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ABSTRACT 

In recent years, greater emphasis has been focused on urbanization on a worldwide 

scale, as more people relocate to cities each year. Today, over half of the global 

population resides in urban areas, and demographic trends indicate that an 

increasingly urban population will drive future population expansion. Due to rising 

urbanization and population expansion, cities experience environmental changes. In 

recent years, greater emphasis has been focused on urbanization on a worldwide scale, 

as more people relocate to cities each year. The requirement for universal access to 

safe, inclusive, and accessible green and public spaces is integral to Sustainable 

Development Goal (SDG) 11, which is inextricably related to the environment. As 

urban heat islands (UHI) have the potential to severely impact cities and their 

inhabitants, it is necessary to leverage available resources and data to detect and 

quantify these impacts. The Philippines, like the rest of the globe, is rapidly urbanizing 

and witnessing a rise in population density. Moreover, these heavily populated cities 

are concentrated mostly in Metro Manila. As there is insufficient research about UHI 

conducted in the country, area-specific assessments in cities such as Manila would 

provide additional information on how changes in the landscape impact the city's heat 

situation and serve as a foundation for urban planners and policymakers to mitigate 

and improve the situation. 

Utilizing satellite-derived and meteorological data, this research evaluates urban heat 

islands inside Manila, Philippines. Different aspects of the assessment were conducted, 

including (a) meteorological data and LST evaluation through trend and relationship 

analysis and outdoor thermal comfort assessment; (b) Land-Use and Land-Cover 

(LULC) indicators and land surface temperature (LST) using multivariate cluster 

analysis and correlation analysis; (c) spatial and temporal pattern analysis of land 

surface temperature (LST) using emerging hotspot and local outlier analysis; (d) 

generate an Intra-Urban Heat Island map using a suitability analysis model approach; 

Lastly, to enhance the thermal features of the city and minimize the consequences of 

UHI, (e) the generated maps were assessed according to available demographic data 

and area-specific mitigation strategies to improve outdoor thermal comfort and 

interventions at hotspots were proposed. 
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CHAPTER 1: INTRODUCTION 

This chapter introduces and provides an overview of the research including the 

statement of the problem, research purpose, the significance of the study, conceptual 

framework, a summary of the methodology, and a discussion of limitations. 

1.1 Background 

In recent years, increasing emphasis has been paid to global urbanization. The 

global population migrates to urban areas year after year. Predictions indicate that an 

increasing number of city inhabitants will account for virtually all future population 

increase. Currently, more than half of the world's population lives in urban areas. 

Urbanization is a complicated socioeconomic process that affects the built 

environment, changing formerly rural towns into urban settlements and shifting the 

geographic distribution of the people from rural to urban regions. It influences the 

dominant vocations, lifestyles, cultures, and behaviors in urban and rural regions, 

hence influencing their demographic and social structure. Urbanization has 

significant effects on the number, land area, and population size of urban settlements, 

as well as the number and proportion of urban inhabitants in comparison to rural 

citizens. [1], [2].  

Environmental changes result from the faster development of metropolitan 

areas relative to population growth.[3] Water and air pollution [4], [5], transportation 

and mobility [6], [7], health risks and hazards [8], agriculture capacity [9], [10], 

worsening natural disasters such as flooding [11], [12], and loss of natural animal 

habitat and open spaces [13]–[15] are only a few of the consequences. Aside from these 

effects, the area's thermal properties are also a major problem, when it comes to 

urbanization and city sprawl, changes. Continuous urbanization, like the expansion 

of impervious surfaces, contributes to the rise in thermal properties of the landscape 

in terms of Land Surface Temperature (LST) [16], [17]. As cities expand, the landscape 

undergoes transformations such as the replacement of open space and vegetation with 
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buildings, roads, and other infrastructure, and the gradual transformation of formerly 

permeable and wet surfaces into more impermeable and dry ones [18]. 

This effect, known as urban heat islands (UHI), causes cities to be warmer than 

their surrounding rural regions [19]. In particular, densely packed structures with 

little greenery develop “islands” with greater temperatures than their surroundings 

[18], [20]–[22]. UHI may influence the increased risk of health-related conditions, 

increase in energy consumption, elevated pollutants, and water quality [23]. Urban 

heat islands (UHI) have the potential to have a detrimental impact on cities and their 

inhabitants, and as such, available resources and data must be used to detect and 

quantify these consequences. SDG 11 works toward making societies more sustainable 

and resilient by giving us a unique chance to make sure that the infrastructure we 

build today will still be useful in the future. This can be done by investing in parks 

and green spaces in cities, which will help reduce the “urban heat island effect” [24]. 

