BOUNDS FOR THE K-GROUPS ASSOCIATED TO ABELIAN VARIETIES OVER A p-ADIC FIELD

Toshiro HIRANOUCHI

Abstract

For a product of curves $X = C_1 \times \cdots \times C_n$ over a *p*-adic field *k*, in [2] we proposed a conjecture that the kernel of the Albanese map for X is *p*-divisible when the base field is absolutely unramified and proved this under some assumptions. In this note, we report that when the Jacobian varieties of such curves C_1, \ldots, C_n all have good ordinary reduction, the Albanese kernel for the product $X = C_1 \times \cdots \times C_n$ is still *p*-divisible even if the base field is not unramified but its ramification is small enough.

1. Introduction

Let k be a finite extension of \mathbf{Q}_p , and let X be a smooth, projective, and geometrically connected variety over a field k. We consider the group $CH_0(X)$ of zero cycles on X modulo rational equivalence. There is a degree map deg : $CH_0(X) \to \mathbf{Z}$ whose kernel is denoted by $F^1(X)$. Moreover, there is a generalization of the Abel-Jacobi map

$$alb_X : F^1(X) \to Alb_X(k)$$

called the Albanese map of X and its kernel is denoted by $F^2(X)$, where Alb_X is the dual abelian variety to the Picard variety of X. When X has a k-rational point, the degree map is surjective. In [2], we proposed the following conjecture:

CONJECTURE 1.1. Suppose that k/\mathbf{Q}_p is unramified. Let $X = C_1 \times \cdots \times C_n$ be the product of smooth projective curves C_1, \ldots, C_n over k with $C_i(k) \neq \emptyset$ for all i. We further assume that we are in one of the following two situations:

(good) The Jacobian variety J_i of C_i has good reduction, for i = 1, ..., n.

(mult) The Jacobian variety J_i of C_i has split multiplicative reduction, for i =

 $1, \ldots, n$, that is, the curve C_i is a Mumford curve over k.

Then, the kernel of the Albanese map $F^2(X)$ is p-divisible.

The case (mult) is settled ([2, Proposition 4.16]). For the case (good) also, there are partial results as follows: For elliptic curves $C_i = E_i$ over k which has good reduction, assuming that at most one of E_1, \ldots, E_n has good supersingular reduction, the conjecture above is proved ([2, Theorem 1.4, Corollary 1.5]). In this short note, we report that using computations in [5], the divisibility of the Albanese kernel holds over the base field with low ramification as follows:

Toshiro HIRANOUCHI

THEOREM 1.2. Let k be a finite extension of \mathbf{Q}_p with ramification index $e_{k/\mathbf{Q}_p} < p-1$. Let $X = C_1 \times \cdots \times C_n$ be the product of smooth projective curves C_1, \ldots, C_n over k with $C_i(k) \neq \emptyset$. We further assume that we are in one of the following two situations:

(ord) The Jacobian variety J_i of C_i has good ordinary reduction, for i = 1, ..., n. (mult) The Jacobian variety J_i of C_i has split multiplicative reduction, for i = 1, ..., n.

Then, the Albanese kernel $F^2(X)$ is p-divisible.

For a product of curves $X = C_1 \times \cdots \times C_n$ with $C_i(k) \neq \emptyset$, the Albanese kernel $F^2(X)$ is related to the **Somekawa** K-groups associated to the Jacobian varieties as follows (for the definition of Somekawa K-groups, see [5]):

(1)
$$F^{2}(X) \xrightarrow{\simeq} \bigoplus_{2 \leq \nu \leq n} \bigoplus_{1 \leq i_{1} < i_{2} < \cdots < i_{\nu} \leq n} K(k; J_{i_{1}}, \dots, J_{i_{r}}),$$

where J_i is the Jacobian variety of C_i (cf. [2, (2.5)]). To show that $F^2(X)$ is p-divisible, from the above isomorphism, it is enough to show the all terms $K(k; J_{i_1}, \ldots, J_{i_r})$ are p-divisible. In fact, it is known that $K(k; J_1, \ldots, J_r)$ is divisible for $r \ge 3$ ([5, Remark 4.4.5]). Because of this, first we investigate the structure of the Somekawa K-group $K(k; A_1, A_2)$ attached to two abelian varieties A_1 , A_2 in the next section, and then give a proof of the above theorem.

