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Chapter 1 

Introduction 

1.1 Background 

In data mining, a time series [1] is a sequence of data points collected over time [2]. Such 

a sequence forms the basis of methods for tracking changes over time. Time series data can 

track changes in milliseconds, days, months, or even years. Time series data plays an important 

role in virtually all areas of science, engineering, commerce, and industry. Since data points in 

time series are collected at intervals, there is a relationship between successive observations, 

proportional or not, which distinguishes time series data from other kinds of data. There are 

two types of time series data. One is a univariate time series based on a single time dependent 

variable (or dimension). The other is a multivariate time series based on two or more time 

dependent, interrelated variables (or dimensions). One of these important fields of time-series 

is anomaly detection. Time-series anomaly detection has very important significance and has 

become a necessary part of the modern manufacturing industry and information services 

because undetected anomalies may cause serious damage.  

Currently, there have been many studies on anomaly detection of time series data [3-6]. 

Anomaly detection is the identification of unexpected data points, i.e., events or items that 

differ significantly from what is expected. Three types of time series anomalies have been 

identified, namely, point anomalies, contextual anomalies, and collective anomalies [7]. Point 

anomalies are points that exist far outside the range of the entire data set, which can occur in 

any type of data. Contextual anomalies are values that deviate significantly from most of the 

data points in the same context, which can only occur in relative data. Collective anomalies 

occur when a subset of the data points deviates substantially from the entire dataset. Anomaly 

detection is critical in many real world applications, such as the analysis of potentially 

fraudulent transactions, sensor network faults, medical diagnosis errors, abnormal equipment 

behavior, etc. For example, detecting bank transaction fraud could save 32 billion dollars 
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worldwide by 2020 [8]. Gupta et al. [9] studied abnormal changes in GDP components over 

time, and Keogh et al. [10] checked whether an electrocardiogram had abnormal fluctuations. 

Therefore, the industry needs to be able to detect anomalies in its system.  

In recent years, due to the development of industry and the Internet of Things [11-15], 

multivariate time-series anomaly detection technology has made great progress [16-19]. We 

can obtain more reliable time-series data from the devices by configuring a multisensor system. 

However, processing these data from sensors is a major problem. First, the data collected by 

different sensors may have different attributes, frequencies, and dependencies. Therefore, 

preprocessing these data is a very time-consuming task and may require some domain 

knowledge. Jin et al. [20] proposed an innovative learning framework for multivariate air 

pollutant concentration prediction. This method, which separated the features and trends by 

decomposing the original data into high-frequency parts and low-frequency parts to learn them 

respectively in a multi-channel module, provided a great idea for us to acquire the features of 

multivariate time series. In addition to the problems mentioned above, there are still some 

unavoidable problems; for example, it is difficult to set an accurate boundary for normal and 

abnormal data, or the data collected by different sensors may contain noise due to other factors. 

These data with serious noise may look similar to anomalies [19], lead to false alarms [21], and 

affect the performance of algorithms [7]. The fact that the amount of normal data is much larger 

than the amount of abnormal data is another problem, and the problem of extremely unbalanced 

data has become another major trouble spot in time-series anomaly detection [22]. 

The occurrence of anomalies in multivariate time series data typically involves multiple 

features. Sequential analysis of individual features cannot accurately locate all the anomalies 

because several variables have to be examined simultaneously when analyzing data segments. 

Moreover, encoding the inter-correlations between different pairs of time series also needs to 

be considered. Clearly, detecting anomalous parts of multivariate time series is a challenging 

problem. 
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To establish an automatic detection system of anomalies in time-series, many researchers 

have proposed many effective models and methods to deal with time-series data. Many scholars 

have been studying time-series modeling including ARIMA [23], SVM [24], and CNN [19]. 

Since the data used for anomaly detection usually have no clear labels and the amount of 

abnormal data is very small, many unsupervised discriminative approaches are used for 

anomaly detection, including OCSVM [25], iForest [26], and LSTM-ED [27]. Although these 

unsupervised methods have made some progress in the field of time-series anomaly detection, 

many models still cannot detect anomalies effectively. 

Over the last decade, there has been an increased enthusiasm around deep neural 

networks (DNNs) [28] which aim to learn deep latent representations of the multivariate time 

series to infer a model of variability used for anomaly grading in unseen data. As a result of 

the good performance demonstrated by DNNs in multiple fields [29, 30, 31], in recent years, 

there has been a boom in DNN-based methods for multivariate time series anomaly detection 

(Table 1.1). 

Machine learning techniques are increasingly being adopted to detect anomalies because 

they can capture different characteristics of time series and detect anomalies effectively. 

Various anomaly detection methods for multivariate time series data have been developed. 

Especially noteworthy are methods based on dimension reduction. These methods aim to 

reduce the dimension of the space defined by a data set while retaining the important features 

of the original data. Dimension reduction methods differ according to their handling of feature 

selection and feature extraction; these methods may be linear or non-linear. The Autoencoder 

is particularly important in this area. This method attempts to compress and thus map input 

data to reduced dimensional space and then use an encoding-decoding process to reconstruct 

the input data set. A newer dimensionality reduction method is Variational Autoencoder (VAE), 

which evolved from Autoencoder. VAE is a type of neural network that can learn to compress 

data in a completely unsupervised way. This method outperforms Autoencoder by imposing a 

probability distribution on the latent space, with a given mean and variance, and using a sample 
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from this distribution to reconstruct the data. Despite considerable progress, VAE based 

anomaly detection for imbalanced data has not received much attention.  

Therefore, our goal is to study and develop specific approaches to detect anomalies in 

multivariate time series data, which takes account of the correlation between the series. 

Multivariate time series data usually contains noise and masks the true anomalies. Also, we 

need to consider the characteristics of the data itself and consider the threshold because, when 

facing the imbalance issue of normal and abnormal samples, the existing threshold setting 

strategy is insensitive to imbalanced datasets. The main contributions of our proposed 

framework are as follows. 

• The novel MSCVAE framework is designed to detect anomalies in multivariate time 

series data. MSCVAE constructs multi-scale attribute matrices to characterize multiple levels 

of the system states across different time steps and then uses a convolutional variational 

autoencoder to extract the characteristics of the time series input. Specifically, we use an 

attention-based Convolutional Long-Short Term Memory (ConvLSTM) network to capture the 

temporal patterns and also to reconstruct the attribute matrices. Moreover, the weighted 

mechanism is introduced into the last layer of decoding, which helps to give different weights 

to every data point of sequence in each sliding window.  

• We propose a novel threshold setting strategy based on a confusion matrix to optimize 

threshold selection of anomaly detection, which will help to improve the model robustness 

under conditions of imbalance between normal and abnormal data in multivariate time series. 

• Experiments have been conducted on four datasets in order to verify the effectiveness 

of the proposed framework and the new threshold setting strategy. The results demonstrate that 

our method is superior to competing models in terms of anomaly detection performance and 

robustness under different ratios of imbalanced datasets. 
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Table 1.1  Deep learning-based methods for anomaly detection in multivariate time series from 
2018 to 2021 

Methods Description Datasets 

DAGMM [31] Deep Autoencoding Gaussian Mixture Model 
MSL, SMAP, SMD, 
SWaT, WADI 

AE [32] Autoencoder 
MSL, SMAP, SMD, 
SWaT, WADI 

Donut [33] Variational Autoencoder Private 

USAD [34] Adversely trained Autoencoders 
MSL, SMAP, SMD, 
SWaT, WADI 

Bagel [35] Conditional Variational Autoencoder Private 

OmniAnomaly [36] Gated Recurrent Unit and Variational Autoencoder 
MSL, SMAP, SMD, 
SWaT, WADI 

MAD-GAN [37] Generative Adversarial Networks 
SWaT, WADI, 
KDDCUP99 

LSTM-VAE [38] LSTM-Variational Autoencoder 
MSL, SMAP, SMD, 
SWaT, WADI 

DeepAnT [5] Convolutional neural network Yahoo Webscope 

MSCRED [39] Multi-Scale Convolutional Recurrent Encoder-Decoder 
Power Plant, 
Synthetic 

MTS-DCGAN [21] Deep Convolutional Generative Adversarial Network 
Genesis, Satellite, 
Shuttle, Gamma 

FuseAD [40] ARIMA and Convolutional neural network 
Yahoo Webscope, 
NAB 

RADM [41] Hierarchical Temporal Memory and Bayesian Network NAB 

MTAD-TF [42] Convolutional and Graph Attention Network MSL, SMAP, SMD 

 

1.2 Problem statement 

Since the main problem is that industries require more than 99% anomaly detection 

accuracy, we need to consider several reasons to achieve this problem. First, there is a close 

time dependence between multidimensional time-series data, and general density-based 

methods and clustering models cannot capture the dependence between series. Second, 

multivariate time-series from the real world containing relatively severe noise may reduce the 

generalization ability of the detection model. Finally, the problem of data imbalance will cause 

the model to be unable to fully obtain the relationship between normal data and abnormal data, 

which will lead to a poor detection effect. Thus, all problems will be considered and solved by 

the proposed framework in this thesis. 
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1.3 Research purpose 

The general objective of this research is to study and develop an unsupervised anomaly 

detection algorithm for multivariate time series data. The specific objectives are established as 

follows: 

1) To create a new framework Multi Scale Convolutional Variational Autoencoder 

(MSCVAE) for detecting anomalies in multivariate time series. 

2) To build the new Error Rate (ERR) based threshold setting strategy of anomaly 

detection, which will help to improve the model robustness under conditions of imbalance 

between normal and abnormal data in multivariate time series. 

3) To verify the effectiveness of the proposed framework and the new ERR based 

threshold setting strategy on four benchmark datasets and compare the performance with other 

algorithms. 

1.4 Overview of the thesis 

The thesis organization outline consists of five chapters that cover the background 

history, research objectives, fundamentals of the time series, autoencoder and variational 

autoencoder, experiment, and discussion of the results. Finally, the conclusions and 

suggestions for further work are explained in detail and related information. The particular 

explanation of each chapter will be explained as follows: 

Chapter 1 in this introduction chapter explains the background and problem of anomaly 

detection in multivariate time series data. The objective and contribution are to develop an 

anomaly detection architecture system that combines the deep learning method to detect 

anomalies in many practical settings. Finally, this chapter clarifies the particular objective. 

Chapter 2 presents the fundamental basis of the time series and its characteristics. Then 

the problem of anomaly detection in time series is in detail, followed by the concepts of the 

artificial neural networks, autoencoders, variational autoencoders, and evaluation metrics, and 

cover all methods used in this thesis. 
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Chapter 3 outlines the practical methods used for anomaly detection in multivariate 

time series data and their implementation in the proposed algorithms. The chapter introduces 

the problem we aim to study and then shows how to generate attribute matrices, which is the 

pre-processing process. Next, we elaborate on the proposed framework in detail. Furthermore, 

we introduce in detail the new threshold setting strategy to optimize anomaly detection 

performance under an imbalance of normal and abnormal data.  

Chapter 4 presents the results of the thesis. The chapter begins with an explanation of 

the four standard datasets used in this thesis. Afterward, the experimental setup and anomaly 

detection results are presented. This is followed by results from the ablation study, robustness 

evaluation, and threshold setting strategy comparison. 

Finally, chapter 5 conclusion summarizes the thesis with three parts of the proposed 

framework. Firstly, in pre-processing data, we calculate an attribute matrices based inner-

product for each time step, which contains the relationship between its own information and 

the information of a sub-sequence. That is why we can amplify features and reduce noise. 

Second, attention-based ConvLSTM is applied to select adaptively relevant hidden states 

(feature maps) across different time steps. That is why we can capture the temporal patterns. 

Third, a new error rate (ERR) based threshold setting strategy is applied to optimize anomaly 

detection performance under an imbalance of normal and abnormal data. Finally, the ideas for 

improvements for future work are presented. 
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Chapter 2 

Background & Theory 

In this chapter, related preliminary knowledge is presented and discussed for a better 

understanding of this thesis. The chapter begins with an introduction to time series, anomaly 

detection, artificial neural network, fundamental theories such as Autoencoder, Variational 

Autoencoder, and evaluation metrics, which are used to detect the anomalies in multivariate 

time series data. 

2.1 Time Series 

2.1.1 Definition of time series 

A time series is defined as a sequence of ordered continuous values representing a 

numerical variable’s evolution over time. It is the measurement of a system evolving in time 

with numerical attributes: for example, the temperature of a computer server, the value of a 

company’s stock, or the electrical activity of the heart (ECG). Therefore, a time series is any 

sequence of observations indexed by time. A time series carries a lot of information about the 

measuring system. This information can be used to ensure the proper functioning of the system. 

Time series are used in statistics, signal processing, pattern recognition, finance, 

weather forecasting, astronomy, communications engineering, and largely in any applied 

science and engineering domain that involves temporal measurements. 

Time series analysis comprises methods for analyzing time-series data to extract 

meaningful statistics and other data characteristics. The difference between a simple regression 

task and a time series analysis is that, in the latter case, the model must not only learn the 

correlation between characteristics but also the correlation with time. 

2.1.2 Univariate and Multivariate time series  

Researchers have defined two main categories of time series.  
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Definition 1. (Univariate time series) A univariate time series { }t t TX x   is defined as an 

ordered set of real-valued observations, tx  , where each observation is recorded at a specific 

t T   . 

Definition 2. (Multivariate time series) A multivariate time series { }t t TX x   is defined as 

an ordered set of k -dimensional vectors, each of which is recorded at specific time t T    

and consists of k  real-valued observations, 1( ,..., )t t k tx x x .  

A univariate detection method only considers a single time-dependent variable, 

whereas a multivariate detection method is able to simultaneously work with more than one 

variable.  

Moreover, the detection method can be univariate even if the input data is a multivariate 

time series because an individual analysis can be performed on each time-dependent variable 

without considering the dependencies that may exist between the variables.  

In contrast, a multivariate technique cannot be used if the input data is a univariate time 

series.  

2.1.3 Autocorrelation  

Since a time series is a sequence of values for different timestamps, it could be useful 

to find the temporal correlation within the same features.  

Just as correlation measures the extent of a linear relationship between two variables, 

autocorrelation measures the linear relationship between lagged values of the same feature of 

a time series (hence the name autocorrelation).  

There are several autocorrelation coefficients, corresponding to each panel in the lag 

plot. For example, 1r  measures the relationship between ty  and 1 2,ty r  measures the 

relationship between ty  and 2ty   and so on.  

The value of kr  can be written as:  

1

1

( ) ( )

( )

T

t t k
t k

k T

t
t

y y y y

r
y y


 



 







       (2-1) 
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where T  is the length of the time series. The autocorrelation coefficients make up the 

autocorrelation function or ACF.  

The autocorrelation plot can also be used to view if the time series has a trend or 

seasonal behavior. When data have a trend, the autocorrelations for small lags tend to be large 

and positive because observations nearby in time are also nearby in size. Therefore, the ACF 

of trended time series tends to have positive values that slowly decrease as the lags increase.  

When data are seasonal, the autocorrelations will be larger for the seasonal lags (at 

multiples of the seasonal frequency) than for other lags.  

When data are both trended and seasonal, these effects are combined. 

Fig. 2-1  Autocorrelation plot 

The autocorrelation plot in Figure 2-1 represents the temporal correlation of the 

temperature recorded in Barcelona during 2019. It is possible to observe that the correlation 

between a day and the four preceding days is very strong, this means that the temperature of 

one day depends on one of the days immediately before. Moreover, the autocorrelation plot has 

peaked with lags equal to 10 and 30 (one month); thus, for a given day dt has a strong 

correlation with the temperature of dt−1:t−4 but also with temperature further back in time. We 

can conclude by saying that the time series considered as an example is stationary with no 

associated trend because the autocorrelation decreases quickly for small lags but with a likely 

seasonal behavior. 
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2.1.4 Decomposition 

Time series data can exhibit a variety of patterns, and it is often helpful to split a time 

series into several components (trend, seasonality, and cycles), each representing an underlying 

pattern category.  

During the decomposition, the trend and cycle are usually combined into a single trend-

cycle component. Hence, a time series can be viewed as a combination of three components: a 

trend-cycle component, a seasonal component, and a remainder component (containing 

anything else in the time series).  

