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Abstract

A new approach in Artificial Intelligence (AI), which focuses on agent’s inter-
action with the world, is expected to solve difficulties in the classical AI. The
interaction leads an agent to exhibit emergent behaviors, which are not pre-
programmed by a designer. This is what biological agents (i.e. animals and
humans) do in their daily life. This dissertation aims at finding mechanisms
necessary for this. A mobile robot is used as a test bed for this purpose.

The real world is completely different from a virtual world frequently used
in the classical AI. The real world is always subject to complexity, noise,
and nonlinearity. Information on the real world is often spatio-temporal
in nature, and is hard to do information processing in real time. Solving
real world problems often leads to unsatisfactory results due to its inherent
difficulties. One promising approach to this is to segment the spatio-temporal
information into meaningful elements. The purpose of the present thesis is
to segment the world and to form a graph-based map for efficient processing.

Task segmentation in navigation of a mobile robot based on sensory sig-
nals is important for realizing efficient navigation, hence attracted wide at-
tention. In this research, a new approach to segmentation in a mobile robot
by a modular network SOM (mnSOM) is proposed. In a mobile robot, the
standard mnSOM is not applicable as it is, because it is based on an assump-
tion that class labels are known a priori. In a mobile robot, however, only
a sequence of data without segmentation is available. Hence, we propose to
decompose it into many subsequences, supposing that a class label does not
change within a subsequence. Accordingly, training of mnSOM is done for
each subsequence in contrast to that for each class in the standard mnSOM.
The resulting mnSOM demonstrates segmentation performance of 94.05%
for a novel dataset based on an unrealistic assumption that winner modules
corresponding to subsequences in the same class share the same label. Since
this is not at all practical, the current study proposes segmentation without
this unrealistic assumption.

Firstly, the conventional hierarchical clustering is applied to the resulting
mnSOM. Without the above unrealistic assumption, its segmentation perfor-
mance deteriorates by only 1.2%. Hierarchical clustering assumes that the
distances between any pair of modules are provided with precision, but this
is not the case in mnSOM. Accordingly, this is followed by a clustering based
on only the distance between spatially adjacent modules with modification
by their temporal contiguity. This clustering with spatio-temporal contiguity
provides superior performance to the conventional hierarchical clustering.



Based on the resulting mnSOM, a graph-based map is formed. Due to
stochastic character of sensory-motor information, I propose to use Hidden
Markov models (HMMs) instead of a deterministic method. Given a se-
quence of data, mnSOM produces sequence of labels, which may includes
erroneous ones due to noise. HMMs are employed for better estimates of
labels. Finally, from the resulting sequence of labels, L-junctions and T-
junctions are located, and are used as nodes for constructing a graph-based
map. For comparative study, vector quantization of sensory-motor signals is
also tried. The resulting HMMs based on the quantized data also generate a
graph-based map.

The resulting graph-based map also contributes to goal seeking. Simu-
lation result shows that the resulting graph-based map is efficient for goal
seeking, since it is not necessary to construct a new map every time the
environment changes.
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Chapter 1

Introduction

Classical artificial intelligence (AI) has faced many difficulties such as the
symbol grounding problem (i.e. providing relationship between symbols and
the real world), the embodiment problem (i.e. intelligence requires a physical
body) and the situatedness problem (i.e., an agent embedded in an environ-
ment). To solve these problems, a new approach in AI, (some references
refer it to ”embodied cognitive science”) has been extensively explored since
1990s. In contrast to the classical AI and the conventional paradigm of in-
formation processing, this new approach capitalizes agent’s interaction with
the real world.

An agent is situated if it exists in a dynamic environment, which it can
manipulate or change through its actions, and which it can sense or perceive
[11]. Situatedness is expected to make an agent exhibit emergent behaviors:
behaviors not programmed into agents by a designer. To have this capability
an agent must be equipped with an appropriate mechanism. The present
thesis aims to find the mechanism. Mobile robots are used as a testbed for
finding and demonstrating this mechanism.

There have been many approaches towards this mechanism such as neu-
ral networks, fuzzy logic, and control theory. Humans and animals naturally
exhibit emergent behaviors in their daily life owing to a mechanism in their
brains. This suggests the importance of finding a brain-inspired mechanism
for this emergence. We believe neural networks inspired by natural brains,
contribute to finding the mechanism and to understanding naturalintelli-
gence.

The real world is very different from a virtual world in the classical AI.
The real world is always subject to noise and disturbances, and has nonlin-
earity. More importantly, information in the real world is huge and spatio-
temporally continuous, hence information processing based on this tends to
be quite complex and time consuming. We believe segmenting it into mean-
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ingful elements is one of the origins of intelligence, and solves difficult tasks
just as we humans do.

Segmentation, here, is decomposing the world into meaningful elements
based on continuous spatio-temporal sensory information. Segmentation can
also be found in humans. The central issue in this thesis is to realize seg-
mentation based on continuous spatio-temporal information, and efficient
information processing based on the resulting segmentation. Concerning the
former, there have been various studies so far. Taking into consideration
their advantages and disadvantages, I propose an idea of combining modular
network self-organizing map(mnSOM) and clustering for effective segmen-
tation. Concerning the latter, I propose an idea of using Hidden Markov
models (HMM) for internal symbolic representation of the world based on
probabilistic interpretation of the resulting segmentation.

Segmentation is a process of creating symbols from continuous data, hence
needs a mechanism of competition such as winner-take-all among elements.
The conventional approach to this is the use of competitive learning among
modular networks. In contrast to this, I propose to use a modular network
self-organizing map due to its characteristic of topology preservation: sim-
ilar modules being located nearby. This enables generation of interpolated
modules, provided the number of modules is sufficiently large.

Capability of interpolation among modules varies according to the ar-
chitecture of modular networks. In the conventional competitive learning,
modules or units are in isolation; there is exists no notion of similarity be-
tween them. There are two aspects in ”interpolation”. The one is creating
an output interpolated by outputs from multiple modules. This could be
done by a combination of multiple modules with weights determined by the
soft-max function. The other is creating a module which is an interpolation
of multiple modules. Let the former be called ”output interpolation” and
the latter be called ”module interpolation.” The present study focuses on
the module interpolation.

The soft-max [46] is an improvement over the conventional competitive
learning in that the output interpolation is possible. Similarity between
modules, however, is not explicitly represented. Furthermore, interpolation
and segmentation generally do not coexist; interpolation is possible at the
sacrifice of segmentation using the soft-max function, and only when the
soft-max function asymptotically becomes winner-take-all, segmentation is
possible at the sacrifice of interpolation.

Tani et al. proposed a recurrent neural network with a parametric bias
[38]. It has the ability of the output interpolation, but has no longer the
capability of segmentation. Furthermore, the performance of interpolation is
not satisfactory due to inherent nonlinear characteristics of neural networks.
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Self Organizing Maps (SOM)[15] are popular for classifying data with
topology preservation. The resulting topological maps represent the so called
”unit” interpolation. Martinez [20] proposed Neural Gas (NG) to alleviate
a difficulty in SOM: mapping of high dimensional input space onto a fixed
lattice. Walter et al. did a comparative study of SOM and NG for posi-
tioning task of industrial robot system [44]. They found that for a given
control problem both algorithm performed similarly. NG performs better
when topology of sub-manifold in input space is unknown or inhomogenous.

Modular network SOM (mnSOM) [7][8][34] is an extension of SOM in that
function modules instead of vector units are used to increase its representa-
tion and learning capability. Owing to competitive learning among function
modules, mnSOM is capable of segmentation. Owing to topographic map-
ping of function modules on a competitive plane, the neighboring function
modules tend to have similar characteristics. Hence, interpolation among
function modules becomes possible. The simultaneous realization of segmen-
tation and interpolation is unique and unparalleled characteristics of mn-
SOM.

The thesis focuses on segmentation tasks in mobile robots. Having long
history, many approaches have been proposed so far to do segmentation in
mobile robots. Mataric [21] proposed landmark-based navigation. In this
approach, the movement of a robot is temporally segmented by landmarks.
Using known landmarks, the robot maintains a map of the environment and
uses it for path planning. Although this approach is successfull in segmen-
tation, it is based on known landmarks rather than robot dynamics. Venery
et.al. [43] used the concept of memorizing and recalling of sensory-motor
association. The behaviors of mobile robots are based on learned association
between sensory inputs and motor actions. Here, robot dynamics has been
explored, but the corresponding segmentation is not clear.

Extensive researches to modularize a complex task from dynamical sys-
tems perspective were done by Tani and his colleagues. In Tani [36], given
the current sensory state, a recurrent neural network predicts the next sen-
sory input. When the robot encounters a fork on the road, it decides a
route by a predefined branching mechanism. Nolfi and Tani [26] proposed
to use 2-level prediction networks arranged hierarchically. The activation
state of each output unit of the first level prediction network is fed into a
winner-take-all layer, serving as a segmentation network. The output of the
segmentation network then fed into the second level prediction layer. The
final result showed that the network was able to extract low level regular-
ities, such as ’walls’, ’corner’, and ’corridors’. Tani and Nolfi [37] further
proposed to use a mixture of recurrent experts (MRE). Multiple RNN mod-
ules compete each other to become an expert in predicting sensory-motor
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flow for a specific behavior through learning. The switching among winner
RNN modules, which was performed through learning of gate opening dy-
namics, corresponds to temporal segmentation of sensory motor flow. The
above study by Tani et.al. was successfull in segmentation in mobile robots.
However, interpolation among modules was not possible. Furthermore, how
to use the resulting segmentation in mobile robot was not discussed.

Aim of the present thesis is to segment the world based on sensory-motor
signals using mnSOM, and to develop a graph-based map. To cope with
nonlinear dynamics of a mobile robot in the environment, a modular network
with good segmentation and interpolation capability is needed, and mnSOM
is a good candidate for this. However, standard mnSOM is based on the
assumption that class labels are known a priori. In case of a mobile robot,
however, only an unsegmented sequence of data is available. I propose to
divide a sequence into many subsequences, assuming that a class label does
not change within a subsequence.

In constructing graph-based maps, care must be taken because IR sensors
are corrupted by noise, hence a deterministic approach is not appropriate. I
propose to use Hidden Markov models (HMMs) to handle stochastic sensory
signals properly. I propose two alternatives. The former is to use the resulting
labels by mnSOM as inputs to HMMs. The latter is to use quantized sensory
signals as inputs to HMMs.

