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An Ag2Se nanowire random network was fabricated for application as a data augmentation device and combined with a binary convolutional neural
network (BCNN) to achieve high accuracy in voice classification tasks. Due to the nonlinear high-dimensional characteristics resulting from the
formation of the conductive filament at the cross junction, the Ag2Se device could transform input data into higher-order multiple signals, thereby
enhancing the accuracy of the classification task by augmenting input signals. The results indicate that materials can realize data augmentation
with the same performance as software, suggesting that material-based hardware can be used as an elemental technology for information
processing. © 2023 The Author(s). Published on behalf of The Japan Society of Applied Physics by IOP Publishing Ltd

R
esearch on artificial intelligence (AI) technologies,
such as machine learning and artificial neural net-
works (ANNs), has progressed rapidly in recent

years. Specialized models for each class of tasks, such as
convolutional and recursive, have been developed, and these
models have been proven to have high accuracy.1–6)

However, the results of such tasks can be obtained only
when a sufficient amount of data is provided. Regardless of
the quality and accuracy of the model, it will not perform
satisfactorily if the data are insufficient. The data augmenta-
tion method is used to address this problem. Data augmenta-
tion is used in data preprocessing to virtually increase the
volume of data from a small amount of data that is originally
available. Some of the techniques used to accomplish this
include adding noise to the original data or using data
transformation operations, such as shifting and
stretching.7,8) Although this technique can compensate for
missing data, the preprocessing can incur high costs and
requires an efficient system. As the volume of augmented
data increases, similar data obtained by adding noise or other
alternative signals to the original image can be obtained from
a variety of data by filtering the signals. Material-based
devices have been used to implement this functionality in
hardware components.9–15) These devices use the physical
properties of materials, including nonlinear and high-dimen-
sional properties, to process information. We have performed
benchmark tasks, such as voice classification and image
recognition to demonstrate their information processing
capabilities,16–18) and they are expected to be applied to
data augmentation filters to perform various transformations
of the input. Some material-based information processing
devices that use atomic switch networks have been reported,
and their nonlinear and high-dimensional properties have
been theoretically and experimentally confirmed.19–21)

Because Ag2Se also exhibits atomic switching phenomena
driven by the redox transformations of silver atoms, we
propose the use of Ag2Se nanowire random network devices
in combination with atomic switch networks as data exten-
sion devices.22–24) The material also has high electrical
conductivity, low lattice thermal conductivity, and high

thermal stability. In our previous study, we also found that
Ag2Se nanowire random networks have electrically nonlinear
due to atomic switch elements formed at the junctions of the
nanowires and high-dimensional properties due to the net-
work geometry,25) which could be applied to the nonlinear
conversion of signals and augmentation of the quantity of
data.
After augmentation, the data need to be inputted into an

ANN for training. Material-based data augmentation de-
vices need to be integrated with the neural network circuit
in a system configuration. To decrease the power require-
ment for computation, a binary convolutional neural net-
work (BCNN) was employed to confirm compatibility with
hardware-oriented neural networks. A BCNN is a network
in which weights between the convolution layer and the
max pooling layer and affine layer are represented as
binary values.26–29) In addition, because the BCNN uses
binary values, data processing can be realized using digital
logic circuits, which allows for easy hardware implemen-
tation compared to other neural network models. Voice
classification based on CNN is highly accurate,30) and
BCNN has already been implemented in hardware using
field programmable gate arrays.31–33) Hence, BCNNs were
used in the present study. The objective was to use an
Ag2Se nanowire random network device as a data aug-
mentation device in conjunction with a BCNN to construct
a highly efficient hardware-friendly computing system.
The Ag2Se nanowires were synthesized and analyzed using
X-ray diffraction (XRD) and scanning electron microscopy
(SEM). The electrical properties of the Ag2Se nanowire
random network device were measured and various output
signals were obtained from the random networks. Then,
voice classification was performed to evaluate the data
augmentation performance of the device.
Ag2Se was synthesized based on the procedure detailed in

the literature.22) Sodium selenite (0.25 g, Sigma Aldrich
99.9%) and glucose (1.5 g, Wako, 98%) were added to
100 ml deionized (DI) water at 90 °C without stirring. A
brick-red precipitate was formed at the bottom after 20 min.
This material was washed several times with DI water.
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Subsequently, it was dispersed again in isopropanol and
stored in a dark room at 24 °C for one week, resulting in the
formation of t-Se nanowires. These nanowires were sub-
merged in an AgNO3 solution for 3 h to obtain the target
material.
The random network device was fabricated using electron