Often this is done to help improve understanding of the time series, but it can also be 

used to improve forecast accuracy.  

When decomposing a time series, it is sometimes helpful to first transform or adjust the 

series in order to make the decomposition (and later analysis) as simple as possible.  

An additive decomposition is when:  

,t t t ty S T R         (2-2) 

where ty  is the data, tS  is the seasonal component, tT  is the trend-cycle component, and tR  is 

the remainder component, all at period t . Alternatively, a multiplicative decomposition would 

be written as  

.t t t ty S T R        (2-3)  

The additive decomposition is the most appropriate if the magnitude of the seasonal 

fluctuations, or the variation around the trend-cycle, does not vary with the level of the time 

series. When the variation in the seasonal pattern, or the variation around the trend-cycle, 

appears to be proportional to the level of the time series, then a multiplicative decomposition 

is more appropriate. Multiplicative decompositions are common with economic time series.  
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Many time series include trends, cycles, and seasonality. When choosing a forecasting 

method, the first step is to identify patterns in the time series data, and then choose a method 

that is able to capture those patterns properly. 

2.1.5 Trend 

Trend is a pattern in data that shows the movement of a series to relatively higher or 

lower values over a long period of time. In other words, a trend is observed when there is an 

increasing or decreasing slope in the time series. The trend usually happens for some time, then 

disappears, and it does not repeat.  

In Figure 2-2, the antidiabetic drug sales in Australia show a clear and increasing trend 

of sales during the years. 

Fig. 2-2  Monthly sales of antidiabetic drugs in Australia [43] 

2.1.6 Seasonality 

A seasonal pattern occurs when a time series is affected by seasonal factors such as the 

time of the year or the day of the week. Seasonality is always a fixed and known period.  

For example, the monthly sales of antidiabetic drugs (Figure 2-3) show seasonality 

which is induced partly by the change in the cost of the drugs at the end of the calendar year.  
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In this case, it is clear that there is a large jump in sales in January each year. Actually, 

these are probably sales in late December as customers stockpile before the end of the calendar 

year, but the sales are not registered with the government until a week or two later. The graph 

also shows that there was an unusually small number of sales in March 2008 (most other years 

show an increase between February and March). The small number of sales in June 2008 is 

probably due to the incomplete counting of sales at the time the data were collected. 

 

Fig. 2-3  Example of seasonality [43] 

2.1.7 Cycles 

 A cycle occurs when the data exhibit rises and falls that are not of a fixed frequency. 

These fluctuations are usually due to economic conditions, and are often related to the 

“business cycle.” The duration of these fluctuations is usually at least 2 years.  

Cyclic behavior is quite different from seasonal behavior. If the fluctuations are not of 

a fixed frequency, then they are cyclic; if the frequency is unchanging and associated with some 

aspect of the calendar, then the pattern is seasonal.  
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In general, the average length of cycles is longer than the length of a seasonal pattern, 

and the magnitudes of cycles tend to be more variable than the magnitudes of seasonal patterns. 

The monthly housing sales in the USA, in Figure 2-4, show strong seasonality within 

each year, as well as some strong cyclic behavior with a period of about 6–10 years. 

Fig. 2-4  Example of a cycle [43] 

2.1.8 Stationarity 

Intuitively, a stationary time series is a time series having the same characteristics over 

every time interval, or in other words, whose properties do not depend on the time at which the 

series is observed. Formally, we can express it as follow:  

Definition 3. tX  is a stationary time series, if :s    the distribution of ( ,..., )t t sx x   is equal.  

The above definition implies that a stationarity time series ,...,t Tx x  will have the following 

characteristics:  

1. Constant mean, Therefore, no trend exists in the time series.  

2. The time series has constant variance.  

3. There is a constant autocorrelation over time.  

4. The time series has no seasonality, i.e., no periodic fluctuations.  

Most of the time series is not stationary, but some methods could help to make the data 

close to the stationarity.  
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Differencing One of the most used methods is differencing because it can happen that a time 

series is not stationary, but the differences between consecutive observations are. Therefore the 

time series after the transformation is given as 1t t tx x x    .  

Is it always better to have stationary time series? Machine learning methods are used when 

the classical methods fail, and better results are needed. It is impossible to know how to best 

model unknown nonlinear relationships in time series data, and some methods may result in 

better performance when working with non-stationary observations or some mixture of 

stationary and non-stationary views of the problem.  

In conclusion, stationary time series are not always preferred, but this is part of the 

feature engineering/selection when using machine learning methods. 

2.2 Anomaly Detection 

Fig. 2-5  Example of Anomaly from expected behavior 

An anomaly can be defined as an unexpected observation with respect to a set of other 

pre-established observations considered normal. More formally, in a set X  containing n  

observations noted ix , then px A  will be considered as abnormal if it differs, by its 

characteristics, from the other observations, i.e., from those contained in the set /{ }pA x . The 

definition of the term anomaly is specific to the use case. The most common one in the field of 
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detection is an observation that is different from the others by its singularity: it could result 

from a set of rules which are different from the other observations [44] 

Anomalies in time series, also called outliers, are points or sequences of points that do 

not correspond to normal behavior [2]. The concept of normal behavior is difficult to formalize. 

Therefore, another possible definition for anomalies could be a pattern in data that is not 

expected compared to what has been seen before [2]. In fact, an implicit assumption is that 

anomalies are rare events. Anomalies should not be confused with the noise present in the time 

series. Noise is a phenomenon that, unlike anomalies, has less interest in being analyzed. 

However, anomalies may indicate a significant problem in several applications. For 

example, an anomaly in industrial control systems may indicate a malfunction, financial 

anomalies may be the result of fraud, or they may indicate diseases in healthcare. As a critical 

task, many methods have been developed to address it [45, 46]. 

Anomaly detection refers to the task of identifying an unseen observation ˆ ,tx t T , 

based on the fact that it differs significantly from X , thus assuming that X  contains only 

normal points. The amount by which the unseen sample t̂x  and the normal set X  differ is 

measured by an anomaly score, which is then compared to a threshold to obtain an anomaly 

label. 

2.2.1 Types of Anomalies in Time Series 

In recent years, due to the increase of the complexity of the reality that we want to 

model, also the complexity of the anomalies is increased. Therefore, it is necessary to have 

tools to analyze such data, learn the patterns, and autonomously detect anomalies. 

For this reason, Deep anomaly detection (DAD) methods have been shown to detect all 

three types of anomalies with great success. 

Deep learning models can detect anomalies in both univariate and multivariate data, 

whether the anomaly afflicts a single sensor or more time-dependent variables. In other words, 

we can find anomalies in one or more features in the case of multivariate time series. 
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There are mainly three types of anomalies that are studied in the literature, namely point 

anomalies, sequential anomalies, and contextual anomalies [2]. A brief description of those is 

given below. 

 Point Anomalies: If a single point deviates from the considered normal pattern it 

is referred to as a point anomaly. This is the simplest form of an anomaly. An 

example of a point anomaly is if a process value suddenly is very low or high. An 

illustration of this is given in Figure 2-6(left), where the anomaly is marked in red. 

 Sequential Anomalies: If a sequence or collection of points is anomalous with 

respect to the rest of the data, but not the points themselves, it is referred to as a 

sequential or collective anomaly. Since this thesis deal with anomalies in time 

series we will refer to this type of anomaly as a sequential anomaly. An example 

of a sequence anomaly is if a sensor that records process values fails and from that 

point outputs the same process value, which is illustrated in Figure 2-6(center). 

Note that these values are not considered anomalous themselves, but their sequence 

of them is. 

 Contextual Anomalies: If a point or a sequence of points are considered as an 

anomaly with respect to its local neighborhood, but not otherwise, it is referred to 

as a contextual anomaly. For example, suppose a process can target different 

qualities at different times resulting in changes of the process values for each 

quality. Let the qualities result in process target values of three different levels 1, 

2 and 3. If the process is running a quality at level 2 and there is an instance of a 

process value close to those of level 3 this is a contextual anomaly, however, 

globally a process value close to level 3 is not anomalous when running the quality 

of that level. This is illustrated in Figure 2-6(right). 
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Fig. 2-6  Point anomaly (left), sequential anomaly (center) and contextual anomaly (right) 

 

2.2.2 Data Labels 

The labels associated with a data instance denote if that instance is normal or 

anomalous1. It should be noted that obtaining labeled data that is accurate and representative 

of all types of behaviors, is often prohibitively expensive. Labeling is often done manually by 

a human expert and hence requires substantial effort to obtain the labeled training data set. 

Typically, getting a labeled set of anomalous data instances which cover all possible types of 

anomalous behavior is more difficult than getting labels for normal behavior. Moreover, 

anomalous behavior is often dynamic in nature, e.g., new types of anomalies might arise, for 

which there is no labeled training data. In certain cases, such as air traffic safety, anomalous 

instances would translate to catastrophic events, and hence will be very rare. 

2.2.3 Types of Anomaly Detection  

In terms of anomaly detection, there are generally three different mechanisms: 

supervised approach, semi-supervised approach, and unsupervised approach [2, 7]:  

1. Supervised anomaly detection: refers to setups where fully labeled training and validation 

datasets are available. In this case, the anomaly detection problem degenerates into a 

classification problem, where the labels of the two categories are often highly imbalanced. 

However, acquiring thoroughly labeled datasets for anomaly detection is unrealistic due to the 

following two reasons: 1) data collection and labeling process is time-consuming and labor-
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intensive in real-world practice; 2) there will always be potentially unseen novelties in testing 

or new data.  

In other words, since anomalous patterns are in theory countless, it would never be 

possible to collect all potential features and characteristics of the anomaly class during training.  

2. Semi-supervised anomaly detection: approaches that assume the training dataset 

comprises merely normal (non-anomalous) data [38, 47]. Since only one class is present in 

training data, the semi-supervised approach in anomaly detection is also known as one-class 

classification. The basic idea of semi-supervised approaches is to train and validate a model 

that only fits on normal patterns, and the anomalous data would have a far larger model loss 

compared to non-anomalous data. Therefore, this loss could be treated as an anomalous score 

during testing or implementation. Nevertheless, building such a one-class training dataset 

would still require great efforts and investments [48], which makes such semi-supervised 

models non-generic.  

3. Unsupervised anomaly detection: setups where no assumption of data labels is required 

[12, 31, 36], which is the most realistic and generic approach in practice. Under some 

circumstances, semi-supervised anomaly detection could be adapted and transformed to 

unsupervised anomaly detection by tolerating the minority anomalous samples in training data.  

Considering the scope and purpose of this research, this thesis only investigates and 

studies unsupervised anomaly detection methods. We also include some semi-supervised 

anomaly detection algorithms that could be transformed into unsupervised anomaly detection 

models.  

An important implicit assumption of unsupervised anomaly detection is:  

Assumption 1. Normal records happen far more frequently than anomalous records. 

Consequently, unsupervised models would only learn normal patterns during training and thus 

be capable of spotting anomalies during testing.  
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Apparently, Assumption 1 would not stand when either 1) normal data does not 

dominantly outnumber anomalies in training data or 2) the unsupervised model does tolerate 

the rare anomalous pattern and therefore fails to detect similar anomalies in testing. 

To mitigate this weak assumption, unsupervised anomaly detection designs are broadly 

and commonly built upon Encoder-Decoder architecture, where an encoder first generates a 

latent representation of the input sequence such as sentences, time series, and videos, then a 

decoder reconstructs another sequence of variables from the encoded data. Since the Encoder-

Decoder structure is often applied in sequence modeling and processing, this architecture is 

also frequently referred to as Sequence to Sequence (seq2seq) models [49], which originates 

in the natural language processing (NLP) field, and is now widely used in machine translation 

[50], video captioning, and time series forecasting. Within the scope of this thesis, Encoder-

Decoder models and seq2seq models represent the same architectures, where the model outputs 

are reconstructions of the inputs. In general, seq2seq designs are applied in anomaly detection 

under the following assumption [39, 47]:  

Assumption 2. Only normal patterns could be effectively reconstructed through the model.  

Based on Assumption 2, an anomaly scoring mechanism based on intrinsic data patterns 

could be adopted to distinguish between normal and anomalous data points [7]. Some typical 

evaluation metrics include loss distances and data densities. For example, under Assumption 2, 

an Encoder-Decoder model would fit on the data points in Figure 2-5 such that only blue points 

could be effectively reconstructed. After parameter tuning, the model would be tuned into an 

estimator of the light blue curve. During testing, we could adopt the 2l  norm with respect to 

the light blue curve as the anomaly detection metric, and all the points whose 2l  norms are 

larger than a certain threshold would be classified as anomalous. 

2.2.4 Output of Anomaly Detection 

An important aspect for any anomaly detection technique is the manner in which the 

anomalies are reported. Typically, the outputs produced by anomaly detection techniques are 

one of the following two types: 
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Scores 

Scoring techniques assign an anomaly score to each instance in the test data depending 

on the degree to which that instance is considered an anomaly. Thus, the output of such 

techniques is a ranked list of anomalies. An analyst may choose to either analyze top few 

anomalies or use a cut-off threshold to select the anomalies. 

Labels 

Techniques in this category assign a label (normal or anomalous) to each test instance. 

Several techniques, internally, calculate a score for each test instance and use either a threshold 

or a statistical test to assign a label.  

Scoring based anomaly detection techniques allow the analyst to use a domain specific 

threshold to select the most relevant anomalies. Techniques that provide binary labels to the 

test instances do not directly allow the analysts to make such a choice, though this can be 

controlled indirectly through parameter choices within each technique. 

Taxonomy 

The taxonomy consists of three classes of anomaly detection methods for multivariate 

time series. These are: conventional approaches, machine learning-based and DNN-based 

methods.  

Conventional approaches, which are also referred to statistical methods by some 

authors [51], rely on the assumption that a stochastic model generates the observed data and 

their aim is to estimate a model’s parameters from the data and then use the model for 

prediction [52]. It is often the case that the model hypothesis is considered linear.  

The boundary between conventional and machine learning-based approaches is not 

fully clear. Machine learning-based models produce predictions about the results of complex 

mechanisms by mining databases of inputs for a given problem, without necessarily having an 

explicit assumption about a model’s hypothesis. In this setup, a method aims to learn a function 

that operates input data to predict output responses [52].  
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Finally, DNN-based methods are a subclass of non-linear machine learning based 

methods that use neural networks with multiple layers [28]. 

2.3 Artificial Neural Networks 

The field of Artificial Neural Network (ANN) has its origin in neurobiology. The 

human brain consists of a complex network of approximately 100 billion nerve cells, or neurons, 

being connected by synapses. In this biological scenario, neurons communicate over the 

synapses with electrical impulses and a single neuron typically receives many thousands of 

signals from other neurons. The voltage of an impulse depends on the strength of the actual 

synapse connection. The total strength of all signals to a neuron can be regarded as the sum of 

all impulses and each neuron has a threshold mechanism, where signals exceeding it will result 

in the neuron generating its own voltage impulse[53].  

Fig. 2-7  A basic artificial neuron, showing inputs x1 and x2, each paired with respective weight. 

The activation function node processes a linear combination of x and w, outputting a 

value based on the function f . 

The equivalent functions of the artificial neuron work very similar to the biological and 

the same glossary is often used in both cases. The principles of an artificial neuron are shown 

in figure 2-7. The artificial network consists of nodes being interconnected by edges and the 

strength of the biological synapses is modeled by the edges having a multiplicative weight 
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factor. The neuron calculates a weighted sum based on all its inputs, resulting in a value that is 

used in the activation function. The activation function, sometimes also called transfer function, 

acts as a threshold and there are many different types of functions depending on the desired 

outcome. 

Each hidden unit h  calculates a weighted sum ha  of its n  inputs and each respective 

weight ijw  . The activation function is then applied to ha , to calculate the actual output from 

each unit: 

1

n

h ih i
i

a w x


        (2-4) 

Two of the most common activation functions used in ANNs are the hyperbolic tangent 

function, 
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limiting all values to [-1, 1], and the logistic sigmoid function ( )x  with a range of [0, 

1][54].  
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 


      (2-6) 

A third activation that has become popular in the last few years is the Rectified Linear 

Unit (ReLU) function, 

( ) max(0, )f x x      (2-7) 

ReLU works simply by being a thresholded zero and has been found to accelerate 

convergence when training ANNs. [55]  

In the last layer of the neural network, the output nodes calculate the resulting value of 

the whole network in the same way as the nodes earlier. However, it is not necessary for the 
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output nodes to use the same activation function and that choice depends on the task being 

solved. In the case of a multiclass classification with K classes, a common approach is to apply 

the softmax function, seen in equation 2-8. The function ensures that the sum of all the outputs 

is one. [56] 
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   (2-8) 

 

 

Fig. 2-8  An Artificial Neural Network of feedforward type consisting of an input layer, 

two hidden layers and a single node as output layer. 

