, L. Guo, X. Li, and J. Liang, “Robust unsupervised anomaly

detection via multi-time scale DCGANs with forgetting mechanism for industrial

multivariate time series,” Neurocomputing, vol. 423, pp. 444–462, 2021.

94

[22] A. Fernández, S. Garcia, M. Galar, C. R. Prati, B. Krawczyk, and F. Herrera, Learning

from Imbalanced Data Sets. Berlin: Springer, 2018.

[23] A. Bayati, K. K. Nguyen, and M. Cheriet, “Multiple-Step-Ahead traffic prediction in

high-speed networks,” IEEE Communications Letters, vol. 22, no. 12, pp. 2447–2450,

2018.

[24] P. Xiang, H. Zhou, H. Li, S. Song, W. Tan, J. Song, and L. Gu, “Hyperspectral anomaly

detection by local joint subspace process and support vector machine,” International

Journal of Remote Sensing, vol. 41, no. 10, pp. 3798–3819, 2020.

[25] J. Ma and S. Perkins, “Time-series novelty detection using one-class support vector

machines,” in Proc. IJCNN, vol. 3, pp. 1741–1745, 2003.

[26] T. F. Liu, M. K. Ting, and Z.-H. Zhou, “Isolation-based anomaly detection,” ACM

Transactions on Knowledge Discovery from Data (TKDD), vol. 6, no. 1, pp. 1–39, 2012.

[27] Y. Qin, D. Song, H. Chen, W. Cheng, G. Jiang, and G. Cottrell, “A dual-stage attention-

based recurrent neural network for time series prediction,” in IJCAI, 2017.

[28] Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, Nature, vol. 521, no. 7553, pp.

436–444, 2015.

[29] T. Yin, C. Liu, F. Ding, Z. Feng, B. Yuan, N. Zhang, “Graph-based stock correlation

and prediction for high-frequency trading systems”, Pattern Recognition, vol. 122, no.

108209, pp. 1-11, 2022.

[30] B. García-Martínez, A. Fernández-Caballero, R. Alcaraz, and A. Martínez-Rodrigo,

“Assessment of dispersion patterns for negative stress detection from

electroencephalographic signals,” Pattern Recognition, vol. 119, no. 108094, pp. 1-9,

2021.

[31] B. Zong, Q. Song, M. R. Min, W. Cheng, C. Lumezanu, D. Cho, and H. Chen, “Deep

autoencoding gaussian mixture model for unsupervised anomaly detection,” in Proc.

International conference on learning representations (ICLR), 2018.

[32] D.E. Rumelhart, G.E. Hinton, and R.J. Williams, “Learning internal representations by

error propagation,” MIT Press, Cambridge, MA, USA, pp. 318-362, 1986.

95

[33] H. Xu, W. Chen, N. Zhao, Z. Li, J. Bu, Z. Li, Y. Liu, Y. Zhao, D. Pei, Y. Feng and J.

Chen, “Unsupervised anomaly detection via variational auto-encoder for seasonal kpis

in web applications,” In Proceedings of world wide web conference, pp. 187-196, 2018.

[34] J. Audibert, P. Michiardi, F. Guyard, S. Marti, and M.A. Zuluaga, “USAD: unsupervised

anomaly detection on multivariate time series,” In Proceedings of the 26th ACM

SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 3395-

3404, 2020.

[35] Z. Li, W. Chen, and D. Pei, “Robust and unsupervised kpi anomaly detection based on

conditional variational autoencoder,” In 2018 IEEE 37th International Performance

Computing and Communications Conference (IPCCC), pp. 1-9, 2018.

[36] Y. Su, Y. Zhao, C. Niu, R. Liu, W. Sun, and D. Pei, “Robust anomaly detection for

multivariate time series through stochastic recurrent neural network,” in Proc. the 25th

ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp.

2828–2837, Jul. 2019.

[37] D. Li, D. Chen, B. Jin, L. Shi, J. Goh, and S. K. Ng, “MAD-GAN: Multivariate anomaly

detection for time series data with generative adversarial networks,” in Proc.

