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Abstract: Reservoir computing (RC) has attracted attention and has been used in many appli-

cations because of its low training cost. Multiple studies using RC for image recognition have

been proposed, and some have achieved accuracy rates of greater than 99% on the MNIST

dataset. For the Fashion-MNIST and CIFAR-10 datasets, however, they have not yet achieved

high accuracy. This study proposes a novel convolutional neural network based on RC that can

be optimized by ridge regression rather than back-propagation. The reservoir-based network

has multiple reservoirs with various leak rates to extract features with various spatial frequen-

cies from the inputs. The experimental results show that the performance of the proposed

model achieves higher accuracy rates in the mentioned datasets compared with those of other

reservoir-based image recognition approaches.

Key Words: convolutional neural network, echo state network, image recognition, neural

network, reservoir computing.

1. Introduction
Reservoir computing (RC) [1] is a type of recurrent neural network in which weight connections in a

hidden layer do not have plasticity, whereas weights between the hidden and output layers do. This

is done so that the training costs will be lower than those of deep neural networks when facing a large

number of plastic weight connections trained by back-propagation and stochastic gradient descent

(SGD) methods.Owing to the low training cost, RC has attracted attention and has been used in

several applications in recent years.

Image recognition is one of several applications of RC [2–6]. Shaetti et al. [2] investigated the

abilities of RC (i.e., echo-state networks (ESNs)) [1, 7] on image recognition tasks and showed that an

ESN with 4,000 nodes in the reservoir achieved an accuracy rate of 99.07% on the MNIST dataset [8] by

applying appropriate preprocessing to the dataset. Tong and Tanaka [3] proposed a model combining

a convolutional neural network (CNN) [8] and RC, where the convolution and pooling layers worked as

dimension reducers of input data, and the RC received and processed the compressed data to classify

the input. The model achieved an accuracy rate of 99.25% on the MNIST dataset. Yonemura and

Katori [4] investigated the relationship between the number of training parameters and the accuracy
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of Tong’s model. Their study showed that a model with 40K training parameters achieved 98.71%

on the MNIST dataset, whereas the original work [3] required 90K training parameters. An et al. [5]

proposed a model combining a deep neural network and a delay feedback reservoir (DFR) [9] called

deep-DFR, which achieved an accuracy rate of 99.03% on the MNIST dataset. Although the deep-

DFR model is a reservoir-based approach, the model was optimized by the SGD, which required a

high training cost. Velichko [6] proposed a neural network that used filters based on logistic mapping

called LogNNet, which achieved an accuracy rate of 96.3% on the MNIST dataset.

As mentioned, some studies have achieved accuracy rates of greater than 99% on the MNIST

dataset. However, such high accuracy rates have not been achieved on the Fashion-MNIST [10] and

CIFAR-10 [11] datasets. For example, Tong’s model [4] achieved an accuracy rate of 86.27% on the

Fashion-MNIST dataset, and the deep-DFR model [5] achieved an accuracy rate of 60.57% on the

CIFAR-10 dataset. This study aims to realize a reservoir-based neural network that achieves high

accuracy rates on the Fashion-MNIST and CIFAR-10 datasets with low training costs. Hence, we

propose a novel reservoir-based convolutional operation.

This paper is organized as follows. Section 2 describes the proposed reservoir-based convolutional

operation. Section 3 describes the experimental settings and the results. Section 4 provides a discus-

sion, and Section 5 concludes the paper.

2. Proposed method

Figure 1 shows the proposed reservoir-based convolution layer that receives a region of interest (ROI)

clipped from input feature maps. The ROI is shifted using a stride size from the top-left to the

bottom-right of the input in the same manner as the CNNs. The ROIs, whose channel, height, and

width are C, Kh, and Kw, respectively, are fed into reservoirs in the layer. The layer has two streams.

One is a horizontal stream that receives a C ×Kh dimensional vector, uhor(t), where t is a time step

(0 ≤ t ≤ Kw), and the other is a vertical stream that receives a C ×Kw dimensional vector, uver(t)

(0 ≤ t ≤ Kh). The reservoir state, x(t) ∈ RR (xhor(t) in the horizontal stream and xver(t) in the

vertical stream), is updated using Eq. 1. Note that x(0) = 0.

x(t+ 1) = f{(1− δ)x(t) + δ(Winu(t) +Wrecx(t))}. (1)

Win and Wrec in the equation are a weight matrix between the input and the reservoir and a recurrent

connection matrix in the reservoir, respectively. These matrices are randomly initialized and are not
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Fig. 1. Reservoir-based convolution layer.
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updated during training. Note that the connection density of the matrix, Wrec, is set as p (0 ≤ p ≤ 1),

and the matrix is scaled to satisfy the echo state property [12]. f indicates a nonlinear activation

function; tanh is used in this study. δ (0 < δ < 1) indicates the leak rate that controls the updating

speed of the reservoir state.