Multiple artificial neurons create a Neural Network (NN) and the nodes are commonly 

structured in layers, as can be seen in figure 2-8. The layers in the network are arranged with 

input and output layers, with a number of hidden layers in-between. The structure of the 

connections between layers depends on the type of network; one significant difference is 

whether connections are forming cycles or not. Feedforward Neural Network (FNN) is an 

acyclic network and the most widely used type is the Multilayer Perceptron (MLP), which is 

the type shown in figure 2-8. ANNs consisting of cycles are called recurrent, or feedback, 

neural networks, and are discussed further in section 2.3.3. 
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2.3.1 Training an Artificial Neural Network 

Training an ANN is performed by exposing the network to typical data and adjusting 

the weights, such that the correct output can be reproduced given a specific input. The most 

commonly used procedure is performed in two steps, containing a forward pass and a backward 

pass. The forward pass consists of processing the input data, as seen in figure 2-7, in each 

neuron of each layer in the network.  

The goal of training the network is to minimize the error between the calculated output 

Ŷ  and the target output Y . A commonly used error function is Mean Squared Error (MSE), 

2

1

1ˆ ˆ( , ) ( )
N

i i
i

MSE Y Y Y Y
N 

      (2-9) 

which is used in cases where the outputs are numerical values. There are cases where the 

predictions from the model are distributions instead of numerical values, which is the case of 

the softmax function in equation 2-8. In this case, Categorical Cross Entropy (CCE) is a 

frequently used error function. CCE is an error function between two distributions Y  and Ŷ , 

where Y  is the true case and Ŷ  is an approximation of Y . Each distribution consists of a number 

of probability values, where 0 represents definitely false and 1 definitely true. This type of 

metric punishes heavily a wrong prediction having a high probability. Categorical Cross 

Entropy is defined as CCE(Y , Ŷ) and each distribution p  and q  have N  number of classes. 

1

ˆ ˆ( , ) - log( )
N

i i
i

CCE Y Y Y Y


      (2-10) 

While training aims to minimize the error, the risk of only following the least amount 

of error introduces the risk of overfitting. A model that overfits its training data will have 

weights so targeted at the specific data of the training, which results in a bad ability to 

generalize when introduced with slightly different data. To counteract this, a concept called 

regularization was introduced as a complement to the error function. The regularization term 

discourages the network to model the data perfectly using too many parameters, by penalizing 
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the loss with an additional term. The combination of an error function and regularization is 

often called the objective function, which is the term used in this thesis [57].  

Several optimization techniques minimize the objective function; one of the most 

fundamental is gradient descent. The idea of gradient descent is to use the derivative of the 

objective functions relative to the weights of the network and adjust the weight with a fixed 

step size in the negative direction [54].  

Backpropagation is a method of calculating the gradient and it is basically just a 

repeated application of the chain rule, as seen in equation 2-11, working backward from the 

output through the hidden layers. The notations in the equations are as follows, O is objective 

function, a is calculated output (as seen in equation 2-4), y  is expected output. 

O O y

a y a

  
  

      (2-11) 

As seen in equation 2-12, the calculation of the derivatives relative to the weights ijw , 

which is used in gradient descent. [54] 
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ij j ij

aO O
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  

     (2-12) 

2.3.2 Convolutional Neural Network 

CNNs are a kind of feedforward neural networks for processing data that has a grid-

like topology. For instance, image data are basically multiple channels of 2D pixels, and can 

be evaluated as 2D grid of pixels. Compared to other neural networks, CNNs adopt convolution 

operation instead of general matrix multiplication in at least one of their layers.  

The convolution between two continuous functions ( )f t  and ( )g t  is defined as: 

( )( ) ( )g(t )df g t f   



  ,      (2-13)  

while the convolution between two discrete functions [ ]f n  and [ ]g n  is: 

( )[ ] [ ]g[ ]
m

f g n f m n m




  .      (2-14)  
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In the case of CNNs, f corresponds to the input, while g is referred to as kernel or filter. 

The output of the operation is called a feature map. Convolutions are used in CNNs to extract 

local information and features from data. In particular, each kernel is applied to the entire input, 

allowing it to look for similar patterns or features regardless of locations or translations. In 

other words, the kernels of CNNs are location invariant.  

 

Figure 2-9  Convolution operation in CNNs. 

Figure 2-9 shows an example of a convolution operation used in CNNs. The input is a 

3 × 3 2D matrix, while the kernel is a 2 × 2 2D matrix. The output of the highlighted sub-matrix 

is derived as a demonstration, where each individual element within the region is involved in 

the calculation. The kernel processes all such sub-matrices before outputting the feature map.  

Compared to MLP, the weights of parameters in CNNs are shared, which relieves the 

computation burden caused by potentially large numbers of hidden layers. Moreover, CNNs 

do not require the input to be flattened into 1D vectors, thus preserving the spatial or high-

dimensional information that is otherwise discarded by MLP. 

2.3.3 Recurrent Neural Network 

As discussed in section 2.3, connections between neurons are never allowed to form 

cycles in regular feedforward neural networks. This limits the network’s ability to make 

assumptions of relations between data samples because the state of the network is lost after 

Input Data 

Kernel 

Convoluted feature 
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each sample has been processed. These networks are therefore not as suitable for processing 

tasks with data sequences related in time or space, such as words in sentences and time series. 

[58] Taking the example of wanting to predict the next word in a sentence of written text, it is 

advantageous for the network to consider words that are much earlier in the sentence for a more 

accurate prediction.  

Recurrent Neural Networks (RNN) were introduced with the task of being able to pass 

along the current state for future sequence steps to use. This may seem like a minor extension 

of the functionality of the MLP, but the implications are extensive. While basic neural networks 

are limited to only mapping an input to a corresponding output given a set of weights, the RNN 

can model whole sequences of dependent items in regard to both input and output. This is turn 

means that an RNN, theoretically, can model the entire history of previous inputs and outputs 

[54]. Comparing this to the fixed context window that a regular neural network handles, the 

strength of the RNN starts to show.  

An RNN works particularly well with modeling any type of sequential data, and it is 

commonly used in word prediction and machine translation applications. Another big use case 

is in image and video processing, since even inherently non-sequential data, such as a single 

image, can be represented as a sequence using transformations. [58] 

Figure 2-10  Recurrent Neural Network 
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The recurrent part of the RNN comes from the network performing the same operation 

for every element of a sequence, having the output from one element as extra input to the next. 

As can be seen in figure 2-10, a way of visualizing this is to unroll the loop and more clearly 

show that the network processes the input of each step in the sequence. A sequence containing 

five words would in this way be shown as a 5-layer network, one layer for each word.  

Inspecting a single layer unit, as shown in figure 2-11, shows a single activation 

function combining the current input and the output from the previous sequence step. The same 

activation functions can be used in the RNN as in MLP, and an often used function is the 

hyperbolic tangent function (tanh), which is shown in equation 2-5.  

 

Figure 2-11  In the unrolled visualization of an RNN, each layer unit has an activation  

function, in this case the hyperbolic tangent function (tanh) [59]. 

By using the abstraction of unfolding the RNN, it makes it clearer that the same 

backpropagation procedure, as described in section 3.2, can be used to propagate back across 

several steps. This algorithm is called Backpropagation Through Time (BPTT) and is 

essentially the same as regular backpropagation, with the important distinction that the 

gradients are summed at each step t of the sequence, see equation 2-15. This is relevant in the 

case of an RNN, since the network passes along parameters across sequence steps, in contrast 

to a regular ANN. [60] 
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A negative aspect of the RNN is that, while it can model the dependencies between 

items in a sequence, it suffers from the difficulty of learning long-range dependencies. This 

imposes a problem for example when modeling language, since the meaning of a sentence often 

relates to words that are not close. For example, in the sentence “The man who wore a wig on 

his head went inside”, the meaning is about the man going inside, not the wig. [61] The 

underlying problem is called vanishing gradient and relates to the workings of backpropagation, 

explained in equations 2-12 and 2-15. Due to the way the propagation is a multiplicative 

operation with the gradients, the contribution of input at time t will be multiplied with an 

increasingly smaller factor. This results in the gradient shrinking exponentially fast. The 

problem can also be the opposite, depending on the activation functions, with an exploding 

gradient, with a gradient so much larger in the earlier layers that others have no effect at all. It 

is worth noting that neither of these problems is exclusive to the RNN, but they are more 

apparent compared to a regular FNN due to the design of an RNN being as deep as the sequence 

length [58, 61].  

2.3.4 Long Short-Term Memory 

Long Short-Term Memory networks (LSTM) were introduced by Hochreither and 

Schmidhuber [62] in 1997 as a special type of RNN, aiming to solve the vanishing gradient 

problem. Having been specifically designed to handle long-term dependencies, LSTMs quickly 

became popular as an alternative to the RNN in applications such as natural language 

processing. [59] 

As seen in figure 2-12, the structure of the LSTM can be visualized in an unfolded 

manner similarly to the RNN in figure 2-11. Where the RNN functions with a single layer, the 

LSTM has four co-operating layers. The main addition introduced in the LSTM was the cell 

state C, which acts as a memory channel. This means that, instead of a single output, two 
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outputs, to  and th , are calculated per step. These are affected by the four layers in different 

ways, as described below [59]. 

 

Figure 2-12  Structure of an LSTM memory [59] 

The first sigmoid ( )  layer acts as a “forget gate”, taking both the previous output 1th   

and current input tx  into consideration when deciding how much of the cell state 1tC   should 

be remembered. The result is tf , as shown in equation 2-16, where tf  = 1 keeps 1tC   as it is 

and tf  = 0 completely disregards it. 

                    1( )t h f t x f t ff W h W x b        (2-16) 

The next two layers act together deciding the information that will be added to the cell 

state. The first part is a sigmoid layer, which calculates a vector using equation 2-17 deciding 

how much of each state value that should be updated. The second layer is a tanh  layer, which 

bears a resemblance to the single layer of the RNN as seen in figure 2-11. As shown in equation 

2-18, this layer calculates values that potentially could be important to store in the cell state. 

1( )t hi t xi t ii W h W x b          (2-17) 

1tanh( )t hC t xC t CC W h W x b           (2-18) 
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The actual update of the cell state is performed with an addition operation between the 

candidate values calculated in t ti C   and the current cell state, as shown in equation 2-19. 

Performing this as an additional means that new information can unobstructedly be added to 

the cell state. 

1t t t t tC f C i C                  (2-19) 

The final part of the LSTM block calculates the output of this step t . As shown in 

equations 2-20 and 2-21, this is performed in two steps. A sigmoid layer is yet again used as a 

masking vector to , using information in the input to decide what parts of the cell state that is 

going to be outputted. The cell state is used together with a basic activation function tanh  and 

then combined with to , resulting in the output th  consisting only of the parts that are calculated 

to be significant. 

1( )t ho t xo t oo W h W x b        (2-20) 

tanh( )t t th o C         (2-21) 

2.4 Autoencoders 

An auto-encoder [28, 32] is a type of neural network used in unsupervised learning in 

which the network is composed of an encoder and a decoder sub-models. The encoder forces 

a compressed representation of the input in smaller dimensions and the decoder attempts to 

recreate the input from the compressed version provided by the encoder.  

Auto-encoders are applied to many problems, from facial recognition, feature detection, 

and data denoising. They represent data within multiple hidden layers by reconstructing the 

input data, effectively learning an identity function. When trained solely on normal data 

instances, they fail to reconstruct the anomalous data samples producing a large reconstruction 

error. These points associated with a high residual error are considered anomalies.  
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The choice of autoencoder architecture depends on the nature of data, convolutional 

networks are preferred for image datasets while Long short-term memory (LSTM) based 

models are able to capture the time dependency in sequential data.  

The deep of an autoencoder depends on the dimension of the input data. The more 

dimensions, the more layers are needed to extract all the relevant information during training.  

The type of learning is unsupervised because the model does not require any 

information about the labels, making it very popular and widely used in literature. 

The encoder takes the input data xdx to a latent space(code) zdz . 

     1 1(Wx b )z        (2-22) 

where z  is latent space or code, 1  is an activation function, W x zd d  is a weight matrix and 

1b zd  is a bias vector of an encoder. 

 

Fig. 2-13  The architecture of an autoencoder 

Autoencoders consist of an encoder and a decoder. The encoder takes the input data 

xdx to a latent space(code) zdz . 

     1 1(Wx b )z        (2-23) 
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where z  is latent space or code, 1  is an activation function, W x zd d  is a weight matrix and 

1b zd  is a bias vector of an encoder. 

The decoder maps z  to the reconstruction x̂  of the same dimension as x . 

       2 2ˆ (Wz b )x         (2-24) 

where x̂  is the reconstruction or output of the autoencoder, 2  is an activation function of the 

decoder, W x zd d  is a weight matrix and 2b xd  is a bias vector of a decoder. 

 The autoencoders are trained to minimize a reconstruction loss function ˆ( , )L x x , which 

measures how well the decoder performs and how the model learns how to reconstruct the data 

from the encoded representation to be as close to the original input as possible. 

The Mean Squared Error (MSE) is the most common loss function. 

   
2

ˆ ˆ( , ) -L x x x x      (2-25) 

2

2 1 1 2ˆ( , ) - ( (W( (W b )) b ))L x x x x         (2-26) 

Autoencoders can be under complete which is one of the simplest types of autoencoders, 

i.e., under complete autoencoders latent code z has a lower dimensionality than the input space 

x, which is forced to learn a compressed representation of the data. An autoencoder can be used 

for dimensionality reduction tasks in this framework. If the autoencoder has just one hidden 

layer and if the functions are linear and the loss is the mean squared error, an autoencoder is 

provably equivalent to Principal Component Analysis (PCA), while the weights to the K hidden 

units will span the same subspace as the first K principal components of the data. Furthermore, 

if the activation functions are non-linear, autoencoders can find non-linear representations of 

the data and, therefore, they are a powerful generalization of PCA that has experimentally 

demonstrated impressive results in the past. 
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2.5 Variational Autoencoders 

Autoencoders were traditionally mainly used for dimensionality reduction and 

representation learning. More recently, theoretical connections to latent variable models have 

resulted in the variational autoencoder (VAE) [63]. VAE is a generative model with a 

probabilistic background, which can exploit its ability to model very complex distributions in 

a latent space in order to detect anomalies.  

 

Fig. 2-14  The architecture of a Variational autoencoder 

Probabilistic latent variable models 

Probabilistic Latent Variable Models (LVM) constitute a broad class of explicit 

generative models, they represent a common approach to the unsupervised representation 

learning problem. LVMs utilize auxiliary variables to express complex distributions that seize 

more realistically natural aspects of the Universe. The observed variable x is supposed to be 

generated by a stochastic process based on an unobserved continuous variable :z  firstly, the 

hidden z  is generated from a prior distribution ( )p z , then x is generated from a conditional 

distribution ( )p x z . The unobserved variable z  can be interpreted as a latent representation. 

Generally, the goal is twofold: to model the joint distribution ( , )p x z  and to infer the ( )p z x  

distribution for representation learning by employing a LVM, which can be thought of as a 

simple directed graphical model [64], as illustrated on Figure 2-15. The LVMs hold the 
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potential to automatically discover the underlying generative process and yield interpretable 

latent representations that reflect the true generative factors of a particular phenomenon. 

Fig. 2-15  The VAE as a graphical model 

The main difference between other explicit density models and the probabilistic latent 

variable models lies in the posterior distribution over the latent variables ( )p z x , derived from 

Bayes’ theorem. This distribution expectedly lies on a low dimensional manifold that can 

provide insights into the internal representation of the data [65]. The further motivation behind 

introducing a hidden variable is that the joint distribution can be defined as a product of simpler 

distributions using the law of total probability: ( , ) ( ) ( )p x z p x z p z   . The prior distribution 

over latent variable z  is usually predefined, significantly simplifying the computations 

required for likelihood estimation. 