On the contrary to the above theorem, when the base field k has ramified sufficiently, the Albanese kernel $F^2(X)$ may not be p-divisible. In fact, for a curve C over k and suppose that the Jacobian variety $J = \text{Jac}_C$ has good ordinary reduction. Here, we assume that the base field k satisfies $J[p] \subset J(k)$. By the Weil pairing, this assumption implies $\mu_p \subset k$ and hence $e_{k/\mathbb{Q}_p} \ge p-1$ (cf. [3, Exercise A.7.8]). For the product $X = C \times C$, it is known that

$$F^2(X) \otimes \mathbb{Z}/p\mathbb{Z} \simeq K(k; J, J) \otimes \mathbb{Z}/p\mathbb{Z} \simeq (\mathbb{Z}/p\mathbb{Z})^{\oplus g^2},$$

where $g = \dim(J)$ ([4, Theorem 1.1]).

Notation. Throughout this note, we follow the notation used in [2]. In particular, for an abelian group G and $m \in \mathbb{Z}_{\geq 1}$, we write G[m] and G/m for the kernel and cokernel of the multiplication by m on G respectively.

Acknowledgments. This work was supported by KAKENHI 20K03536.

2. Upper bounds for Somekawa K-groups

In this section, we use the following notation:

Bounds for the K-Groups Associated to Abelian Varieties over a p-Adic Field

- k: a finite extension of \mathbf{Q}_p with absolute ramification index $e_k = e_{k/\mathbf{Q}_p}$,
- \mathbf{F}_k : the residue field of k,
- k^{ur} : the maximal unramified extension of k, and
- $M^{\mathrm{ur}} := \max\{m \ge 0 \mid \mu_{p^m} \subset k^{\mathrm{ur}}\}.$

For an abelian variety A over k and for the Néron model \mathscr{A} over \mathcal{O}_k of A, we denote by \mathscr{A}_s the special fiber of \mathscr{A} and \mathscr{A}_s° the connected component of the zero element in \mathscr{A}_s . Recall that an abelian variety A has **split semi-ordinary reduction** (in the sense of [5]) if \mathscr{A}_s° is a semi-abelian variety over \mathbf{F}_k , the maximal abelian quotient \overline{A} of \mathscr{A}_s° is ordinary and the maximal torus of \mathscr{A}_s° splits over \mathbf{F}_k . Namely, there is a short exact sequence

$$0 \to \mathbf{G}_m^{\oplus r} \to \mathscr{A}_s^{\circ} \to \overline{A} \to 0,$$

for some $r \ge 0$ and an ordinary abelian variety \overline{A} over \mathbf{F}_k . To simplify the notation, we say that A has **split multiplicative reduction** if it has semi-ordinary reduction, and the connected component \mathscr{A}_s° is a split torus.

Let A_1 and A_2 be abelian varieties over k which have split semi-ordinary reduction. From [5, Theorem 4.5] the Somekawa K-group $K(k; A_1, A_2)$ attached to A_1 and A_2 is of the form

(2)
$$K(k; A_1, A_2) = K(k; A_1, A_2)_{\text{fin}} \oplus K(k; A_1, A_2)_{\text{div}}$$

for some finite group $K(k; A_1, A_2)_{\text{fin}}$ and a divisible group $K(k; A_1, A_2)_{\text{div}}$. From now on, we investigate the finite part $K(k; A_1, A_2)_{\text{fin}}$. We denote by $K(k; A_1, A_2)_{\text{fin}}[p^{\infty}]$ the *p*-torsion part $\lim_{m \to \infty} K(k; A_1, A_2)[p^n]$ of the finite group $K(k; A_1, A_2)_{\text{fin}}$.

As in Theorem 1.2 and Conjecture 1.1, we consider one of the following conditions:

(ord) The abelian variety A_i has good ordinary reduction for i = 1, 2.

(mult) The abelian variety A_i has split multiplicative reduction for i = 1, 2.