The reservoir-based convolution layer has multiple reservoirs (N reservoirs in each stream) having

various leak rates. Hence, to extract features with various spatial frequencies from the input feature

maps, a reservoir having a low leak rate slowly updates its reservoir state and extracts features with low

spatial frequency and a reservoir with high leak rate extracts features having high spatial frequency.

After feeding the ROI to the reservoirs, the reservoir states in each stream are concatenated to form

an N × R channel pixel, and the N × R channel pixels of both streams are concatenated to form a

2×N ×R channel pixel for the output feature maps.

3. Experiments

3.1 Image classification
We constructed a neural network that includes the proposed reservoir-based convolution layers, as

shown in Fig. 2 and Table I. We evaluated network performance using the MNIST, Fashion-MNIST,

and CIFAR-10 datasets, where both MNIST and Fashion-MNIST datasets included 60,000 training

images and 10,000 test images, and the CIFAR-10 dataset included 50,000 training images and 10,000

test images. The parameters of the reservoirs were set as N = 5, R = 12, and p = 0.5 for the first

reservoir-based convolution layer, and N = 5, R = 30, and p = 1.0 for the second. The leak rate of

the i-th reservoir in a layer is δi = 0.8 × (i − 1)/(N − 1) + 0.1, such that δi = 0.1, 0.3, 0.5, 0.7, 0.9 in

the case of N = 5. During training, we fed the training data into the network and updated the weight

connections only in the fully connected layer using ridge regression, Wfc = (X⊤X + λI)−1X⊤Y ,

where Wfc, X, and Y are the weight matrix in the fully connected layer, input vectors of the layer,

and target vectors of the layer, respectively. The target vector of each training data was given as a

one-hot vector corresponding to the data label. λ(> 0) is the regularization strength, and I is the

identity matrix.
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Fig. 2. Reservoir-based convolutional neural network.

Table I. Structure of the network.

Layer name Parameters

Reservoir-based convolution 1 Kernel size: 3, Stride size: 1

Max pooling 1 Kernel size: 2, Stride size: 2

Reservoir-based convolution 2 Kernel size: 3, Stride size: 1

Max pooling 2 Kernel size: 2, Stride size: 2

Fully connected 1 Output size: 10

After training, we fed the test data into the trained network to calculate the accuracy rates. Table

II shows a comparison of accuracy rates for the MNIST, Fashion-MNIST, and CIFAR-10 datasets

comparing this study to other reservoir-based image recognition approaches. The proposed network

did not achieve an accuracy rate of 99% for the MNIST dataset, whereas it outperformed other

approaches for the Fashion-MNIST and CIFAR-10 datasets.
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Table II. Accuracy rates in image recognition tasks.

MNIST Fashion-MNIST CIFAR-10

[2] 99.07% N/A N/A

[3] 99.25% N/A N/A

[4] 98.71% 86.27% N/A

[5] 99.03% N/A 60.57%

[6] 96.30% N/A N/A

This study 98.38% 91.04% 64.49%

3.2 Feature extraction

To verify that the proposed network extracts features with various spatial frequencies as inputs using

multiple reservoirs, we fed a handwritten digit image from the MNIST dataset, a clothes image from

the Fashion-MNIST dataset, and a horse image from the CIFAR-10 dataset into the proposed network.

We obtained output feature maps from reservoirs having leak rates of δ = 0.1 and 0.9 in the first

reservoir-based convolution layer. Figures 3, 4, and 5 show the input handwritten digit, clothes, and

horse images, and the output feature maps, respectively. In the case of the MNIST dataset, the output

from the reservoir with δ = 0.1, which slowly updated its state, was blurred while the reservoir with

δ = 0.9 that quickly updated its state extracted the edge of the handwritten line. In the cases of the

Fashion-MNIST and CIFAR-10 datasets, the reservoir with δ = 0.1 extracted outlines of clothes and

horses, whereas the reservoir with δ = 0.9 extracted the textures.