Aside from this, according to a growing body of research [25]–[27], uneven 

distribution of heat-trapping buildings and pavements, and cooler zones with trees 

and vegetation, are leading to the rise of "intra-urban" heat islands (IUHI), or hotter 

areas inside cities [28]. High temperatures have a significant impact on both energy 

consumption and human health, making the detection of Intra-Urban Heat Islands 

(IUHI) of great concern to city planners [26]. In 2015, Martin et al. [29] referred to 

surface intra-UHI as the detection of hotspots in a metropolis which is made possible 

by determining temperature thresholds by spatial reference. Consequently, the data 

may be utilized to identify locations of interest inside a city and perhaps activate alerts 

at a more granular geographical scale. Consequently, the data may be utilized to 

identify locations of interest inside a city and perhaps activate alerts at a more granular 

geographical scale. An example is a study conducted by Igergård et al. [30] in the 

Stockholm municipality. 
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1.2 Statement of the Problem 

The increasing number of publications on the effect of UHI, particularly after 

2016, reflects the scientific community’s interest in disseminating information about 

this subject, which investigates its causes and ramifications from several viewpoints, 

including environmental, social, and economic [31]. The Philippines, like the rest of 

the world, is experiencing fast urbanization and a population density increase. 

Furthermore, these densely populated cities are largely clustered in Metro Manila [32], 

[33]. In this context, statistically analyzing satellite data geographically and 

temporally, Landicho and Blanco [34] confirmed that intra-urban heat islands (IUHI) 

in Metro Manila are prevalent in 2019 while Alcantara et al. [35], [36] conducted UHI 

studies in Quezon City. Estoque et al. [37], moreover, used satellite-derived surface 

temperature data and socio-ecological factors to analyze the present health risk in 139 

Philippines cities. In addition, cities outside of Metro Manila were part of the Project 

GUHeat [33], which conducted urban heat island studies in cities such as Baguio [38], 

Cebu [39], Davao [40], Iloilo [41], Mandaue [42], and Zamboanga [43]. 

Given prior geographic biases in the literature, greater attention should be 

placed on understudied areas or cities, as proposed by Zhou et al. [23] and Almeida 

et al. [31] in their reviews. Furthermore, little published research explores how UHI 

affects the population because of a lack of fine-scale geographic population data [44]. 

Consequently, as there is inadequate research about UHI conducted in the country, 

area-specific assessment in cities like Manila would provide further details on how 

changes in the landscape impact the city’s heat situation and will serve as a basis for 

urban planners and policymakers for mitigation and improvement. This also supports 

the goals of SDG 11 to aid the futureproofing of infrastructures for cleaner and greener 

cities. 

1.3 Research Purpose 

The main purpose is to use satellite-derived and in situ meteorological remote 

sensing records to evaluate the presence of intra-urban heat islands in Manila City. 
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Moreover, demographic data such as population and settlement data were used to 

enhance the assessment. Data represented in a space-time cube were used to carry out 

a space-time pattern mining approach in generating an Intra-Urban Heat Island 

(IUHI) map for Manila City. Finally, city-specific strategies to promote outdoor 

thermal comfort and hotspot interventions were also suggested. 

1.4 Objectives of the Study 

This research aims to assess the impact of urban growth in terms of intra-urban 

heat islands IUHI (2013 – 2022) using satellite-derived, in-situ remote sensing and GIS-

based demographic data in Manila City, Philippines. Specifically, the following 

specific objectives are established: 

1. Evaluate meteorological data and land surface temperature (LST) through 

trend and relationship analysis and outdoor thermal comfort assessment.  

2. Evaluate Land-Use Land-Cover (LULC) indicators and land surface 

temperature (LST) using multivariate cluster analysis and correlation 

analysis. 

3. Analyze the spatial and temporal pattern of land surface temperature (LST) 

using emerging hotspot analysis and local outlier analysis. 

4. Generate an Intra-Urban Heat Island map using a suitability analysis model 

approach. 

5. Assess the generated maps according to available demographic data and 

provide area-specific mitigation strategies. 

1.5 Summary of Methodology 

The methodology in the research framework includes the data and data sources, 

data collection procedures, and methodology employed to carry out the tasks to assess 

the impact of urban growth in terms of heat islands and outdoor thermal comfort in 

Manila City, Philippines. In particular, the use of satellite-derived and in situ 

meteorological remote sensing data to assess the presence of intra-urban heat islands 

in Manila City was established while enhancement of the assessment by adding 
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demographic data was also introduced. Moreover, the data representation in a space-

time cube for applying space-time pattern mining approaches to generate urban heat 

island maps in the local context was described in depth. Procedures to identify hotspot 

and cold spot locations in the urban milieu and including identification of the 

morphologies using high-resolution images was described. Finally, decision strategies 

based on the assessment results for the city's urban heat mitigation were specified and 

explained thoroughly. 