THEOREM 2.1. Assume one of the conditions (ord) or (mult). Then, the p-torsion part $K(k; A_1, A_2)_{\text{fin}}[p^{\infty}]$ is a quotient of $(\mathbf{Z}/p^{M^{\text{ur}}})^{\oplus g_1g_2}$, where $g_i = \dim(A_i)$.

PROOF. Recall that the Somekawa K-group $K(k; A_1, A_2)$ is a quotient of the Mackey product $(A_1 \otimes A_2)(k)$ for A_1 and A_2 regarding they are Mackey functors over k (for the definition and some properties of Mackey functors, see [5] or [2]). Hence, it is enough to show that there is a surjective homomorphism

$$(\mathbf{Z}/p^{M^{\mathrm{ur}}})^{\oplus g_1g_2} \twoheadrightarrow (A_1 \otimes A_2)(k)/p^n$$

for any $n \ge 1$. Here, we divide the cases into (ord) and (mult).

(The case (ord)) Consider the case (ord). Recall that for a finite flat (commutative) group scheme \mathscr{G} over \mathscr{O}_k , the correspondence $K \mapsto H^1_{\mathrm{fl}}(\mathscr{O}_K, \mathscr{G})$ defines a Mackey functor ([5, Lemma 4.3.1]). Let \mathscr{A}_i be the Néron model over \mathscr{O}_k of A_i for each i = 1, 2. The

Toshiro HIRANOUCHI

connected-étale sequence

$$0 \to \mathscr{A}_i[p^n]^\circ \to \mathscr{A}_i[p^n] \to \mathscr{A}_i[p^n]^{\mathsf{et}} \to 0$$

(cf. [6, Section 1.4]) induces an exact sequence of Mackey functors

(3)
$$H^{1}_{\mathrm{fl}}(O_{-},\mathscr{A}_{i}[p^{n}]^{\circ}) \to H^{1}_{\mathrm{fl}}(O_{-},\mathscr{A}_{i}[p^{n}]) \to H^{1}_{\mathrm{fl}}(O_{-},\mathscr{A}_{i}[p^{n}]^{\mathrm{et}}) \to 0$$

([5, Lemma 4.3.3]). By [5, Lemma 4.3.3] again, we also have $H^1_{\mathrm{fl}}(O_-, \mathscr{A}_i[p^n]) \simeq A_i/p^n$ as Mackey functors. Put $\mathcal{H}^{\bullet}_i := H^1_{\mathrm{fl}}(O_-, \mathscr{A}_i[p^n]^{\bullet})$ for $\bullet \in \{\circ, \mathrm{et}\}$. By the right exactness of the Mackey products, we obtain the following commutative diagram with exact rows and columns:

For a finite unramified extension K/k, the norm $H_i^*(K) \to H_i^*(k)$ is surjective ([5, Lemma 4.3.1]). Hence, the norm map for K/k on $\mathcal{H}_1^\circ \otimes \mathcal{H}_2^\circ$ and $\mathcal{H}_1^\circ \otimes \mathcal{H}_2^{\text{et}}$ are surjective. By the diagram chase, same holds on $\mathcal{H}_1^\circ \otimes A_2/p^n$. In the same way, the norm map for K/k on $\mathcal{H}_1^{\text{et}} \otimes \mathcal{H}_2^\circ$ and $\mathcal{H}_1^{\text{et}} \otimes \mathcal{H}_2^{\text{et}}$ are surjective, so is $\mathcal{H}_1^{\text{et}} \otimes A_2/p^n$. From the vertical and the middle short exact sequence in the above diagram (4), the norm map $(A_1/p^n \otimes A_2/p^n)(K) \to (A_1/p^n \otimes A_2/p^n)(k)$ is surjective.