International Conference on Artificial Neural Networks, 2018.

[38] D. Park, Y. Hoshi, and C.C. Kemp, “A multimodal anomaly detector for robot-assisted

feeding using an lstm-based variational autoencoder,” IEEE Robotics and Automation

Letters, vol. 3, no. 3, pp. 1544-1551, 2018.

[39] C. Zhang, D. Song, Y. Chen, X. Feng, C. Lumezanu, W. Cheng, J. Ni, B. Zong, H. Chen,

and N. V. Chawla, “A deep neural network for unsupervised anomaly detection and

diagnosis in multivariate time series data,” in Proc. of the AAAI Conference on Artificial

Intelligence, vol. 33, no. 1, pp. 1409–1406, 2019.

[40] M. Munir, S.A. Siddiqui, M.A. Chattha, A. Dengel, and S. Ahmed, “Fusead:

unsupervised anomaly detection in streaming sensors data by fusing statistical and deep

learning models,” Sensors, vol. 19, no. 2451, pp. 1-15, 2019.

[41] N. Ding, H. Gao, H. Bu, H. Ma, and H. Si, “Multivariate-time-series-driven real-time

anomaly detection based on bayesian network,” Sensors, vol. 18, no. 3367, pp. 1-13.

96

[42] Q. He, Y.J. Zheng, C.L. Zhang, and H.Y. Wang, “MTAD-TF: Multivariate time series

anomaly detection using the combination of temporal pattern and feature pattern,”

Complexity, 2020.

[43] R.J. Hyndman, and G. Athanasopoulos, “Forecasting: principles and practice,” OTexts,

2018.

[44] D.M. Hawkins, Identification of outliers, vol. 11, London: Chapman and Hall, 1980.

[45] A. Blázquez-García, A. Conde, U. Mori, and J.A. Lozano, “A review on outlier/anomaly

detection in time series data,” ACM Computing Surveys (CSUR), vol. 54, no. 3, pp. 1-

33, 2021.

[46] R. Domingues, M. Filippone, P. Michiardi, and J. Zouaoui, “A comparative evaluation

of outlier detection algorithms: Experiments and analyses,” Pattern Recognition, vol. 74,

pp.406-421, 2018.

[47] P. Malhotra, A. Ramakrishnan, G. Anand, L. Vig, P. Agarwal, and G. Shroff, “LSTM-

based encoder-decoder for multi-sensor anomaly detection,” 2016.

[48] J. Patterson, and A. Gibson, “Deep learning: A practitioner’s approach,” O’Reilly

Media, Inc, 2017.

[49] I. Sutskever, O. Vinyals, and Q.V. Le, “Sequence to sequence learning with neural

networks,” Advances in neural information processing systems, 2014.

[50] Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Q.V. Le, and R. Salakhutdinov, “Transformer-

xl: Attentive language models beyond a fixed-length context,” pp. 2978-2988, 2019.

[51] S. Makridakis, E. Spiliotis, and V. Assimakopoulos, “Statistical and Machine Learning

forecasting methods: Concerns and ways forward,” PloS one, 13(3), p.e0194889, 2018.

[52] L. Breiman, “Statistical modeling: The two cultures (with comments and a rejoinder by

the author),” Statistical science, vol. 16, no. 3, pp.199-231, 2001.

[53] K. Gurney, “An introduction to neural networks,” CRC press, 1997.

[54] A. Graves, “Supervised sequence labelling,” In Supervised sequence labelling with

recurrent neural networks, pp. 15-35, Springer, 2012.

[55] A. Karpathy, “Convolutional neural networks for visual recognition,” cs231n. github. io.

2018.

97

[56] R.A. Dunne, and N.A. Campbell, “On the pairing of the softmax activation and cross-

entropy penalty functions and the derivation of the softmax activation function,” In Proc.

8th Aust. Conf. on the Neural Networks, Vol. 181, pp. 185, 1997.

[57] F. Girosi, M. Jones, and T. Poggio, “Regularization theory and neural networks

architectures,” Neural computation, vol. 7, no. 2, pp.219-269, 1995.