1.6 Statement of Novelty 

The novelty of the present work is the use of space-time pattern mining to 

assess the presence of intra-urban heat islands using remote sensing data. Although 

this type of methodology is well established for space-time analysis applications, its 

usage on remote sensing data such as land surface temperature has not been 

extensively studied. Moreover, according to the author’s knowledge, no work was 

dedicated to including the population and settlement data in such an assessment 

method for Manila City or any highly urbanized cities in the Philippines. 

This dissertation is divided into 6 chapters.  

Chapter 1 introduces and provides an overview of the research including the 

statement of the problem, research motivation, the significance of the study, 

conceptual framework, a summary of the methodology, and a discussion of 

limitations. 

Chapter 2 provides a background discussion of the use of graphical information 

systems (GIS) and remote sensing as reliable approaches for urban assessment. 

Extensive literature review and state-of-the-art research was done to establish an 

understanding of the urban landscape specifically those that lead to the 

understanding of urban heat islands (UHI) and their effects.  Review papers were 

carefully selected and synthesized to provide an understanding of topics such as 

spatial and temporal analysis methods, heat island retrieval, urban thermal 
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characteristics to urban growth, and models for thermal comfort analysis and its 

implications. Local studies in the Philippines about urban heat islands were also 

searched, surveyed, and summarized. Research gaps and challenges including future 

directions were also highlighted in this chapter. 

Chapter 3 discusses in detail the research framework including the data and data 

sources, data collection procedures, and methodology employed to carry out the tasks 

to assess the impact of urban growth in terms of heat islands and outdoor thermal 

comfort in Manila City, Philippines. In particular, the use of satellite-derived and in 

situ meteorological remote sensing data to assess the presence of intra-urban heat 

islands in Manila City was established while enhancement of the assessment by 

adding demographic data was also introduced. Moreover, the data representation in 

a space-time cube for applying space-time pattern mining approaches to generate 

urban heat island maps in the local context was described in depth. Procedures to 

identify hotspot and cold spot locations in the urban milieu and including 

identification of the morphologies using high-resolution images was described. 

Finally, decision strategies based on the assessment results for the city's urban heat 

mitigation were specified and explained thoroughly. 

Chapter 4 shows the description of the results and output of the various analysis 

methods. This confirms the outcomes of the meteorological data and land surface 

temperature evaluation, land surface temperature spatiotemporal pattern analysis, 

localized map generation, and the intra-urban heat island map assessment and 

mitigation strategies.  

Chapter 5 provides results in detail, an interpretation of findings concerning 

previous studies, and examines the context of the outcomes of the study concerning 

Manila City’s urban heat island situation. 

Chapter 6 summarizes the overall conduct of the research, the generalization in 

connection with the literature, the findings, and the recommendations with 
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consideration for the limitations of the results and the applicable literature and future 

work. 

 

 

CHAPTER 2: REVIEW OF RELATED LITERATURE 

This chapter provides a background discussion of the use of graphical information 

systems (GIS) and remote sensing as reliable approaches for urban assessment. 

Extensive literature review and state-of-the-art research was done to establish an 

understanding of the urban landscape specifically those that lead to the 

understanding of urban heat islands (UHI) and their effects.  Review papers were 

carefully selected and synthesized to provide an understanding of topics such as 

spatial and temporal analysis methods, heat island retrieval, urban thermal 

characteristics to urban growth, and models for thermal comfort analysis and its 

implications. Local studies in the Philippines about urban heat islands were also 

searched, surveyed, and summarized. Research gaps and challenges including future 

directions were also highlighted in this chapter. 

2.1 Theoretical Discussion 

This section provides a theoretical overview of the subject of the study. The 

literature was reviewed under the following general topics as Urban Heat Island 

phenomenon and Intra-Urban Heat Island. 

2.1.1  Urban Heat Island (UHI) Phenomenon 

As a result of this development, urban heat islands (UHI) occur - a 

phenomenon in which urban areas experience warmer temperatures than their rural 

surroundings[19]. In particular, densely packed structures with little greenery 

develop "islands" with greater temperatures than their surroundings [18], [20]–[22]. 

This local dynamic causes an increase in surface temperature, as well as a decrease in 

relative humidity and latent heat, with an intensification of sensible heat [31]. UHI can 

affect city activities in terms of heat-related health problems, thermal discomfort, 
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higher energy demand for cooling, increase in energy consumption, and air pollution 

[23]. Due to this, there is a need to use available resources and data to identify and 

quantify the impacts of urban heat islands (UHI) to mitigate their negative effects on 

cities and its population.  

 

 

Figure 1. (a) Urban Heat Island (UHI) Effect Image: U.S. Environmental Protection Agency [18], (b) 

Two-layer classification of the urban atmosphere [19], [50]. 