In chapter 2, a modular network SOM (mnSOM) and related studies are
briefly surveyed to make clear our standpoint. First is a pioneering work of
mixture of local experts. This is followed by mixture of recurrent experts
which is an extension of mixture of local experts. A brief explanation of self
organizing maps follows. Finally, a generalization of SOM called modular
network SOM (mnSOM)is presented. In chapter 3, modification of the stan-
dard mnSOM applicable to mobile robots is given. This is followed by task
segmentation in mobile robots by modified mnSOM. To solve difficulties in
this, task segmentation by clustering of the resulting mnSOM is proposed.
The one is by hierarchical clustering, followed by a novel clustering with spa-
tial contiguity, and the other is clustering with spatio-temporal contiguity.
In chapter 4, two methods for formation of graph-based maps of the environ-
ment are proposed. The one is Hidden Markov Models (HMMs) based on the
resulting mnSOM, and the other is HMMs based on quantized sensory-motor
signals are given. As a case study, simple goal seeking in mobile robots is
demonstrated. In chapter 5, experimental results of task segmentation are
presented in detail. Chapter 6 explains experimental results on graph-based
map formation using Hidden Markov Models. Chapter 7 concludes this thesis
and discuss future research direction.
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Chapter 2

Overview of Related Studies

This chapter briefly presents adaptive mixture of local experts, mixture of
recurrent experts, SOM and modular network SOM(mnSOM) as its exten-
sion.

2.1 Adaptive Mixture of Local Experts

Adaptive Mixture of Local Expert is a pioneer work in modular network. This
approach can be viewed as a modular version of multilayer neural network
or as an associative version of competitive learning [12]. Figure 2.1. depicts

Figure 2.1: Adaptive Mixture of Local Experts.
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the architecture of adaptive mixture of local experts. It is based on the
competition among local experts in the form of multilayer networks doing
supervised learning. Instead of linearly combining the outputs of separate
experts, the gating network makes a stochastic decision on which expert to
use at each instant. The output of gating network j is

pj = exp(xj)/
∑

i

exp(xi) (2.1)

where xj is the total weighted inputs provided to output unit j of the gating
network. Error function defined as,

Ec = −log
∑

i

pc
ie

− 1
2‖d

c−o
c
i‖

2

(2.2)

where d is a target of the network and o is the corresponding output of the
network. Finally, connection weights of the network are adapted according
to

∂Ec

∂oc
i

= −





pc
ie

− 1
2‖d

c−o
c
i‖

2

∑

j p
c
je

− 1
2‖d

c−oc
j‖

2



 (dc − oc
i) (2.3)

In this study, each expert modules are in isolation. In contrast to this, we
proposed to use mnSOM [23][24], which allows cooperation among modules.

2.2 Mixture of Recurrent Experts

Tani and Nolfi [37] proposed a neural network structure inspired by mixture
of local experts [12]. They used multiple-module Recurrent Neural Networks
(RNNs), each of which competes with each other to become a winner as
expert at predicting the sensory-motor flow for a specific behavior. The
experts improve their performance through learning processes. The switching
between the winner RNN modules can be regarded as temporal segmentation
of the sensory-motor flow.

The architecture of mixture of recurrent experts is shown in Figure 2.2.
In this figure , xt, y

i
t+1, y

∗
t+1, and gi

t are the input, output, target and gate
opening of the i-th RNN modules, respectively. In contrast to the architec-
ture of Adaptive Mixture of Local Experts, gate opening function is derived
from the internal value rather than using output of each modules directly.
The gate opening of the i-th RNN modules is defined by

gi
t =

sk
i

∑n
j=1 s

k
j

(2.4)
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Figure 2.2: Mixture of Recurrent Experts.

where sk
i is internal value of i-th gate opening at k-th step in a sliding window.

The total output of the network is

yt+1 =
n

∑

i=1

gi
ty

i
t+1 (2.5)

Connection weights in each RNN and the gate opening are updated such that
the following likelihood function is maximized

lnL = ln
n

∑

i=1

gi
t.e

(−1/2σ2)‖y∗
t+1−yi

t+1‖
2

(2.6)

where σ denotes a scaling parameter.
The direction of update for each internal gate opening value is determined

by
∂lnL

∂si
t

= g(i|xt, y
∗
t+1) − gi

t (2.7)
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where g(i|xt, y
∗
t+1) is explicitly given by

g(i|xt, y
∗
t+1) =

gi
t.e

(−1/2σ2)‖y∗
t+1−yi

t+1‖
2

∑n
j=1 g

j
t .e

(−1/2σ2)‖y∗
t+1−yj

t+1‖
2 (2.8)

The error in each RNN module is calculated by

errori
t+1 = g(i|xt, y

∗
t+1).(y

∗
t+1 − yi

t+1) (2.9)

The update of connection weights and gate opening are computed through
the use of BPTT [45] on a sliding window. The update of the gate internal
state in sliding window at k-th step is obtained as

∆si
k = ǫg.

∂lnL

∂si
k

− ηg.(s
i
k − si

k−1) (2.10)

The scheme proposed above was evaluated by simulation of navigation
task. In their experiment, a mobile robot equipped with 20 laser range
sensors maneuvering in collision-free using a variant of the potential method
as in J. Tani [36] is moved around in two rooms. The robot moves around one
room three times, then enters another room and moves around three times.
Task segmentation result was evaluated based on the recorded gate opening
and sensory-motor signals in its robotics field.

Generally speaking, performance of this study strongly depends on proper
selection of parameters, such as a scaling parameter, which is determined by
a designer. Unfortunately, it is very difficult to find a proper parameter value
in each cases. Furthermore, improper parameter setting leads to computa-
tional instability. On the contrary to this, we use mnSOM for our study
[23][24], which is proved computationally stable due to careful learning rate
assignment by the algorithm during learning.

2.3 Self Organizing Maps (SOM)

The most popular unsupervised learning algorithm is self organizing maps
(SOM) proposed by Kohonen [14]. Figure 2.3 depicts the architecture of
SOM. The principal aim of self-organizing maps is to transform a set of signal
patterns of arbitrary dimension into a set of lower dimensional vectors, and
to locate them on a map in a topologically ordered fashion.

There are two training methods, i.e., on-line learning and batch learning.
On-line learning makes weight adaptation whenever an input is provided. On
the other hand, batch learning SOM makes weight adaptation after all input
data are presented to the network.

SOM algorithm consists of the following 4 processes:
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Figure 2.3: Kohonen model of Self Organizing Maps.

1. Evaluative Process

Initializing synaptic weights in the network, neurons in the network
repeatedly compute their distance to each input data.

Ek
i =

1

2

∥

∥xi − wk
∥

∥

2
for allk (2.11)

In this equation, i and k are input number and node number, respec-
tively. While xi and wk are input pattern and synaptic weight, respec-
tively.

2. Competitive Process

Using the distance function in Eq.(2.11) as the basis for competition
among neurons, the particular neuron with the smallest distance is
declared as the winner of the competition. In case Euclidean criterion
is used, the winner of the competition is neuron with the minimum
Euclidean distance to the particular input pattern.

k∗i = argkminEk
i (2.12)

3. Cooperative Process

Topological neighborhood function centered in the winning neuron is
determined based on
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• On-line learning:
φk

i = h(k, k∗i ) (2.13)

• Batch learning:

ψk
i =

h(k, k∗i )
∑

i′ h(k, k
∗
i′)

(2.14)

if Gaussian neighborhood function is used:

h(k, k∗i ) = exp

[

−
l2(k, k∗i )

2σ2

]

(2.15)

where l2(k, k∗i ) is lateral distance to the winning neuron. The parameter
σ is the effective width of the topological neighborhood. Usually the
size of topological neighborhood shrinks with time. In this case, σ can
be chosen in the form of:

σ(t) = σmin + (σmax − σmin) exp(−t/τ) (2.16)

where τ is time constant.

4. Adaptive Process

In adaptive process each synaptic weight of the network were updated
based on neighborhood functions:

• On-line learning:

∆wk = η
∑

i

φk
i (xi − wk) (2.17)

η is learning rate parameter, and this parameter can be decreasing
with time such as

η(t) = ηmin + (ηmax − ηmin) exp(−t/τ1) (2.18)

• Batch learning:

∆wk =
∑

i

ψk
i xi (2.19)
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2.4 The mnSOM

mnSOM is an extension of SOM in that each vector unit is replaced by a
function module such as a feedforward neural network or a recurrent neural
network. An important issue here is to choose appropriate function mod-
ules and a similarity measure between modules[34]. To deal with dynamical
systems, recurrent neural networks (RNN) are suitable for function modules.
In this case, mnSOM learns nonlinear dynamics of a given input and output
sequences, and forms a topological map composed of modules [7].

Figure 2.4 illustrates the architecture of mnSOM and the function mod-
ule (i.e. recurrent neural network) as its element. Each vector unit in the
conventional SOM is replaced by a fully connected recurrent neural network.
A weight vector of a recurrent neural network may be regarded as a feature
vector. However, the distance between two modules in mnSOM is not mea-
sured by the Euclidian distance between two corresponding weight vectors,
but is measured by the difference between output sequences of two corre-
sponding modules, given a class data. As in the conventional SOM, the
closer a module is to the best matching one, the more it learns during a
learning process. Each module is trained by backpropagation through time
(BPTT) [45]. Details of mnSOM learning algorithms are as follows.

Figure 2.4: Array of modules in mnSOM and the function module as its
element. The function module here is a fully connected RNN.

A learning algorithm of mnSOM is conceptually similar to that of the
batch learning SOM. It consists of 4 processes [8]: evaluative, competitive,
cooperative and adaptive processes. Let a set of input-output signals of a
system be {xij, yij}(i = 1, ...,M ; j = 1, ..., L), where M and L are the number
of classes and the number of data in each class, respectively.

11



1) Evaluative process.

