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BOUNDS FOR THE K-GROUPS ASSOCIATED TO ABELIAN

VARIETIES OVER A p-ADIC FIELD

Toshiro Hiranouchi

Abstract

For a product of curves X ¼ C1 � � � � � Cn over a p-adic field k, in [2] we proposed a conjecture

that the kernel of the Albanese map for X is p-divisible when the base field is absolutely unramified and

proved this under some assumptions. In this note, we report that when the Jacobian varieties of such

curves C1; . . . ;Cn all have good ordinary reduction, the Albanese kernel for the product X ¼ C1 � � � � �
Cn is still p-divisible even if the base field is not unramified but its ramification is small enough.

1. Introduction

Let k be a finite extension of Qp, and let X be a smooth, projective, and geo-

metrically connected variety over a field k. We consider the group CH0ðX Þ of zero

cycles on X modulo rational equivalence. There is a degree map deg : CH0ðXÞ ! Z

whose kernel is denoted by F 1ðX Þ. Moreover, there is a generalization of the Abel-

Jacobi map

albX : F 1ðX Þ ! AlbX ðkÞ

called the Albanese map of X and its kernel is denoted by F 2ðX Þ, where AlbX is the

dual abelian variety to the Picard variety of X . When X has a k-rational point, the

degree map is surjective. In [2], we proposed the following conjecture:

Conjecture 1.1. Suppose that k=Qp is unramified. Let X ¼ C1 � � � � � Cn be the

product of smooth projective curves C1; . . . ;Cn over k with CiðkÞ0q for all i. We

further assume that we are in one of the following two situations:

(good) The Jacobian variety Ji of Ci has good reduction, for i ¼ 1; . . . ; n.

(mult) The Jacobian variety Ji of Ci has split multiplicative reduction, for i ¼
1; . . . ; n, that is, the curve Ci is a Mumford curve over k.

Then, the kernel of the Albanese map F 2ðXÞ is p-divisible.

The case (mult) is settled ([2, Proposition 4.16]). For the case (good) also, there are

partial results as follows: For elliptic curves Ci ¼ Ei over k which has good reduction,

assuming that at most one of E1; . . . ;En has good supersingular reduction, the conjecture

above is proved ([2, Theorem 1.4, Corollary 1.5]). In this short note, we report that

using computations in [5], the divisibility of the Albanese kernel holds over the base field

with low ramification as follows:



Theorem 1.2. Let k be a finite extension of Qp with ramification index ek=Qp
<

p� 1. Let X ¼ C1 � � � � � Cn be the product of smooth projective curves C1; . . . ;Cn

over k with CiðkÞ0q. We further assume that we are in one of the following two

situations:

(ord) The Jacobian variety Ji of Ci has good ordinary reduction, for i ¼ 1; . . . ; n.

(mult) The Jacobian variety Ji of Ci has split multiplicative reduction, for i ¼
1; . . . ; n.

Then, the Albanese kernel F 2ðX Þ is p-divisible.

For a product of curves X ¼ C1 � � � � � Cn with CiðkÞ0q, the Albanese kernel

F 2ðX Þ is related to the Somekawa K-groups associated to the Jacobian varieties as

follows (for the definition of Somekawa K-groups, see [5]):

F 2ðXÞ !F 0
2anan

0
1ai1<i2<���<inan

Kðk; Ji1 ; . . . ; JirÞ;ð1Þ

where Ji is the Jacobian variety of Ci (cf. [2, (2.5)]). To show that F 2ðXÞ is p-divisible,

from the above isomorphism, it is enough to show the all terms Kðk; Ji1 ; . . . ; JirÞ are

p-divisible. In fact, it is known that Kðk; J1; . . . ; JrÞ is divisible for rb 3 ([5, Remark

4.4.5]). Because of this, first we investigate the structure of the Somekawa K-group

Kðk;A1;A2Þ attached to two abelian varieties A1, A2 in the next section, and then give

a proof of the above theorem.

On the contrary to the above theorem, when the base field k has ramified suf-

ficiently, the Albanese kernel F 2ðX Þ may not be p-divisible. In fact, for a curve C

over k and suppose that the Jacobian variety J ¼ JacC has good ordinary reduction.

Here, we assume that the base field k satisfies J½ p� � JðkÞ. By the Weil pairing, this

assumption implies mp � k and hence ek=Qp
b p� 1 (cf. [3, Exercise A.7.8]). For the

product X ¼ C � C, it is known that

F 2ðX ÞnZ=pZFKðk; J; JÞnZ=pZF ðZ=pZÞlg2 ;

where g ¼ dimðJÞ ([4, Theorem 1.1]).