By replacing a sufficiently large unramified extension field K of k with k (and M^{ur} does not vary), we have

$$\mathscr{A}_i[p^n]^{\operatorname{et}} \simeq (\mathbf{Z}/p^n)^{\oplus g_i}, \quad \text{and} \quad \mathscr{A}_i[p^n]^\circ \simeq (\mu_{p^n})^{\oplus g_i}.$$

From [5, Lemma 4.3.3], we have $\mathcal{H}_i^{\circ} \simeq (U/p^n)^{\oplus g_i}$ and $\mathcal{H}_i^{\text{et}} \simeq (\mathbb{Z}/p^n)^{\oplus g_i}$, where \mathbb{Z} and U are Mackey functors defined by $K \mapsto \mathbb{Z}$ and $K \mapsto U_K = \mathcal{O}_K^{\times}$ respectively. By [5, Lemma 4.2.2] and the Mackey product \otimes commutes with \oplus , we have

$$\mathcal{H}_{1}^{\text{et}} \otimes \mathcal{H}_{2}^{\text{et}} \simeq (\mathbb{Z}/p^{n})^{\oplus g_{1}} \otimes (\mathbb{Z}/p^{n})^{\oplus g_{2}} \simeq (\mathbb{Z}/p^{n} \otimes \mathbb{Z}/p^{n})^{\oplus g_{1}g_{2}} = 0,$$

$$\mathcal{H}_{1}^{\circ} \otimes \mathcal{H}_{2}^{\text{et}} \simeq (U/p^{n})^{\oplus g_{1}} \otimes (\mathbb{Z}/p^{n})^{\oplus g_{2}} \simeq (U/p^{n} \otimes \mathbb{Z}/p^{n})^{\oplus g_{1}g_{2}} = 0,$$
 and

 $\mathcal{H}_1^{\text{et}} \otimes \mathcal{H}_2^{\circ} = 0$ by the same computations above.

28

Applying these results to the diagram (4), we obtain a surjective homomorphism

(5)
$$\mathcal{H}_1^{\circ} \otimes \mathcal{H}_2^{\circ} \twoheadrightarrow A_1/p^n \otimes A_2/p^n.$$

By [5, Lemma 4.3.3, Lemma 4.2.2] again, the former group $\mathcal{H}_1^\circ\otimes\mathcal{H}_2^\circ$ has a representation

$$(\mathcal{H}_{1}^{\circ} \otimes \mathcal{H}_{2}^{\circ})(k) \simeq ((U/p^{n})^{\oplus g_{1}} \otimes (U/p^{n})^{\oplus g_{2}})(k)$$
$$\simeq (U/p^{n} \otimes U/p^{n})(k)^{\oplus g_{1}g_{2}} \qquad (\text{because } \otimes \text{ commutes with } \oplus)$$
$$\simeq \bigoplus_{i=1}^{g_{1}g_{2}} \mathbb{Z}/p^{n_{i}}$$

for some $n_i \leq M^{\text{ur}}$. By (5), we have the required surjective homomorphism

$$(\mathbf{Z}/p^{M^{\mathrm{ur}}})^{\oplus g_1g_2} \twoheadrightarrow (\mathcal{H}_1^{\circ} \otimes \mathcal{H}_2^{\circ})(k) \twoheadrightarrow (A_1/p^n \otimes A_2/p^n)(k) = (A_1 \otimes A_2)(k)/p^n$$

for any n. The assertion follows from this.

(The case (mult)) Next, we consider the case (mult). From the assumption on A_i for i = 1, 2, there exists a split torus $T_i \simeq \mathbf{G}_m^{\oplus g_i}$ and a free abelian subgroup $L_i \subset T_i(k)$ such that

(6)
$$T_i(k')/L_i \simeq A_i(k')$$

for any finite extension k'/k. The quotient map $T_i \twoheadrightarrow A_i$ induces a surjection $(T_1 \otimes T_2)(k)/p^n \twoheadrightarrow (A_1 \otimes A_2)(k)/p^n$. This gives

$$((\mathbf{G}_m \otimes \mathbf{G}_m)(k)/p^n)^{\oplus g_1g_2} \twoheadrightarrow (T_1 \otimes T_2)(k)/p^n \twoheadrightarrow K(k; A_1, A_2)/p^n$$

for any $n \ge 1$ (cf. [7, Remark 4.2 (2)]). Since we have a surjective homomorphism $\mathbb{Z}/p^{M^{ur}} \twoheadrightarrow (\mathbb{G}_m \otimes \mathbb{G}_m)(k)/p^n$ ([5, Lemma 4.2.2]), we obtain surjective homomorphisms

$$(\mathbf{Z}/p^{M^{\mathfrak{w}}})^{\oplus g_1g_2} \twoheadrightarrow ((\mathbf{G}_m \otimes \mathbf{G}_m)(k)/p^n)^{\oplus g_1g_2} \twoheadrightarrow K(k;A_1,A_2)/p^n.$$