Inputs, {xij}, are given to all modules, and the corresponding outputs, {ỹ
(k)
ij },

are evaluated by,

E
(k)
i =

1

L

L
∑

j=1

‖ỹ
(k)
ij − yij‖

2

k = 1, ..., K; i = 1, ...,M ; j = 1, ..., L (2.20)

where k stands for the module number, K stands for the number of modules,
i stands for the class number, and j stands for the data number in each class
labels.
2) Competitive process

The module with the minimum E
(k)
i with respect to k is the winner for classes

i.
v∗i = argk min E

(k)
i (2.21)

3) Cooperative process
A Learning rate of the module is determined by the following normalized
neighborhood function:

ψ
(k)
i (t) =

φ(r(k, v∗i ); t)
∑M

i=1 φ(r(k, v∗i ); t)
(2.22)

φ(r; t) = exp[−
r2

2σ2(t)
] (2.23)

σ(t) = σmin + (σmax − σmin)e−
t
τ (2.24)

where r(k, v∗i ) stands for the distance between module k and the winner mod-
ule, v∗i , t is the iteration number in mnSOM, σmin is the minimum neighbor-
hood size, σmax is the maximum neighborhood size, and τ is a decay time
constant of a neighborhood size.
4) Adaptive process
Connection weights of module k, w(k), are modified by the following BPTT
algorithm,

∆w(k) =
M

∑

i=1

ψ
(k)
i (t)(−η

∂E
(k)
i

∂w(k)
) (2.25)

At each mnSOM iteration, repeat this back-propagation algorithm for suffi-
cient number of times.
These 4 processes are repeated and terminate when no significant change is
observed in the connection weights and the resulting map.
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Chapter 3

Task Segmentation using
mnSOM and Clustering

3.1 Introduction

Task segmentation, here, is to partition the entire movement of a robot from
the start position to the end position into a sequence of primitive movements
such as a forward movement or a right turn movement. Supposing a mobile
robot moves in an ideal environment without obstacles and noise in sensory-
motor signals, only motor signals are enough for task segmentation, and
learning of dynamics would not be required. In real situations, however, a
mobile robot makes slight turning movements even in a straight corridor due
to obstacles and noise in sensory-motor signals. This would lead to wrong
segmentation, provided only motor signals are taken into account. To cope
with this difficulty, it is necessary to adopt learning of nonlinear dynamics
of robot movement. One might ask, is SOM insufficient for this purpose?
Generally speaking, SOM is easily affected by noise in data. In contrast
to this, since mnSOM learns nonlinear dynamics of a robot movement, it is
expected to be more robust than SOM. This is an advantage of mnSOM with
RNN modules over SOM.

3.2 Khepera II Mobile Robot

Experiments are carried out using a Khepera II mobile robot. It has 8 infra-
red (IR) proximity sensors and 2 separately controlled DC motors. Both
DC motors can be controlled by a PID controller executed in an interrupt
routine of the robot’s main processor. Figure 3.1. shows the structures of
motor controllers. Two control modes can be used: the speed and position
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modes. In our studies, speed mode is chosen. In speed mode, the controller
has as input a speed value of the wheels, and controls the motor to keep
this wheel speed. The speed modification is made as quick as possible. No
limitation in acceleration is considered in this mode. The robot is controlled
by a PC via serial connection. Each time step, motor commands are given
to the robot. The unit is the pulse/10 ms that correspond to 8 mm/s. The
maximum speed is 127 pulses/10 ms that correspond to 1 m/s. For our
purpose, speed between 1 to 8 (8 mm/s up to 64 mm/s) is used.

Figure 3.1: Structure of the motor Controller of Khepera II.

Figure 3.2: Khepera II mobile robot and its IR sensor characteristics.

Figure 3.2 shows the IR sensor characteristic of the robot. It illustrates
that sensors can effectively detect an obstacle within 5 cm. Figure 3.4 depicts
Khepera II mobile robot in its robotic field.
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3.3 Khepera Simulator Webots

To alleviate the difficulty in working with real robot, a robot simulator, We-
bots 5.1.10, are used in our experiment. Webots is a three-dimensional mobile
robot simulator developed by cyberbotics ltd. It provides rapid prototyping
and simulation of mobile robot. Moreover, for a certain robots, direct control
of the robot from webots is possible.

Webots 5 provides model of Khepera II mobile robots in its standard
library. However, it is necessary to adjust their IR sensors characteristics
in order to be as precise as possible to our real Khepera II. Since IR sensor
in simulator is based on look up table, adjusting IR sensors characteristics
are simply by inserting values of IR sensors of real robot to the table in the
software. To simulate noisy environment, a noise can be added to each IR
sensors. Figure 3.3. shows Khepera II robot model in Webots 5.1.10 and its
sensor settings in simulator.

Figure 3.3: Model of Khepera II mobile robot and its IR sensor settings.

3.4 Modification on Standard mnSOM Algo-

rithm and Data Preparation

In case of a mobile robot, the standard mnSOM is not applicable as it is,
because it is based on the assumption that class labels are known a priori.
In a mobile robot, however, only a sequence of data without segmentation is
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available. Hence, decompose sequence of data into many subsequences, sup-
posing that a class label does not change within a subsequence. Accordingly,
training of mnSOM is done for each subsequence in contrast to that for each
class in the standard mnSOM. The modified mnSOM algorithm follows.

Let a set of input-output signals of a dynamical system be {xij, yij}(i =
1, ...,M ; j = 1, ..., L), where M and L are the number of subsequences and
the number of data in each subsequence, respectively.
1) Evaluative process.

Inputs, {xij}, are given to all modules, and the corresponding outputs, {ỹ
(k)
ij },

are evaluated by,

E
(k)
i =

1

L

L
∑

j=1

‖ỹ
(k)
ij − yij‖

2

k = 1, ..., K; i = 1, ...,M ; j = 1, ..., L (3.1)

where k stands for the module number, K stands for the number of modules,
i stands for the subsequence number, and j stands for the data number in
each subsequences.
2) Competitive process

The module with the minimum E
(k)
i with respect to k is the winner for

subsequences i.
v∗i = argk min E

(k)
i (3.2)

3) Cooperative process
A Learning rate of the module is determined by the following normalized
neighborhood function:

ψ
(k)
i (t) =

φ(r(k, v∗i ); t)
∑M

i=1 φ(r(k, v∗i ); t)
(3.3)

φ(r; t) = exp[−
r2

2σ2(t)
] (3.4)

σ(t) = σmin + (σmax − σmin)e−
t
λ (3.5)

where r(k, v∗i ) stands for the distance between module k and the winner mod-
ule, v∗i , t is the iteration number in mnSOM, σmin is the minimum neighbor-
hood size, σmax is the maximum neighborhood size, and λ is a decay time
constant of a neighborhood size.
4) Adaptive process
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Connection weights of module k, w(k), are modified by the following BPTT
algorithm,

∆w(k) =
M

∑

i=1

ψ
(k)
i (t)(−η

∂E
(k)
i

∂w(k)
) (3.6)

At each mnSOM iteration, repeat this BPTT algorithm for sufficient number
of times. These 4 processes are repeated and terminate when no significant
change is observed in the connection weights and the resulting map.

The robot moves from the start position to the end position by wall
following on the robot field in Figure 3.4. Let the whole movement from the
start position to the end position be called a path. During a path, robot
turns left twice and turns right twice. When the robot moves in the reverse
direction, it experiences similar movements.

Figure 3.4: Robotic Field.

For later evaluation of training and test results, the path in Figure 3.4 is
manually segmented into 9 sequences based on motor commands as in Figure
3.4. Sequences, 1, 3, 5, 7 and 9, correspond to a class of forward movement,
sequences, 2 and 4, correspond to a class of left turn, and sequences, 6 and
8, correspond to a class of right turn.

The path in Figure 3.4, comprising 843 samples, is divided into shorter
”subsequences” with uniform length. In case of a subsequence with the length
20, the path is split into 42 subsequences with the last 3 subsequences be-
ing the length of 21. Table 1 shows the division, where labels ”F”, ”L”,
”R”, ”L/F”, and ”R/F” stand for forward movement, left turn, right turn,
the transition between forward movement and left turn, and the transition
between forward movement and right turn, respectively. Because of the reg-
ular division of the path in Table 3.1, several subsequences stretch over two
consecutive sequences (i.e., a forward movement sequence and a left turn
sequence). They are called ”transition” subsequences, constituting virtual
classes.
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Table 3.1: Division of the path into subsequences with the length 20

Sequence Data Subsequence Labels
Numbers Numbers

1 1-131 1,2,3,4,5, F,F,F,F,F,
6,7 F,L/F

2 132-187 7,8,9,10 L/F,L,L,L/F
3 188-312 10,11,12,13, L/F,F,F,F,F,

14,15,16 F,L/F
4 313-368 16,17,18,19 L/F,L,L,L/F
5 369-496 19,20,21,22, L/F,F,F,F,F,

23,24,25 F,R/F
6 497-549 25,26,27,28 R/F,R,R,R/F
7 550-666 28,29,30,31, R/F,F,F,F,F,

32,33,34 F,R/F
8 667-719 34,35,36 R/F,R,R/F
9 720-843 36,37,38,39, R/F,F,F,F,F,

40,41,42 F,F

3.5 Training and segmentation

Each mnSOM module is a fully connected recurrent neural network (FRNN),
and learns an internal model of robot-environment interaction, by minimizing
mean prediction errors in sensory-motor signals at the next time step, given
the past sensory-motor signals. Table 3.2 gives parameters in mnSOM and
FRNN. External input units in FRNN correspond to 8 IR sensors and 2
motor commands. Target outputs are sensory-motor signals at the next time
step. All units in FRNN have sigmoidal activation functions.

Figure 3.5: Color of module used in the resulting mnSOM : (a) forward move-
ment (b) left turn (c) right turn (d) transition between forward movement
and left turn (e) transition between forward movement and right turn

For evaluating the performance of classification, mnSOM is trained using
subsequences with varying length, i.e., 10, 15, 20, 25, and 30. Each mnSOM
module compete to become a winner of subsequences. Because the number
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Table 3.2: Parameters in mnSOM

#x stands for the number of x.

mnSOM

map size 10x10(100 modules)
neighborhood size (Eq.(2.24)) σmax = 10;σmin = 1;

τ = 80
# mnSOM iterations 400
# BPTT iterations for 30
each mnSOM iteration

mnSOM Module : FRNN

# external input units 10
# visible (output) units 10
# hidden units 27
learning rate 0.02

of subsequence is large the corresponding number of winner module, which
is can be considered as the number of segmentation, also tends to be in big
number. This tendency leads segmentation results to be meaningless. To
alleviate this tendency, it is assumed that winner modules corresponding to
subsequences in the same class share the same label.