[58] Z.C. Lipton, J. Berkowitz, and C. Elkan, “A critical review of recurrent neural networks

for sequence learning,” arXiv preprint arXiv:1506.00019, 2015.

[59] C. Olah, “Understanding lstm networks,” http: //colah.github.io/posts/2015-08-

Understanding-LSTMs/, 2015.

[60] P.J. Werbos, “Backpropagation through time: what it does and how to do it,”

Proceedings of the IEEE, vol. 78, no. 10, pp.1550-1560, 1990.

[61] D. Britz, “Recurrent neural networks tutorial, part 3–backpropagation through time and

vanishing gradients,” http://www.wildml.com/2015/10/recurrent-neural-networks-

tutorial-part-3-backpropagation-through-time-and-vanishing-gradients/, 2015.

[62] S. Hochreiter, and J. Schmidhuber, “Long short-term memory,” Neural computation,

vol. 9, no. 8, pp.1735-1780, 1997.

[63] D.P. Kingma, and M. Welling, “Auto-encoding variational bayes,” Proc. Int. Conf.

Learn. Represent., 2014.

[64] M.I. Jordan, Z. Ghahramani, T.S. Jaakkola, and L.K. Saul, “An introduction to

variational methods for graphical models,” Machine learning, vol. 37, no. 2, pp.183-233,

1999.

[65] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A review and new

perspectives,” IEEE transactions on pattern analysis and machine intelligence, vol. 35,

no. 8, pp.1798-1828, 2013.

[66] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.

Courville, and Y. Bengio, “Generative adversarial nets,” Advances in neural information

processing systems, 27, 2014.

[67] C. Cremer, X. Li, and D. Duvenaud, “Inference suboptimality in variational

autoencoders,” In International Conference on Machine Learning, pp. 1078-1086, 2018.

98

[68] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are

universal approximators,” Neural networks, vol. 2, no. 5, pp.359-366, 1989.

[69] A. Alemi, B. Poole, I. Fischer, J. Dillon, R.A. Saurous, and K. Murphy, “Fixing a broken

ELBO,” In International Conference on Machine Learning, pp. 159-168, 2018.

[70] R. Hübner, M. Steinhauser, and C. Lehle, “A dual-stage two-phase model of selective

attention,” Psychological review, vol. 117, no. 3, pp.759, 2010.

[71] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning to

align and translate,” arXiv preprint arXiv:1409.0473, 2014.

[72] M.T. Luong, H. Pham, and C.D. Manning, “Effective approaches to attention-based

neural machine translation,” arXiv preprint arXiv:1508.04025, 2015.

[73] F. Wang, M. Jiang, C. Qian, S. Yang, C. Li, H. Zhang, X. Wang, and X. Tang, “Residual

attention network for image classification,” In Proceedings of the IEEE conference on

computer vision and pattern recognition, pp. 3156-3164, 2017.

[74] J.K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Bengio, “Attention-based

models for speech recognition,” Advances in neural information processing systems,

2015.

[75] E. Parisotto, D. Singh Chaplot, J. Zhang, and R. Salakhutdinov, “Global pose estimation

with an attention-based recurrent network.” In Proceedings of the IEEE conference on

computer vision and pattern recognition workshops, pp. 237-246, 2018.

[76] A.M. Rush, S. Chopra, and J. Weston, “A neural attention model for abstractive sentence

summarization,” arXiv preprint arXiv:1509.00685, 2015.

[77] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel, and Y. Bengio,

“Show, attend and tell: Neural image caption generation with visual attention,” In

International conference on machine learning, pp. 2048-2057, 2015.

[78] S. Lin, R. Clark, R. Birke, S. Schönborn, N. Trigoni, and S. Roberts, “Anomaly detection

for time series using vae-lstm hybrid model,” In ICASSP 2020-2020 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4322-4326, 2020.

[79] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio, “Graph

attention networks,” arXiv preprint arXiv:1710.10903, 2017.