(a) Input (b) Output (δ = 0.1) (c) Output (δ = 0.9)

Fig. 3. Input image from MNIST dataset and output feature maps from the
reservoir-based convolution layer.

(a) Input (b) Output (δ = 0.1) (c) Output (δ = 0.9)

Fig. 4. Input image from Fashion-MNIST dataset and output feature maps
from the reservoir-based convolution layer.

(a) Input (b) Output (δ = 0.1) (c) Output (δ = 0.9)

Fig. 5. Input image from CIFAR-10 dataset and output feature maps from
the reservoir-based convolution layer.
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4. Discussion
From the viewpoint of biology, a reservoir-based CNN has several similarities with the human brain.

A CNN structure is based on cells in the visual cortex: the partial connections using filters (images

receptive fields) in the convolution layer correspond to the simple cells, and the pooling corresponds to

the complex cells. This is also true for the proposed network because the reservoir-based convolution

layer also has image receptive fields, and pooling is used in the network. However, CNNs are trained

using the back-propagation method, which is not biologically plausible [14]. By contrast, the pro-

posed network is trained without using back-propagation, and therefore it would be more biologically

plausible than CNNs. Moreover, several studies have proposed cortex models using reservoirs, e.g.,

Katori proposed a prefrontal cortex model [15] and Yonemura and Katori proposed a cortex model

integrating visual and auditory stimuli [16]. Therefore, the reservoir can be viewed as a cortex model,

and the proposed network can be seen as one form of this type of model.

The reason why the proposed network outperformed the other reservoir-based approaches for the

Fashion-MNIST and CIFAR-10 datasets, as shown in Table II, relied on multiple reservoirs with

several leak rates in the reservoir-based convolution layers extracting various features of images that

were important for recognition, as shown in Figs. 4 and 5. However, the proposed network did

not achieve an accuracy rate of 99% for the MNIST dataset because images in the MNIST dataset

did not have various spatial frequencies compared with the Fashion-MNIST and CIFAR-10 datasets,

indicating that multiple reservoirs were not effective in the dataset.

The proposed network has a high accuracy rate for the Fashion-MNIST and CIFAR-10 datasets,

but its training cost is also low. The ESN that achieves an accuracy rate of 99.07% for MNIST

dataset [2] and Yonemura’s network, which achieved accuracy rates of 98.71% for the MNIST dataset

and 86.27% for the Fashion-MNIST dataset [4], required 40K training parameters. Moreover, Tong’s

model for the MNIST dataset required 90K training parameters [3]. The proposed network required

75,010 training parameters for the MNIST and Fashion-MNIST datasets (108,010 parameters for the

CIFAR-10 dataset). Although the number of training parameters for the MNIST and Fashion-MNIST

datasets of the proposed network was larger than those of [2] and [16], it was smaller than that of [3].

Compared with other reservoir-based approaches for image recognition, the proposed reservoir-

based convolution layer requires a smaller memory capacity [13] because the reservoirs in the layer

receive ROIs from the input feature maps, and three time steps are required to feed an ROI into the

reservoirs in this study. Therefore, using physical RCs [17, 18] for the proposed network is possible,

even if the physical RCs have smaller memory capacities compared with ESNs. Therefore, a low

power implementation of the proposed network using the physical RCs is expected.

5. Conclusions
We proposed a reservoir-based convolutional operation and conducted image recognition tasks us-

ing the MNIST, Fashion-MNIST, and CIFAR-10 datasets with a neural network that included the

reservoir-based convolution layers. During training, only the weights of the fully connected layer

were updated by ridge regression, whereas other weights were not updated, such that the network

required lower training cost than deep neural networks optimized by the back-propagation method.

As shown in Table II, the proposed network outperformed other reservoir-based approaches for the

Fashion-MNIST and CIFAR-10 datasets because multiple reservoirs with several leak rates extracted

various features of images that were important for recognition, as shown in Figs. 4 and 5.

Although the proposed network outperformed other reservoir-based approaches, it still does not

achieve state-of-the-art results. Byerly et al. achieved an accuracy rate of 99.87% for the MNIST

dataset [19], Tanveer et al. achieved an accuracy rate of 96.91% for the Fashion-MNIST dataset [20],

and Dosovitskiy et al. achieved an accuracy rate of 99.5% for the CIFAR-10 dataset [21]. We plan to

make the structure of the proposed network deeper to improve its accuracy in future work.
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