Using the adopted assumption, the resulting mnSOM only has five labels.
Five colors in Figure 3.5 are used to emphasis the corresponding five labels,
i.e. ”F,”, ”L,”, ”R,”, ”L/F,” and ”R/F.” A module with one of the colors
in Figure 3.5 indicates that it becomes a winner for a subsequence with the
corresponding movement. For later examination, let a green module be called
a ”stationary” module, a blue module or red module be called ”turning”
module, and a light blue or light brown module be called ”transition” module.

The resulting mnSOM is evaluated by the number of misclassification.
Misclassification, here, is defined as the mismatch between the label of a
module and that of a subsequence. To evaluate the resulting mnSOM, define
the following degree of badness of misclassification.

1. The degree of badness of misclassification between ”L/F” and ”L,” and
that between ”R/F” and ”R” are assumed to be 0, because they are
between a turning module and a transition module.

2. The degree of badness of misclassification between ”F” and ”L/F,” and
that between ”F” and ”R/F” are assumed to be 0.5, because they are
between a stationary module and a transition module.
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3. The degree of badness of misclassification between ”F” and ”L,” ”F”
and ”R,” ”L” and ”R,” and ”R/F” and ”L/F” are assumed to be 1,
because the difference between them is significantly large.

3.6 Introducing temporal continuity into mn-

SOM

To prevent too rapid switching of winner modules, a threshold is introduced
to the competitive process in mnSOM. The threshold for temporal continuity
makes a winner module for the current subsequence tend to be the same as the
previous time step, it is expected that the temporal continuity of the resulting
mnSOM increases. Two types of thresholds are introduced by modifying Eq.
(2.21) as follows:

1. Constant MSE Threshold.

v∗i =















v∗
i−1i6=1

, if E
(k)
i ≥E

(v∗i−1)

i −θ

argk min E
(k)
i , else (3.7)

2. Time Varying MSE Threshold. Since MSE tends to decrease as itera-
tion in mnSOM proceeds, a time varying MSE threshold is considered
to be more appropriate than the constant MSE threshold. An expo-
nentially decaying MSE threshold θ is represented as,

θ(t) = θmin + (θmax − θmin)e−
t
µ (3.8)

where θmin, θmax, and µ are the minimum threshold, the maximum threshold,
and a decay time constant, respectively. Determination of parameters θmin,
θmax, and µ is essential for obtaining a good result, but their appropriate
determination is not easy. An alternative one is the following proportional
MSE threshold

β(t) = βminkE
(k)
i (t) (3.9)

where β is a proportional parameter. The value of the threshold at mnSOM
iteration t is proportional to the corresponding minimum MSE.

3.7 Clustering of the Resulting mnSOM

In section 3.1-3.6, task segmentation was done by mnSOM, using prior in-
formation that winner modules corresponding to subsequences in the same
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class share the same label. Since this prior information is not available in
real situation, segmentation thus obtained should be regarded as the upper
bound for the performance, not as a candidate for performance comparison.
This section proposes to do segmentation using clustering methods based on
the distance between modules in the resulting mnSOM, without using the
above prior information. Firstly, conventional hierarchical clustering is used.
It assumes that the distances between any pair of modules are provided with
precision, but this is not the case in mnSOM. Secondly, a clustering method
based on only the distance between spatially adjacent modules with modifi-
cation by their temporal contiguity is proposed.

3.7.1 Hierarchical Clustering

A procedure of hierarchical clustering [5] is the following.

1. Let each module form a separate cluster.

2. Merge two clusters with the minimum distance.

3. Recalculate the distance between clusters.

4. Repeat steps 2 and 3 until the minimum distance between clusters
exceeds a given threshold or the number of clusters reaches a given
number of clusters.

In contrast to SOM, the definition of the distance between modules is
problematic, because the distance depends on input to these modules. In
addition, an essential issue in clustering is how we define the distance between
modules. Suppose that

mi = arg mink MSE(k, i) (3.10)

where MSE(k, i) stands for the mean square error of module i given input
subsequence k. The distance between modules i and j here, is defined by:

dij =
√

(MSE(mi, j) −MSE(mi, i))2 + (MSE(mj, i) −MSE(mj, j))2)

(3.11)
The inclusion of only the subsequences m and n in the definition is to pre-
vent the distance from being blurred by many less relevant subsequences.
Definition of the distance between clusters I and J follows. Suppose that the
cluster I is composed of modules, MI1...MIRI

, and the cluster J is composed
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of modules, MJ1...MJRJ
. The distance between these two clusters is defined

by,

DIJ =
1

RIRJ

RI
∑

i=1

RJ
∑

j=1

dij (3.12)

where dij is the distance between two individual modules i and j as in
Eq.(3.11).

3.7.2 Clustering with spatial contiguity

In mnSOM the neighboring area shrinks as learning proceeds. This suggests
that the distance between modules are meaningful only within neighboring
modules. On the other hand, hierarchical clustering assumes that the dis-
tance between any pair of modules is meaningfully given. Considering this
issue, the following clustering method with spatial contiguity is proposed.

1. Calculate the distance between any pair adjacent modules. For module
(i,j), adjacent modules are (i,j-1), (i,j+1), (i-1,j) and (i+1,j).

2. Rank order adjacent distances in increasing order.

3. Merge a pair of adjacent modules with the minimum distance.

4. Calculate the number of clusters formed by the merger.

5. Repeat steps 3 and 4 until the predefined number of clusters is obtained.

3.7.3 Clustering with spatio-temporal contiguity

In mobile robot data, temporally contiguous subsequences tend to have the
same label. Accordingly, winner modules corresponding to temporally con-
tiguous subsequences tend to have the same label. To take the temporal
contiguity into account, Eq.(3.11) is proposed to be modified as follows

dij =
√

(MSE(mi, j) −MSE(mi, i))2 + (MSE(mj, i) −MSE(mj, j))2

(

1 − exp

(

−
|mi −mj|

τ

))

(3.13)

where τ is a time constant for temporal contiguity, and mi and mj are
subsequence numbers. In contrast to Eq. (3.11), the second term of the
right-hand-side of Eq. (3.13) reduces the distance between winner modules
by taking into consideration the temporal contiguity of subsequences. This
modified definition of the distance is expected to have the tendency that
these temporally contiguous modules have the same label.
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Chapter 4

Formation of Graph-based
Maps

4.1 Introduction

To acquire information from the environment, a mobile robot needs to model
its environment. The resulting map is particularly useful for robot naviga-
tion. Generally speaking, there are three existing approaches to robotic map-
ping. A first is a grid-based approach [3], a second is a topological approach
[22], and a third is a combination of a grid-based approach and a topological
approach [40][41]. While the third approach claims to combine the advan-
tages of the first two approaches, i.e. consistent and unambiguous modeling
of the world and easiness of construction, it suffers from large memory.

A probabilistic approach has attracted wide attention in robotic mapping
due to its effectiveness [41][42][2]. Thrun [41][42] uses a neural network model
to map sensory information to probability of occupancy in each grid. He
uses a laser range finder to measure the distance to nearby objects with
high spatial resolution. A grid-based map approach is applied first using
a probabilistic approach. A topological map is constructed on top of the
resulting grid-based map.

Contrary to Thrun [41], which employs probability of occupancy for map-
ping, Boada et.al [2] uses hidden Markov models (HMMs) to recognize inher-
ently distinctive places such as corridor, door opening, and so forth. Based
on the recognition of places with high accuracy, the robot can do localiza-
tion, path planning and navigation. However, the recognition is done using
the preprocessed information obtained from a Voronoi map. Accordingly, it
cannot detect small irregularities such as closed doors.

Graph-based approaches is a general approach to state relation among
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entity in a set of data. If this entity corresponds to spatial information, the
corresponding approach formed graph-based map. Graph-based maps are
important in decreasing the computational cost. Nodes in such map corre-
spond to ”places” in the environment and the edges are paths between two
places. Graph-based maps provide a concise description of the navigability
of a space [1][39][40][33][6]. In our study, node represents junctions, while
edge represents a corridor connecting 2 junctions.

This chapter proposes a graph-based approach to mapping a robotic field
using Hidden Markov Models. Two methods are proposed: the former is to
estimate HMMs based on a sequence of labels obtained by modular network
SOM (mnSOM) and the latter is to estimate HMMs based on quantized
sensory-motor signals. Segmentation of the environment using mnSOM is
discussed in Chapter 3 and Chapter 5. Although mnSOM learns nonlinear
dynamics of sensory-motor signals, it still generates labels from each sub-
sequence separately. This might not be robust, because resulting sequence
of labels may rapidly change, which rarely occurs in the real world. The
combination of mnSOM and HMM is hoped to provide more robust segmen-
tation of the environment. The resulting HMMs can be converted into a
graph-based map in a straightforward way.

4.2 Overview of Hidden Markov Models (HMMs)

This subsection provides brief overview of Hidden Markov Models (HMMs).
For comprehensive foundation on HMMs, refer to [30] and [31].

An HMM estimates an unobservable (hence hidden) state at each time
step based on a sequence of observed simbols [30][31]. Parameters in HMM
are represented as λ = (A,B, π), while the notations are described in Table
1.

