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Abstract. In this paper, we propose a method for multi-task manifold learning.
For a set of tasks of dimensionality reduction, the aim of the method is to model
each given dataset as a manifold, and map it to a low-dimensional space. For
this purpose, we use a hierarchical manifold modeling approach. Thus, while
each data distribution is represented by a manifold model, the obtained models
are further modeled by a higher-order manifold in a function space. The higher-
order model mediates the information transfer between tasks, and as a result, the
performance of each task is improved. The results of simulations show that the
proposed method can estimate manifolds approximately, even in cases in which
a tiny number of samples are provided for each task.
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1 Introduction

Multi-task learning is a paradigm of machine learning that aims to improve performance
by simultaneously learning similar tasks [2, 28]. Many studies have been conducted on
multi-task learning, particularly supervised learning. By contrast, there have been few
studies on multi-task unsupervised learning, and only a few studies have been conducted
on multi-task clustering [28]. To date, few works have been reported on dimensionality
reduction, particularly in the context of non-linear manifold learning. The purpose of
this study is to develop a method for multi-task manifold learning. We focus in particu-
lar on scenarios in which the number of data samples is too small to estimate manifolds
and the assistance of other tasks is indispensable.

A typical example is face image modeling. It is well known that face images are
modeled by a manifold [23, 3]. To estimate a face manifold, we typically need a suffi-
cient number of photographs taken from various viewpoints with various expressions
that cover the manifold entirely. However, in practice, it is typically difficult to obtain
such an exhaustive image set of a single person. Instead, we typically have a huge num-
ber of photographs of other people. Thus, we have many image sets of various people,
each of which consists of a small number (i.e., insufficient number) of photographs.
In such a scenario, our aim is to improve modeling performance by transferring the
information between tasks.

To achieve the above, we use a hierarchical modeling approach in this study. Thus,
while each given dataset is modeled by a manifold, the manifold models are further
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modeled by a higher-order manifold in a function space. This higher-order model me-
diates information transfer among the given tasks, thereby improving the performance
of manifold modeling. The proposed method consists of hierarchically coupled mani-
fold models based on the kernel smoother (kernel-smoother-based manifold modeling:
KSMM), referred to as the hierarchical KSMM (H-KSMM).

The remainder of the paper is structured as follows: The problem is formulated in
Section 2, and related work is introduced in Section 3. The proposed method is pre-
sented in Section 4 and experiment results to verify it are described in Section 5. A
discussion of the results and the conclusions of this paper are provided in the final sec-
tion.

2 Problem formulation

Suppose we have I tasks. Thus, we have I datasets
{
S1, . . . , SI

}
in high-dimensional

space X = RDX , each of which consists of Ni samples. The entire dataset is denoted as
S =
∪

i Si =
{
xn
}N
n=1, where N =

∑
i Ni. We also describe the entire dataset using matrix

X =
(
xT

n
) ∈ RN×DX . Furthermore, let in be the task index of sample n and Ni the index

set of samples that belong to task i.
When such datasets are provided, our first aim is to map the data to low-dimensional

space Z = RDZ . Thus, the first aim is to estimate
{
zn
}

that corresponds to
{
xn
}
. Our

second aim is to model each data distribution using a nonlinear manifold. Thus, for the
ith dataset, the method models x | z ∼ N( fi(z), β−1I

)
, where fi : Z → X is a smooth

embedding from Z to X. Then, the image of fi becomes a nonlinear manifold Mi = fi(Z)
in X. In this work, fi is referred to as the ‘task model.’ Note that { fi} belongs to the same
function space F, because X and Z are common to all tasks in this paper.

To achieve the above aims, the following hierarchical model is assumed in this work.
Suppose that Y is another low-dimensional space for task sets, and all task models { fi}
are assigned to {yi} as low-dimensional representations. Suppose further that g : Y →
F is a smooth embedding that satisfies fi = g[yi]. Thus, the task models are further
modeled by manifold L = g[Y] in function space F. Then, all datasets are modeled as
x | z, y ∼ N(F(z, y), β−1I

)
, where F : Z × Y → X : (z, y) 7→ (g[y]

)
(z). In this paper,

F is referred to as a ‘general model.’ Under these assumptions, the aim of multi-task
manifold learning is then to estimate

{
zn
}
,
{
yi
}
, and F simultaneously.

