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BOUNDS FOR THE K-GROUPS ASSOCIATED TO ABELIAN
VARIETIES OVER A p-ADIC FIELD

Toshiro HIRANOUCHI

Abstract

For a product of curves X = C} x --- x C, over a p-adic field k, in [2] we proposed a conjecture
that the kernel of the Albanese map for X is p-divisible when the base field is absolutely unramified and
proved this under some assumptions. In this note, we report that when the Jacobian varieties of such
curves Ci,...,C, all have good ordinary reduction, the Albanese kernel for the product X = C; x --- X
C, is still p-divisible even if the base field is not unramified but its ramification is small enough.

1. Introduction

Let k be a finite extension of Q,, and let X be a smooth, projective, and geo-
metrically connected variety over a field k. We consider the group CHy(X) of zero
cycles on X modulo rational equivalence. There is a degree map deg: CHy(X) — Z
whose kernel is denoted by F!(X). Moreover, there is a generalization of the Abel-
Jacobi map

ale : FI(X) — Albx(k)

called the Albanese map of X and its kernel is denoted by F2(X), where Alby is the
dual abelian variety to the Picard variety of X. When X has a k-rational point, the
degree map is surjective. In [2], we proposed the following conjecture:

CONJECTURE 1.1. Suppose that k/Q, is unramified. Let X = Cy x --- x C, be the
product of smooth projective curves Ci,...,C, over k with Ci(k)# & for all i. We
further assume that we are in one of the following two situations:

(good) The Jacobian variety J; of C; has good reduction, for i=1,..., n.

(mult) The Jacobian variety J; of C; has split multiplicative reduction, for i=

1,...,n, that is, the curve C; is a Mumford curve over k.
Then, the kernel of the Albanese map F*(X) is p-divisible.

The case (mult) is settled ([2, Proposition 4.16]). For the case (good) also, there are
partial results as follows: For elliptic curves C; = E; over k which has good reduction,
assuming that at most one of Ey, ..., E, has good supersingular reduction, the conjecture
above is proved ([2, Theorem 1.4, Corollary 1.5]). In this short note, we report that
using computations in [5], the divisibility of the Albanese kernel holds over the base field
with low ramification as follows:
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THeOREM 1.2. Let k be a finite extension of Q, with ramification index eyq, <
p—1 Let X=Cyx---xC, be the product of smooth projective curves Ci,...,C,
over k with Ci(k) # &. We further assume that we are in one of the following two
situations.

(ord)  The Jacobian variety J; of C; has good ordinary reduction, for i=1,... n.

(mult) The Jacobian variety J; of C; has split multiplicative reduction, for i=

I,...,n
Then, the Albanese kernel F*(X) is p-divisible.

For a product of curves X = C; x --- x C, with C;(k) # &, the Albanese kernel
F?(X) is related to the Somekawa K-groups associated to the Jacobian varieties as
follows (for the definition of Somekawa K-groups, see [5]):

(1) FA(X)— @ @D K(k;Ji, ..., Ji),
2<v<n 1<ii<ip<--<iy<n

where J; is the Jacobian variety of C; (cf. [2, (2.5)]). To show that F?(X) is p-divisible,
from the above isomorphism, it is enough to show the all terms K(k;J;,...,J;) are
p-divisible. In fact, it is known that K(k;Ji,...,J,) is divisible for r > 3 (|5, Remark
4.4.5]). Because of this, first we investigate the structure of the Somekawa K-group
K(k; Ay, A>) attached to two abelian varieties A, A, in the next section, and then give
a proof of the above theorem.

On the contrary to the above theorem, when the base field k& has ramified suf-
ficiently, the Albanese kernel F?(X) may not be p-divisible. In fact, for a curve C
over k and suppose that the Jacobian variety J = Jac¢c has good ordinary reduction.
Here, we assume that the base field & satisfies J[p] C J(k). By the Weil pairing, this
assumption implies x, C k and hence ¢;/q, > p— 1 (¢f [3, Exercise A.7.8]). For the
product X = C x C, it is known that

FX(X)® Z/pZ ~ K(k;J,J) ® Z/pZ ~ (Z/pZ)®*,

where g = dim(J) (4, Theorem 1.1]).

Notation. Throughout this note, we follow the notation used in [2]. In partic-
ular, for an abelian group G and m € Z-;, we write G[m] and G/m for the kernel and
cokernel of the multiplication by m on G respectively.

Acknowledgments. This work was supported by KAKENHI 20K03536.

2. Upper bounds for Somekawa K-groups

In this section, we use the following notation:
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* k: a finite extension of Q, with absolute ramification index ex = ex/q,,

e Fj: the residue field of k,

e k": the maximal unramified extension of k, and

* MY :=max{m>0]|wm Ck"}.

For an abelian variety 4 over k and for the Néron model &/ over O; of A4, we
denote by ./, the special fiber of o/ and ./ the connected component of the zero
element in o/, Recall that an abelian variety 4 has split semi-ordinary reduction (in the
sense of [5]) if «/° is a semi-abelian variety over Fy, the maximal abelian quotient A4 of
o/ is ordinary and the maximal torus of ./ splits over Fr. Namely, there is a short
exact sequence

OHG%"—),Q/SO—)AHO’

for some r > 0 and an ordinary abelian variety 4 over F;. To simplify the notation,
we say that 4 has split multiplicative reduction if it has semi-ordinary reduction, and the
connected component .7 is a split torus.