Notation. Throughout this note, we follow the notation used in [2]. In partic-

ular, for an abelian group G and m A Zb1, we write G½m� and G=m for the kernel and

cokernel of the multiplication by m on G respectively.
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2. Upper bounds for Somekawa K-groups

In this section, we use the following notation:
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� k: a finite extension of Qp with absolute ramification index ek ¼ ek=Qp
,

� Fk: the residue field of k,
� kur: the maximal unramified extension of k, and
� M ur :¼ maxfmb 0 j mpm � kurg.
For an abelian variety A over k and for the Néron model A over Ok of A, we

denote by As the special fiber of A and A�
s the connected component of the zero

element in As. Recall that an abelian variety A has split semi-ordinary reduction (in the

sense of [5]) if A�
s is a semi-abelian variety over Fk, the maximal abelian quotient A of

A�
s is ordinary and the maximal torus of A�

s splits over Fk. Namely, there is a short

exact sequence

0 ! Glr
m ! A�

s ! A ! 0;

for some rb 0 and an ordinary abelian variety A over Fk. To simplify the notation,

we say that A has split multiplicative reduction if it has semi-ordinary reduction, and the

connected component A�
s is a split torus.

Let A1 and A2 be abelian varieties over k which have split semi-ordinary reduction.

From [5, Theorem 4.5] the Somekawa K-group Kðk;A1;A2Þ attached to A1 and A2 is

of the form

Kðk;A1;A2Þ ¼ Kðk;A1;A2Þfin lKðk;A1;A2Þdivð2Þ

for some finite group Kðk;A1;A2Þfin and a divisible group Kðk;A1;A2Þdiv. From now

on, we investigate the finite part Kðk;A1;A2Þfin. We denote by Kðk;A1;A2Þfin½ py� the
p-torsion part lim�! nb1

Kðk;A1;A2Þ½ pn� of the finite group Kðk;A1;A2Þfin.
As in Theorem 1.2 and Conjecture 1.1, we consider one of the following

conditions:

(ord) The abelian variety Ai has good ordinary reduction for i ¼ 1; 2.

(mult) The abelian variety Ai has split multiplicative reduction for i ¼ 1; 2.

Theorem 2.1. Assume one of the conditions (ord) or (mult). Then, the p-torsion

part Kðk;A1;A2Þfin½ py� is a quotient of ðZ=pM urÞlg1g2 , where gi ¼ dimðAiÞ.

Proof. Recall that the Somekawa K-group Kðk;A1;A2Þ is a quotient of the

Mackey product ðA1 nA2ÞðkÞ for A1 and A2 regarding they are Mackey functors over k

(for the definition and some properties of Mackey functors, see [5] or [2]). Hence, it is

enough to show that there is a surjective homomorphism

ðZ=pM urÞlg1g2 !! ðA1 nA2ÞðkÞ=pn

for any nb 1. Here, we divide the cases into (ord) and (mult).

(The case (ord)) Consider the case (ord). Recall that for a finite flat (commutative)

group scheme G over Ok, the correspondence K 7! H 1
fl ðOK ;GÞ defines a Mackey functor

([5, Lemma 4.3.1]). Let Ai be the Néron model over Ok of Ai for each i ¼ 1; 2. The

Bounds for the K-Groups Associated to Abelian Varieties over a p-Adic Field 27



connected-étale sequence

0 ! Ai½ pn�� ! Ai½ pn� ! Ai½ pn�et ! 0

(cf. [6, Section 1.4]) induces an exact sequence of Mackey functors

H 1
fl ðO�;Ai½ pn��Þ ! H 1

fl ðO�;Ai½ pn�Þ ! H 1
fl ðO�;Ai½ pn�etÞ ! 0ð3Þ

([5, Lemma 4.3.3]). By [5, Lemma 4.3.3] again, we also have H 1
fl ðO�;Ai½ pn�ÞFAi=p

n

as Mackey functors. Put H�
i :¼ H 1

fl ðO�;Ai½ pn��Þ for � A f�; etg. By the right exact-

ness of the Mackey products, we obtain the following commutative diagram with exact

rows and columns:

H�
1 nH�

2 H�
1 nA2=p

n H�
1 nHet

2 0
?
?
?
y

?
?
?
y

?
?
?
y

A1=p
n nH�

2 ���! A1=p
n nA2=p

n ���! A1=p
n nHet

2 ���! 0
?
?
?
y

?
?
?
y

?
?
?
y

Het
1 nH�

2 Het
1 nA2=p

n Het
1 nHet

2 0
?
?
?
y

?
?
?
y

?
?
?
y

0 0 0 :

ð4Þ

������! ������! ����!