To better understand the UHI, intensive research has been done in the past 

decades. In general, temperatures differ at the earth's surface and in the atmosphere 

which is higher above the city. As a result, urban heat islands are divided into two 

categories: air/atmospheric urban heat islands (AUHI) and surface urban heat islands 
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(SUHI). They differ in terms of how they are formed, the techniques used to identify 

and measure them, their consequences, and, to some extent, the cooling technologies 

available [18], [19], [31]. UHI impacts in the canopy layer (CLHI), or boundary layer 

(BLHI) are referred to as Air UHI [23]. The urban canopy layer stretches from the 

ground to the average heights of the structures' rooftops. CLHI's size is determined 

by the urban characteristics of the area, such as geometries, materials, activities, and 

the presence of vegetation. On the other hand, the urban boundary layer extends from 

the average height of building roof-tops to about 1km, shrinking to 100m at night, 

forming a dome shape over the metropolitan area, and could be transformed into a 

plume if sufficient wind speed is present at the regional scale [19], [45]. The CLHI [46]–

[48] is often measured using in situ sensors mounted on stationary meteorological 

stations or vehicle traverses, but the BLHI requires more specialized platforms such 

as tall towers, radiosondes, and airplanes. Surface UHI (SUHI), on the other hand, is 

primarily determined using satellite thermal remote sensing data and represents the 

radiative temperature differential between urban and non-urban surfaces [49].  

2.1.2  Intra-Urban Heat Island (IUHI) 

Aside from this, according to a growing body of research[25]–[27], "intra-

urban" heat islands (IUHI), which are parts of a city that are hotter than others because 

of how buildings and pavements are built, as well as cooler areas with trees and plants, 

are becoming more common [28]. Intra-Urban Heat Islands (IUHI) are a big deal for 

city planners because high temperatures affect both how much energy is used and 

how healthy people are [26]. In 2015, Martin et al [26] refer to surface intra-UHI as The 

detection of hotspots in a metropolis WHICH is made possible by determining 

temperature thresholds concerning spatial reference. Because of this, the data may be 

utilized to locate areas of interest inside a city and perhaps set off alerts at a more 

granular level of spatial resolution. 
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Figure 3. IUHI Example showing a map over Stockholm delineating the warmest and coldest 

locations. [30] 

 

2.2 Related Studies 

This section discusses the literature about the study. The literature was 

reviewed under the following general topics as Remote sensing and UHI, research 

publications about spatial and temporal analysis of UHI, and local studies about UHI 

in the Philippines. 

2.2.1  Remote Sensing and Urban Heat Island 

To evaluate the relationship between urban growth and parameters that 

represent thermal changes in both a spatial and temporal perspective, remote sensing 

is an approach that provides better alternatives in evaluating the relationship between 

urban growth and parameters that represent thermal changes in both a spatial and 

temporal perspective [16], [23], [51]. From the remote sensing data an important 

variable for UHI research [52], the Land Surface Temperature (LST) is obtained [31]. 

ESA Earth online [53] defined it as follows: Solar radiation generates land surface 

temperature (LST). A simple definition is how hot the Earth's surface feels at a certain 

area. Satellites observe the ground through the atmosphere as the surface. Snow, ice, 
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grass, roofs, and forest canopies are examples. Land surface temperature differs from 

air temperature in the daily weather report. 

Among remote sensing data, satellites are used more to estimate LST due to the 

thermal and passive microwave sensors aboard them. Zhou et al. [23] highlighted in 

their systematic review the difficulties that UHI researchers face today, including the 

discrepancy between satellite derived LST and air temperature, the effects of clouds 

and other factors on LST data, the compromise between spatial and temporal 

resolutions, ways of measuring SUHI severity, coexisting land usage, mapping the 

land cover, accuracy assessment, and provenance of SUHI. Worse, the SUHI studies' 

wide application of extremely small datasets has increased the resulting uncertainty. 

2.2.2  Spatial & Temporal Analysis of Urban Heat Island 

The effects of UHI have been the subject of an increasing number of studies, 

reflects the scientific community's interest in distributing information about this 

subject, which explores its sources and implications from different perspectives, 

including environmental, social, and economic[31]. The focus of several papers in the 

literature is using remote sensing for spatial and temporal variations of LST with other 

urban parameters and assessing UHI. For instance, the most recent research related to 

spatial and temporal changes of UHI was conducted in cities like Riyadh (Saudi 

Arabia) [54], Merida (Mexico) [55], Abuja (Nigeria) [56], Tehran (Iran) [57], Kowloon 

(Hongkong) [58] and Karachi (Pakistan) [59]. In China, several similar research about 

the spatiotemporal pattern related to SUHI was done in Beijing[44], [60], [61], Tianjin 

[62], Hangzhou [63], and Fuzhou [64]. 