Maximum Likelihood - Learning from observed data 

One convenient procedure to train a generative model on a given dataset  ( )

1

Ni

i
X x


  

and find a suitable parametrization of the model distribution ( )p x  is to use Maximum 

Likelihood Estimation (MLE). MLE determines an optimal   parameter. If it exists under 

which the likelihood of each datapoint from X is as high as possible. This also means placing 

more probability mass around the regions of the input space containing more samples from X . 

For computational simplicity and numerical stability, maximizing the logarithm of likelihood 

function ( ; ) log (X)X p   is more favorable than the likelihood ( )p X , since likelihoods, 
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being products of the probabilities of many data points, tend to be very small. Consequently, 

the generative model parameters are sought as argmaxlog ( )p X


  .  

Since it is assumed that the training dataset consists of independent, identically 

distributed observations, maximizing the log-likelihood of the data is equivalent to maximizing 

the log-likelihood of each individual data point separately:  

(1) ( ) ( )

1

log (X) log[ ( ) . . . ( )] log ( )
N

N i

i

p p x p x p x   


    

MLE of   requires the maximization of the sum, or equivalently the average of log-

likelihoods assigned to the training data points, which gives an estimation of 
( )

log ( )
x p x

p x
 . 

For the efficient optimization of this MLE objective, the Stochastic Gradient Descent (SGD) 

is used in the field of deep learning, where large datasets are processed [66]. Stochastic 

Gradient Descent randomly draws mini-batches from X  and estimates the gradients of the 

objective with respect to   using the data points of a single mini-batch 

( )

( )1 1
: log ( ) log ( )

i

i

x M

M p X p x
X M   



   . The gradient estimation is used then to 

iteratively perform gradient descent to reach a local minimum of the negative MLE objective 

function. 

Intractable distributions 

In the interest of maximizing the log-likelihood of the training data, it is enough to be 

able to calculate the gradient of the log-likelihood of a single observation. However, in the case 

of LVMs, when a continuous latent variable z  is brought in, the marginal likelihood of 

observation becomes intractable since it would require marginalization over the continuous 

variable ( ) ( ): log ( ) log ( ) ( )i iz p x p x z p z dz    .  

Taking the gradient of ( )log ( )ip x  is typically infeasible as it depends upon the 

evaluation of the integral, and the analytic solution is not directly available in the case of raw 

datasets, nor an efficient estimation in general case.  
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Thus, the MLE objective cannot be optimized directly. Although one can observe that 

the integral does not necessarily have to be calculated over all the values of :z  it would be 

enough to evaluate it over z  values to which the training data point is mapped with high 

probability, in other words where 
(i)

( )p z x  is significantly greater than 0. Unfortunately, the 

(i)
( )p z x  likelihood is also intractable considering that 

( )
(i)

( )

( ,z)
( )

( )

i

i

p x
p z x

p x





 , and the 

denominator is intractable. 

Evidence Lower Bound 

A subtle idea to circumvent the intractability of the 
(i)

( )p z x  distribution lies within 

variational Bayesian inference [64]. The key idea taken from the variational Bayesian approach 

is to approximate the true posterior distribution 
(i)

( )p z x  with a variational distribution 
(i)

( )q z x  defined by an inference model 
(i)

( )q z x  that can be an arbitrary function 

parametrized with   variational parameter shared across each data point. Amortizing the 

variational parameters over the entire input allows us to scale this approach even to large 

datasets, though this will result in a larger gap between the true and modeled log-likelihood 

[67]. Finding a suitable variational parameter  results in an additional optimization problem 

that requires the minimization of the distance between the true and approximate posterior 

distribution. The Kullback-Leibler divergence (KL-divergence) serves as one means to 

quantify how close two distributions are. 

Two noteworthy properties of KL-divergence are its’ non-negativity and asymmetricity. 

The below used form known as reverse KL-divergence is chosen in variational inference not 

only for the reason that it results in computational simplifications but also indicates preferring 

an approximation where regions of high 
(i)

( )q z x  are accurate, rather than regions of high 
(i)

( )p z x . This is desire able when drawing samples from 
(i)

( )q z x ; however, the resulting 

approximation usually underestimates the support of the true posterior. 

The KL-divergence between the true posterior 
(i)

( )p z x  and the approximate posterior 
(i)

( )q z x  can be written as: 
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( )
( ) ( ) ( )

( )

( )
( ( ) ( )) ( )log

( )

i
i i i

KL i

q z x
D q z x p z x q z x dz

p z x


  






   

        ( )
( ) ( )

( )
[log ( ) log ( )]i

i i
z q z x

q z x p z x


  


       (2-27) 

Rewriting Equation 2-27 using Bayes’ theorem reveals that the log-likelihood of a 

single datapoint can be related to the KL-divergence between true and approximate posterior 

distributions: 

( )

( )
( ) ( ) ( )

( )( )

( ,z)
( ( ) ( )) log ( ) log

( )
i

i
i i i

KL iz q z x

p x
D q z x p z x q z x

p x


  



 
   

 


  

( )
( ) ( ) ( )

( )
[log ( ) log ( ,z)] log ( )i

i i i
z q z x

q z x p x p x


    


    (2-28) 

Rearranging Equation 2-28 yields the following: 

( )

( )
( ) ( ) ( )

( )( )

log ( z) ( )
log ( ) ( ( ) ( ))

log ( )
i

i
i i i

KL iz q z x

p x p z
p x D q z x p z x

q z x

 
  



 
  
 
 


    (2-29) 

In Equation 2-29 the KL-divergence term on the left-hand side is still intractable due to 

the fact that 
(i)

( )p z x  cannot be evaluated . Luckily the non-negativity property of the KL-

divergence can be exploited here to discard that term and, in such a way get the Evidence Lower 

Bound (ELBO): 

( )
( ) ( ) ( ) ( )

( )
log ( ) [log ( ,z) log ( )] ( , ; )i

i i i i
z q z x

p x p x q z x x


      


    (2-30) 

It is worthy of note that the gap between the marginal log-likelihood of a datapoint and 

ELBO is exactly the KL-divergence between the true posterior and the approximation of it, as 

a consequence, the lower bound becomes tighter as the approximation is improved. 

The ELBO can be written in other insightful forms too, as formulated by [Hoffman and 

Johnson, 2016], which contribute to a better understanding and interpretability. One such 

version is obtained by reformulating expectation terms as a KL-divergence: 
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( )
( ) ( ) ( )

( )
( , ; ) [log( ( ) log (z) log ( )]i

i i i
z q z x

x p x z p q z x


       


  

( ) ( )
( ) ( )

( ) ( )
log( ( ) [log (z) log ( )]i i

i i
z q z x z q z x

p x z p q z x
 

     
 

   

( )
( ) ( )

( )
[log( ( )] ( ( ) ( ))i

i i
KLz q z x

p x z D q z x p z


   


   (2-31) 

This variant of ELBO clarifies the connection of VAE with traditional autoencoders 

and helps to simplify the computation needed for training, as further discussed later. 

Henceforward the optimization of MLE objective can be replaced with the 

maximization of the sum of individual-datapoint ELBOs with regard to both   and . This 

objective simultaneously maximizes the marginal likelihood and minimizes the KL-divergence 

of approximate and true posterior, therefore improving on both the generative and the inference 

model. The maximization of this objective still depends upon the generally intractable ELBO 

and its gradients taken with regard to both parameters, although easily calculated unbiased 

estimators of them exist. 

The estimation of gradients with regard to the generative model parameters can be 

obtained effortlessly as Monte Carlo estimate of expectation using a single sample z : 

( )
( ) ( ) ( )

( )
( , ; ) [log ( , ) log ( )]i

i i i
z q z x

x p x z q z x


        


   

( )
( ) ( ) ( )

( )
[log ( , ) log ( )] log ( , )i

i i i
z q z x

p x z q z x p x z


        


        (2-32) 

A similar estimation of gradients with regard to the variational parameters cannot be 

calculated since the ELBO’s expectation is taken with regard to the approximate posterior 

distribution depending on , therefore, the operations of taking the gradient and the expectation 

cannot be interchanged. 
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The Reparameterization Trick 

 To rise above the mentioned problem, a change of variables has to be applied, also 

known as the reparameterization trick. The concept is to express the random variable z  as a 

deterministic, differentiable transformation of another random variable  , given 
( )ix  and 

( ): ( , , )iz g x   , where the distribution of   is independent from 
( )ix  and  . Under this 

reparameterization, the expectation with regard to the approximate variational distribution can 

be replaced with one with regard to ( )p   independent of variational parameters. The ELBO 

can be rewritten then as: 

( ) ( ) ( )
( )( , ; ) [log ( , ) log ( )]i i i
px p x z q z x        , where ( )( , , )iz g x   

 As a result of reparameterization, the randomness in z  is externalized and the ELBO 

can be straightforwardly differentiated with regard to both  and . Likewise, in Equation 2-32 

a simple Monte Carlo estimator of the gradients of ELBO can be formulated with the use of a 

single noise sample ( )p   and ( , , )z g x  : 

( ) ( ) ( )
,( , ; ) [log ( , ) log ( )]i i ix p x z q z x          

 With the gradient estimates, the SDG can be used to maximize the ELBO objective just 

like in the case of MLE, but the prior over the latent variables have to be defined. The choice 

of prior and assumptions regarding the posterior distributions further simplifies the 

optimization of the ELBO objective. 

Stochastic optimization of the ELBO 

 The optimization of the evidence lower bound was performed using a stochastic 

optimization procedure proposed in the VAE original paper by Kingma and Welling [63]. They 

called this algorithm AutoEncoding Variational Bayes (AEVB). 
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Algorithm 1  Auto-Encoding Variational Bayes Algorithm 
Input:  
 X : Dataset 

 ( )q z x : Inference model 

 ( , )p x z : Generative model 

Output: 

 , : Learned parameters 

 ( , )   Initialize parameters 

while SGD not converged do 
 ℳ ~ X  (Random minibatch of data) 

 ( )p   (Random noise for every data point within minibatch ℳ) 

 Compute ℒ ( , ;  ℳ , )  and its gradients ∇ℒ ( , ;  ℳ , )  

 Update   and   using a SGD optimizer 

end 

 

 The stochastic optimization procedure in the AEVB algorithm is two-fold since the 

noise is introduced by the random choice of a mini-batch ℳ and by the sampling step ( )p  . 

Given a dataset  ( )

1

Nn

n
X x


  composed by N  independent and identically distributed 

examples, the global evidence lower bound objective is the sum of the evidence lower bounds 

of all individual data points 
( )nx  within X . 

Choice of prior and conditional distributions 

 The prior ( )p z  over the latent variables should be a simple distribution from which 

one can easily sample, therefore it is usually chosen to be a centered isotropic multivariate 

Gaussian distribution. With this choice, it will be independent of the   parameters: 

( ) ( ) ( ; 0, )p z p z N z I   . The intractable true posterior 
(i)

( )p z x  is supposed to take on an 

approximate Gaussian form with approximately diagonal covariance. In this case, the 

approximate posterior 
(i)

( )q z x  can be chosen to be a multivariate Gaussian distribution with a 

diagonal covariance 
2( ; , )N z I   , with parameters  and   calculated as functions of a 
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datapoint 
( )ix  depending on the variational parameters . The reparameterization of z in this 

case is simply z       , where (0, )N I .  

 With these choices of distributions, the KL-divergence term of ELBO in Equation 2-31 

takes a closed form, and its gradients can be easily calculated, only the gradients of the other 

term have to be estimated:  

2 2 2 2

1

1
( ( ; , ) ( ; 0, )) [1 log(( ) ) ( ) ( ) ]

2

J

KL j j j
j

D N z I N z I        


    . 

In the above equation J  notes the dimensionality of the latent space.  

 The ( )p xz  noise model is usually also fixed to be a multivariate Gaussian distribution 
2( ; , )N z I    (or Bernoulli in case of binary input data), whose parameters   and   are 

computed as a function of a single
( )iz  and depend on .  

 With the choice of Gaussian distribution as noise model, usually the   variance is 

fixed to be 1, resulting that the approximation of the expectation term of ELBO in Equation 5 

can be written as: 
( )

2
1

log2
2

ix     , and its gradients can be calculated easily.  

Bringing in neural networks 

 Up to this point, it was not necessary to concretize the exact form of ( )p xz  and ( )q z x , 

the generative and the inference model. It would be desirable to model ( )p xz  with a 

parameterized distribution flexible enough to capture the true data distribution, and to 

approximate ( )p zx  with ( )q z x  well enough. Arbitrary differentiable functions could model 

conditional probability distributions. From the mathematical theory of artificial neural 

networks, it is known that neural networks with suitable activation functions are universal 

approximators, they can approximate any continuous function to any desired precision [68]. 

This offers a good choice for parametrizing the two conditional distributions with neural 

networks, allowing for probabilistic reasoning about autoencoder-based generative models.  
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 The resulting VAE can be viewed as a traditional autoencoder with an additional 

specific regularization term. In the VAE setup, the inference model ( )q z x  takes the role of an 

encoder responsible for stochastically mapping the input data points to latent representations, 

and similarly, the generative model ( )p xz  acts as a probabilistic decoder.  

 The encoder and decoder are jointly trained to maximize the log-likelihood of each 

training data point through the minimization of the VAE objective function:  

( )
( ) ( )

( )
1

( , ; ) [log ( )] ( ( ) ( ))i

N
i i

K Lz q z x
i

X p x z D q z x p z


   


   
  

   

 In the individual-datapoint ELBO, Equation 2-31, the first term is the distortion term 

quantifying the reconstruction error of observation, the objective minimized by autoencoders, 

while the second KL-divergence is the rate term that measures the additional number of extra 

bits required to encode a sample from the true posterior using a code optimized for encoding 

samples from the variational approximation of the prior [69]. The KL-divergence term can be 

interpreted as a regularizer that is minimized when ( ) ( )q z x p z   for all x. This perspective 

has been used to explain the tendency of VAE to discard the majority of dimensions in latent 

z leading to the posterior collapse problem discussed in the next subsection along with other 

drawbacks and advantages of this model. 

Advantages and Disadvantages of Variational Autoencoders  

 The main advantages of VAEs rely on algorithms for unsupervised learning. 

Unsupervised learning is the natural procedure that cognitive mammals, i.e., human beings, 

use for learning, which makes it an interesting alternative for machine learning and artificial 

intelligence. This consists of the network discovering the data features on its own and using 

those features to classify the data later. In this way, there is no need to define an input and 

output dataset beforehand, like in supervised learning. 
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           It was also mentioned that VAEs have simple structures, which is an advantage 

compared to Generative Adversarial Networks. In this way, they are easier to train, joint with 

the fact that VAEs have a clear objective function to optimize (log-likelihood).  

           Another advantage that variational autoencoders present against GANs is that the 

quality of their models can be evaluated by means of the log-likelihood (explained in the 

following sections). At the same time, GANs cannot be compared except by visualizing the 

samples.  

           However, VAEs present a drawback in terms of reconstruction since the generated 

images are blurred when compared to the ones generated by GANS. This blurred is caused by 

the imperfect reconstruction achieved by variational autoencoders. 

2.6 Moving Average 

2.6.1 Exponentially Weighted Moving Average 

 The Exponentially Weighted Moving Average (EWMA) is a quantitative or statistical 

measure used to model or describe a time series. The EWMA is widely used in finance, the 

main applications being technical analysis and volatility modeling. 

 The moving average is designed such that older observations are given lower weights. 

The weights fall exponentially as the data point gets older; hence the name is exponentially 

weighted. 

 The only decision a user of the EWMA must make is the parameter alpha. The 

parameter decides how important the current observation is in calculating the EWMA. The 

higher the alpha value, the more closely the EWMA tracks the original time series. The 

EWMA’s simple mathematical formulation is described below: 

1EWMA (1 ) EWMAt t tx         (2-33) 

where EWMA t
 is moving average at time t ,   is a degree of mixing parameter value between 

0 and 1, and 
tx  is the value of the series in the current period.   
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This formula states the value of moving average at time t . Here is a parameter that 

shows the rate at which the older data will come into calculation.  