99

[80] B. Min, J. Yoo, S. Kim, and D. Shin, “Network Anomaly Detection Using Memory-

Augmented Deep Autoencoder,” IEEE Access, vol. 9, pp. 104695–104706, 2020.

[81] S. Naseer, Y. Saleem, S. Khalid, M.K. Bashir, J. Han, M.M. Iqbal, and K. Han,

“Enhanced Network Anomaly Detection Based on Deep Neural Networks,” IEEE

Access, vol. 6, pp. 48231–48246, 2018.

[82] A. Lavin, and S. Ahmad, “Evaluating real-time anomaly detection algorithms-the

Numenta anomaly benchmark,” in Proc. of the 14th International Conference on

Machine Learning and Applications (ICMLA), pp. 38–44, Dec. 2015.

[83] J. Masci, U. Meier, D. Cireşan, and J. Schmidhuber, “Stacked convolutional auto-

encoders for hierarchical feature extraction,” in Proc. of international conference on

artificial neural networks, pp. 52–59, Jun. 2011.

[84] R. A. A. Habeeb, F. Nasaruddin, A. Gani, I. A. T. Hashem, E. Ahmed, and M. Imran,

“Real-time big data processing for anomaly detection: A survey,” International Journal

of Information Management, vol. 45, pp. 289–307, 2019.

[85] J. Fan, Q. Zhang, J. Zhu, M. Zhang, Z. Yang, and H. Cao, “Robust deep auto-encoding

Gaussian process regression for unsupervised anomaly detection,” Neurocomputing, vol.

376, pp. 180–190, 2020.

[86] M. L. Shyu, S. C. Chen, K. Sarinnapakorn, and L. Chang, “A novel anomaly detection

scheme based on principal component classifier,” MIAMI UNIV CORAL GABLES FL

DEPT OF ELECTRICAL AND COMPUTER ENGINEERING, 2003.

[87] Y. J. Lee, Y. R. Yeh, and Y. C. F. Wang, “Anomaly detection via online oversampling

principal component analysis,” IEEE transactions on knowledge and data engineering,

vol. 25, no. 7, pp. 1460-1470, 2012.

[88] C. C. Aggarwal, “Outlier analysis,” Data mining: the textbook, Springer, 2015.

[89] A. Borghesi, A. Bartolini, M. Lombardi, M. Milano, and L. Benini, “Anomaly detection

using autoencoders in high performance computing systems,” in Proc. of the AAAI

Conference on Artificial Intelligence, vol. 33, no. 1, pp. 9428–9433, Jul. 2019.

100

[90] C. Zhou, and R. C. Paffenroth, “Anomaly detection with robust deep autoencoders,” in

Proc. the 23rd ACM SIGKDD international conference on knowledge discovery and

data mining, pp. 665–674, Aug. 2017.

[91] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with deep

convolutional generative adversarial networks,” in Proc. International conference on

learning representations (ICLR), 2015.

[92] F. Karim, S. Majumdar, H. Darabi, and S. Chen, “Lstm fully convolutional networks

for time series classification,” IEEE Access, vol. 6, pp. 1662–1669, 2017.

[93] R. Hinami, T. Mei, and S.I. Satoh, “Joint detection and recounting of abnormal events

by learning deep generic knowledge,” In Proc of the IEEE International Conference on

Computer Vision, pp. 3619-3627, 2017.

[94] M. Hu, Z. Ji, K. Yan, Y. Guo, X. Feng, J. Gong, X. Zhao, and L. Dong, “Detecting

anomalies in time series data via a meta-feature based approach,” IEEE Access, vol. 6,

pp. 27760-27776, 2018.

[95] M. Hu, X. Feng, Z. Ji, K. Yan, and S. Zhou, “A novel computational approach for discord

search with local recurrence rates in multivariate time series,” Information Sciences, vol.

477, pp. 220-233, 2019.

[96] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical

image segmentation,” in International Conference on Medical image computing and

computer-assisted intervention, pp. 234-241, Oct. 2015.