PROOF OF THEOREM 1.2. As we referred in Section 1, to show the divisibility of $F^2(X)$ for the product $X = C_1 \times \cdots \times C_n$, by using the decomposition (1) it is enough to show that $K(k; J_1, \ldots, J_r)$ is divisible for any $r \ge 2$ under the condition (ord) or (mult) for the Jacobian variety J_i of curves C_i $(i = 1, \ldots, r)$. For the case $r \ge 3$, this follows from [5, Remark 4.4.5].

Now, we consider the case r = 2. Since we are assuming $e_k , we have <math>\mu_p \not\subset k$. If the extension $k(\mu_p)/k$ is unramified, then $e_{k(\mu_p)} = e_k . This contradicts with <math>e_{k(\mu_p)/\mathbf{Q}_p} = (p-1)e_{k(\mu_p)/\mathbf{Q}_p(\mu_p)} \ge p - 1$. As a result, we have $\mu_p \not\subset k^{\mathrm{ur}}$ and hence $M^{\mathrm{ur}} = 0$. From Theorem 2.1, the finite *p*-part is $K(k; J_1, J_2)_{\mathrm{fin}}[p^{\infty}] = 0$. By considering the decomposition (2), the groups $K(k; J_1, J_2) \simeq F^2(X)$ are *p*-divisible.

REMARK 2.2. If both of A_1 and A_2 have good reduction, then it is known that $K(k; A_1, A_2)$ is *l*-divisible for any prime $l \neq p$ ([5, Theorem 3.5]). Therefore, in the case (ord), we have $K(k; A_1, A_2)_{\text{fin}} = K(k; A_1, A_2)_{\text{fin}} [p^{\infty}]$ and the K-group $K(k; A_1, A_2)$ becomes divisible when $M^{\text{ur}} = 0$.

Closing this note, we explain some reasons why we have to restrict to the same reduction type of A_1 and A_2 as in the conditions (ord) and (mult). Consider the following situation: Suppose A_1 has good ordinary reduction, and A_2 has split multiplicative reduction. From the exact sequence (3), we have an exact sequence of Mackey functors:

$$\mathcal{H}_1^{\circ} \to A_1/p^n \to \mathcal{H}_1^{\mathrm{et}} \to 0.$$

As in (6), there exists a split torus $T_2 \simeq \mathbf{G}_m^{\oplus g_2}$ and a subgroup $L_2 \subset T_2(k)$ such that $T_2(k')/L_2 \simeq A_2(k')$ for any finite extension k'/k. In particular, there is a surjection $T_2/p^n \twoheadrightarrow A_2/p^n$ of Mackey functors. We have the following commutative diagram with exact rows and columns:

As we have $\mathcal{H}_1^{\bullet} \otimes T_2/p^n \simeq (\mathcal{H}_1^{\bullet} \otimes \mathbf{G}_m/p^n)^{\oplus g_2}$, we consider the short exact sequence

$$\mathcal{H}_1^{\circ} \otimes \mathbf{G}_m/p^n \to A_1/p^n \otimes \mathbf{G}_m/p^n \to \mathcal{H}_1^{\mathsf{et}} \otimes \mathbf{G}_m/p^n \to 0.$$

After replacing a finite unramified extension K/k with k, by [5, Lemma 4.2.2] we have

$$(\mathcal{H}_{1}^{\circ} \otimes \mathbf{G}_{m}/p^{n})(k) \simeq (U/p^{n} \otimes \mathbf{G}_{m}/p^{n})(k)^{\oplus g_{1}} \simeq (\mathbf{Z}/p^{n_{1}})^{\oplus g_{1}},$$

$$(\mathcal{H}_{1}^{\mathrm{et}} \otimes \mathbf{G}_{m}/p^{n})(k) \simeq (\mathcal{Z}/p^{n} \otimes \mathbf{G}_{m}/p^{n})(k)^{\oplus g_{1}} \simeq (\mathbf{Z}/p^{n})^{\oplus g_{1}}$$

for some $n_1 \leq M^{\text{ur}}$. For this reason, the term $\mathcal{H}^{\text{et}} \otimes \mathbf{G}_m/p^n$ is not bounded. In fact, using the formal group low \hat{A}_1 of A_1 , there is a short exact sequence