If  =1, that means only the most recent data has been used to measure EWMA. If   

is nearing 0, that means more weightage is given to older data, and if   is near 1, that means 

newer data has been given more weightage. 

2.6.2 Linearly Weighted Moving Average 

 Linearly Weighted Moving Average (LWMA), also referred to as a weighted moving 

average, LWMA is a simple moving average that places more weight on recent data. The most 

recent observation has the biggest weight and each one prior to it has a progressively decreasing 

weight. 

-1 - 1( * ) ( *( -1)) ... ( *(1))
LWMA

( 1) / 2
t t t n

t

x n x n x

n n
  




   (2-34) 

where LWMA t
 is the value of the current period at time t , n  is the number of periods, and 

tx  

is the value of the series in the current period.   

2.7 Attention Mechanism 

 The idea of integrating attention in neural network models is partially inspired by the 

human attention system that has the ability to select stimuli during the early stages of 

processing based on elementary stimulus features [70]. An interesting example is the human 

visual system that can selectively focus its attention on parts of the visual space in order to 

acquire information when and where it is required and build its own representation of the scene.  

 Sequence to Sequence models have their weakness in tackling long sequences (e.g., 

long time series), mainly because the intermediate fixed-length vector representation does not 

have enough capacity to capture information from the entire input sequence, x. In other words, 

longer sequences need to be encoded into the same fixed-length vector representation or 

context vector.  
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 Rooted in the mechanism behind the human attention system, Attention Mechanisms 

(AM) were proposed to overcome this limitation by allowing the decoder to attend to relevant 

encoded hidden states selectively.  

 Several attention models have been proposed in the past few years [71, 72], and, in 

general, they operate as follows. At each timestep t, during decoding, the attention model 

computes a context vector obtained by a weighted sum of the encoder’s hidden states.  

 Even though attention was developed mainly in the framework of Natural Language 

Processing (NLP) tasks involving text data, it can be applied to other problems dealing with 

other types of data, such as time series and videos. Attention mechanisms have shown an 

impressive success in a variety of applications such as machine translation [71], image 

classification [73], speech recognition [74], pose estimation [75], sentence summarization [76] 

and image captioning [77]. In fact, attention is a natural extension of approaches based on 

Seq2Seq models for any kind of sequential data. 

2.8 Evaluation metrics 

There are different methods and metrics that can be of use when evaluating the 

performance of a classifier. In unsupervised learning, the evaluation is heavily dependent on 

the problem at hand and is often a complicated task. An anomaly threshold can be set as a 

decision boundary in anomaly detection so that the algorithm can be evaluated as a regular 

classifier. The classification performance can then be measured for different threshold values 

to see various classifier performance attributes as the threshold increases or decreases. 

The confusion matrix is commonly used to show how each test value predicts classes 

compared to their actual classes. It is a table with four different combinations of detected and 

actual values: True Positive or TP, False Positive or FP, True Negative or TN, and False Negative 

or FN. In this way, we can assign the anomalies as positive and the normal as negative in the 

anomaly detection task. The definitions of TP, FP, TN, and FN are described as follows:  

True Positives (TP): The cases are abnormal and detected as anomalies. 
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True Negatives (TN): The cases are normal and detected as normal. 

False Positives (FP): The cases are normal but detected as anomalies. 

False Negatives (FN): The cases are abnormal but detected as normal.  

Fig. 2-16  A confusion matrix 

Furthermore, to evaluate the anomaly detection model, a few evaluation metrics can help 

calculate anomaly detection based on the confusion matrix: precision, recall, F1-score, True 

Positive Rate (TPR), and False Positive Rate (FPR).  

Precision is the ratio of correctly detected anomalies to all detected anomalies. 

Mathematically this is defined by the equation below. 

Precision
TP

TP FP



     (2-35) 

The recall is the ratio of correctly detected anomalies to all anomalies.  

Recall
TP

TP FN



     (2-36) 
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F1-score combines recall and precision into one performance metric. F1-score is the 

weighted average of precision and recall. Therefore, this score takes both false positives and false 

negatives into account. F1-score is very useful, especially in imbalanced data. 

Precision×Recall
F1 Score 2

Precision +Recall
       (2-37) 

TPR is the same as recall.  

        TPR Recall Sensitivity
TP

TP FN
  


   (2-38) 

FPR shows the proportion of wrongly judged anomalies in all normal samples. The 

formulas of these metrics are shown below.  

FPR 1-Specificity
FP

FP TN
 


    (2-39) 

A receiver operating characteristic (ROC) curve is a plot that illustrates the performance 

of a classification model for all threshold settings. FPR represents the x-axis, and TPR 

represents the y-axis. As the threshold is altered in both directions, the FPR and TPR will range 

between zero and one. As the ROC curve has been constructed, the area under the ROC curve 

(AUROC) can be measured. In cases where the real function is unknown, and the integral can 

not be directly calculated, approximation methods such as the trapezoidal rule can be used. The 

formal definition of the trapezoidal rule can be seen in Equation 2-37. An AUROC of 0.0 

reflects the model predicting the wrong output at all times, an AUROC of 0.5 means the model 

has not learned anything useful, and an AUROC of 1.0 means the model is optimal at all 

threshold values.  

1
1

1

( ) ( )
( ) ( )

2

Nb
k k

k ka
k

f x f x
f x dx x x





      (2-40)  
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where: f  = approximated function  

x  = data points 

2.9 Deep learning anomaly detection methods (DNN) 

DNN-based methods are a sub-category of machine learning-based approaches, which 

rely on deep neural networks. Given the explosion of DNN-based methods over the last years, 

they are presented as a separate category.  

Auto-Encoder (AE) [32] is an artificial neural network combining an encoder and a 

decoder. The encoder part takes the input window and maps it into a set of latent variables z, 

whereas the decoder maps the latent variables z back into the input space as a reconstruction. 

The difference between the original input vector and the reconstruction is called the 

reconstruction error. Thus, the training objective aims to minimize this error. Auto-encoder-

based anomaly detection uses the reconstruction error as the anomaly score. Time windows 

with a high score are considered to be anomalies.  

Generative Adversarial Networks (GANs) [66] have the ability to know whether an 

input sample is normal or not. A GAN is an unsupervised artificial neural network based on a 

two-player minimax adversarial game between two networks, which are trained simultaneously. 

One network, the generator (G), aims to generate real data, whereas the second one acts as a 

discriminator (D) trying to discriminate real data from that one generated by G. The training 

objective of G is to maximize the probability of D making a mistake, whereas the training 

objective D is to minimize its classification error. Similarly to AE-based, GAN-based anomaly 

detection uses normal data for training. After training, the discriminator is used as an anomaly 

detector. If the input data is different from the learned data distribution, the discriminator 

considers it as coming from the generator and classifies it as fake, i.e., as an anomaly.  

The Long Short-Term Memory Variational Auto-Encoders (LSTM-VAE) [38] 

combines the LSTM [62] which is a recurrent neural network architecture with a variational 

auto-encoder (VAE) by replacing the feed-forward network in a VAE with a long short-term 
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memory (LSTM). The LSTM-VAE models the time dependence of time series through LSTM 

networks. During encoding, the LSTM-VAE projects the input data and its time dependencies 

into a latent space. It uses the latent space representation to estimate the output distribution 

during decoding. Finally, the LSTM-VAE detects an anomaly when the log-likelihood of the 

current data is below a threshold. S. Lin et al. [78] show that the LSTM-VAE is capable of 

identifying anomalies that span over multiple time scales.  

The Deep Autoencoding Gaussian Mixture Model (DAGMM) [31] jointly considers 

a Deep Auto-encoder and a Gaussian Mixture Model (GMM) to model the density distribution 

of multidimensional data. The Deep Autoencoder aims to generate a low-dimensional 

representation and a reconstruction error for each input data time window. This representation 

is used as input of a Gaussian Mixture Model (GMM). The parameters of the Deep Auto-

encoder and the mixture model are optimized simultaneously from end to end, taking advantage 

of a separate estimation network to facilitate the learning-based of the parameters of the mixture 

model. The DAGMM then uses the likelihood to observe the input samples as an anomaly score.  

The Multivariate Anomaly Detection with Generative Adversarial Networks 

(MAD-GAN) [37] is based on a Generative adversarial network (GAN) [66] architecture 

composed of LSTMs. MAD-GAN uses an anomaly score called DR-score to detect anomalies. 

This score is composed of the discrimination between real data and fake data of the 

discriminator and the reconstruction error of the generator. Indeed, because of the smooth 

transitions of the latent space, the generator produces similar samples if the entries in the latent 

space are identical. Thus, we can use the residuals between the test data and their transformation 

by the generator to identify anomalies in the test data.  

The Multivariate Time Series Anomaly Detection Using the combination of 

Temporal pattern and Feature pattern (MTAD-TF) [42] can be split into two main parts. 

The first part is called Temporal convolution component. It is based on a multiscale 1D 

convolution that allows to detect of temporal patterns. The second part is called Graph attention 

component. It allows one to learn the correlation between features and is based on a graph 
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attention network [79]. The combination of these two parts provides a prediction. The anomaly 

score is the squared error between the predicted and actual values. 

Finally, OmniAnomaly (OA) [36] is a stochastic recurrent neural network for 

multivariate time series anomaly detection that learns robust multivariate time series 

representations with a stochastic variable connection and a planar normalizing flow that uses 

the reconstruction probabilities to determine anomalies. OmniAnomaly uses the Gated 

Recurrent Unit (GRU) to model the time dependencies of multivariate time series. The method 

also uses a VAE to learn a mapping of the input data W to a representation in a latent space. To 

model time dependencies in the latent space, OmniAnomaly uses a stochastic variable 

connection technique. As suggested by [33], conditional probability can evaluate the 

reconstruction. The anomaly score used is then the probability of reconstruction. A high score 

means that the input can be well reconstructed. If an observation follows normal time series 

patterns, it can be reconstructed with high confidence. On the other hand, the lower the score, 

the less well the observation can be reconstructed and the more likely it is to be anomalous. 

2.10 Related Work 

Anomaly detection is challenging, and many approaches have been taken in various 

applications. In past years, many classical unsupervised approaches have been developed [80-

85], including Principal Component Analysis (PCA) [86], which finds a low-dimensional 

projection that captures most of the variance in the data. The anomaly score is the reconstruction 

error of this projection. It is a linear algebra technique that can automatically achieve dimension 

reduction. Lee et al. [87] proposed online over-sampling PCA, which makes use of online 

platforms for large-scale problems. By over-sampling the minority class of the target instance, 

their proposed algorithm allows them to determine the anomaly of the target instance.  

One of the latest techniques for dimensionality reduction is Autoencoder [88], which is a 

popular approach for anomaly detection. Autoencoders consists of an encoder and decoder, 

which reconstruct data samples and use the reconstruction error as the anomaly score [89]. Zhou 
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et al. [90] proposed a deep autoencoder that combines robust PCA and deep autoencoders. It 

splits data into two parts: one part can be reconstructed by autoencoders; the other is the noise 

(outliers) in the data. Deep Autoencoding Gaussian Mixture Model (DAGMM) [31] jointly 

considers the Deep Autoencoder and Gaussian mixture Model to model the density distribution 

of multi-dimensional data. 

Recently, Generative Adversarial Networks (GANs) [66] and LSTM-based approaches 

[62] have also shown promising performance for multivariate anomaly detection [91,92]. 

Multivariate Anomaly Detection for Time Series Data with Generative Adversarial Networks 

(MAD-GAN) [37] proposed an unsupervised anomaly detection method based on generative 

adversarial networks (GAN) by considering complex dependencies among different time series 

variables. The LSTM-based Encoder-Decoder [27] models time series temporal dependency by 

means of LSTM networks and achieves better generalization capability than traditional methods. 

OmniAnomaly [36] is a stochastic recurrent neural network designed to avoid potential 

misguiding by uncertain instances, which uses stochastic variable connection and normalizing 

flow to get reconstruction probabilities to determine anomalies. Ryota et al. [93] introduced a 

convolutional neural network and environment-dependent anomaly detector to detect the object, 

its attributes, and actions in the image. An environment-specific model can identify unusual 

attributes likely to explain abnormal patterns. Hu et al. [94] proposed a time series anomaly 

detection technique using six meta-features. This technique is a One-class Support Vector 

Machine (OC-SVM) system designed to identify the abnormal states of a univariate or 

multivariate time series based on local dynamics. Recently, a novel computational approach, 

namely Local Recurrence Rate based Discord Search (LRRDS), was proposed to identify 

discords from multivariate time series. This approach reduces the dimensionality of a time series 

and can detect variable-length discords using the given time series as the normality reference 

[95]. 

U-Net [96] shares some of the design characteristics of the system architecture described 

in this paper. It is a fully convolutional neural network incorporating so-called skip channels 
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between encoding and decoding layers. This approach allows for integrating high and low level 

features in a way that prevents information loss and reduces the depth of sequential layers. 

However, U-net is limited in that the learning rate may be diminished in the middle layers of a 

high depth case. This means the system is at risk of ignoring layers with abstract features, thus 

limiting extraction of some of the complex features that could help image segmentation in 

medical images. Moreover, U-Net requires rather substantial training time because of a large 

number of hyper-parameters. By contrast, our system uses a more effective method consisting of 

the multi-scale MSCVAE model that has an attention-based ConvLSTM network. This method 

allows for capturing interesting features and key patterns to assist with anomaly detection in 

multivariate time series data. 

Some Variational Autoencoders (VAEs) [63, 97-100] have taken a probabilistic 

approach, and autoencoders have been combined with Gaussian mixture modeling [101]. Bayer 

and Osendorfer [102] used Variational Inference to learn the underlying distribution of 

sequences and introduced recurrent stochastic networks. The core of these models is an RNN 

extended with a latent variable. Sölch et al. [103] used a Stochastic Recurrent Network 

(STORN) to detect robot anomalies using unimodal signals. Park et al. [38] presented the 

combination of LSTM-VAE using multimodal sensory signals, where LSTM is used to replace 

the feed-forward network in VAE. Pereira et al. [104] proposed applying a self-attention 

mechanism to VAE to improve the encoding-decoding process for energy data. Despite the 

intrinsic unsupervised setting, most of them may still be unable to detect anomalies effectively 

since most of the methods cannot capture temporal dependencies across different time steps in 

multivariate time series data. 

 

2.11 Summary 

In this chapter, the fundamental theories: Time series, Anomaly Detection, Variational 

Autoencoder, Long Short Term Memory, Attention mechanism, Moving Average, and 

evaluation metrics, as described above, will be used to create and develop the anomaly detection 
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framework for multivariate time series data. The methodology of using mentioned theories will 

be discussed in Chapter 3.  
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Chapter 3 

Methodology 

This chapter presents a Multi-scale convolutional variational autoencoder (MSCVAE) 

to detect anomalies in multivariate time series data. We first show how to generate multi-scale 

system attribute matrices. Then, All the components/layers of the proposed model are described 

in detail in this part. 

3.1 Problem Statement 

In this work, we focus on multivariate time series, given the historical data of n  time 

series 1 2( , , ..., ) ,T n T
nX x x x    of length ,T  and assume that there are anomalies in the 

data. We aim to detect anomalous events at certain time steps after T . We use only the normal 

dataset for training to characterize the various time series patterns under normal conditions. 

For the validation, we also use only the normal dataset. Both normal and abnormal data are 

used for testing. 