�����! �����! ����!

For a finite unramified extension K=k, the norm H �
i ðKÞ ! H �

i ðkÞ is surjective ([5,

Lemma 4.3.1]). Hence, the norm map for K=k on H�
1 nH�

2 and H�
1 nHet

2 are

surjective. By the diagram chase, same holds on H�
1 nA2=p

n. In the same way, the

norm map for K=k on Het
1 nH�

2 and Het
1 nHet

2 are surjective, so is Het
1 nA2=p

n.

From the vertical and the middle short exact sequence in the above diagram (4), the

norm map ðA1=p
n nA2=p

nÞðKÞ ! ðA1=p
n nA2=p

nÞðkÞ is surjective.

By replacing a su‰ciently large unramified extension field K of k with k (and M ur

does not vary), we have

Ai½ pn�et F ðZ=pnÞlgi ; and Ai½ pn�� F ðmpnÞlgi :

From [5, Lemma 4.3.3], we have H�
i F ðU=pnÞlgi and Het

i F ðZ =pnÞlgi , where Z and

U are Mackey functors defined by K 7! Z and K 7! UK ¼ O �
K respectively. By [5,

Lemma 4.2.2] and the Mackey product n commutes with l, we have

Het
1 nHet

2 F ðZ =pnÞlg1 n ðZ =pnÞlg2 F ðZ =pn nZ =pnÞlg1g2 ¼ 0;

H�
1 nHet

2 F ðU=pnÞlg1 n ðZ =pnÞlg2 F ðU=pn n Z =pnÞlg1g2 ¼ 0; and

Het
1 nH�

2 ¼ 0 by the same computations above:
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Applying these results to the diagram (4), we obtain a surjective homomorphism

H�
1 nH�

2 !! A1=p
n nA2=p

n:ð5Þ

By [5, Lemma 4.3.3, Lemma 4.2.2] again, the former group H�
1 nH�

2 has a represen-

tation

ðH�
1 nH�

2ÞðkÞF ððU=pnÞlg1 n ðU=pnÞlg2ÞðkÞ

F ðU=pn nU=pnÞðkÞlg1g2 ðbecause n commutes with lÞ

F 0
g1g2

i¼1

Z=pni

for some ni aM ur. By (5), we have the required surjective homomorphism

ðZ=pM urÞlg1g2 !! ðH�
1 nH�

2ÞðkÞ !! ðA1=p
n nA2=p

nÞðkÞ ¼ ðA1 nA2ÞðkÞ=pn

for any n. The assertion follows from this.

(The case (mult)) Next, we consider the case (mult). From the assumption on Ai

for i ¼ 1; 2, there exists a split torus Ti FGlgi
m and a free abelian subgroup Li � TiðkÞ

such that

Tiðk 0Þ=Li FAiðk 0Þð6Þ

for any finite extension k 0=k. The quotient map Ti !! Ai induces a surjection

ðT1 nT2ÞðkÞ=pn !! ðA1 nA2ÞðkÞ=pn. This gives

ððGm nGmÞðkÞ=pnÞlg1g2 !! ðT1 nT2ÞðkÞ=pn !! Kðk;A1;A2Þ=pn

for any nb 1 (cf. [7, Remark 4.2 (2)]). Since we have a surjective homomorphism

Z=pM ur !! ðGm nGmÞðkÞ=pn ([5, Lemma 4.2.2]), we obtain surjective homomorphisms

ðZ=pM urÞlg1g2 !! ððGm nGmÞðkÞ=pnÞlg1g2 !! Kðk;A1;A2Þ=pn: r

Proof of Theorem 1.2. As we referred in Section 1, to show the divisibility of

F 2ðX Þ for the product X ¼ C1 � � � � � Cn, by using the decomposition (1) it is enough to

show that Kðk; J1; . . . ; JrÞ is divisible for any rb 2 under the condition (ord) or (mult)

for the Jacobian variety Ji of curves Ci ði ¼ 1; . . . ; rÞ. For the case rb 3, this follows

from [5, Remark 4.4.5].