[97] J. Sun, X. Wang, N. Xiong, and J. Shao, “Learning sparse representation with variational

auto-encoder for anomaly detection,” IEEE Access, vol. 6, pp. 33353–33361, 2018.

[98] X. Wang, Y. Du, S. Lin, P. Cui, Y. Shen, and Y. Yang, “adVAE: A self-adversarial

variational autoencoder with Gaussian anomaly prior knowledge for anomaly detection,”

Knowledge-Based Systems, vol. 190, pp. 105187, 2020.

[99] R. Yao, C. Liu, L. Zhang, and P. Peng, “Unsupervised anomaly detection using

variational auto-encoder based feature extraction,” in Proc. 2019 IEEE International

Conference on Prognostics and Health Management (ICPHM), pp. 1–7, Jun. 2019.

101

[100] J. An, and S. Cho, “Variational autoencoder based anomaly detection using

reconstruction probability,” Special Lecture on IE, vol. 2, no. 1, pp. 1–18, 2015.

[101] N. Li, and F. Chang, “Video anomaly detection and localization via multivariate

gaussian fully convolution adversarial autoencoder,” Neurocomputing, vol. 369, pp. 92–

105, 2019, DOI: 10.1016/j.neucom.2019.08.044.

[102] J. Bayer, and C. Osendorfer, “Learning stochastic recurrent networks,” Proc. NIPS

Workshop Advances Variational Inf, 2014.

[103] M. Sölch, J. Bayer, M. Ludersdorfer, and P. van der Smagt, “Variational inference for

on-line anomaly detection in high-dimensional time series,” Proc ICML, 2016.

[104] J. Pereira, and M. Silveira, “Unsupervised anomaly detection in energy time series data

using variational recurrent autoencoders with attention,” In IEEE international

conference on machine learning and applications (ICMLA), pp. 1275-1282, 2018.

[105] D. Hallac, S. Vare, S. Boyd, and J. Leskovec, “Toeplitz inverse covariance-based

clustering of multivariate time series data,” in Proc. 23rd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pp. 215–223, Aug. 2017.

[106] J. Long, E. Shelhamer, and T. Darrell, ‘‘Fully convolutional networks for semantic

segmentation,’’ in Proc. of the IEEE conference on computer vision and pattern

recognition, pp. 3431–3440, 2015.

[107] S.H.I. Xingjian, Z. Chen, H. Wang, D.Y. Yeung, W.K. Wong, and W.C. Woo,

“Convolutional LSTM network: A machine learning approach for precipitation

nowcasting,” In Advances in neural information processing systems, pp. 802-810, 2015.

[108] K. Hajian-Tilaki, “Receiver operating characteristic (ROC) curve analysis for medical

diagnostic test evaluation,” Caspian journal of internal medicine, vol. 4, no. 2, pp. 627–

635, 2013.

[109] X. Hua, Y. Cheng, H. Wang, Y. Qin, and Y. Li, “Geometric means and medians with

applications to target detection,” IET Signal Processing, vol. 11, no. 6, pp. 711-720,

2017.

102

Appendix

A. Publications and Presentations from the Present Research Work

Journal

1. U. Yokkampon, A. Mowshowitz, S. Chumkamon, and E. Hayashi, “Robust Unsupervised
Anomaly Detection with Variational Autoencoder in Multivariate Time Series Data,” IEEE
Access, vol. 10, pp. 57835-57849, June 2022.

2. U. Yokkampon, A. Mowshowitz, S. Chumkamon, and E. Hayashi, “Autoencoder with
Gramian Angular Summation Field for Anomaly Detection in Multivariate Time Series
Data,” Journal of Advances in Artificial Life Robotics, vol. 2, no. 4, pp. 423-427, March
2022.

3. U. Yokkampon, S. Chumkamon, A. Mowshowitz, R. Fujisawa, and E. Hayashi, “Anomaly
Detection Using Support Vector Machines for Time Series Data,” Journal of Robotics,
Networking and Artificial Life, vol. 8, no. 1, pp. 41-46, 2021.