• By surveying residents in the southern suburbs of Riyadh, where air quality is poor 

owing to the fast expansion of industrial facilities, Salman et al. [54] assessed the 

extent of air and thermal pollution in the region. 

• The impacts of urban land-cover changes on the spatial and temporal fluctuation 

of surface temperature in Mérida, Mexico's tropical zone were studied by Palafox-

Juárez et al [55]. 



12 

 

• Koko et al. [56] used multi-temporal Landsat data to track changes in the LULC 

pattern and land surface temperature (LST) in the study area over the course of 29 

years. They then used this information to analyze the impact of LULC on the 

surface of urban heat islands (UHIs) in Abuja metropolis, Nigeria. 

• Najafzadeh et al. [57] reviewed existing research and added new insights by 

assessing the correlation between SUHI intensity and air pollution levels in Tehran 

and examining the spatial and temporal variability of SUHI and thermal comfort. 

• To predict the distribution of urban heat magnitudes, Zhu et al. [58] built 

multivariate spatial regression models using LSTs retrieved from Landsat-8 

thermal images. These models consider four types of causal factors: land use and 

land cover, urban morphology, heat source, and local climate zones. 

• Using the tropical megacity of Karachi, Pakistan, Baqa et al [59] investigate the 

effect of land use/land cover (LULC) shifts on the local climate. 

• Ren et al. [60] investigated the spatial-temporal development of the urban thermal 

environment influence inside Beijing's sixth ring road using remote sensing data 

to determine the LST in 2004, 2009, 2014, and 2019. 

• Zhang et al. [44] utilized remote sensing data to retrieve land surface temperature 

in summer from 2000 to 2017 and the distribution of local climatic zones (LCZs) in 

2003, 2005, 2010, and 2017 to study sUHI area and intensity change. 

• Light et al. [61] used remote sensing data from 2004–2019 to examine the link 

between urban growth and LST to improve the urban thermal environment and 

promote sustainable development. 

• Ullah et al. [62] used Landsat data from 2005 to 2020 to perform a multi-scale 

geographical study of LULC and LST in Tianjin. 

• Chen et al. [63] used object-based backdating classification, a generalized single-

channel method, a land-use transfer matrix, expansion index, and geographical 

centroids to quantify urban growth and normalized surface temperatures in 

Hangzhou City from 2000 to 2020. 

• Yang et al. [64] used ordinary least squares (OLS) regression, geographically 
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weighted regression (GWR), and multi-scale GWR models to examine the spatial 

heterogeneities of the contributing variables and LST with the spatial scale of street 

units in Fuzhou City, China (MGWR). 

 

2.2.3  Local Studies in the Philippines 

The Philippines, like the rest of the world, is experiencing fast urbanization and 

a population density increase. Furthermore, these densely populated cities are largely 

clustered in Metro Manila [32], [33]. In this regard, spatially and temporally analyzing 

satellite data with a statistical basis, Landicho and Blanco [34] confirmed the presence 

of intra-urban heat islands (IUHI) in Metro Manila in 2019 while Alcantara et al [35], 

[36] conducted UHI studies in Quezon City. Estoque et al [37], moreover, used surface 

temperature data and social-ecological factors to evaluate the present heat health risk 

in 139 Philippine cities. In addition, cities outside of Metro Manila, such as Baguio [38], 

Cebu [39], Davao [40], Iloilo [41], Mandaue [42], and Zamboanga [43], were part of the 

Project GUHeat, which "aims to assess the development of urban heat islands in 

rapidly urbanizing and highly urbanized cities in the Philippines and develop models 

for estimating land surface temperatures (LST) and predicting urban heat islands 

(UHIs) by relating LST with environmental factors including land use." 

• To identify IUHIs in Metro Manila between 1997 and 2019, Landicho and Blanco 

[34] attempted to define spatially referenced temperature criteria similar to those 

of Martin, Baudouin, and Gachon (2015). 

• Using geospatial processing and analysis, Alcantara et al. [36] simulated the UHI 

in Quezon City using Land Surface Temperature (LST) estimates from Landsat 8 

data. An additional document demonstrates the methods created and used to 

automate the mapping of Local Climate Zones in Quezon City. 

• Utilizing remotely sensed surface temperature data and social-ecological variables, 

with an emphasis on the hot dry season, and adopting the risk framework of the 

Intergovernmental Panel on Climate Change, Estoque et al [37] evaluated the 
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present heat health risk in 139 Philippine cities. 

• Using satellite-based built-up extents, land surface temperature (LST) maps, and 

meteorological station-recorded air temperature data, Baloloy et al. [65] examined 

the relationship between urban extent and land surface and air temperature in 

Baguio City. 

• Caete et al. [39] used LST maps to learn how the intensity and distribution of UHI 

in Cebu City had changed over time. 