Fig. 3-1  Architecture of the MSCVAE framework 
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Table 3.1 Terminology and notation used in this thesis 

Notations Descriptions 

X  Multivariate time series dataset 

T  Length of time series 
n  Dimension of time series 
w  Size of sliding window 

t  Time step 
tM  Attribute matrix 

( )p z  Prior distribution 

( )p z x  Probabilistic encoder 

(x )p z  Probabilistic decoder 
,0tP  Input of the first layer of the encoder 

(0, )N I  A multivariate unit Gaussian distribution 

z  Latent variable 

  Convolutional operation 

 Hadamard product 

  Deconvolutional operation 

  Concatenation operation 

( )f   Activation function unit 
,0ˆ tP  Output, reconstruction at t  time step 

,t li , ,t lf , ,t lo  3D tensor 
,t lG  Candidate memory 
,t lC  Cell state 
,t lH  Current hidden state 

 

3.2 Methodology 

3.2.1 Standardization 

Data scaling is a recommended pre-processing step when working with many machine 

learning algorithms. Machine learning models learn a mapping from input variables to an 

output variable. The scale and distribution of the data drawn from the domain may be different 

for each variable. Input variables may have different units (e.g., feet, kilometers, and hours) 

that, in turn, may mean the variables have different scales.  
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In this thesis, we used standardization in which we scaled the data in order to have zero 

mean and unit variance. This can be thought of as subtracting the mean value or centering the 

data as shown in Eq. 3-1. 

ixx





      (3-1) 

where: ix  = sample point 

  = mean of the training samples  

  = standard deviation of the training samples 

3.2.2 Generate Attribute Matrices 

Given the importance of correlations between the different pairs of time series for 

characterizing the system state [105], we generate an n n  attribute matrix 
tM  utilizing the pair-

wise inner product of multivariate time series within this segment. This is designed to illustrate 

the inter-correlations between different pairs of time series in a multivariate time series segment 

from time t w  to t . We adopt the method for calculating the attribute matrix proposed in [39] 

to capture the similarity of shape and value scale correlations between two time series. Examples 

of attribute matrices are shown in Figure 3-1, part A. The pseudocode of the algorithm for 

generating the attribute matrix is introduced in Algorithm 1. For multivariate time series segment 

,wX  we define two time series, namely,  1, , ..., ,t w t w t
i i i ix x x x    1, , ..., ,t w t w t

j j j jx x x x    and 

their correlation t t
ijm M  can be computed as follows: 

0

w t t
i jt

ij

x x
m

k

 


 



    (3-2) 

where w  is the length of sliding window, and k  is a coefficient that is experiencedly set as w , 

which means the calculation of Eq. 3-2. Also, the interval between two segments is set to 10. To 

characterize latent features of multivariate time series in multi scales, we construct three channel 

attribute matrices with different length sliding windows (w  =10, 20, 30) at each time step. To 
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further explain the attribute matrices generation process, the algorithm’s pseudocode is shown in 

Table 3.2. An example of attribute matrices is shown in Figure. 3-2. 
 

Table 3.2 Generating attribute matrices 

 

Fig. 3-2  The example of attribute matrices 

3.2.3 Convolutional Encoder 

We use convolution encoders [106] to filter the noise in the data and encode the spatial 

form of the system attribute matrices M. Four convolutional encoder layers are applied in our 

Algorithm 1  Generating attribute matrices 
Input:  
 X : Multivariate time series 
 T : Length of time series 
 w : Length of sliding window 
 n: Dimension of time series 
Output: 
 m: Attribute matrix 
1: for i in T  do 
2:       for j in T  do 
3:            [ 1], [ 2], . . . , [ ]iX x t w x t w x t      

4:            [ 1], [ 2], . . . , [ ]jX x t w x t w x t      

5:            [ ][ ] i jX X
m i j

w


  

6: return M  
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model to extract the values of the attribute matrices in our framework. We call the input of the 

first layer 
,0tP  at this time t  for convenience. 

,0tP  represents the input of the first layer and 

assumes that 1 1 1, 1 l l ln n dt lP       denotes the feature maps in ( 1) thl    layer. The output of 

thl   layer is given by:  

       , , 1( )t l l t l l
e eP f W P b       (3-3) 

where   denotes the convolutional operation, l
eW  is the filter kernel of layer l , l

eb  is a term of 

bias, 
,t lP  is the output of layer l , 

, 1t lP 
 is the output of the 1l   layer (input of layer l ), and 

( )f   is an activation function. Figure 3-1. part B illustrates the detailed encoding process of 

attribute matrices. 

3.2.4 Variational Layer 

The prior distribution over the latent variables, ( )p z , is defined as an Isotropic 

Gaussian distribution, i.e. ( ) Normal (0, I )p z  . The variational parameters of the 

approximate posterior ( )q z x , the mean z  and the standard deviation z , are derived from 

the final encoder hidden state, Conv4, using two fully connected layers with Linear and Leaky 

Relu activations, respectively. Since 
,( )t lp P x  and ( )q z x  both have Normal distributions, 

the approximate posterior given a distribution around x , denoted ( )q z x , can be represented 

as a mixture of Gaussians. However, for computational convenience and following the 

approach of Park et al. [38] a single Gaussian is employed, i.e. 
,( ) ( )t lq z x q z P  . The 

latent variables are then obtained by sampling from the approximate posterior, 

2( , I)z zz N   , using the parametrization trick, 

z zz           (3-4) 

where (0, )N I   is an auxiliary noise variable and   represents an element-wise product. 
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3.2.5 Attention-based ConvLSTM 

The spatial feature maps are extracted by the convolutional encoder, depending on the 

previous time steps. The traditional Convolutional LSTM performance might degrade as the 

length of the sequence increases. Xingjian et al. [107] introduced the LSTM model to the 

ConvLSTM to capture the temporal information in a video sequence. Here we have used an 

attention-based ConvLSTM to obtain the temporal characteristics which can be adaptive with 

different time steps. ConvLSTM consists of four convolutional layers of four ConvLSTM blocks. 

Details of ConvLSTM are shown in Figure 3-1. part B At time t ,  the results of 
,t lP  calculated 

by Eq. 3-3. in layer l  of the convolutional encoder are used as input to the thl   layer of 

ConvLSTM. The other input is the time 1t   hidden state 
1,t lH 

 in hidden layer l . The 

ConvLSTM cell is formulated as follow:  
 

, , 1, 1,( )t l l t l l t l l t l l
pi hi ci ii W P W H W C b         

, , 1, 1,( )t l l t l l t l l t l l
pf hf cf ff W P W H W C b         

, , 1, 1,( )t l l t l l t l l t l l
po ho co oo W P W H W C b         

, , 1,tanh ( )t l l t l l t l l
pc hc cG W P W H b      

, , 1, , ,t l t l t l t l t lC f C i G    

, , ,tanh (C )t l t l t lH o      (3-5) 

where   is the sigmoid function, l
piW  is the filter kernel of the input gate, l

ciW  is the filter kernel 

of the input gate process for the input of the hidden layer at the previous time step, and l
hiW  is the 

filter kernel of the cell state at the previous time step in the input gate. The input 
,t lP , the cell 

state ,t lC , the hidden state 
,t lH , the candidate memory ,t lG , and the gates ,t li , ,t lf , ,t lo  are 

all 3D tensors. The symbol “  ” denotes the convolutional operator, and “ ” denotes the 

Hadamard product. Figure 3-1. part B illustrates the temporal modeling procedure. 
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We follow the idea of the temporal attention mechanism mentioned in [17], which is 

given by: 

, ,

( , )

ˆ it l i l

i t h t

H H
 

       (3-6) 

( , )

exp( )

exp( )

t
i

t

i t h t

s

s


 




    (3-7) 

, ,( ) ( )t l T i l
t H H
s

X
      (3-8) 

where   is the rescale factor (   = 5). That is, we take the last hidden state ,t lH  as the group 

level context vector and measure the importance weights i  of previous steps through a softmax 

function. 

3.2.6 Convolutional Decoder 

We can reconstruct the input data using the extracted attribute output produced by the 

decoder. For the convolutional decoder, we follow the procedure discussed in [39], which is 

formulated as follows: 

, , ,
, 1

, , , ,

ˆˆ ˆ( ), 4ˆ
ˆˆ ˆ ˆ( [ ] ), 3, 2, 1

t l t l t l
d dt l

t l t l t l t l
d d

f W H b l
P

f W H P b l





   
 




         (3-9) 

where   denotes the deconvolutional operation,   is the concatenation operation, ( )f   is the 

activation function unit (same as in the encoder). ,ˆ t l
dW  and ,ˆ t l

db  are the filter kernel and bias 

parameter, respectively, of the thl   deconvolutional layer. We reconstruct the attribute matrix 

of each layer by reversely decoding the deconvolution from layer l  = 4 to layer l  = 1. We then 

deconvolve the result ,4to  of the ConvLSTM at the last layer l  = 4 and reconstruct the previous 

layer matrix ,3ˆ tP . After that, the deconvolution operation is performed as a concatenation to 

reconstruct the attribute matrix sequence of the 1 thl    layer. The final output 
,0ˆ t n n sP    
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(with the same size as the input matrices) denotes the representations of reconstructed attribute 

matrices.  

3.2.7 Weighted Mechanisms 

The weighted mechanism aims to give different weights to temporal samples in each 

sliding window, and newer samples get higher weights, which means newer samples will be paid 

more attention. In contrast, the weights of older samples are lower, eliminating false alarms of 

the new sample under the excessive influence of historical samples. Linearly weighted moving 

average and exponentially weighted moving average are adopted to verify the effectiveness of 

the proposed weighted mechanism. 

, , ,
1 1

ˆ ˆ ˆ( * ) ( *( -1)) ... ( *(1))
LWMA

( 1) / 2

t l t l t l
t t t n

t

P n P n P

n n
    




   (3-10) 

where LWMA t  is the value of the current period at time t , n  is the number of periods, and ,ˆ t l
tP  

is the value of the series in the current period. 

,
1

ˆEWMA (1 ) EWMAt l
t tP          (3-11) 

where EWMA t  is moving average at time t ,   is a degree of mixing parameter value between 

0 and 1, and ,ˆ t lP  is the value of the series in the current period. The coefficient   is set by 

experience. According to exponential weighting in Equation 3-11, coefficient   is set as 0.15.   

3.2.8 Activation Function 

Activation functions are mathematical equations used in neural networks for 

transforming the weighted sum of inputs from a node to its output. Activation functions can be 

either linear or non-linear. In this thesis, we use four activation functions defined as follows. 
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3.2.8.1 Linear 

The linear activation function, also known as “no activation” or “identity function” 

(multiplied x1.0), is where the activation is proportional to the input. 

The function does not do anything to the weighted sum of the input. It simply spits out 

the value it was given. 

( )f x x      (3-12) 

The limitations of the Linear function are as follow: 

 It is impossible to use backpropagation as the derivative of the function is a constant 

and has no relation to the input x . 

 All layers of the neural network will collapse into one if a linear activation function is 

used. No matter the number of layers in the neural network, the last layer will still be a 

linear function of the first layer. Thus, essentially, a linear activation function turns the 

neural network into just one layer. 

Figure 3-3 Activation Functions. Linear is used for deriving the expectation of the latent 

variables and the outputs; Sigmoid and Softmax are used internally in the attention based 

ConvLSTM; Leaky ReLu is used in the variance/diversity layers. 
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3.2.8.2 Leaky ReLu 

Leaky ReLu is a recently developed activation function. It is designed to minimize 

sensitivity to the dying ReLU problem by having a small negative slope (in the neighborhood of  

0.01), which is defined by: 

( ) max(0.01 , )f x x x     (3-13) 

The advantages of using Leaky ReLU as an activation function are as follows: 

 Leaky ReLU is defined to address the problem of dying neurons/dead neurons. 

 The problem of dying neuron/dead neuron is addressed by introducing a small slope 

having the negative values scaled by a enables their corresponding neurons to “stay 

alive”. 

 The function and its derivative are both monotonic. 

 It allows negative value during backpropagation. 

 It is efficient and easy for computation. 

 Derivative of Leaky is 1 when ( ) 0f x   and ranges between 0 and 1 when ( ) 0f x   

The limitations of the Leaky ReLu function are as follows: 

 Leaky ReLU does not provide consistent predictions for negative input values 

3.2.8.3 Sigmoid 

This function takes any real value as input and outputs values in the range of 0 to 1. The 

larger the input (more positive), the closer the output value will be to 1.0, whereas the smaller 

the input (more negative), the closer the output will be to 0.0, as shown below. 

1
( )

1 x
f x

e



     (3-14) 

The advantages of using Sigmoid as an activation function are as follows: 

 It is commonly used for models where we have to predict the probability as an output. 

Since the probability of anything exists only between the range of 0 and 1, sigmoid is 

the right choice because of its range. 
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 The function is differentiable and provides a smooth gradient, i.e., preventing jumps in 

output values. This is represented by an S-shape of the sigmoid activation function. 

The limitations of the Sigmoid function are as follows: 

 Derivative of sigmoid function suffers “Vanishing gradient and Exploding gradient 

problem” 

 Sigmoid function is not “zero-centric” This makes the gradient updates go too far in 

different directions. 0 < output < 1, and it makes optimization harder 

 Slow convergence as its computationally heavy 

3.2.8.4 Softmax 

Softmax function is often described as a combination of multiple sigmoids. We know 

that sigmoid returns values between 0 and 1, which can be treated as probabilities of a data 

point belonging to a particular class. Thus, sigmoid is widely used for binary classification 

problems. 

The Softmax function can be used for multiclass classification problems. This function 

returns the probability for a data point belonging to each individual class. 

( )
i

j

x

i x

j

e
f x

e



     (3-15) 

3.2.9 Loss Function 

The loss for a particular sequence X  is given by: 

( )
( ) ( ) ( )

( )
( , ; ) [log( ( )] ( ( ) ( ))n

n n n
KLz q z x

x p x z D q z x p z


     
     (3-16) 

Mean Square Error (MSE) is used as a reconstruction loss to optimize the parameter 

values in our model. MSE is given by the following: 
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2
,0 ,0

1 1

ˆ
k k

t t

t
MSCVAE

c

P PL
 

      (3-17) 

where ,0t n nP   . We employ the mini-batch stochastic gradient descent method and the 

Adam optimizer to minimize the above loss. After sufficient training epochs, the learned neural 

network parameters are utilized to infer the reconstructed attribute matrices of validation and 

test data. Finally, we perform anomaly detection and diagnosis based on the residual attribute 

matrices, elaborated in the next section. 

3.2.10 Threshold Setting Strategy 

VAEs map each group of attribute matrices to anomaly scores during the anomaly 

detection process. The threshold setting aims to give the best boundary to distinguish normal and 

abnormal samples, and then detected samples are labeled normal or abnormal by means of VAEs.  

In a Receiver Operating Characteristic (ROC) curve [108], the true positive rate (TPR) is 

plotted in function of the false positive rate (FPR) for different cut-off points. Each point on the 

ROC curve indicates a pair of sensitivity and specificity corresponding to a specific decision 

threshold. Based on the ROC-based threshold setting strategy, the best threshold is always sought 

as the dot on the upper left corner or point (0,1). However, the ROC-based threshold setting 

strategy is insensitive to imbalanced datasets, leading to poor performance in anomaly detection. 

According to the false positive rate formula FPR
FP

FP TN



, when a large number of normal 

samples are wrongly judged as anomalies, FPR changes a little. Therefore, anomaly detection 

performance may be widely divergent for two threshold values that are close together. In this 

case, selecting an optimal threshold among different discrete points is not easy. Moreover, Eq. 

3-12 is often adopted to calculate the distance between a point on the ROC curve and the point 

(0,1). The threshold corresponding to the minimum distance is selected as the best threshold. 
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However, TN is much larger than TP, which makes 
2

2 2

FP

FP TN
 much smaller than 

2

2 2

FN

FN TP
. 

Therefore, when choosing the minimum distance, the ROC-based strategy focuses more on the 

former, only choosing the smaller FN as much as possible. Eventually, it leads to a low F1-Score. 

         2 2Distance (1 )TPR FPR       (3-18) 

          
2 2

2 2 2 2

FN FP

FN TP FP TN
 

 
    (3-19) 

We adopt a threshold setting strategy using a confusion matrix to avoid the 

abovementioned problems. The confusion matrix can effectively reflect the anomaly detection 

results, even for an imbalanced dataset. Therefore, we introduce a new error rate (ERR) defined 

as a function of TP, FP, FN, and TN, as shown in the formula below. The aim of the new threshold 

setting strategy is to minimize ERR, which means fewer samples are misjudged. As a result, the 

optimal threshold can be selected according to the minimum ERR. 

ERR
FP

FP TP TN


 
           (3-20) 

As indicated above, Precision, Recall, F1-Score, and ERR are utilized as evaluation 

metrics for anomaly detection. Moreover, the geometric mean or G-mean [109] of sensitivity and 

specificity, is suitable for evaluating the quality of binary (two-class) classifications for a 

balanced as well as imbalanced dataset problem. Therefore, G-mean is used as another  

evaluation metric in the following experiments. 