4. U. Yokkampon, S. Chumkamon, A. Mowshowitz, and E. Hayashi, “Autoencoder with
Spiking in Frequency Domain for Anomaly Detection of Uncertainty Event,” Journal of
Robotics, Networking and Artificial Life, vol. 6, no. 4, pp. 231-234, 2020.

5. S. Chumkamon, K. Kawamoto, U. Yokkampon, and E. Hayashi, “Robot Motion and
Grasping for Blindfold Handover,” Journal of Advances in Artificial Life Robotics, vol. 1,
no. 1, pp. 1-5, 2020.

Conference

1. S. Chumkamon, T. Tsuji, P. Gamolped, C. Piyavichyanon, U. Yokkampon, A.
Mowshowitz, and E. Hayashi, “Autonomous Robotics Packaging Ready Meal in Conveyor
Production Line,” In Proceedings of International Conference on Artificial Life & Robotics
(ICAROB2022), pp. 584-588, January 20-23, 2022.

2. U. Yokkampon, A. Mowshowitz, S. Chumkamon, and E. Hayashi, “Anomaly Detection
using Autoencoder with Gramian Angular Summation Field in Multivariate Time Series
Data,” In Proceedings of International Conference on Artificial Life & Robotics
(ICAROB2022), pp. 579-583, January 20-23, 2022.

3. S. Chumkamon, U. Yokkampon, E. Hayashi, and R. Fujisawa, “Robot Motion Generation
by Hand Demonstration,” In Proceedings of International Conference on Artificial Life &
Robotics (ICAROB2021), pp. 768-771, January 21-24, 2021.

4. U. Yokkampon, S. Chumkamon, A. Mowshowitz, and E. Hayashi, “Anomaly Detection in
Time Series Data Using Support Vector Machines,” In Proceedings of International
Conference on Artificial Life & Robotics (ICAROB2021), pp. 581-587, January 21-24,
2021.

103

5. U. Yokkampon, S. Chumkamon, A. Mowshowitz, R. Fujisawa, and E. Hayashi, “Improved
Variational Autoencoder Anomaly Detection in Time Series Data,” In 2020 IEEE
International Conference on Systems, Man, and Cybernetics (SMC), pp. 82-87, October
11-14, 2020.

6. U. Yokkampon, S. Chumkamon, A. Mowshowitz, and E. Hayashi, “Anomaly Detection
using Variational Autoencoder with Spectrum Analysis for Time Series Data,” In 2020
Joint 9th International Conference on Informatics, Electronics & Vision (ICIEV) and 2020
4th International Conference on Imaging, Vision & Pattern Recognition (icIVPR), pp. 1-6,
August 26-29, 2020.

7. S. Chumkamon, K. Kawamoto, J. Inthiam, U. Yokkampon, E. Hayashi, “Robot Motion and
Grasping for Blindfold Handover,” In Proceedings of International Conference on
Artificial Life & Robotics (ICAROB2020), pp. 255-258, January 13-16, 2020.

8. U. Yokkampon, S. Chumkamon, A. Mowshowitz, and E. Hayashi, “Autoencoder with
Spiking in Frequency Domain for Anomaly Detection of Uncertainty Event,” In
Proceedings of International Conference on Artificial Life & Robotics (ICAROB2020), pp.
245-248, January 13-16, 2020.

104

List of Figures

Page

Fig. 2-1 Autocorrelation plot .. 10

Fig. 2-2 Monthly sales of antidiabetic drugs in Australia ... 12

Fig. 2-3 Example of seasonality.. 13

Fig. 2-4 Example of a cycle .. 14

Fig. 2-5 Example of Anomaly from expected behavior ... 15

Fig. 2-6 Point anomaly (left), collective anomaly (middle) and contextual anomaly (right) . 18

Fig. 2-7 A basic artificial neuron. ... 22

Fig. 2-8 An Artificial Neural Network of feedforward type consisting of an input layer 24