(7)
$$(\hat{A}_1 \otimes \mathbf{G}_m)(k)/p^n \to (A \otimes \mathbf{G}_m)(k)/p^n \to \bar{A}_1(\mathbf{F}_k)/p^n \to 0,$$

where \bar{A}_1 is the reduction of A_1 , and also a surjective homomorphism $(\mathbb{Z}/p^{M^{ur}})^{\oplus g_1} \twoheadrightarrow (\hat{A}_1 \otimes \mathbb{G}_m)(k)/p^n$ for any $n \ge 1$ (cf. [1, Theorem 3.5]). Therefore, one can present an upper bound of the order of the *p*-torsion part of the Somekawa *K*-group as follows:

LEMMA 2.3. We assume that A_1 has good ordinary reduction, and A_2 has split multiplicative reduction. Then, we have an inequality

(8)
$$\operatorname{ord}_{p}(\#K(k;A_{1},A_{2})_{\operatorname{fin}}[p^{\infty}]) \leq g_{2}(g_{1}M^{\operatorname{ur}} + \operatorname{ord}_{p}(\#\bar{A}_{1}(\mathbf{F}_{k}))),$$

where ord_p is the order function normalized as $\operatorname{ord}_p(p) = 1$.

PROOF. As we noted above, there are surjective homomorphisms

$$((A_1 \otimes \mathbf{G}_m)(k)/p^n)^{\oplus g_2} \twoheadrightarrow (A_1 \otimes A_2)(k)/p^n \twoheadrightarrow K(k; A_1, A_2)/p^n.$$

The product $(A_1 \otimes \mathbf{G}_m)(k)$ has also the following decomposition:

$$(A_1 \otimes \mathbf{G}_m)(k) = (A_1 \otimes \mathbf{G}_m)(k)_{\text{fin}} \oplus (A_1 \otimes \mathbf{G}_m)(k)_{\text{div}}$$

for some finite group $(A_1 \otimes \mathbf{G}_m)(k)_{\text{fin}}$ and a divisible group $(A_1 \otimes \mathbf{G}_m)(k)_{\text{div}}$ ([1, Lemma 3.1]). By taking the limit of the exact sequence (7), we have

$$\operatorname{ord}_p(\#(A_1 \otimes \mathbf{G}_m)(k)_{\operatorname{fin}}[p^{\infty}]) \leq g_1 M^{\operatorname{ur}} + \operatorname{ord}_p(\#\overline{A}_1(\mathbf{F}_k)).$$

Thus, we obtain the required inequality (8).

References

- [1] E. Gazaki and T. Hiranouchi, Abelian geometric fundamental groups for curves over a *p*-adic field, arXiv:2201.05982.
- [2] —, Divisibility results for zero-cycles, European Journal of Math (2021), 1–44.
- [3] M. Hindry and J. H. Silverman, Diophantine geometry: An introduction, Graduate Texts in Mathematics, vol. 201, Springer-Verlag, New York, 2000.
- [4] T. Hiranouchi, Albanese kernel of the product of curves over a p-adic field, Bull. Kyushu Inst. Technol. Pure Appl. Math. (2021), no. 68, 1–7.
- [5] W. Raskind and M. Spiess, Milnor K-groups and zero-cycles on products of curves over p-adic fields, Compositio Math. 121 (2000), 1–33.
- [6] J. Tate, p-divisible groups, Proc. Conf. Local Fields (Driebergen, 1966), Springer, Berlin, 1967, pp. 158–183.
- [7] T. Yamazaki, On Chow and Brauer groups of a product of Mumford curves, Math. Ann. 333 (2005), 549–567.

(T. Hiranouchi) Graduate School of Engineering Kyushu Institute of Technology Tobata, Kitakyushu 804-8550, Japan E-mail: hira@mns.kyutech.ac.jp