There are 3 basic problems of interest to be solved in HMMs:

1. Model Evaluation: Given the observation sequence O = O1O2 · · ·OT ,
and the model λ = (A,B, π), efficiently compute probability of the
observation sequence, P (O|λ)

2. Path Analysis: Given the observation sequence O = O1O2 · · ·OT , and
the model λ, choose a corresponding state sequence Q = q1q2 · · · qT , in
some meaningful sense

3. Training problem: Adjust the model parameters λ = (A,B, π) to max-
imize P (O|λ)

Solutions to those problems are summarized as follows [31]:
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Table 4.1: HMM notations

Notation Description

T the length of observed sequence
N the number of states in the model
M the number of the observation symbols-

per-state
Q = {q1, q2, . . . , qN} states
V = {v1, v2, . . . , vM} discrete set of possible symbol-

observation
A = {aij} , aij state transition probability

= Pr(qi at t+ 1|qi at t)
B = {bk} , bj(k) probability distribution of observed-

= Pr(vk at t|qj at t) output
π = {πi} , πi probability distribution of initial state

= Pr(qi at t = 1)

1. Model evaluation by ”The Forward-Backward procedure”

Consider the forward variable

αt(i) = P (O1O2 · · ·Ot, qt = Si|λ) (4.1)

We can estimate αt(i) as follows:

(a) Initialization:
αt(i) = πibi(O1), 1 ≤ i ≤ N (4.2)

(b) Induction

αt+1(j) =

[

N
∑

i=t

αt(i)aij

]

bj(Ot+1),

1 ≤ t ≤ T − 1

1 ≤ j ≤ N (4.3)

(c) Termination

P (O|λ) =
N

∑

i=1

αT (i) (4.4)
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2. Path analysis by ”Viterbi algorithm”

Suppose that
δt(i) = maxq1,q2,··· ,qt−1

P [q1q2 · · · qt = i, O1O2 · · ·Ot|λ] (4.5)

is the best score (highest probability) along a single path, at time t,
which accounts for the first t observations and ends in state Si. By
induction we have

δt+1(j) = [maxiδt(i)aij] .bj(Ot+1) (4.6)

To keep track of the argument which maximizes the above equation,
new variable ψt(j) is defined. The complete procedure then follows

(a) Initialization

δ1(i) = πibi(O1), 1 ≤ i ≤ N (4.7)

ψt(j) = 0 (4.8)

(b) Recursion

δt(j) = max1≤i≤N [δt−1(i)aij] bi(Ot),

2 ≤ t ≤ T

1 ≤ j ≤ N (4.9)

psit(j) = arg max1≤i≤N [δt−1(i)aij] ,

2 ≤ t ≤ T

1 ≤ j ≤ N (4.10)

(c) Termination

P ∗ = max1≤i≤N [δT (i)]

q∗T = arg max1≤i≤N [δT (i)] (4.11)

(d) Path (state sequence) back tracking

q∗t = ψt+1, t = T − 1, T − 2, · · · , 1 (4.12)

3. HMM training by using Baum-Welch algorithm

Using α and β calculation in forward-backward algorithm, calculate
the expected number of transitions from Si to Sj as follows

T−1
∑

t=1

ζt(i, j) =
αt(i)aijbi(Ot+1)β

(
t+1j)

∑N
i=1

∑N
j=1 αt(i)aijbi(Ot+1)β

(
t+1j)

(4.13)
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and calculate the expected number of transitions from Si from

γt(i) =
N

∑

j=1

ζt(i, j) (4.14)

finally, HMM parameters are reestimated using the following formulas

πi = γ1(i) (4.15)

aij =

∑T−1
t=1 ζt(i, j)

∑T−1
t=1 γt(i)

(4.16)

bj(k) =

∑T
t=1s.t.Ot=vk

γt(j)
∑T

t=1 γt(j)
(4.17)

(4.18)

4.3 Formation of Graph-based Maps

In estimating HMMs, observed symbols are necessary, which are discrete
in nature. Two cases are considered in this chapter. The first one is to
use the resulting labels obtained from mnSOM. The second one is to use
quantized sensory-motor signals by vector quantization(VQ) or k-means al-
gorithm. The resulting HMMs can be interpreted as the segmentation of
the environment. Figure 4.1 illustrates the framework for recognition of the
environment adopted in this paper. Block (a) in Figure 4.1 represents the
recognition of the environment using HMMs based on a sequence of observed
symbols obtained from k-means, named ”k-means-HMM.” Block (b) in Fig-
ure 4.1 represents the recognition of the environment using HMMs based on a
sequence of labels obtained from mnSOM, named ”mnSOM-HMMs.” HMMs
with left to right model is used in current study.

First step in Figure 4.1 is the determination of HMMs parameters. This
is performed by Baum-Welch algorithm [30][31]. The best fit HMM is deter-
mined by model evaluation using forward algorithm [30][31]. The maximum
likelihood model is chosen as the best fit model.

4.3.1 Environment segmentation using mnSOM

mnSOM provides segmentation of the robotic environment, i.e. the robot
recognizes its surrounding through segmentation, based on sensory-motor
signals during movement. The resulting mnSOM provides discrete environ-
ment required for formation of a graph-based map.
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Figure 4.1: Framework of environment recognition using HMMs. (a) Dis-
cretized environment is provided by k-means.(b) Discretized environment is
provided by mnSOM.

Supposing that location and orientation of a mobile robot at every time
step are known, manual data segmentation into sequences of L-junction,
T-junction, corridor and so on is possible. This manual segmentation is
used for evaluation of the resulting segmentation. Figure 4.2. illustrate the
robotic fields employed in the present study and the corresponding manual
segmentation of the environment.

Dataset are divided into many subsequences with the uniform length (cur-
rently, each subsequece comprises 20 samples). For reference, subsequence
label is determined based on robot location in the robotic field for the cor-
responding subsequence as depicted in Figure 4.2. As a consequence of uni-
form length of subsequences, several subsequences are stretched between two
labels, hence it is necessary to generate a transient label, i.e. ”L/C” for sub-
sequences stretched between L-junction and straight corridor and ”T/C” for
subsequences stretched between T-junction and straight corridor.

After training, the resulting mnSOM provides a label to each module as in
[24]. Given a training subsequence or a novel one, one of the modules becomes
a winner. The corresponding label estimates the type of the environment
(i.e. a corridor, an L-junction or a T-junction). Given a data set, mnSOM
produces a sequence of labels, from which graphical representation of the
environment is expected to generate.
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Figure 4.2: Manual Segmentation of Robotic field. Reference label of sub-
sequence is determined based on robot location at the corresponding sub-
sequence. Here, ”C” corresponds to straight corridor, ”L” corresponds to
L-junction, and ”T” corresponds to T-junction.
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4.3.2 k-means clustering

The k-means algorithm is an algorithm to cluster objects based on attributes
into k partitions.

c =
k

∑

i=1

∑

xj∈Si

(xj − µi)
2 (4.19)

µi is centroid or mean of all the points xj ∈ Si In this study, a k-means al-
gorithm is employed for quantization,i.e. given input signal, k-means exhibit
the closest mean as the codebook vectors for corresponding input signal.

4.4 Utilizing the Resulting Graph-based Map

Scholkopf and Mallot propose a learning view graph for robot navigation
[33][6]. In their proposal, a view-graph map is learned from a sequence of
views during exploration. This view-graph provides a discretized version
of the environment. The graph-based maps in this chapter are similar to
directed place graph in [33]. Figure 4.3. explains how to construct a use the
resulting graph for navigation in [33].

In contrast the above mentioned approach, in this thesis a connectivity
matrix is introduced directly from the graph-based map, showing the connec-
tivity between two nodes. Hence, it can avoid using dual maps representation.
Accordingly the procedures are as follow:

1. Find all possible paths, store nodes and the corresponding robot move-
ments toward the goal

2. Find the shortest path

3. Execute optimum path
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Figure 4.3: Construction of a view graphs (adopted from [19]) (a). A simple
maze (b). A graph-based map corresponds to (a). Here pi and cj are places
(junctions) and corridors, respectively (c). Interchange graph of (b), where
each node vi corresponds to one directed connection in the graph-based map
(d). Adjacency matrix of the view-graph, with labels indicating the move-
ment leading from one view to another. Here, gl, gr and gb correspond to go
left, go right, and go backward, respectively
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Chapter 5

Experimental Results on Task
Segmentation and Clustering

5.1 Task Segmentation using mnSOM

5.1.1 Difficulty in the standard mnSOM

Figure 5.1.(a) illustrates the resulting map by the standard mnSOM. No in-
formation is available on the relation between modules with different colors.
It indicates that segmentation based on Figure 5.1.(a) generates 23 classes,
which is meaningless. Because of this, our previous studies [23][24] assumed
availability of prior information that winner modules corresponding to sub-
sequences in the same class share the same label. However, the prior class
information is unavailable in real situation and is unrealistic.

5.1.2 Experiments with a Single Path

mnSOM modules learn internal models of nonlinear dynamics of robot-environment
interaction by minimizing mean prediction error of sensory-motor signals at
the next time step, given the past sensory-motor signals. After training,
the resulting mnSOM provides a label to each module by a procedure in
Section 3.5. taking advantage of prior information, that winner modules cor-
responding to subsequences in the same class share the same label. Given
a subsequence, either experienced or novel, one of the modules becomes a
winner. The label of the winner module provides task segmentation for each
subsequence.

mnSOM is trained using subsequences with varying length. Figure 5.1
illustrates the training result using subsequences with the length 20. White
color modules are those which never win the competition for any subsequence.
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Figure 5.1: The resulting mnSOM with each color representing a data class.
(a)Segmentation by the standard mnSOM. The resulting number of classes
is 23, and is too large. (b) Segmentation by mnSOM with the assumption
that winner modules corresponding to subsequences in the same class share
the same label.

Table 5.1 summarizes the classification performance for subsequences with
varying length. It shows that the length of 20 is the best in terms of the
correct classification rate. Hereafter, only the results with the length of 20
are shown.

Generally speaking, the shorter a subsequence, the less sufficient the train-
ing of a module becomes. On the other hand, the longer a subsequence, the
more likely a label changes within a subsequence. Accordingly, a moderate
length of a subsequence might be exists. Taking this characteristic into ac-
count, the best length of a subsequence is empirically found based on the
criterion of the classification rate.

Figure 5.1 indicate that modules in white color have never become a win-
ner for any subsequence, hence remain unlabeled. For labeling unlabeled
modules, a similar labeling method as the conventional SOM is adopted; la-
bel an unlabeled module by the label of the subsequence with the minimum
Mean Square Error (MSE). Figure 5.2 illustrates the resulting fully labeled
task map. Because most of the robot motion is forward movement, many un-
labeled modules in Figure 5.1 are labeled by ”F” in Figure 5.2. The resulting
task map is then evaluated using a novel dataset. Figure 5.3 depicts the test
results, which enables to count the number of misclassifications; the number
of misclassifications is 11 and the equivalent number of misclassifications is
10.5.

33



Figure 5.2: Resulting mnSOM trained by subsequences of the length 20 in
a single path. The numbers in each module shown in the winner modules
represent subsequences which become a winner at the corresponding module.

Table 5.1: Classification performance for training
Number of Number of Equivalent Correct
samples misclassi- number of classifi-
in each fications misclassi- cation

subsequence fications rate (%)
10 10 8.5 89.88
15 5 3.5 93.75
20 2 1.0 97.62
25 4 3.0 90.90
30 3 3.0 89.29
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Figure 5.3: Fully labeled task map based on a single path composed of sub-
sequences with the length 20.
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Figure 5.4: Test result of the task map based on a single path composed of
subsequences with the length 20.
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Table 5.2: Label combinations. ”X” stands for unlikely label combination.