3 Related work

To date, few studies have reported multi-task learning in the context of dimensionality
reduction tasks, subspace methods, and manifold learning. To the best of our knowl-
edge obtained from a survey, multi-task principal component analysis is the only devel-
opment in the literature that is expressly aimed at the multi-task learning of subspace
methods [27]. However, by extending the scope of our survey, we can locate related
methods in the field of hierarchical modeling (or multi-level modeling) that aim to ob-
tain higher-order models of tasks [5]. Although hierarchical modeling does not aim to
improve the performance of tasks, the areas of hierarchical modeling and multi-task
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learning overlap, where the former is sometimes used as an approach to the latter [29,
9, 10].

Among methods for unsupervised hierarchical modeling, the higher rank of self-
organizing maps (SOM2) is the most relevant work to this study [7, 6]. SOM2 has been
applied to several problems in multi-task learning, such as face images of various people
[14], nonlinear dynamical systems with latent state variables [21, 22], the shapes of
various objects [25, 26], and members of various groups [12, 13]. In this sense, SOM2

is one of the earliest examinations of multi-task unsupervised learning for nonlinear
subspaces.

Although SOM2 works like a multi-task learning method, it remains challenging to
estimate manifolds when the number of samples per task is small. Moreover, SOM2 has
several limitations that originate from SOM itself, such as poor manifold representation
using discretized nodes and the brute force optimization of latent variables. In this pa-
per, we attempt to eliminate such limitations from SOM2 by replacing it with KSMM
and extending it for the multi-task learning paradigm.

4 Proposed method

KSMM is used as the building block of hierarchical manifold modeling in the proposed
method. In this section, we first describe KSMM and introduce the proposed method,
called H-KSMM.

4.1 Kernel-smoother-based manifold modeling (KSMM)

Generally, nonlinear methods for dimensionality reduction are categorized into two
groups [17]. The first consists of methods that project data points from a high-dimensional
space (data space) to a low-dimensional space (visualization space). Most dimension-
ality reduction methods are in this group. By contrast, the second group consists of
methods that estimate the mapping from a low-dimensional space (latent space) to a
high-dimensional space (visible space). As the latter group of methods aim to model
the data distribution using a manifold, we refer to the group as manifold modeling. Rep-
resentative methods of manifold modeling are generative topographic mapping (GTM)
[1] and the Gaussian process latent variable model (GPLVM) [18, 17], which originate
from self-organizing maps (SOMs) [16]. To estimate a smooth manifold, GTM and
GPLVM use the Gaussian process, whereas SOM uses a kernel smoother.

KSMM uses a kernel smoother, such as the original SOM, instead of a Gaussian
process because this makes it easier to extend SOM2 to H-KSMM. Moreover, to the
best of our knowledge, the kernel smoother stabilizes manifold modeling to a greater
extent than the Gaussian process, particularly in challenging conditions, such as the
case that we consider.

Although not by this particular name, KSMM has been proposed in many studies
as a theoretical generalization of SOM [20, 4, 8, 11, 24]. According to these studies, the
cost function of KSMM is given by

E =
β

2

∑
n

∫
h(z, zn) ∥xn − f (z)∥2 p(z) dz. (1)
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In (1), h(z, z′) is a non-negative smoothing kernel defined on Z, which is typically
h(z, z′) = N(z | z′, λ2

Z
I
)
. The prior of z is a uniform distribution on a unit square space,

that is, p(z) = 1 for z ∈ [−1/2,+1/2]DZ ; otherwise, p(z) = 0. In this study, nonlinear
mapping f is represented parametrically using orthonormal basis functions (e.g., nor-
malized Legendre polynomials). Thus, f (z |V) = VT φT(z), where φ = (φ1, . . . , φL)T is
the basis set and V ∈ RL×DX is the coefficient matrix.

Nonlinear mapping f and latent variables {zn} are alternately updated, as in a gen-
eralized expectation maximization algorithm. To update f , coefficient matrix V is cal-
culated as V = A−1BX, where

A =
∫
φ(z)φT(z) h(z) p(z) dz (2)

B =
∫
φ(z) h(z)T p(z) dz, (3)

where h(z) =
(
h(z, z1), . . . , h(z, zN)

)T and h(z) =
∑

n h(z, zn). By contrast,
{
zn
}

are up-
dated using a gradient method so that the value of the objective function (1) is reduced.