beam (EB) lithography. First, a Si substrate coated with SiO2

(thickness: 200 nm) was used. The substrate was coated by
resist (gL 2000: anisole = 1:1, Gluon Lab), and the spinning
speed and time were 5000 rpm and 1 min. This exposed the
EB (current: 30 nA), and the development of the substrate
using a ZED-N50 (Zeon) solution was carried out for 5 min.
The developed substrate was then sputtered with Al (thick-
ness, 100 nm), and the sputtered substrate was lifted off using
dimethyl sulfoxide solution at 60 °C for 20 min. Finally, the
device was fabricated by dropping the synthesized nanowires
at the electrode centers. The electronic measurements were
controlled using the LabVIEW 2020 system. The input was a
sinusoidal waveform (amplitude: 2 Vpp, frequency: 11 Hz),
and 15 V–t outputs were obtained with the DAQ system
(PXIe-6363). The outputs from the V–t measurements were
converted by fast Fourier transformation with triangular
windows to check for the generation of higher harmonics.
A free-spoke-digit-data dataset34) that included voice-re-
corded data for the pronunciation of the numbers zero to
nine by six speakers was used to demonstrate voice

classification. Each number was pronounced 50 times by
each of the speakers. LabVIEW was used to convert these
data to analog time-voltage signals as the input for the
fabricated device. Fifteen of these outputs were measured at a
sampling rate of 1000/s. After recording, the data were
labeled as training signals and inputted into the BCNN
model for the classification task. The processes were con-
ducted with and without the device to verify the performance
results. The procedure for the voice classification task is
shown in Fig. 1. A BCNN has two layers, namely, a
convolutional layer (input channel: 1, output channel: 30,
filter size: 50) and an affine layer. The labeled signals were
inputted to the convolutional layer, subjected to max pooling
(filter size: 4), and sent to the affine layer. A stochastic
gradient descent method was used for training. A total of
6750 training data points were used for number classification,
which was obtained by data augmentation from 15 outputs
(without case: 450). In the speaker classification, the number
of training data points was 40500 (without case: 2700). The
number of test data points was set to 50 (number classifica-
tion) and 300 (speaker classification), respectively. The
number of epochs was set to 50. The classification perfor-
mance was evaluated using a confusion matrix and four
indicators. The confusion matrix is composed of the actual
and predicted labels from the learning model. A higher
diagonal element indicates that the classification performance

Fig. 1. (Color online) (a) Schematic diagram of voice classification procedure with Ag2Se nanowire random network device. A two-pattern process was
conducted with and without the Ag2Se device to compare the performance. (b) Schematic BCNN components. The input was supplied to the convolutional
layer and then max-pooled to rearrange for the insertion into the affine layer.
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is better. From the value of the confusion matrix, four values
can be calculated as follows:

( )=
+

+ + +
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TP TN

TP FP FN TN
; I
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TP FN
; II
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+
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precision recall

precision recall
, IV

where TP, TF, NP, and NF denote the true positive, true
negative, negative positive, and negative false, respectively.
These values were high, indicating the success of the
classification task.
Figure 2(a) shows an SEM image of the brick-red

precipitate obtained in the synthesis. The results of an earlier
study confirm the spherical material to be amorphous Se.28)

The nanowire was obtained one week after the precipitate
was formed, as shown in Fig. 2(b). Some small amorphous
Se particles were observed as the nanowires grew from it and
formed t-Se nanowires.35,36) Figures 2(b) and 2(c) show SEM
images of the synthesized materials before and after

immersion in the AgNO3 aqueous solution, respectively.
Both images clearly show the nanowire geometry, and no
morphological changes were observed before and after
immersion. The diameter of the nanowires was approxi-
mately 73.8 nm. Figure 2(d) shows the XRD results of the
synthesized material, indicating the crystallinity of the
material. The designed and fabricated Ag2Se nanowire
random network device is shown in Figs. 3(a) and 3(c).
The electrodes were composed of aluminum, and the distance
between the devices was 200 μm, as shown in Fig. 3(b).
After casting, the center of the device was examined by SEM
and confirmed to have a disordered network. The results of
the V–t measurement are shown in Fig. 3(d). All the outputs
have a phase shift, which indicates that all the paths from the
input to the output electrodes are complicated and indicate
the possibility of obtaining various inputs. Phase shifting is
useful as a data augmentation technique for voice data since
voices with pseudo-timing shifts can be obtained. Figure 3(e)
shows a Lissajous plot for each output. The shape shows the
relationship between the input and output and reveals the
network dynamics. The random network device with Ag2Se
nanowire exhibited atomic switching behavior owing to the
redox reaction that occurred in the network. The difference in
output for each electrode could result from the different
conduction pathways. By randomly forming an atomic
switch, it was possible to create different outputs from a
single signal; these outputs were not identical, and the variety