    G-mean Recall *Specificity  

                           
TP TN

TP FN TN FP
 

 
          (3-21) 
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3.3 Summary 

In this chapter, the MSCVAE proposed framework based on Variational Autoencoder 

is described. We explain how to generate the attribute matrices and show the example of 

attribute matrices of both normal and abnormal. Then, we encode the spatial information in 

feature matrices via a convolutional encoder and model the temporal pattern with attention 

based ConvLSTM. Finally, we reconstruct attribute matrices based on a convolutional decoder. 

We introduce in detail the strategy of threshold setting. 
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Chapter 4 

Experiments and Discussion 

This chapter presents the results of the thesis. The chapter begins with an explanation 

of the datasets used in this thesis. Afterward, the experimental setup and anomaly detection 

results are presented. This is followed by results from the ablation study, robustness evaluation, 

and threshold setting strategy comparison. 

4.1 Datasets description 

Four publicly available benchmark datasets were used in the experiments, namely, 

Satellite, Wafer (UCR), EEG, and Opt. Descriptions of these data sets are given below, and the 

details of the experiments are listed in Table 4.1. 

Table 4.1  The detailed information of time series data sets 

Datasets #Training #Validation #Testing Length Anomaly rate 

Satellite 3,000 1,000 2,435 36 31.6 % 
Wafer 4,000 1,014 2,150 152 10.6 % 
EEG 8,000 2,030 4,950 14 44.9 % 
Opt 2,500 970 1,746 64 2.9 % 

 

Satellite: This dataset was generated from data purchased from NASA by the 

Australian Centre for Remote Sensing. It consists of the multi-spectral values of pixels in 3x3 

neighborhoods in a satellite image together with the classification associated with the central 

pixel in each neighborhood. The data set is used to predict the category of the image of the 

observed region of soil. Soil classes “red soil”, “grey soil”, “mixture class”, and “very damp 

grey soil” constitute the normal class. The class of anomalies consists of “cotton crop”, “damp 

grey soil”, and “soil with vegetation stubble”. This classification is based on multi-spectral 

values, consisting of 36 time series and 6435 instances.  
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Wafer: The Wafer dataset is related to semiconductor microelectronics fabrication, 

using data collected from various sensors during the processing of silicon wafers for 

semiconductor fabrication. Each time series in this dataset contains measurements recorded by 

one sensor in the course of processing one wafer by one tool. The dataset contains 152 attributes, 

and there is a large class imbalance between normal and anomaly. 

EEG: This dataset is from one continuous EEG measurement with the Emotiv EEG 

Neuroheadset. The duration of the measurement was 117 seconds. The eye state was detected 

via a camera during the EEG measurement and later added manually to the file after analyzing 

the video frames. This dataset consists of 14 EEG attribute values and one indicating the eye 

state. 

Opt: The Opt dataset is used for preprocessing programs made available by NIST to 

extract normalized bitmaps of handwritten digits from a preprinted form, which contains 64 

parameters. It is a character recognition dataset for integers 0-9. The 32X32 bitmaps are divided 

into non-overlapping blocks of 4X4 each, which generates an 8X8 input matrix. The instances 

of digits 1-9 are treated as inliers, whereas the instances of the digit 0 are treated as outliers. 

4.2 Experimental setup  

This experiment uses the open-source machine learning library Scikit-learn, and deep 

learning framework Torch, Keras, and TensorFlow to develop the baseline models and this 

framework. The computer configuration is Intel(R) Core(TM) i7-9750H CPU 2.60GHz 6-Core 

Processor with NVIDIA GeForce RTX 2060 GPU, 16G Memory. 

 Furthermore, seventeen algorithms were used to verify the superiority of the proposed 

framework, including classical anomaly detection algorithms and deep architecture models. 

The classical anomaly detection algorithms include K-Nearest Neighbor (KNN), Local 

Outlier Factor (LOF), Isolation Forest (iForest), One-class Support Vector Machine (OCSVM), 

Gaussian Mixture Model (GMM), Principal Component Analysis (PCA), Angle-based Outlier 
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Detector (ABOD), Histogram-based Outlier Score (HBOS), Cluster-based Local Outlier Factor 

(CBLOF), Multiple-Objective Generative Adversarial Active Learning (MOGAAL). 

The deep architecture models include Deep Autoencoding Gaussian Mixture Model 

(DAGMM), Generative Adversarial Network (GAN), Multivariate Anomaly Detection with 

GAN (MAD-GAN), OmniAnomaly, Autoencoder, Variational Autoencoder (VAEs), and 

Long Short-Term Memory Autoencoder (LSTM-AE). Table 4.2 presents the details of all the 

algorithms. 

Table 4.2  Detailed structural comparison of the algorithms 

Model Kernel Dense CNN LSTM Dropout 
Weighted 

Mechanism 

KNN × × × × × × 

LOF × × × × × × 

iForest × × × × × × 

OCSVM ○ × × × × × 

GMM × × × × × × 

PCA × × × × × × 

ABOD × × × × × × 

HBOS × × × × × × 

CBLOF × × × × × × 

MOGAAL × × × × × × 

DAGMM × ○ × × ○ × 

GAN × ○ × × × × 

MAD-GAN × ○ × ○ ○ × 

OmniAnomaly × ○ × × × × 

Autoencoder × ○ × × × × 

VAEs × ○ × × × × 

LSTM-AE × ○ × ○ ○ × 

MSCVAE × × ○ ○ × × 

MSCVAEl × × ○ ○ × ○ 

MSCVAEe × × ○ ○ × ○ 

 



73 
 

4.3 Anomaly detection results  

4.3.1 Overall performance 

All anomaly detection models in experiments were trained with the corresponding 

training subsets, consisting of normal samples. Then the models were verified using a 

validation method consisting of normal samples and testing subsets, including both normal and 

abnormal data. The model evaluation metrics, i.e., precision, recall, F1-Score, and G-mean, 

were in the range of 0 to 1. Higher precision, recall, F1-Score, G-mean, and lower ERR indicate 

better model performance. Table 4.3, Table 4.4, Table 4.5, and Table 4.6 show the confusion 

matrix elements and evaluation metrics of anomaly detection models on four datasets. The bold 

fonts in Table 4.3, Table 4.4, Table 4.5, and Table 4.6 indicate that the MSCVAE with 

exponential weighting is superior to the other models. 

Table 4.3  Anomaly detection results of Satellite dataset 

Model 
Confusion matrix value Performance evaluation 

TP FP FN TN ERR Precision Recall F1-Score G-mean 
KNN 45 75 68 51 0.4386 0.3750 0.3982 0.3863 0.4015 

LOF 54 66 56 63 0.3607 0.4500 0.4909 0.4696 0.4896 

iForest 51 69 58 61 0.3812 0.4250 0.4679 0.4454 0.4686 

OCSVM 55 65 70 49 0.3846 0.4583 0.4400 0.4490 0.4349 

GMM 72 48 73 46 0.2892 0.6000 0.4966 0.5434 0.4929 

PCA 112 8 11 108 0.0351 0.9333 0.9106 0.9218 0.9207 

ABOD 44 76 73 46 0.4578 0.3667 0.3761 0.3713 0.3766 

HBOS 48 72 70 49 0.4260 0.4000 0.4068 0.4034 0.4059 

CBLOF 51 69 62 57 0.3898 0.4250 0.4513 0.4378 0.4519 

MOGAAL 52 68 78 41 0.4224 0.4333 0.4000 0.4160 0.3879 

DAGMM 80 40 95 24 0.2778 0.6667 0.4571 0.5424 0.4140 

GAN 85 37 78 39 0.2298 0.6967 0.5215 0.5965 0.5173 

MAD-GAN 82 37 78 42 0.2298 0.6891 0.5125 0.5878 0.5220 

OmniAnomaly 84 37 79 39 0.2313 0.6942 0.5153 0.5915 0.5142 

Autoencoder 83 37 78 41 0.2298 0.6917 0.5155 0.5907 0.5206 

VAEs 105 9 31 94 0.0433 0.9211 0.7721 0.8400 0.8394 

LSTM-AE 105 11 70 53 0.0651 0.9052 0.6000 0.7216 0.7049 

MSCVAE 122 4 6 107 0.0172 0.9683 0.9531 0.9606 0.9585 

MSCVAEl 124 3 6 106 0.0129 0.9764 0.9538 0.9650 0.9631 

MSCVAEe 125 2 4 108 0.0085 0.9843 0.9690 0.9766 0.9754 
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Table 4.4  Anomaly detection results of Wafer dataset 

Model 
Confusion matrix value Performance evaluation 

TP FP FN TN ERR Precision Recall F1-Score G-mean 

KNN 58 48 37 67 0.2775 0.5472 0.6105 0.5771 0.5964 

LOF 60 46 56 48 0.2987 0.5660 0.5172 0.5405 0.5139 

iForest 54 52 43 61 0.3114 0.5094 0.5567 0.5320 0.5482 

OCSVM 61 45 56 48 0.2922 0.5755 0.5214 0.5471 0.5187 

GMM 60 46 45 59 0.2788 0.5660 0.5714 0.5687 0.5666 

PCA 61 45 42 62 0.2679 0.5755 0.5922 0.5837 0.5858 

ABOD 50 50 45 65 0.3030 0.5000 0.5263 0.5128 0.5454 

HBOS 49 57 41 63 0.3373 0.7075 0.5034 0.5882 0.5346 

CBLOF 33 73 62 42 0.4932 0.4623 0.5444 0.5000 0.3562 

MOGAAL 45 61 50 54 0.3813 0.3113 0.3474 0.3284 0.4716 

DAGMM 75 31 74 30 0.2279 0.4245 0.4737 0.4478 0.4975 

GAN 120 7 15 68 0.1170 0.9449 0.8889 0.9160 0.8977 

MAD-GAN 112 12 21 65 0.1864 0.9032 0.8421 0.8716 0.8431 

OmniAnomaly 107 10 33 60 0.2575 0.9145 0.7643 0.8327 0.8094 

Autoencoder 100 12 49 49 0.0745 0.8929 0.6711 0.7663 0.7342 

VAEs 90 21 12 87 0.1061 0.8108 0.8824 0.8451 0.8431 

LSTM-AE 86 9 64 51 0.0616 0.9053 0.5733 0.7020 0.6981 

MSCVAE 142 2 0 66 0.0095 0.9861 1.0000 0.9930 0.9852 

MSCVAEl 144 1 0 65 0.0048 0.9931 1.0000 0.9965 0.9924 

MSCVAEe 142 1 1 66 0.0096 0.9930 0.9930 0.9930 0.9890 
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Table 4.5  Anomaly detection results of EEG dataset 

Model 
Confusion matrix value Performance evaluation 

TP FP FN TN ERR Precision Recall F1-Score G-mean 

KNN 164 92 94 140 0.2323 0.6406 0.6357 0.6381 0.6193 

LOF 152 104 123 111 0.2834 0.5938 0.5527 0.5725 0.5342 

iForest 184 72 85 149 0.1778 0.7188 0.6840 0.7010 0.6791 

OCSVM 163 93 96 138 0.2360 0.6367 0.6293 0.6330 0.6132 

GMM 170 86 113 121 0.2281 0.6641 0.6007 0.6308 0.5926 

PCA 189 67 76 158 0.1618 0.7383 0.7132 0.7255 0.7077 

ABOD 160 96 111 123 0.2533 0.6250 0.5904 0.6072 0.5758 

HBOS 178 78 77 157 0.1889 0.6953 0.6980 0.6967 0.6829 

CBLOF 157 99 103 131 0.2558 0.6133 0.6038 0.6085 0.5865 

MOGAAL 92 164 146 88 0.4767 0.3594 0.3866 0.3725 0.3674 

DAGMM 194 62 173 61 0.1956 0.7578 0.5286 0.6228 0.5120 

GAN 297 10 33 150 0.0219 0.9674 0.9000 0.9325 0.9186 

MAD-GAN 297 26 27 140 0.0562 0.9195 0.9167 0.9181 0.8793 

OmniAnomaly 296 14 38 142 0.0310 0.9548 0.8862 0.9193 0.8982 

Autoencoder 225 34 142 89 0.0977 0.8687 0.6131 0.7188 0.6660 

VAEs 259 16 23 192 0.0343 0.9418 0.9184 0.9300 0.9208 

LSTM-AE 251 14 117 108 0.0375 0.9472 0.6821 0.7930 0.7770 

MSCVAE 296 9 34 151 0.0197 0.9705 0.8970 0.9323 0.9201 

MSCVAEl 297 7 24 162 0.0150 0.9770 0.9252 0.9504 0.9418 

MSCVAEe 301 5 11 173 0.0104 0.9837 0.9647 0.9741 0.9683 
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Table 4.6  Anomaly detection results of Opt dataset 

Model 
Confusion matrix value Performance evaluation 

TP FP FN TN ERR Precision Recall F1-Score G-mean 

KNN 82 23 13 52 0.1465 0.7810 0.8632 0.8200 0.7736 

LOF 54 51 32 33 0.3696 0.5143 0.6279 0.5654 0.4967 

iForest 78 28 24 40 0.1918 0.7358 0.7647 0.7500 0.6707 

OCSVM 80 25 13 52 0.1592 0.7619 0.8602 0.8081 0.7622 

GMM 82 23 14 51 0.1474 0.7810 0.8542 0.8159 0.7673 

PCA 90 16 12 52 0.1013 0.8491 0.8824 0.8654 0.8214 

ABOD 81 24 21 44 0.1611 0.7714 0.7941 0.7826 0.7168 

HBOS 77 28 19 46 0.1854 0.7333 0.8021 0.7662 0.7061 

CBLOF 82 23 13 52 0.1465 0.7810 0.8632 0.8200 0.7736 

MOGAAL 51 54 58 7 0.4821 0.4857 0.4679 0.4766 0.2317 

DAGMM 84 22 44 21 0.1732 0.7925 0.6563 0.7179 0.5661 

GAN 97 1 6 66 0.0061 0.9898 0.9417 0.9652 0.9166 

MAD-GAN 104 25 2 39 0.1488 0.8062 0.9811 0.8851 0.6688 

OmniAnomaly 105 28 3 34 0.1677 0.7895 0.9722 0.8714 0.6073 

Autoencoder 90 9 28 43 0.0634 0.9091 0.7627 0.8295 0.7942 

VAEs 89 11 4 66 0.0663 0.8900 0.9570 0.9223 0.9057 

LSTM-AE 92 3 35 40 0.0222 0.9684 0.7244 0.8288 0.8209 

MSCVAE 99 1 4 66 0.0060 0.9900 0.9612 0.9754 0.9730 

MSCVAEl 104 5 4 57 0.0301 0.9541 0.9630 0.9585 0.9409 

MSCVAEe 103 1 0 66 0.0059 0.9904 1.0000 0.9952 0.9925 

 

The comparison experiments show that 10 classical anomaly detection algorithms and 

7 deep architecture models have been implemented. Generally speaking, the ability of classical 

anomaly detection algorithms is limited when facing modeling issues for multivariate time 

series, and this conclusion is supported by results for the two comprehensive indexes, F1 and 

G-mean. DAGMM reduces the dimension and extracts features by using neural networks, 

slightly improving compared to GMM. GAN achieves similar results to DAGMM on the 

Satellite dataset (shown in Table 4.3) but performs well on the other three datasets. MAD-GAN 

attempts to map data into the latent space and detect anomalies via discriminant results and 
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reconstruction errors generated from the mapping process. MAD-GAN achieves good results 

on the Opt dataset and gives slightly better results than OmniAnomaly. LSTM-AE performs 

better on low dimension datasets than high dimension datasets (shown in Tables 4.4 and 4.5). 

As an excellent sequence-to-sequence model, Autoencoder fails at temporal data and performs 

well on the Opt dataset as shown in Table 4.6. VAEs achieve better results than Autoencoder 

on four datasets, which suggests that a high dimension dataset is a challenge for the training of 

VAEs. 