First Label
Second Label L R F L/F R/F

L L X L/F L/F X
R X R R/F X R/F
F L/F R/F F L/F R/F

L/F L/F X L/F L/F X
R/F X R/F R/F X R/F

5.1.3 Experiments with Multiple Paths

For better generalization, a task map is proposed to build based on multiple
paths. In this study, four paths obtained from the same environment but
with slightly different routes are used. The detailed procedure is:

• Generate four paths by moving a Khepera II robot in the forward di-
rection twice as in Figure 3.4, and in the reverse direction twice.

• Train mnSOM based on them. At each mnSOM iteration, all paths are
used in random order for stable learning.

• Label modules in the resulting mnSOM as follows.
In cases where a module becomes a winner for subsequences with dif-
ferent labels, the majority voting is adopted. When it does not provide
a solution, decide the label based on rules in Table 5.2. In case of more
than 2 different labels, repeatedly apply rules in Table 5.2 starting from
the first two labels. If ”X” in Table 5.2 occurs, the corresponding mod-
ule is left unlabeled, but it is considered to be unlikely. Figure 5.4
illustrates the resulting task map. Again, not all modules become a
winner. Hence, it is necessary to assign labels to those modules.

A labeling method as in a single path is assigned to labels the unlabeled
modules. Figure 5.5 shows the resulting fully labeled task map based on mul-
tiple paths. Each module is an expert representing the nonlinear dynamics
of the corresponding subsequences.

Task Map Comparisons: with or without temporal continuity?

Figure 5.6 illustrates the resulting mnSOM of single path by three threshold
methods in Subsection 3.6. After labeling the unlabeled modules, test these
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Figure 5.5: Resulting task map based on multiple paths.
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Figure 5.6: Fully Labeled Task Map based on multiple paths.

Figure 5.7: Resulting mnSOM for various Threshold in Section 3.6. (a)
Constant Threshold. (b) Time Varying MSE Threshold. (c)Proportional
MSE Threshold.)
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three task maps. Time varying MSE threshold gives the best result with no
misclassification during test. Further, elaborate mnSOM training of multiple
path by using time varying MSE threshold. Figure 5.7 illustrates the resulting
fully labeled task map based on multiple paths as in [23].

Figure 5.8: Fully labeled task map based on multiple paths for mnSOM with
temporal continuity.

Tables 5.3 and 5.4 provide within- and between- class distances using ap-
proach without temporal continuity and with temporal continuity, respec-
tively. The tables indicate that without temporal continuity is superior
to with temporal continuity. Without using temporal continuity produces
smaller within class distances (except for R/F) and bigger between class
distances (except for distance between L and R). The large value of the ra-
tio of ”Between class distance” to ”Within class distance” also indicates its
superiority.
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Table 5.3: Between- and within- class distance matrix corresponding to Fig-
ure 5.5

L R F L/F R/F

L 1.868 2.666 4.213 3.309 3.569
R 2.666 0.848 5.656 2.647 1
F 4.213 5.656 3.555 3.692 5.997

L/F 3.309 2.647 3.692 1.454 2.544
R/F 3.569 1 5.997 2.544 3.6

∑

(between class distance) = 35.2944
∑

(within class distance) = 11.325
Ratio = 35.2944/11.325 = 3.1165

Table 5.4: Between- and within- class distance matrix corresponding to Fig-
ure 5.7

L R F L/F R/F

L 3.255 2.923 4.043 3.064 3.343
R 2.923 1.536 3.426 2.162 0.449
F 4.043 3.426 3.572 1.299 3.695

L/F 3.064 2.162 1.299 5.021 2.476
R/F 3.343 0.449 3.695 2.476 1.978

∑

(between class distance) = 26.8817
∑

(within class distance) = 15.362
Ratio = 26.8817/15.362 = 1.7499
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Figure 5.9: Test result for a novel dataset.
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Table 5.5: Classification and segmentation performance of the resulting task
map

NS∗stands for length of a subsequence. † stands for the best result using
temporal continuity

The number of Correct
misclassifications Segmentation

NS∗ rate (%)
Datasets training novel

1 2 3 4 novel datasets dataset

10 6 6 5 8 15 92.56 82.14
15 4.5 1.5 3.5 2 5 94.87 91.07
20 1.5 1.5 2.5 0 2.5 96.73 94.05
25 3 1.5 1 2 4.5 94.32 86.36
30 2 1.5 1 2 3.5 94.30 87.50
20† 3.5 0.5 2 1 4.5 95.80 89.30

A novel path is used to evaluate the resulting task map as shows in
Figure 5.8. Each module in Figure 5.8 represents subsequence numbers for
which the corresponding module becomes a winner. Comparison between
Figure 5.8 and Figure 5.4 indicates that 11 winner modules out of 27 winner
modules for a novel path (40.74% ) have not become a winner during training.
It is interpreted that mnSOM takes advantage of its module interpolation
capability to find an appropriate expert module for a novel subsequence.
Table 5.5 summarize the overall performance for training and test. As before,
subsequences with the length 20 is the best.

5.2 Comparative Studies

5.2.1 Task Segmentation using SOM

A SOM with 100 units is used for task segmentation using the same dataset
as in the previous section. As the inputs are 8 IR sensor values and 2 motor
commands. Figure 5.9. depicts the resulting task map. The resulting task
map shows very clear border among tasks. A novel dataset then used to
evaluate the resulting map. As the result, 107 samples are misclassified,
which is equal to have 87.3% correct classification rate. This result indicates
the superiority of mnSOM over SOM for task segmentation.
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Figure 5.10: A Task Map generated using SOM.
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Table 5.6: Parameters in Mixture of Recurrent Experts (MRE)

#x stands for the number of x.

MRE

learning rate of gate internal state (ǫg) 0.07
momentum of gate internal state(ηg) 0.02
scaling factor(σ) 5
# iterations 1000
# BPTT iterations for 30
each MRE iteration

MRE Module: FRNN

# external input units 10
# visible (output) units 10
# hidden units 27
learning rate (ǫ) 0.002

5.2.2 Task Segmentatiom using Mixtures of Recurrent
Experts

A mixtures of recurrent experts with 5 RNN modules is employed for this
purpose. The same modules architecture are employed in MRE. Detail pa-
rameters are in Table 5.5. Figure 5.10 shows training result at iteration 1000.
Although MSE are small enough, a certain module (module 5) became a win-
ner for the whole data, hence segmentation is unsuccessfull. It is difficult to
find proper parameters for successful learning. I have tried to vary scaling
factor from 0.5 upto 10 with unsuccessful results. Another problem might
come from the use of fully connected recurrent network which has high degree
of freedom, hence one module is enough to handle the whole dataset.

5.3 Task Segmentation using Clustering Meth-

ods

This section explains experimental results of segmentation using clustering
methods based on the distance between modules in the resulting mnSOM,
without using prior information that winner modules corresponding to sub-
sequences in the same class share the same label. The experiments are
done using simple robotic field (“robotic field 1”) and more complex robotic
field(“robotic field 2”). For convenient, segmentation results for a novel data
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Figure 5.11: Training result of a MRE at iteration 1000

set for robotic field 1 and robotic field 2 are redrawn in Figure 5.11. It is to
be noted that the result should not be regarded as a candidate for perfor-
mance comparison, because it uses unrealistic prior information which is not
available in real situation. The result, therefore, should be regarded as the
upper bound for segmentation performance.

Figure 5.12 illustrates the resulting segmentation of a novel dataset by
hierarchical clustering for robotic field 1 and robotic field 2. The task maps
in Figure 5.12 are similar to those by mnSOM in Figure 5.11 to some extent.

Figures 5.13 and 5.14 indicate that proper value of τ shifts some winner
modules corresponding to adjacent subsequences (e.g. subsequence 16 and
17 in Figure 8) into the same cluster, and changes cluster boundary.

Table 5.6 gives summary of segmentation performance by various clus-
tering methods in addition to the upper bound for the segmentation perfor-
mance. It is the correct segmentation rate by mnSOM using prior informa-
tion. Since this prior information is unavailable in real situation, this should
be regarded as the upper bound for the segmentation performance, not as a
candidate for performance comparison.

In clustering with spatio-temporal contiguity, the performance of cluster-
ing depends on the time constant parameter, τ , in Eq. (9). τ=0 corresponds
to clustering with spatial contiguity and positive values of τ correspond to
clustering with spatio-temporal contiguity. Table 1 indicates that the per-
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Figure 5.12: Resulting labels for novel subsequences based on mnSOM (a)
for robotic field 1, (b) for robotic field 2.

Figure 5.13: The Resulting Segmentation by Hierarchical Clustering: (a) for
robotic field 1, (b) for robotic field 2.
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Figure 5.14: Resulting Segmentation by Clustering with Spatio-temporal
Contiguity for Robotic Field 1, (a) τ=2, (b) τ=7

Figure 5.15: Resulting Segmentation by Clustering with Spatio-temporal
Contiguity for Robotic Field 2, (a) τ=2, (b) τ=19. Subsequences 16 and 17
(circled) which are lied on separated cluster in (a) became on one cluster in
(b)
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formance is the best at τ=7 for the robotic field 1, while the performance
is the best at τ=19 for robotic field 2. In robotic field 1, the performance
of the hierarchical clustering is superior to that of clustering with spatio-
temporal contiguity. In robotic field 2, the performance of clustering with
spatio-temporal contiguity is superior to that of the hierarchical clustering.
The reason for this is left for future study.

Table 5.7: Correct Segmentation rate (%) by various Clustering Methods.
”upper bound” stands for the correct segmentation rate by mnSOM with
prior information. “Tr1”, “Tr2”, “Tr3”, “Tr4” stand for training dataset
1, 2, 3 and 4, respectively. “Ave” stands for the average over 4 datasets.
“Novel” stands for novel dataset.