• Using land surface temperature (LST) photographs, Tinoy et al. [66] created maps 

showing the distribution of hot and cold spots across time in Davao City from 1994 

to 2019. 

• Using geospatial approaches, Cruz et al. [67] evaluated the Urban Cooling Island 

(UCI) influence of the Iloilo River and nearby wetlands on the local microclimate. 

• In their study, Rejuso et al. [42] looked at the geographical and temporal 

fluctuations of LST in Mandaue City, one of the Philippine megacities that has 

developed rapidly in recent years. 

• For the years 2016 and 2017, water consumption and the regional and temporal 

distribution of LST were evaluated by Enriquez et al [43]. 

 

Given prior geographic biases in the literature, greater attention should be 

placed on understudied areas or cities, as proposed by Zhou et al. [23] and Almeida 

et al. [31] in their reviews. Furthermore, little published research explores how UHI 

affects the population because of a lack of fine-scale geographic population data [44]. 

Consequently, as there is inadequate research about UHI conducted in the country, 

area-specific assessment in cities like Manila would provide further details on how 

changes in the landscape impact the city’s heat situation and will serve as a basis for 

urban planners and policymakers for mitigation and improvement. This also supports 

the goals of SDG 11 to aid the futureproofing of infrastructures for cleaner and greener 

cities. 
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CHAPTER 3: RESEARCH DESIGN AND METHODOLOGY 

This section provides the materials and methods related to the study such as the 

locale of the study, sources of data and information, data collection methods, and the 

assessment workflow. 

3.1 Study Area 

As shown in Figure 1, Manila City is located in the northern Philippines 

archipelago, on the island of Luzon, on the eastern side of the old Manila Bay, with 

the Pasig River running through it [68], [69]. As the Philippines' capital, Manila is 

considered to have the highest population density among the country's highly 

urbanized cities, and even among the world's densest cities. In 2020, the Philippine 

Statistics Authority [70] recorded that 1.84 million population reside in its 24.98 square 

kilometer land area which translates to about 74,000 inhabitants per square km. 

 

Figure 1. Manila City's geographical location (left) and administrative boundary (right). 

 

According to the Koppen Climate Classification [54], Manila has a tropical 

rainforest climate (Af). There is no dry season in a tropical rainforest environment, 

and it rains at least 60 millimeters per month throughout the year (2.36 in). Tropical 
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rainforest climates don't have distinct seasons; it's hot and humid year-round, with 

frequent and heavy rains. Manila has an annual average temperature of 27.8 degrees 

Celsius, or 82.0 degrees Fahrenheit. The warmest month is April, when temperatures 

average 85.0°F (29.4°C), while the coldest is January, when they average 79.0°F 

(26.1°C) [71]. 

 

3.2 Data and Data Sources 

3.2.1  Manila City Administrative Boundary  

An administrative boundary represents subdivisions of 

areas/territories/jurisdictions recognized by governments for administrative purposes 

[72]. The Philippines follows the Philippine Standard Geographic Code (PSGC) with 

different geographic levels such as region, province, city/municipality, and the 

smallest unit, barangay[73]. For the research, we need the shapefiles for Manila City 

at the city, district, and barangay levels. A published GitHub repository [74] was used 

for this purpose since it is complete with all the needed geographic levels for the 

analysis projected using the WGS 1984, latitude/longitude projection. These shapefiles 

were sourced from reliable webpages such as the OCHA Services Website[75] and 

GADM.org [76].  

3.2.2  In-Situ Meteorological Data  

Meteorological raw data taken daily from 2014 to 2018 was provided by the 

weather bureau of the Philippines. The meteorological parameters include rainfall 

amount, mean temperature, maximum temperature, minimum temperature, wind 

speed, wind direction, and relative humidity. Since just one synoptic station is in Port 

Area, Manila (14.5878° N latitude and 120.9690° E longitude), only point data is 

available for Manila City.  

3.2.3  Population Data 

Population density is a key metric for assessing domestic living circumstances. 

Due to the statistical approach used, traditional census statistics, cannot represent the 
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population's geographical distribution with a high degree of precision. [44]. A high-

resolution map estimate of the population density inside 30-meter grid tiles was 

supplied by Data for Good Meta, which we used in this research. In this study, the 

population density demographic data for the year 2018 was used to give an insight 

into the distribution of people affected by the intra-urban heat island in Manila City. 

Since the downloaded data represents the whole country, we used ArcGIS Pro 

software to clip the region of interest based on the administrative boundary of Manila 

City. Table 1 shows the attributes of the population density data. Aside from 

population density, those pixel grids with data are considered settlement areas while 

empty grids denote non-settlements areas in the city. Each cell's value represents the 

population density of that pixel/grid. This density may be expressed as a grid's area. 