4.2 Hierarchical KSMM (H-KSMM)

H-KSMM consists of two hierarchically coupled KSMMs: a lower-KSMM and higher-
KSMM. The lower KSMM estimates each task model, whereas the higher-KSMM es-
timates the general model.

In H-KSMM, task information is transferred in two ways. The first involves forming
a weighted mixture of the sample datasets. If task i′ is a neighbor of task i in latent space
Y, then sample set Si′ is merged into target set Si as an auxiliary sample set with a larger
weight. By contrast, if task i′′ is far from task i in Y, then Si′′ is merged into Si with
a small (or zero) weight. Let us denote the weight of sample n of task in with respect

to target task i as ρin (0 ≤ ρin ≤ 1). Typically, ρin ≡ ρ(yi, yin ) = exp
[
− 1

2λ2
ρ

∥∥∥yi − yin

∥∥∥2],
where λρ determines the size of the neighborhood for data mixing. By contrast, the
second way of transferring task information involves forming a weighted mixture of the
task models among neighboring tasks, that is, the kernel smoothing of the task models.

The H-KSMM algorithm is as follows:

Step 1: Suppose {zn} and {yi} have been estimated in a preceding calculation loop (or
initialized randomly in the first loop). In Step 1, ρin is calculated as described above.

Step 2: To obtain task models { fi}, corresponding coefficient matrices {Vi} are calcu-
lated by Vi = A−1

i BiX, where

Ai =

∫
φ(z)φT(z) hi(z) p(z) dz (4)

Bi =

∫
φ(z) hi(z)T p(z) dz. (5)

In (4) (5), hi(z) =
(
ρi1h(z, z1), . . . , ρiNh(z, zN)

)T, and hi(z) =
∑

n ρin h(z, zn). The
coefficient matrices are collectively expressed as third-order tensor V =

(
Vi
) ∈

RI×L×DX .
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Step 3: To obtain general model F, coefficient tensor W ∈ RI×L×DX is calculated by

W = V ×1

(
C−1D

)
(6)

C =
∫
ψ(y)ψT(y) k(y) p(y) dy (7)

D =
∫
ψ(y) kT(y) p(y) dy, (8)

where k(y) =
(
k(y, z1), . . . , k(y, yI)

)T, k(y) =
∑

i k(y, yi), and k(y, y′) and ψ(y) are
the smoothing kernel and basis functions for the higher-KSMM, respectively. Sym-
bol ×m denotes the tensor matrix product of the mth mode. Then, the general model
can be represented as

F(z, y) =W ×1 ψ(y) ×2 φ(z). (9)

Step 4: Using a gradient method, latent variables {yi} are updated so that the approx-
imated cost function of the higher-KSMM decreases in value. The approximated
cost function is given by

E(yi) =
β

2

∑
n∈Ni

∥∥∥xn − F(zn, yi |W)
∥∥∥2 . (10)

The integral with respect to y is omitted to simplify the calculation. Such an ap-
proximation is commonly used in SOM and KSMM literatures.

Step 5: Finally, latent variables {zn} are updated using the gradient method so that the
approximated cost function of the lower-KSMM decreases. The cost function is
given by

E(zn) =
β

2

∥∥∥xn − F(zn, yin )
∥∥∥2 . (11)

These five steps are repeated until the calculation converges. During the iterations, the
length constant of the smoothing kernels is gradually reduced to avoid local minima.

5 Experimental results

5.1 Artificial datasets

The performance of the proposed method was examined using an artificial dataset. We
used sinusoidal shape manifolds with different biases (Fig. 1 (a)). Although the orig-
inal data were two-dimensional (2D), we provided eight extra dimensions, and added
10-dimensional (10D) Gaussian noise ε ∼ N(010, σ

2I10), where σ = 0.2. Thus, one-
dimensional manifolds were embedded into 10D space. For the training dataset, we pre-
pared 200 tasks, each of which consisted of Ni samples (Ni was common to all tasks)
generated randomly. We compared the results of H-KSMM (the proposed method),
SOM2, and a single task on KSMM1.