Robotic Data- upper Hierar- Spatio-temporal contiguity
Field set bound chical τ ≈0 τ=2 τ=7 τ=11 τ=15 τ=19

Tr1 94.4 85.71 86.9 86.9 88.1 78.6 67.9 67.9
Tr2 96.4 85.71 82.1 82.1 84.5 67.9 66.7 52.4

1 Tr3 94.0 91.67 78.6 78.6 83.3 71.4 75.0 54.8
Tr4 100 90.48 80.9 80.9 83.3 63.1 65.5 53.6
Ave 96.2 88.4 82.1 82.1 84.8 70.3 68.8 57.1

Novel 94.0 92.9 83.3 83.3 86.9 82.1 70.2 67.9
Tr1 97.6 88.7 86.3 86.3 94.4 91.1 91.1 93.6
Tr2 96.0 88.7 83.1 83.1 86.3 86.3 86.3 91.1

2 Tr3 99.2 85.5 91.1 91.1 92.3 92.7 92.7 90.3
Tr4 98.4 91.1 87.1 87.1 89.5 89.5 89.5 89.5
Ave 97.8 88.5 86.9 86.9 90.6 89.9 89.9 91.1

Novel 95.2 92.7 80.6 80.6 87.9 87.9 87.9 93.6

5.4 Conclusions and Discussions

Subsequences with varying lengths are explored. Subsequences with the
length of 20 produce the best classification performance of 97.62% for train-
ing samples.

To generate a task map with larger generalization, it is proposed to train
mnSOM based on multiple paths. The combined task map provides a map of
expert modules. The resulting mnSOM using subsequences with the length
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of 20 produces the best segmentation performance of 96.73% for training
data and 94.05% for a novel data.

Introduction of temporal continuity to the winner modules is also pro-
posed. The results, however, have less performance than without introducing
temporal continuity.

It is possible to do task segmentation using SOM, but mnSOM shows
superiority over SOM for current application. Using provided data in this
study, MRE learning is unsatisfactory due to difficulty to find its proper pa-
rameters. The problem also arise from the using of fully connected recurrent
network as MRE’s module, since a certain module became a winner for the
whole data, hence segmentation is unsuccessful.

One might consider that proposed study is symbolic, i.e., discretized,
control, since modules are proposed and one of them becomes a winner for
a subsequence. However, in contrast to the so-called symbolic approach,
module interpolation is possible in present approach. It can be interpreted
that mnSOM takes advantage of its module interpolation capability to find
an appropriate expert module for a new subsequence.

To exhibit module interpolation capability of mnSOM, it is better to use
many modules. This, however, increases computational cost. Taking this
trade-off into account, 10x10 modules are used in mnSOM.

A PC with Pentium 4 (3.2GHz, 1GB RAM) is used. mnSOM training
based on a single path takes 8.5 hours for 400 mnSOM iterations, and 34
hours based on 4 paths. On the other hand, mnSOM test takes only 1.79
seconds for a single path comprising 843 samples. It means that it takes
2.12 m seconds (1.79/843) at each time step, which is small enough for real
application.

Segmentation based only on mnSOM assumes the availability of prior in-
formation that winner modules corresponding to subsequences in the same
class share the same label. Since this prior information is not available in
real situation, segmentation using clustering methods based on the distance
between modules in the resulting mnSOM is proposed. The resulting segmen-
tation by mnSOM is then regarded as the upper bound for the segmentation
performance, not as a candidate for performance comparison.

Firstly, the conventional hierarchical clustering is proposed. This sup-
poses that the distances between any pairs of modules are provided with
precision, but this is not the case in mnSOM. Secondly, a clustering method
based on the distance between only the spatially adjacent modules with mod-
ification by their temporal contiguity is proposed.

In the robotic field 1, the segmentation performance by the hierarchical
clustering is very close to the upper bound for novel data. In the robotic
field 2, the segmentation performance by clustering with the spatio-temporal
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contiguity is very close to the upper bound for novel data. Therefore, the
proposed methods demonstrated their effectiveness of segmentation. How-
ever, segmentation performance for training data is significantly lower than
the upper bound. The improvement of this is left for future study.
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Chapter 6

Experimental Results on the
Formation of Graph based
Maps

6.1 Environment Segmentation

Figure 6.1 illustrates robotic path in a training dataset. Numbers in figure
are the starting and ending subsequence number of T- or L-junctions. Lo-
cation of a number corresponds to robot location in the robotic field. Label
of a subsequence is determined according to current robot location (refers to
Figure 4.2). This dataset is used for HMMs and mnSOM training. Experi-
mental results presented in this section is based on a novel dataset depicted
in Figure 6.2. Figure 6.3 illustrates the resulting environment map in mn-
SOM module using the same procedure as in Chapter 3. It is to be note that
the color of a module contains different information comparing to that in
Chapter 5. Legend in the lower part of the graph explains meaning of each
color of modules. Given a subsequence of data, known data or a novel one,
mnSOM will exhibit prediction of the type of environment experienced by
the robot in the current subsequence. Given a dataset, mnSOM will generate
sequence of module labels from which the current data originally came.

6.2 Environment Recognition using mnSOM-

HMMs

Using the resulting mnSOM in Figure 6.3, given a subsequence of data, known
data or a novel one, mnSOM provides estimation of the type of the environ-
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Figure 6.1: Robotic path in a training dataset.

Figure 6.2: Robotic path in a novel dataset
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Figure 6.3: Resulting Map from mnSOM.
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Table 6.1: Parameters of mnSOM-HMMs

Parameter Value

T the length of the 80
observed sequence

N the number of states 3
in the model

M the number of observa- 5
tion symbols per state

V discrete set of possi- {”C”, ”L”, ”T”, ”L/C”, ”T/C”}
ble symbol observation

π probability distribution {1, 0, 0}
of initial state

ment experienced by the robot corresponding to current subsequence. Given
a dataset, mnSOM provides sequence of labels. Parameters in mnSOM-
HMMs are given in Table 6.1 and Table 6.2.

Figure 6.4: Left-right type HMM employed in the current study (a) with 3
states (b) with 2 states

Three HMMs are trained, namely HMM for corridor, HMM for L-junction
and HMM for T-junction. An important issue is how to determine the start-
ing and end points of each HMM. To solve this problem, a normalized likeli-
hood in Eq. (6.1) is calculated by taking into consideration of the length of
the period, k, of each HMM.

Pnormk
= (

i=k
∏

i=1

P (Oi|λi))
1/k (6.1)

In Figure 6.5, normalized likelihood value begins to decrease after time step
6. It suggests that the HMM corresponding to corridor with the length of
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Table 6.2: Estimated Parameters in the mnSOM-HMMs

Para- HMM Values
meter

A HMM for 0.7675 0.2325 0.0
corridor 0.0 0.8295 0.1705

0.0 0.0 1.0
HMM for 0.2732 0.7268 0.0
L-junction 0.0 0.6739 0.3261

0.0 0.0 1.0
HMM for 0.848 0.152 0.0
T-junction 0.0 0.0004 0.9996

0.0 0.0 1.0
B ”C” ”L” ”T” ”L/C” ”T/C”

HMM for 0.7822 0.0187 0.0181 0.1064 0.0746
corridor 0.947 0.0472 0.0 0.004 0.0017

0.0001 0.0002 0.4947 0.0 0.505
HMM for 0.4817 0.3995 0.0 0.0628 0.0559
L-junction 0.0768 0.4958 0.2002 0.2272 0.0

0.8794 0.0 0.0 0.1206 0.000
HMM for 0.1443 0.0 0.4945 0.0 0.3612
T-junction 0.0 0.0 0.8897 0.0 0.1103

0.5184 0.0 0.0008 0.1482 0.3326
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6 is the best from the viewpoint of likelihood. The subsequent decisions are
made in the same way by starting from the following time step of the end
point of the previous HMM.

Figure 6.5: Graph of normalized likelihood. (Here, normalized likelihood
values are available only at markers on the curve)

Table 6.3 gives the resulting recognitions. The fourth column of this
table provides the middle of each segment. In case of T and L labels, they
correspond to the center of junctions.

The correct segmentation rate is calculated from comparison of the length
of label sequences in Table 6.3 to the original length of sequences in Figure 6.2
The correct segmentation rate is 89.32 %. However, mis-recognition occurs
as shown in Figure 6.6: a T-junction is mis-recognized as a combination of
T-junction and L-junction.

Figure 6.6: Junctions recognition using mnSOM-HMM for a Novel Data
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Table 6.3: Summary of mnSOM-HMMs Recognition Results for a Novel
Dataset

starting end best HMM subsequence at
subsequence subsequence the middle of

number number sequence

1 7 C 3.5
8 11 T 9.5
12 17 C 14.5
18 20 T 19
21 26 C 23
27 31 L 29
32 38 C 35
39 43 L 41
44 48 C 46
49 54 T 51.5
55 60 C 57.5
61 63 L 62
64 65 T 64.5
66 71 C 68.5
72 76 L 74
77 82 C 79.5
83 84 L 83.5
85 92 C 88.5
93 97 L 94.5
98 103 C 100.5
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Table 6.4: Parameters in k-means-HMMs

Parameter Value

T 1600
N 2 or 3
M 5
V {”1”, ”2”, ”3”, ”4”, ”5”}
π {1, 0, 0}

6.3 Environment Recognition using k-means-

HMM

Using k-means quantization, a set of 5 codebook vectors with 10-dimension
are created. Ten dimension corresponds to 8 IR sensors and 2 motor com-
mands. Accordingly, at every time step, one of 5 codebook vectors is ob-
served. These code vectors are used for estimating parameters in HMMs.
Figure 6.7 shows comparison of log likelihood of HMMs with various number
of codebook vectors.

Figure 6.7: Likelihood Comparison of HMMs with Quantized Raw Input
Data using k-means Clustering with Various Numbers of Codebook vectors.