Fig. 2-9 Convolution operation in CNNs .. 27

Fig. 2-10 Recurrent Neural Network .. 28

Fig. 2-11 In the unrolled visualization of an RNN .. 29

Fig. 2-12 Structure of an LSTM memory ... 31

Fig. 2-13 The architecture of an autoencoder ... 33

Fig. 2-14 The architecture of a Variational autoencoder .. 35

Fig. 2-15 The VAE as a graphical model ... 36

Fig. 2-16 A confusion matrix .. 48

Fig. 3-1 Architecture of the MSCVAE framework .. 56

Fig. 3-2 The example of attribute matrices ... 59

Fig. 3-3 Activation Functions ... 64

Fig. 4-1 F1-Score and G-mean comparison of all four datasets under three different
competing models ... 78

Fig. 4-2 F1-Score and G-mean comparison of all four datasets under three different
competing models ... 79

Fig. 4-3 F1-Score and G-mean comparison of all four datasets under three different
competing models ... 81

Fig. 4-4 F1-Score and G-mean comparison all four datasets under different anomaly rate ... 82

Fig. 4-4 F1-Score and G-mean comparison all four datasets under different anomaly rate
(continued) .. 83

Fig. 4-5 F1-Score comparisons two threshold setting strategies on four datasets under
different anomaly rate ... 87

105

List of Tables

Page

Table 1.1 Deep learning-based methods for anomaly detection in multivariate time series 5

Table 3.1 Terminology and notation used in this thesis ... 57

Table 3.2 Generating attribute matrices .. 59

Table 4.1 The detailed information of time series data sets ... 70

Table 4.2 Detailed structural comparison of the algorithms ... 72

Table 4.3 Anomaly detection results of Satellite dataset .. 73

Table 4.4 Anomaly detection results of Wafer dataset ... 74

Table 4.5 Anomaly detection results of EEG dataset ... 75

Table 4.6 Anomaly detection results of Opt dataset ... 76

Table 4.7 F1-Score and G-mean values of three MSCVAE based framework using two
threshold setting strategies on four datasets .. 85

Table 4.8 Top three thresholds using strategies on Satellite dataset 86

Table 4.9 Top three thresholds using strategies on Wafer dataset .. 86

Table 4.10 Top three thresholds using strategies on EEG dataset .. 86

Table 4.11 Top three thresholds using strategies on Opt dataset .. 86

106

Acknowledgements

It is my pleasure to acknowledge the roles of several individuals who were instrumental

for completion of my Ph.D. research.

First of all, I would like to express my sincere gratitude to my advisor, Professor Dr.

Eiji HAYASHI, who has been a tremendous mentor and support for me. I deeply appreciate

how you have been continuously encouraging all research and guiding me in the last three years

to allow me to grow as a researcher.

Besides my advisor, I am thankful to Professor Dr. Abbe Mowshowitz from The City

College of New York for agreeing to be a reviewer of my all research papers. Also, I always

appreciate your advisement and warm encouragement.

I would also like to thank my committee members, Professor Dr. Masanobu KOGA,

Professor Dr. Eiji MIYANO, Associate Professor Dr. Hiroshi OHTAKE for serving as my

committee members. I also want to thank you for letting my defense be an enjoyable moment,

and for your brilliant comments and suggestions.

I am grateful to a researcher in my laboratory, Dr. Sakmongkon Chumkamon who

helped me out with my doubts and always been ready to discuss over the past three years.

I am also extremely grateful to my fellow laboratory members that I had the opportunity

to work with during the course of my Ph.D., especially Tsuji, Tomokawa, Tominaga, Noboru,

and Kota for their help both inside and out of the laboratory.

I sincerely acknowledge the support from the Rotary Yoneyama Memorial Foundation

scholarship and 100th Anniversary Memorial scholarship. Your generosity allows me to take

my goals and dreams a reality and this scholarship has afforded me the opportunity to continue

my educational pursuits.

Last but not least, I would like to thank my family for constantly being there for me and

supporting me throughout my Ph.D.; without you none of this would indeed be possible.

I really could not have been able to complete my PhD without the support of all the

aforementioned people. Thank you all so much.

 UMAPORN YOKKAMPON