1 For a fair comparison, we modified SOM2 so that it could represent a continuous mapping
using basis functions in the same manner as KSMM. Thus, it should be rather referred to as
KSMM2. By this modification, the result shown for SOM2 is better than that of the original.
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Fig. 1. Results of the artificial dataset. A total of 200 tasks and 2 samples/task were used for
training, and 10 of 200 manifolds are shown in the figures. (a) Ground truth. (b) H-KSMM (multi-
task learning). (c) SOM2 (multi-task learning). (d) KSMM (single-task learning).
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Fig. 2. Two representative tasks extracted from Fig. 1. The two black markers represent the data
for the task.

A representative result is shown in Fig. 1. In this case, each task has only two sam-
ples. Thus, it is impossible to estimate the manifold shape using single-task learning
(Fig. 1 (d)). Surprisingly, the proposed algorithm was able to capture the outlines of the
manifold shapes (Fig. 1 (b)). To show details, two of the 200 tasks are shown in Fig. 2.
Because only two samples were provided to the task, single-task KSMM estimated
the manifold as a straight-line segment that connected two data points. By contrast, H-
KSMM was able to reproduce the sinusoidal manifold shape, although its marginal area
was truncated because there were insufficient samples.

We assessed learning performance quantitatively using two methods: the root mean
square error (RMSE) between the test data and manifold, and mutual information (MI)

ishibashi hideaki
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Fig. 3. Generalization performance of existing tasks on the test data. The horizontal axis denotes
samples/task for training. (a) Root mean square error between the data and models. (b) Mutual
information between the true and estimated latent variables.
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Fig. 4. Generalization performance on new tasks. The horizontal axis denotes samples/task for
training. (a) Root mean square error between the data and models. (b) Mutual information be-
tween the true and estimated latent variables.

of the true and estimated latent variables. RMSE evaluates the error in visible space X,
whereas MI evaluates accuracy in latent space Z. Fig. 3 (a) and (b) show the RMSE
and MI measured using the test data on the given tasks, respectively. The results show
that H-KSMM exhibited excellent performance, particularly when the number of sam-
ples/task was small.

Using the general model, it is not only possible to estimate the manifolds of the
given tasks, but also possible to predict manifolds of unseen tasks. Fig. 4 shows the
RMSE and MI for 100 new tasks. The results show that H-KSMM has a high general-
ization capability, even for new tasks.

5.2 Face image datasets

We applied the proposed method to face image modeling. The dataset used was a subset
of the extended Cohn–Kanade (CK+) face image database [15, 19]. The data used in
the experiment consisted of image sequences of 78 people, where each sequence began
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Fig. 5. Results of face image modeling of H-KSMM. Face manifolds of 2 of 78 people are shown.
The red boxes represent the training data (5 samples per task) and the green boxes represent the
test data. In each box, the original face image is displayed at the center and the corresponding
landmark face is indicated on the left-hand side. The landmark face reconstructed by H-KSMM
is indicated on the right-hand side.

with a neutral expression and proceeded to a distinct emotional expression. The dataset
thus contained a large number of intermediate expressions. In this study, we used four
types of sequences: anger, fear, happiness, and surprise. We also used landmark data
as features. Thus, each face datum was represented by a 136-dimension vector that
corresponded to the 2D coordinates of 68 landmarks. To construct the training data, we
sampled five images randomly from each person. Thus, the entire dataset consisted of
78 tasks, each of which consisted of five samples. Note that two expressions were often
missing in each task, and it was nearly impossible to estimate the face manifolds using
single-task learning.

The results are shown in Fig. 5, which represents the face manifolds estimated by H-
KSMM depicted in 3D space spanning the first three principal components. H-KSMM
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represented the training data well (indicated by red boxes) and reproduced the test data
successfully (indicated by green boxes). Thus, these face manifolds successfully repre-
sented various facial expressions, even though the data provided were insufficient.

6 Discussion and conclusion

In this paper, we proposed a method for multi-task manifold modeling based on the
hierarchical modeling approach. Characteristics of the method are two means of infor-
mation transfer: the weighted mixture of sample datasets and the weighted mixture of
task models. The latter method of information transfer is mediated by a higher-order
model in hierarchical modeling; that is, the former method of information transfer was
executed before the manifold modeling of each task, whereas the latter was executed
after manifold modeling. Providing a theoretical basis for these means of information
transfer will form the focus of our future work in this area.
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