Now, we consider the case r ¼ 2. Since we are assuming ek < p� 1, we have

mp 6� k. If the extension kðmpÞ=k is unramified, then ekðmpÞ ¼ ek < p� 1. This contra-

dicts with ekðmpÞ=Qp
¼ ðp� 1ÞekðmpÞ=QpðmpÞ b p� 1. As a result, we have mp 6� kur and

hence M ur ¼ 0. From Theorem 2.1, the finite p-part is Kðk; J1; J2Þfin½ py� ¼ 0. By

considering the decomposition (2), the groups Kðk; J1; J2ÞFF 2ðX Þ are p-divisible.

r
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Remark 2.2. If both of A1 and A2 have good reduction, then it is known that

Kðk;A1;A2Þ is l-divisible for any prime l0 p ([5, Theorem 3.5]). Therefore, in the case

(ord), we have Kðk;A1;A2Þfin ¼ Kðk;A1;A2Þfin½ py� and the K-group Kðk;A1;A2Þ be-

comes divisible when M ur ¼ 0.

Closing this note, we explain some reasons why we have to restrict to the same

reduction type of A1 and A2 as in the conditions (ord) and (mult). Consider the fol-

lowing situation: Suppose A1 has good ordinary reduction, and A2 has split multi-

plicative reduction. From the exact sequence (3), we have an exact sequence of Mackey

functors:

H�
1 ! A1=p

n ! Het
1 ! 0:

As in (6), there exists a split torus T2 FGlg2
m and a subgroup L2 � T2ðkÞ such that

T2ðk 0Þ=L2 FA2ðk 0Þ for any finite extension k 0=k. In particular, there is a surjection

T2=p
n !! A2=p

n of Mackey functors. We have the following commutative diagram

with exact rows and columns:

H�
1 nT2=p

n H�
1 nA2=p

n 0
?
?
?
y

?
?
?
y

A1=p
n nT2=p

n ���! A1=p
n nA2=p

n ���! 0
?
?
?
y

?
?
?
y

Het
1 nT2=p

n Het
1 nA2=p

n 0
?
?
?
y

?
?
?
y

0 0 :

������! ����!

�����! ����!

As we have H�
1 nT2=p

n F ðH�
1 nGm=p

nÞlg2 , we consider the short exact sequence

H�
1 nGm=p

n ! A1=p
n nGm=p

n ! Het
1 nGm=p

n ! 0:

After replacing a finite unramified extension K=k with k, by [5, Lemma 4.2.2] we

have

ðH�
1 nGm=p

nÞðkÞF ðU=pn nGm=p
nÞðkÞlg1 F ðZ=pn1Þlg1 ;

ðHet
1 nGm=p

nÞðkÞF ðZ =pn nGm=p
nÞðkÞlg1 F ðZ=pnÞlg1

for some n1 aM ur. For this reason, the term Het nGm=p
n is not bounded. In fact,

using the formal group low ÂA1 of A1, there is a short exact sequence

ðÂA1 nGmÞðkÞ=pn ! ðAnGmÞðkÞ=pn ! A1ðFkÞ=pn ! 0;ð7Þ
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where A1 is the reduction of A1, and also a surjective homomorphism ðZ=pM urÞlg1 !!
ðÂA1 nGmÞðkÞ=pn for any nb 1 (cf. [1, Theorem 3.5]). Therefore, one can present an

upper bound of the order of the p-torsion part of the Somekawa K-group as follows:

Lemma 2.3. We assume that A1 has good ordinary reduction, and A2 has split

multiplicative reduction. Then, we have an inequality

ordpðaKðk;A1;A2Þfin½ py�Þa g2ðg1M ur þ ordpðaA1ðFkÞÞÞ;ð8Þ

where ordp is the order function normalized as ordpðpÞ ¼ 1.

Proof. As we noted above, there are surjective homomorphisms

ððA1 nGmÞðkÞ=pnÞlg2 !! ðA1 nA2ÞðkÞ=pn !! Kðk;A1;A2Þ=pn:

The product ðA1 nGmÞðkÞ has also the following decomposition:

ðA1 nGmÞðkÞ ¼ ðA1 nGmÞðkÞfin l ðA1 nGmÞðkÞdiv
for some finite group ðA1 nGmÞðkÞfin and a divisible group ðA1 nGmÞðkÞdiv ([1, Lemma

3.1]). By taking the limit of the exact sequence (7), we have

ordpðaðA1 nGmÞðkÞfin½ py�Þa g1M
ur þ ordpðaA1ðFkÞÞ:

Thus, we obtain the required inequality (8). r
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