Three HMMs are trained, namely HMM for corridor, HMM for L-junction
and HMM for T-junction. Two cases are compared in this subsection, junc-
tions recognition using HMMs with 3 states and that with 2 states. Tables
6.4 shows parameters in a k-means-HMMs

k-means-HMMs with 3 States

Tables 6.5 shows estimated parameters of k-means-HMMs with 3 states.
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Table 6.5: Estimated Parameters of k-means-HMMs with 3 States

Para- HMM Values
meter

A HMM for 0.9749 0.0251 0.0
corridor 0.0 0.9158 0.0842

0.0 0.0 1.0
HMM for 0.9933 0.0067 0.0
L-junction 0.0 0.9094 0.0906

0.0 0.0 1.0
HMM for 0.9225 0.0775 0.0
T-junction 0.0 0.9921 0.0079

0.0 0.0 1.0
B ”1” ”2” ”3” ”4” ”5”

HMM for 0.0084 0.9404 0.0487 0.0025 0.0000
corridor 0.1907 0.0355 0.7618 0.012 0.0000

0.6384 0.0013 0.0042 0.356 0.0000
HMM for 0.0167 0.5347 0.4486 0.0000 0.0000
L-junction 0.9500 0.0000 0.0500 0.0000 0.0000

0.000 0.0654 0.9346 0.0000 0.0000
HMM for 0.9141 0.0775 0.0084 0.0000 0.0000
T-junction 0.0093 0.0000 0.9907 0.0000 0.0000

0.1680 0.6348 0.0198 0.0000 0.1774

60



Table 6.6: Recognition Results Summary of k-means-HMMs with 3 States

starting end best HMM the middle of the middle of
sample sample segment segment
number number (sample) (subsequence)

1 17 L 9 1
18 148 C 83 6
149 238 T 152 7
239 345 C 193 9
346 448 T 392 18
449 578 C 513 25
579 657 L 621 31
658 779 C 718 35
780 894 L 837 41
895 1015 C 955 47
1016 1099 T 1057 52
1100 1207 C 1153 57
1208 1274 T 1241 62
1275 1384 C 1329 66
1385 1490 L 1437 74
1491 1658 C 1574 78
1659 1702 L 1680 84
1703 1877 C 1790 89
1878 1962 T 1919 95
1963 2060 C 2010 100
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While recognition results of a novel data is depicted in Figure 6.8 and Ta-
ble 6.6. The fourth column of Table 6.6 provides the middle of each segment
in term of sample number while fifth column provides the middle of each
segment in the term of equivalent number of subsequence. Suppose that the
middle of each T or L sequence corresponds to an edge of a graph, and each
edge connected by sequence of ”C” labels, a graph-based map can be gener-
ated if a pair of edges are connected by a sequence ”C.” Figure 6.8 depicts
the resulting map, which is similar to some extent to the original path in
Figure 6.2. The correct segmentation rate is calculated from comparison of
the length of label sequences to the original length of sequences in Figure 6.2.
The correct segmentation rate is 83.74 %. In addition, no mis-recognition
occurs.

Figure 6.8: Junction recognition using k-means-HMMs with 3 states for a
novel dataset

k-means-HMMs with 2 States

Tables 6.7 shows estimated parameters of k-means-HMMs with 2 states.
While recognition results of a novel data is depicted in Table 6.8 and Figure
6.9. The correct segmentation rate is 81.26 %. However, a mis-recognition
occurs here, i.e. a T-junction is recognized as combination of L-junction and
T-junction.
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Table 6.7: Estimated Parameters of k-means-HMMs with 2 States

Para- HMM Values
meter

A HMM for 0.9871 0.0129
corridor 0.0 1.0
HMM for 0.8581 0.1419
L-junction 0.0 1.0
HMM for 0.9427 0.0573
T-junction 0.0 1.0

B ”1” ”2” ”3” ”4” ”5”
HMM for 0.6842 0.0059 0.2269 0.0533 0.0298
corridor 0.0153 0.0609 0.0 0.485 0.4388
HMM for 0.8919 0.0164 0.0000 0.0491 0.0426
L-junction 0.0217 0.6625 0.0000 0.3158 0.000
HMM for 0.9676 0.0192 0.0000 0.0132 0.0000
T-junction 0.0376 0.8683 0.0000 0.0941 0.0000

Figure 6.9: Junction recognition using k-means-HMMs with 2 states for a
novel dataset
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Table 6.8: Recognition Results Summary of k-means-HMMs with 2 States

starting end best HMM the middle of the middle of
sample sample segment segment
number number (sample) (subsequence)

1 162 C 81 4
163 238 T 200 10
239 345 C 291 15
346 415 T 380 19
416 586 C 500 26
587 655 L 620 31
656 779 C 717 36
780 907 L 843 43
908 1030 C 968 49
1031 1100 T 1065 54
1101 1207 C 1153 58
1208 1271 T 1239 62
1272 1431 C 1351 68
1432 1490 L 1460 73
1491 1658 C 1574 79
1659 1739 L 1698 85
1740 1890 C 1814 91
1891 1910 L 1900 95
1911 1962 T 1936 97
1963 2060 C 2011 101
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6.4 Formation of a Graph-based Map and Case

Study

In the previous section, a graph-based map has been derived. This section
provides a method to use the resulting graph for mobile robot navigation.
The basic idea has been explained in chapter 4.

Figure 6.10: Constructing the graph-based maps from the resulting sequence
of HMMs (a). The resulting environment recognition and its corresponding
graph-based map. Here, Li corresponds to L-junction and Tj corresponds
to T-junction (b). Connectivity matrix. ’1’ corresponds to connected, ’0’
corresponds to not connected

Figure 6.10.(a) depicts the resulting graph-based map from the corre-
sponding environment recognition. Two arcs are shown here to represent
bi-directional movement of a mobile robot between 2 nodes. Figure 6.10(b)
shows the corresponding connectivity matrix.

Suppose that an obstacle is present in the corridor as in Figure 6.11.(a).
The robot is at the start position and seeking the goal with the red circle
on the robotic field. Two lines shown in this figure are the corresponding
possible robotic paths toward the goal.

Following the procedure in Chapter 4:

1. Possible paths

Since the goal is between L3 and L4, the following paths are possible

• L1 − T1 − T2 − L3 − L4, robot movement at a node are ”straight
forward - turn right - turn left - turn left”

• L1 −L2 −T2 −L3 −L4, robot movement at a node are ”turn right
- turn left - straight forward - turn left”
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Figure 6.11: Goal Seeking Problem

2. Find the shortest path

It is assumed that L1 −T1 −T2 −L3 −L4 has the shortest path toward
the goal

3. Execute optimum path

Figure 6.12 shows robot movements in Webots simulation.

6.5 Conclusions and Discussions

Ambiguous interpretation of sensory-motor signals due mainly to noise and
fluctuation often makes deterministic approach in mobile robots unsatisfac-
tory. In this paper, a stochastic approach based-on estimation of Hidden
Markov Models (HMMs) was proposed to recognize environment of a mobile
robot. From this recognition a graph-based map is formed. Graph-based
maps are important in decreasing the computational cost.

Two methods are proposed in this paper. The former is to estimate
HMMs based on a sequence of labels obtained by modular network SOM
(mnSOM). The resulting maps are quite similar to the actual map and the
correct segmentation rate is good enough (89.32 % for a novel dataset), how-
ever a label mis-recognition occurs for a novel dataset.

The latter is to estimate HMMs based on quantized sensory-motor signals
as observed symbols. The resulting sequence of HMMs provide a sequence
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Figure 6.12: Webots simulation of goal seeking. Numbers shown in the figures
are the corresponding order of robot movements to reach the goal

of labels describing segmentation of the environment, i.e., L-junction, T-
junction, and corridor. It is straightforward to generate a graph-based based
on them. A k-means-HMMs with 3 states gives better segmentation rate,
83.74 % for a novel dataset, than a k-means-HMMs with 2 states (81.26 %
for a novel dataset). In addition, the model with 3-state has no label mis-
recognition. This result also suggests that k-means-HMMs with 3 states is
more reliable than mnSOM-HMMs with 3 states.

The resulting graph-based map obtained from HMMs also contributes
to goal seeking. Simulation results indicate that the proposed method can
perform goal seeking efficiently, since it is not necessary to introduce new
map for changing environment.
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Chapter 7

Conclusions and Discussions

7.1 Conclusions

To segment the world based on sensory-motor signals using mnSOM, and to
develop a graph-based map, I proposed the followings:

1. Segmentation by clustering based on the resulting mnSOM

Task segmentation by mnSOM alone in mobile robots requires unre-
alistic prior information, hence the results should be regarded as the
upper bound for the performance of segmentation. To avoid this unre-
alistic prior information, clustering methods are applied to the resulting
mnSOM. Firstly, I proposed to use the conventional hierarchical clus-
tering. It assumes that the distance between any pairs of modules are
provided with precision, but this is not the case in mnSOM. Secondly,
I proposed to used a clustering method based on the distance between
only the spatially adjacent modules with modification by their tempo-
ral contiguity. The experimental results showed that the performance
of proposed clustering methods are very close to the upper bound for
novel data. Therefore, the proposed methods demonstrated their effec-
tiveness in segmentation.

2. Formation of graph-based maps by Hidden Markov models (HMMs)

I proposed two approaches for this, the former is to use the resulting
labels by mnSOM as observed symbols in HMMs. The latter is to use
quantized sensory signals provided by k-means clustering as observed
symbols in HMMs. Experimental results indicated that HMMs based
on quantized sensory signals by k-means provided good recognitionper-
formance, since the selection of HMMs was always correct. The result-
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ing graph-based map is also effective in goal seeking, because memory
and computational cost is much smaller than those in grid-based maps.

7.2 Discussions

The present thesis proposed segmentation using clustering based on the re-
sulting mnSOM. The clustering results using spatio-temporal contiguity pro-
vided good performance by proper adjustment of parameters. However, the
how to adjust parameter is not clear. Solution to this issue is left for further
study.

I proposed two methods for formation of graph-based maps: HMMs based
on the resulting mnSOM, and HMMs based on quantized sensory data. The
later was more robust than the former. Introduced prior probability to the
former for better performance with no avail. How to improve the performance
of recognition of the environment is also left for future study.

HMMs in this study worked off-line, restricting its applicability. In appli-
cation to mobile robots, there has been a strong needs to enhance the ability
of mnSOM. Tokunaga [35] recently proposed on-line learning of mnSOM.
This algorithm is expected to be more suitable for mobile robots, since it can
handle on-line data.

Segmentation of visual data in mobile robots is one of important issues
to be explored. Having segmented sequence of images collected during ex-
ploration of the environment, a technique such as homing [6][33] can be
employed for path planning and goal seeking. Recent proposal on SOMn, a
variant of mnSOM which is used SOM as a function module, is expected to
enhance capability of segmentation of image data, since it demonstrated its
effectiveness in face recognition [13][9].

Segmentation is, I believe, one of the origins of intelligence, hence has ap-
plicability to diverse fields such as marketing, social, politics and engineering
field. Segmentation in other fields has not yet been properly studied, and
waits for development as new endeavors.
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