 Compared to the algorithms above, three MSCVAE architecture-based algorithms are 

implemented. MSCVAE, MSCVAEl, and MSCVAEe are respectively, MSCVAE model without 

weighting strategy, with linear weighting strategy and exponential weighting strategy. The 

comparison results demonstrate that MSCVAE with exponential weighting strategy is superior 

to the other algorithms discussed above, except in the Wafer dataset, which gives slightly better 

precision, recall, F1-Score, and G-mean values than MSCVAE with exponential weighting 

strategy. Furthermore, we can also come to the conclusion that no matter linear or exponential 

weighting strategies can improve the anomaly detection performance of multivariate time series 

effectively. In other words, MSCVAE is much better than baseline methods, as it can handle both 

inter-sensor correlations and temporal patterns of multivariate time series effectively.  

The reasons for the superior performance of proposed framework can be summarized 

as follows: (1) As a deep learning model with temporal patterns, MSCVAE can achieve good 

performance with no need for supervised training. (2) VAEs with an attention-based 

ConvLSTM network framework can effectively identify anomalies. (3) the proposed 

framework can model both inter-sensor correlations and temporal patterns of multivariate time 

series effectively. 
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4.3.2 Ablation study 

An extensive study illustrates the impact of different components on the model results, 

using two key modules of the proposed model: multi-scale attribute matrices and an attention-

based ConvLSTM.  

4.3.2.1 MSCVAE framework without weighted mechanism case (MSCVAE case) 

Three variants of MSCVAE are considered in the evaluation: 

 MSCVAEw : MSCVAE framework without attention-based ConvLSTM. 

 CVAEa : MSCVAE framework without the multi-scale attribute matrices. 

 CVAEw : MSCVAE framework without both multi-scale attribute matrices and an attention-

based ConvLSTM.  

 

Fig. 4-1  F1-Score and G-mean comparison of all four datasets under three different 
competing models. 
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F1-Scores and G-means on four datasets are reported in Fig. 4-1. We observe that the 

proposed framework, MSCVAE (marked in blue), is obviously superior to the other three 

competing models on anomaly detection tasks, which indicates the importance of multi-scale 

attribute matrices and an attention-based ConvLSTM. However, MSCVAEw (marked in pink) 

and CVAEw (marked in yellow) methods can obtain approximately equal results with all four 

datasets. Besides, the results of CVAEa (marked in green) are much better than MSCVAEw and 

CVAEw, which indicates the importance of an attention-based ConvLSTM. Furthermore, we see 

that under all conditions, both multi-scale attribute matrices and attention-based ConvLSTM can 

effectively improve the anomaly detection performance of multivariate time series. 

 

 

 
Fig. 4-2  F1-Score and G-mean comparison of all four datasets under three different 

competing models. 
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4.3.2.2 MSCVAE framework with linear weighted mechanism case (MSCVAEl case) 

Three variants of MSCVAEl are considered in the evaluation: 

 MSCVAEl -w : MSCVAEl framework without attention-based ConvLSTM. 

 CVAEl-a : MSCVAEl framework without the multi-scale attribute matrices. 

 CVAEl-w : MSCVAEl framework without both multi-scale attribute matrices and an attention-

based ConvLSTM. 

F1-Scores and G-means on four datasets are reported in Fig. 4-2. We observe that the 

proposed framework, MSCVAEl (marked in blue), is superior to the other three competing 

models on anomaly detection tasks, except in the EEG dataset.  

4.3.2.3 MSCVAE framework with exponentially weighted mechanism case (MSCVAEe 

case) 

Three variants of MSCVAEe are considered in the evaluation: 

 MSCVAEe -w : MSCVAEe framework without attention-based ConvLSTM. 

 CVAEe-a : MSCVAEe framework without the multi-scale attribute matrices. 

 CVAEe-w : MSCVAEe framework without both multi-scale attribute matrices and an attention-

based ConvLSTM. 

F1-Scores and G-means on four datasets are reported in Fig. 4-3. We observe that the 

proposed framework, MSCVAEe (marked in blue), is superior to the other three competing 

models on anomaly detection tasks. 
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4.3.3 Robustness evaluation 

Anomaly detection often suffers from the dataset imbalance problem, which means 

there are more normal samples than anomaly samples. To combat this problem, this thesis used 

the two criteria, F1-Score, and G-mean, with different rates of anomalies to evaluate the 

proposed model’s robustness. Fig. 4-4 shows the chart of F1-Score and G-mean comparisons 

with different rates of anomalies. The comparison results indicate that the F1-Score and G-

mean of most algorithms tend to increase as anomaly rates increase. The proposed framework’s 

F1-Score and G-mean values are highest on all datasets under different anomaly rates. 

Therefore, we are justified in concluding that the proposed framework has good robustness 

even in the face of dataset imbalance problems. 

 

 

Fig. 4-3  F1-Score and G-mean comparison of all four datasets under three different 
competing models. 
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(a) Satellite dataset 

 
(b) Wafer dataset 

 

Fig. 4-4  F1-Score and G-mean comparison all four datasets under different anomaly rate. 
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(c) EEG dataset 

 
(d) Opt dataset 

 

Fig. 4-4  F1-Score and G-mean comparison all four datasets under different anomaly rate (continued) 
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4.3.4 Threshold setting strategy comparison 

In order to verify the effectiveness of the proposed threshold setting strategy, comparing 

two threshold setting strategies via three comparative MSCVAE-based frameworks on four 

datasets, shown in Table 4.7. The comparison results demonstrate that the proposed ERR based 

threshold setting strategy is superior to ROC based strategy on all comparison models of 

Satellite dataset, EEG dataset, and Opt dataset, and the performance of the two strategies on 

Wafer dataset is quite the same. As stated, the proposed threshold setting strategy can 

effectively improve the model performance of multivariate time series anomaly detection. The 

bold fonts in Table 4.7 show us that new threshold setting strategy based anomaly detection 

can achieve better performance. 

For further analysis, we conduct the two threshold setting strategies on MSCVAE based 

framework with exponential weighting strategy, and the detailed information is shown in Table 

4.8, Table 4.9, Table 4.10, and Table 4.11. Table 4.8, Table 4.9, Table 4.10, and Table 4.11 

show the top three thresholds on four datasets. The rank indicates the suitability of the threshold. 

Therefore, the highest rank is the best threshold. As explained in formulas 14 and 15, the 

threshold with the lower distance and the ERR will be a higher rank. Meanwhile, we also 

calculate TP, FP, FN, F1, and G-mean corresponding metrics under different thresholds. As 

stated, the proposed threshold setting strategy can effectively improve the model performance 

of multivariate time series anomaly detection. 
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Table 4.7  F1-Score and G-mean values of three MSCVAE based frameworks using two 

threshold setting strategies on four datasets. 

 

 

 

 

 

Datasets (Anomaly rate) 
Threshold setting strategy and 

anomaly detection model 
F1-Score G-mean 

Satellite dataset (31.6 %) MSCVAE  + ERR based strategy 0.9606 0.9585 
 MSCVAE  + ROC based strategy 0.8632 0.8204 

 MSCVAEl + ERR based strategy 0.9650 0.9631 

 MSCVAEl + ROC based strategy 0.8294 0.7567 

 MSCVAEe + ERR based strategy 0.9766 0.9754 

 MSCVAEe + ROC based strategy 0.8750 0.8367 

Wafer dataset (10.6 %) MSCVAE  + ERR based strategy 0.9930 0.9852 

 MSCVAE  + ROC based strategy 0.9930 0.9852 

 MSCVAEl + ERR based strategy 0.9965 0.9924 

 MSCVAEl + ROC based strategy 0.9952 0.9765 

 MSCVAEe + ERR based strategy 0.9930 0.9890 

 MSCVAEe + ROC based strategy 0.9930 0.9852 

EEG dataset (44.9 %) MSCVAE  + ERR based strategy 0.9323 0.9201 

 MSCVAE  + ROC based strategy 0.9195 0.8824 

 MSCVAEl + ERR based strategy 0.9504 0.9418 

 MSCVAEl + ROC based strategy 0.9270 0.9168 

 MSCVAEe + ERR based strategy 0.9741 0.9683 

 MSCVAEe + ROC based strategy 0.9358 0.9043 

Opt dataset (2.9 %) MSCVAE  + ERR based strategy 0.9754 0.9730 

 MSCVAE  + ROC based strategy 0.8851 0.7732 

 MSCVAEl + ERR based strategy 0.9585 0.9409 

 MSCVAEl + ROC based strategy 0.9223 0.9057 

 MSCVAEe + ERR based strategy 0.9952 0.9925 

 MSCVAEe + ROC based strategy 0.9952 0.9925 
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Table 4.8  Top three thresholds using strategies on Satellite dataset 

Strategy Rank TP FP FN TN F1-Score G-mean 

ERR 1 125 2 4 108 0.9766 0.9754 

 2 125 3 4 107 0.9728 0.9709 

 3 124 4 6 105 0.9612 0.9586 

ROC 1 126 29 0 84 0.8968 0.8622 

 2 125 31 3 80 0.8803 0.8389 

 3 124 37 2 76 0.8641 0.8136 

 

Table 4.9  Top three thresholds using strategies on Wafer dataset 

Strategy Rank TP FP FN TN F1-Score G-mean 

ERR 1 142 1 1 66 0.9930 0.9890 
 2 142 2 3 63 0.9827 0.9743 

 3 144 2 5 59 0.9763 0.9668 

ROC 1 142 2 0 66 0.9930 0.9852 

 2 140 5 3 62 0.9722 0.9518 

 3 141 5 3 61 0.9724 0.9513 

 

Table 4.10  Top three thresholds using strategies on EEG dataset 

Strategy Rank TP FP FN TN F1-Score G-mean 

ERR 1 301 5 11 173 0.9741 0.9683 

 2 301 6 11 172 0.9725 0.9655 

 3 300 8 13 169 0.9662 0.9566 

ROC 1 299 23 18 150 0.9358 0.9043 

 2 300 37 7 144 0.9317 0.8817 

 3 299 38 13 140 0.9214 0.8682 

 

Table 4.11  Top three thresholds using strategies on Opt dataset 

Strategy Rank TP FP FN TN F1-Score G-mean 

ERR 1 103 1 0 66 0.9952 0.9925 

 2 102 1 1 66 0.9903 0.9877 

 3 103 2 0 65 0.9904 0.9850 

ROC 1 103 1 0 66 0.9952 0.9925 

 2 103 2 0 65 0.9904 0.9850 

 3 101 2 2 65 0.9806 0.9754 
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As stated, the ROC-based strategy pays more attention to FN and ignores FP, so it 

selects the best threshold with lower FN. In contrast, the ERR-based strategy focuses on FP, 

and its best selected threshold makes for similarly excellent FP performance. Consider the 

experimental results in Table 4.8. The first threshold of the ERR-based strategy has 2 FP and 

4 FN, and the corresponding F1-Score and G-mean are 0.9766 and 0.9754. However, the first 

threshold of ROC-based strategy has 22 FP and 14 FN, and the corresponding F1-Score and 

G-mean are just 0.8750 and 0.8367. ROC-based strategy fails to achieve the best threshold 

because of its excessive attention to FN. 

 

(a) Satellite dataset    (b)  Wafer dataset 
 

 

(c) EEG dataset     (d)  Opt dataset 
 

Fig. 4-5  F1-Score comparisons two threshold setting strategies on four datasets under 
different anomaly rate. 
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Further investigation was conducted to analyze the same proposed framework using the 

two threshold setting strategies under different anomaly rates, shown in Fig. 4-5. The ERR-

based strategy achieves a better threshold than the ROC-based strategy under a low anomaly 

rate on four datasets. Besides, it is clear that the difference between the two strategies decreases 

as the anomaly rate increases. In short, the proposed threshold setting strategy is superior to 

the traditional ROC-based strategy and can achieve an appropriate threshold even when 

confronted with a dataset imbalance problem. 

4.4 Discussion  

 In this part, we analyze and summarize the advantages of MSCVAE. The performance 

of MSCVAE is influenced by three components: the attribute matrices, an attention-based 

ConvLSTM, and a novel threshold setting strategy. The results of the experiments show that 

the proposed method on four standard datasets is better than the other seventeen evaluated 

algorithms. The reasons why MSCVAE is superior to the other algorithms of comparison can 

be summarized as follows:  

First, when pre-processing data, an attribute matrices is calculated based inner-product 

for each time step, which contains the relationship between its own information and the 

information of a sub-sequence. That is why we can amplify features and reduce noise. The 

results of EEG dataset show low improvement compared to without attribute matrices, which 

can improve only 0.43%. Whereas, Opt dataset shows higher improvement compared to 

without attribute matrices, which can improve by 2.92%. Since the EEG dataset contains a little 

noise different from Opt dataset, which contains a lot of noise, therefore, attribute matrices can 

improve the data with higher noise. 

 Second, an attention based ConvLSTM is applied to select adaptively relevant hidden 

states (feature maps) across different time steps. That is why we can capture the temporal 

patterns of multivariate time series. The results of EEG dataset show low improvement 

compared to without attention-based ConvLSTM, which can improve only 1.09%. Whereas, 

Satellite dataset shows higher improvement compared to without attention based ConvLSTM, 
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which can improve by 6.34%. Since the EEG dataset has a low pattern appearance compared 

to Satellite dataset, therefore, Convlstm can not have the impact to improve. 

 Third, a new error rate (ERR) based threshold setting strategy is applied to optimize 

anomaly detection performance under an imbalance of normal and abnormal data. The ERR 

based strategy achieves a better threshold than the ROC-based strategy in Opt dataset, which 

can improve the F1-Score from 88.51% to 97.54%. Since Opt dataset has very much 

imbalanced: with anomalies of only 2.9% and a normal 97.1%, that is why Opt dataset can 

improve better than another dataset. 

4.5 Summary 

 In this chapter, the overview of the proposed framework is thoroughly described and 

consists of three major processes: the pre-processing part, the convolutional variational 

autoencoder part, and the anomaly detection part. Experiments have been conducted on four 

datasets in order to verify the effectiveness of the proposed framework and the new ERR based 

threshold setting strategy.  
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Chapter 5 

Conclusions 

5.1 Conclusions 

In this thesis, we proposed a novel MSCVAE framework to solve the anomaly detection 

problem for multivariate time series data. The framework employs multi scale (resolution) 

system attribute matrices which transform multivariate time series into multi scale attribute 

matrices. This approach allows for characterizing the state of the entire system in different time 

segments, and adopts the convolutional variational autoencoder to generate reconstructed 

attribute matrices, which makes the proposed framework more robust by taking advantage of 

VAEs. An attention-based Convolutional Long-Short Term Memory (ConvLSTM) network is 

used to capture the temporal patterns. The framework can model both inter-sensor correlations 

and temporal dependencies of multivariate time series. Finally, a new ERR-based threshold 

setting strategy is adopted, instead of a traditional ROC-based threshold setting strategy, to 

achieve better model performance. To verify the effectiveness of the proposed framework, 

experiments on four datasets were implemented. The results demonstrate that MSCVAE can 

outperform state-of-the-art baseline methods.  

The work reported here justifies the following conclusions. 

(1) Multi-scale attribute matrices provide an effective pre-processing method for characterizing 

system states at different time segments of multivariate time series with no need of prior 

knowledge. 

(2) CNN structure is embedded in the encoder, and the decoder of the VAEs model is adopted to 

extract the characteristics of the time series. An attention-based Convolutional Long-Short Term 

Memory (ConvLSTM) network is used to capture the temporal patterns and reconstruct the 

attribute matrices, providing an effective unsupervised anomaly detection method. Combined 

with the proposed ERR-based threshold setting strategy, the MSCVAE based framework can 

achieve excellent performance. 
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(3) Experiments on four datasets indicate that the proposed framework outperforms competing 

models in detection accuracy and robustness under imbalanced datasets. An extensive 

experiment was also conducted to verify that the proposed threshold setting strategy can 

acquire an optimal threshold in the anomaly detection task, thus contributing to the superior 

anomaly detection performance of the proposed model.  

 

5.2 Recommendations for future research 

The present framework is able to be further extended to improve the overall 

performance of the proposed framework, some recommendations for future research are 

suggested as follows: 

1. To increase the accuracy of anomaly detection by designing effective pre-processing, 

feature extraction should be developed to build a noise-insensitive framework for multivariate 

time series anomaly detection using U-Net which is based on an encoder-decoder neural 

network model. 

2. To design the anomaly detection model that does not require a perfectly normal 

training set. 
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