Table 1. Population Density attributes. 

Data Attributes Description 

Period 2018 

Temporal Resolution Annual 

Region Manila City 

Spatial Resolution Approximately 30m 

Data Format Geo tiff 

 

3.2.4  Satellite Data 

 Satellite-derived remote sensing data in the study were taken from MODIS and 

Landsat 8 satellite data products. Daily land surface temperatures (day and night) 

were obtained from MODIS between 2014 to 2018 as complementary data for the 

meteorological data mentioned above. Consequently, spatial yearly data raster for 

land surface temperature and spectral indices were downloaded from Landsat 8. 

 

3.2.4.1 MODIS Land Surface Temperature Product 

Land Surface Temperature data was derived from the Collection-6 MODIS 

Land Surface Temperature product to complement the available meteorological data 

at hand. Details of its retrieval were reported in [77]. 
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3.2.4.2 Landsat 8 Data Product 

The web application Climate Engine [78] was used to download analysis-ready 

Landsat 8 data which were preprocessed using the Google Earth Engine [79] platform 

(https://app.climateengine.com/climateEngine#). The web application allows easy 

download of Landsat Bands, Spectral Indices, and Land Surface Temperature 

aggregated per year of study. In ecological studies, digital numbers and reflectance 

are the most used while studies involving thermal bands often use digital numbers 

and temperatures. Surface reflectance (SR) improves the comparability between many 

pictures over the same region by adjusting for atmospheric phenomena including 

aerosol scattering and thin clouds, which may be useful for detecting and assessing 

changes to Earth's surface [80]–[82]. On the other hand, top-of-atmosphere (TOA) 

reflectance is a measure of the proportion of incoming radiation reflected from a 

surface as detected from above the atmosphere [83], [84]. In this research, we 

employed top-of-atmosphere (TOA) reflectance products to determine LST and 

spectral indices such the Normalized Difference Vegetation Index (NDVI), 

Normalized Difference Water Index (NDWI), and Normalized Difference Built-up 

Index (NDBI) from SR products (NDBI). 

 

3.2.4.3 Land Surface Temperature 

According to ESA[85], “Land Surface Temperature (LST) is the radiative skin 

temperature of the land derived from solar radiation. A simplified definition would 

be how hot the "surface" of the Earth would feel to the touch in a particular location. 

From a satellite's point of view, the "surface" is whatever it sees when it looks through 

the atmosphere to the ground. It could be snow and ice, the grass on a lawn, the roof 

of a building, or the leaves in the canopy of a forest. Land surface temperature is not 

the same as the air temperature that is included in the daily weather report.” Landsat 

8 passes the equator at 10:00 am +/- 15 minutes (mean local time) [86] so the maps that 

will be generated are only based on measurements from this specific time of the day. 

https://app.climateengine.com/climateEngine
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Raster data of land surface temperature data was taken from 2013 to 2022 on a yearly 

interval. Because of constraints in cloud cover maximum, LST within the year was 

obtained to depict maximum temperatures occurrence for that year. The top-of-

atmosphere (TOA) product was used to illustrate the presence of cold and hotspots in 

the yearly intra-urban heat island map that will be generated. Although the actual 

resolution Landsat 8 LST is 100m, the analysis product downloaded from the climate 

engine is provided at 30 m.  

 

3.2.4.4 Normalized Difference Vegetation Index (NDVI) 

The NDVI is a dimensionless index that describes the difference between 

visible and near-infrared reflectance of vegetation cover and can be used to estimate 

the density of green on an area of land. No green leaves produce a value near zero, 

yet calculations of NDVI for a particular pixel always yield a figure that falls between 

a negative one (-1) and a positive one (+1). A value of zero denotes no vegetation, 

whereas a value of close to one (0.8–0.9) represents the greatest potential density of 

green leaves [87]. The following formula gives the NDVI value: 

NDVI =
(NIR − Red)

(NIR + Red)
                                                                                     (1) 

For Landsat data, NDVI =  (Band 5 –  Band 4/(Band 5 +  Band 4). This can be 

directly downloaded from the climate engine. Table 2 shows the ranges of NDVI and 

their corresponding land use land cover (LULC) classification. 

Table 2. NDVI ranges for LULC Classification 

NDVI Ranges 
Land Use Land Cover (LULC) 

Classification 
Class 

-1.0 to 0.0 Water Body 1 

0.0 to +0.2 Urban Built-up 2 

+0.2 to +1.0 Vegetation 3 

 

3.2.4.5 Normalized Difference Water Index (NDWI) 
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NDWI is a measure of liquid water molecules in vegetation canopies that interacted 

with the incoming solar radiation. It is less sensitive to atmospheric scattering effects 

than NDVI [88]. This index uses NIR and SWIR bands where the resulting value 

ranges from minus one (-1) to plus one (+1). Positive values of NDWI correspond to 

high vegetation water content and high vegetation fraction cover. Negative NDWI 

values correspond to low vegetation water content and low vegetation fraction cover. 