Let 4; and A, be abelian varieties over k which have split semi-ordinary reduction.
From [5, Theorem 4.5] the Somekawa K-group K(k; A1, A;) attached to A, and 4, is
of the form

(2) K(k;AlvAZ) :K(k;AlaAz)ﬁn®K(k;A1aA2)div

for some finite group K(k; Ay, 4>);, and a divisible group K(k; A4, 45)y,. From now
on, we investigate the finite part K(k; A1, 42)s,. We denote by K(k; Ay, A2)g,[p™] the
p-torsion part liLnn21 K(k; A1, 42)[p"] of the finite group K(k; A, A2)g,-

As in Theorem 1.2 and Conjecture 1.1, we consider one of the following
conditions:

(ord) The abelian variety A; has good ordinary reduction for i =1,2.

(mult) The abelian variety A; has split multiplicative reduction for i =1,2.

THEOREM 2.1. Assume one of the conditions (ord) or (mult). Then, the p-torsion
part K(k; Ay, A2)g, [p™] is a quotient of (Z/p™")®"'%, where g; = dim(4;).

Proor. Recall that the Somekawa K-group K(k;A;,A») is a quotient of the
Mackey product (4; ® A»)(k) for A; and A, regarding they are Mackey functors over k
(for the definition and some properties of Mackey functors, see [5] or [2]). Hence, it is
enough to show that there is a surjective homomorphism

(Z/pM“')(-Dgl.t]z — (Al ®A2)(k)/pn

for any n > 1. Here, we divide the cases into (ord) and (mult).

(The case (ord)) Consider the case (ord). Recall that for a finite flat (commutative)
group scheme ¥ over O, the correspondence K — Hé(OK, %) defines a Mackey functor
([5, Lemma 4.3.1]). Let .o/ be the Néron model over Oy of 4; for each i =1,2. The
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connected-étale sequence
0 — [p")" — [p"] — A[p"]" — 0
(¢f [6, Section 1.4]) induces an exact sequence of Mackey functors
3) Hy (O-, /[p"]°) — H{(O-, [p"]) — H{(O-, [p"]") = 0

(5, Lemma 4.3.3]). By [5, Lemma 4.3.3] again, we also have H}(O_, o/[p"]) ~ A;/p"
as Mackey functors. Put H := H}(O_,</;[p"]") for e e {o,et}. By the right exact-
ness of the Mackey products, we obtain the following commutative diagram with exact
rows and columns:

P ® H; Ho @ Ar/p" HOH —— 0

Ai/p" @ M5 —— Ai/p" @ Ay /p" —— Ai/p"® HS —— 0

M © 3 H® dafp" ——— HI @ HS —— 0

0 0 0

For a finite unramified extension K/k, the norm H;(K) — H;(k) is surjective ({5,
Lemma 4.3.1]). Hence, the norm map for K/k on H;® H5 and H; ® HS' are
surjective. By the diagram chase, same holds on 7] ® 4,/p”. In the same way, the
norm map for K/k on H{'® H5 and Hj'® HS' are surjective, so is H|'® A»/p".
From the vertical and the middle short exact sequence in the above diagram (4), the
norm map (4;/p" ® A>/p™)(K) — (41/p" ® A>/p™)(k) is surjective.

By replacing a sufficiently large unramified extension field K of k with k£ (and M
does not vary), we have

A" = (ZpM®,  and AP = ()

From [5, Lemma 4.3.3], we have #? ~ (U/p")®% and H® ~ (Z/p")®¥, where Z and
U are Mackey functors defined by K +— Z and K — Ux = Of respectively. By [,
Lemma 4.2.2] and the Mackey product ® commutes with @, we have

Hict ® Hgt ~ (Z/pn)(-Bgl ® (Z/pn)@tlz ~ (Z/pn ® Z/pn)@m.fiz _ 07

H @ HS =~ (U/p")*" @ (2/p")*” ~ (U/p"® 2/p")®"* =0,  and

H'®@ HS=0 by the same computations above.
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Applying these results to the diagram (4), we obtain a surjective homomorphism
() Hi ® Hy — Ai/p" @ Az/p".

By [5, Lemma 4.3.3, Lemma 4.2.2] again, the former group H; ® #; has a represen-
tation

(Hi ® H3)(k) =~ ((U/p")®" ® (U/p")*") (k)

~ (U/p" @ U/p™) (k)@ (because ® commutes with @)

9192

~ @PZ/p"
i=1

for some n; < M. By (5), we have the required surjective homomorphism
(Z/p™")®N" — (H} ® H3)(k) — (A1/p" ® A2/p")(k) = (41 ® A2)(k)/p"

for any n. The assertion follows from this.