(a) (b)

(c) (d)

Fig. 2. (Color online) (a) SEM image of amorphous Se obtained from precipitation. (b) SEM image of synthesized Se nanowires. Amorphous Se remains in
the network. (c) SEM image of Ag2Se nanowires after submersion in AgNO3 aq. The morphology does not change by the submersion. (d) XRD results of
synthesized Ag2Se nanowires.
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available in the output was amenable to the data augmenta-
tion process.
Figures 4(a) and 4(b) show the confusion matrix of the

number classification results with and without the Ag2Se

nanowire random network device. Better classification
results were obtained with the Ag2Se random network
device (accuracy: 92%) than without it (accuracy: 74%).
Figures 4(c) and 4(d) show the speaker classification results

(a) (b)

(c) (d)

(e)

Fig. 3. (Color online) (a) Designed electrodes. The number of electrodes was 16, and the distance between electrodes at the center was 200 μm, as shown in
(b). (c) Fabricated electrode chip. Center part was cast using Ag2Se nanowire solution and formed a random network. (d) V–t results of Ag2Se nanowire
random network device. Red signal indicates the input (amplitude; 2 Vpp, frequency: 11 Hz). (e) Lissajous plot at each output. All plots exhibit different shapes
due to different conducting paths.
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without and with the device, respectively. The accuracy
obtained with the Ag2Se nanowire random network device
was 43.3% and 81% without it. These results also indicated
that the Ag2Se random network device improved the
classification performance effectively. Speaker classifica-
tion often requires more data than readily available data, and
the results of this study indicate significant differences in
accuracy between cases with and without augmentation
devices. The presence of the device helped to successfully
increase the volume of training data while maintaining the
characteristics of each user. The four indicators are higher
when the device is used compared to when not used, as
shown in Figs. 4(e) and 4(f). These results have been
attributed to two reasons: one is the increased availability of
data, and the other is the conversion of input signals to

various other types of signals owing to the nonlinear and
high-dimensional properties in the Ag2Se nanowire net-
work. Figures 5(a) and 5(b) illustrate the relationship
between the quantity of training data and classification
accuracy for number classification and speaker classifica-
tion, respectively. The accuracy increased as the available
quantity of training data increased. Generally, as the
quantity of training data for a task increases, the task results
improve.37) However, if the variety of signals in the training
data is limited, this performance improvement cannot be
realized. Therefore, to add characteristics such as noise and
randomness, the fabricated device was developed as a filter
that could realize nonlinear conversions. As a result, the
variety of data used for learning increased, and high
performance was achieved. The results show that material-

(a) (b)

(c) (d)

(e) (f)

Fig. 4. (Color online) Voice classification results through the BCNN. Confusion matrices of number classification (a) without and (b) with the device.
Confusion matrices of speaker classification (c) without and (d) with the device. Evaluation values comparing without and with the device; (e) number and (f)
speaker classification task.
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based device successfully converted one signal to multiple
signals. The accuracy can be improved further by increasing
the number of electrodes and enhancing the nonlinear and
high-dimensional properties of the material. In the Ag2Se
nanowire network used in this study, nonlinear character-
istics were caused by the filament formation of the atomic
switch element. In addition, to obtain a variety of outputs, it
is necessary to increase the number of conduction paths
through many atomic switch elements. In other words, the
high dimensionality may depend on the network topology of
the nanowires. In this study, material-based random network
devices were incorporated into preprocessing as data
augmentation elements, and their usefulness was demon-
strated through voice classification. In the future, such
augmentation devices can possibly be incorporated into
electronic circuits and combined with other AI hardware to
develop highly efficient AI learning systems.
In conclusion, we demonstrated that an Ag2Se nanowire

random network device can be used as a data augmentation
device. An Ag2Se nanowire random network device was
fabricated, and the electric measurements indicated that it had
nonlinear properties resulting from the atomic switch net-
work. Lissajous plots showing a variety of outputs indicated
that an input signal was converted to many nonlinear and
high-dimensional signals resulting in data augmentation. A
demonstration of the voice classification function showed a
marked performance improvement with the Ag2Se nanowire
random network device to increase the variety of data
because of its nonlinear and high-dimensional properties. In
the future, this device will be used in electronic circuit chips
of AI systems, which is expected to facilitate a more efficient
architecture.
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