(The case (mult)) Next, we consider the case (mult). From the assumption on 4;
for i = 1,2, there exists a split torus 7; ~ Gf"" and a free abelian subgroup L; C T;(k)
such that

(6) Ti(k')/ Li = Ai(k')

for any finite extension k'/k. The quotient map 7; — A; induces a surjection
(Th ® Ty)(k)/p" — (A1 ® Ay)(k)/p". This gives

(G ® Gu) (k) [P") " — (T1 @ T2) (k) [p" — K(k; A1, 42)/p"

for any n>1 (cf. [7, Remark 4.2 (2)]). Since we have a surjective homomorphism
Z/pM" — (G,, ® G,,)(k)/p" ([5, Lemma 4.2.2]), we obtain surjective homomorphisms

(Z/pM““)®glgz - ((Gm ® Gn1)(k)/pn)®glgz - K(k§A17A2)/pn- O

ProOF oF THEOREM 1.2. As we referred in Section 1, to show the divisibility of
F?(X) for the product X = C; x --- x C,, by using the decomposition (1) it is enough to
show that K(k;Jy,...,J,) is divisible for any r > 2 under the condition (ord) or (mult)
for the Jacobian variety J; of curves C; (i=1,...,r). For the case r > 3, this follows
from [5, Remark 4.4.5].

Now, we consider the case »=2. Since we are assuming e, < p — 1, we have
ty ¢ k. 1If the extension k(u,)/k is unramified, then ey, )=ex < p—1. This contra-
dicts with Ck(n,)/Q, = (p— l)ek(ﬂp)/Qp(ﬂ,,) >p—1. As a result, we have iz ¢ k' and
hence M" =0. From Theorem 2.1, the finite p-part is K(k;Ji,J2)4,[p"] =0. By
considering the decomposition (2), the groups K(k;Jy,J») ~ F?(X) are p-divisible.

O
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RemARrRk 2.2. If both of 4, and A, have good reduction, then it is known that
K(k; Ay, A>) is I-divisible for any prime / # p ([5, Theorem 3.5]). Therefore, in the case
(ord), we have K(k;A;,Ar), = K(k; A1, 42)s,[p™] and the K-group K(k;A;,A,) be-
comes divisible when M = 0.

Closing this note, we explain some reasons why we have to restrict to the same
reduction type of 4, and A, as in the conditions (ord) and (mult). Consider the fol-
lowing situation: Suppose A; has good ordinary reduction, and A4, has split multi-
plicative reduction. From the exact sequence (3), we have an exact sequence of Mackey
functors:

Hy — Ay /p" — H{' — 0.

As in (6), there exists a split torus 7> ~ G2 and a subgroup L, C T»(k) such that
Ty(k')/Ly ~ Ay(k') for any finite extension k'/k. In particular, there is a surjection
T,/p" — A,/p™ of Mackey functors. We have the following commutative diagram
with exact rows and columns:

Hi ® Ta/p"

H ®A,/p" —— 0

A1/p" ® Th/p" —— Ai/p" ® A2/p" —— 0

H' ® Ta/p" Hi'® Ay /p" —— 0

0 0
As we have #H} ® To/p" ~ (H} ® G,,/p")®?”, we consider the short exact sequence
H? @ Gp/p" — A1/p" ® Gy /p" — H' ® Gy /p" — 0.

After replacing a finite unramified extension K/k with k, by [5, Lemma 4.2.2] we
have

('Hf ® Gu/p")(k) ~(U/p" ® (;171/[7’1)(l€)@(/1 = (Z/pn])@q]’
(Hi' ® Gu/p") (k) = (Z/p" ® G /p") (k)" = (Z/p")®"

for some n; < M. For this reason, the term H® ® G,,/p" is not bounded. In fact,
using the formal group low A; of Aj, there is a short exact sequence

(7 (41 ® G) (k) /p" — (A ® G) (k) /p" — A1(Fi)/p" — O,
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where A; is the reduction of A;, and also a surjective homomorphism (Z/p™")®9

(4, ® G,))(k)/p" for any n>1 (cf. [1, Theorem 3.5]). Therefore, one can present an
upper bound of the order of the p-torsion part of the Somekawa K-group as follows:

—»

Lemma 2.3. We assume that Ay has good ordinary reduction, and A, has split
multiplicative reduction. Then, we have an inequality

(8) ord, (#K (k; A1, A2),[p™]) < g2(g1 M + ord,,(#41 (Fr))),
where ord, is the order function normalized as ord,(p) = 1.
ProOF. As we noted above, there are surjective homomorphisms
(41 ® Gy)(k)/p")®” — (A1 ® 42)(k)/p" — K(k; A1, 42) [p".
The product (4; ® G,,)(k) has also the following decomposition:
(41 ® Gp) (k) = (41 ® Gp) (k) @ (A1 ® Gi) (K) gy,

for some finite group (4; ® G,,)(k)g;, and a divisible group (41 ® G,)(k)y, ([1, Lemma
3.1]). By taking the limit of the exact sequence (7), we have

ordy (#(41 ® Gi) (k) [P™]) < g1 M™ + ord,, (#A, (Fy)).

Thus, we obtain the required inequality (8). O
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