In a period of water stress, NDWI will decrease. The following formula gives the 

NDWI value. 

NDWI =
(NIR − SWIR1)

(NIR + SWIR1)
                                                                                     (2) 

For Landsat data, NDWI =  (Band 5 –  Band 6)(Band 5 +  Band 6). This can be directly 

downloaded from the climate engine. Table 3 shows the ranges of NDWI values and 

the corresponding water content classification. 

Table 3. NDWI ranges for Water Content Classification 

NDWI Ranges Water Content Classification Class 

-1.0 to 0.0 Low Water Content 1 

0.0 to +0.1 High Water Content 2 

 

3.2.4.6  Normalized Difference Built-up Index (NDBI) 

The Normalized Difference Built-up Index (NDBI) uses the NIR and SWIR bands to 

emphasize constructed built-up areas. It is a ratio based to mitigate the effects of 

terrain illumination differences as well as atmospheric effects [89], [90]. A negative 

value of NDBI represents water bodies whereas a higher value represents build-up 

areas. NDBI value for vegetation is low. The following formula gives the NDBI value. 

NDBI =
(SWIR1 − NIR)

(SWIR1 + NIR)
                                                                                     (3) 

For Landsat 8 data, NDBI =  (Band 6 –  Band 5)/(Band 6 +  Band 5). This cannot be 

directly downloaded from the climate engine so the individual NIR and SWIR1 bands 

were downloaded then NDBI was calculated using the raster calculator tool in ArcGIS 
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Pro. Table 4 shows the ranges of NDBI values and the corresponding build-up area 

classification. 

Table 4. NDBI ranges for Build-up Area Classification 

NDBI Ranges Build-up Area Classification Class 

-1.0 to 0.0 Non-Built-up areas 1 

0.0 to +0.1 Built-up areas 2 

 

3.3 Methodology 

The workflow is divided into the following parts: (a) Meteorological Data and 

Land Surface Temperature Evaluation Methods, (b) LULC and LST Comparative and 

Correlation Analysis, (c) LST Spatiotemporal Pattern Analysis and Hotspots/Cold 

spots Identification, and (d) Intra-Urban Heat Island Map Generation.  

The overall workflow of this methodology is shown in Figure 2. Finally, using 

the information obtained, data assessment and suggested area-specific mitigation 

strategies are provided. 

 

Figure 2. Overview of the overall workflow of the study to assess the IUHI map and provide 

mitigation strategies. 
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3.3.1  Meteorological Data and Land Surface Temperature Evaluation Methods 

This section focuses on the use of meteorological data collected at Port Area, 

Manila City, and how they are used to recognize the time-based changes of air 

temperature, the relationship of meteorological parameters to land surface 

temperature during the day and night, and outdoor thermal comfort assessment. 

3.3.1.1  Air Temperature and LST Trend and Relationship Analysis 

This analysis’s methodology and findings were already published by the 

authors in ref. [77]. There was no gap-filling technique used for missing information 

related to the in-situ measurements nor with the derived MODIS data specific to the 

meteorological data point. The in-situ data were directly taken from the weather 

agency which processed and prepared the data, while the MODIS data are directly 

downloaded from the Google earth engine. All data used were analysis-ready while 

any data point with a missing parameter entry was discarded and not used. 

 

3.3.1.2  Outdoor Thermal Comfort Assessment 

The RayMan Model was proposed by Matzarakis, a micro-scale model 

developed to calculate radiation fluxes in simple and complex environments [91], [92]. 

This research used this model to assess the thermal comfort in Port Area. The scientific 

basis for the computations is thoroughly detailed in the Rayman Pro tool handbook 

[91]. 

Thermal indices have been developed to approximate human thermal perception [91]. 

In particular, Physiological Equivalent Temperature (PET) is “the air temperature at 

which, in a typical indoor setting (without wind and solar radiation), the energy 

budget of the human body is balanced with the same core and skin temperature as 

under the complex outdoor conditions to be assessed” [93], [94]. 

The Thermal Comfort Assessment workflow is as follows: 

1. Preparation of input parameters (Air Temperature, Relative Humidity, and 

Wind Velocity) in a .csv file as input to the RayMan Model. 
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2. Calculate the Tmrt and Thermal Index (PET) using the RayMan Pro Software. 

The Graphical User Interface which contains the geographic data, personal 

data, and clothing & activity information used is shown in Figure 3. 

3. Graph the calculated values for comparison. 

4. Assess the thermal comfort by getting the equivalent physiological stress 

associated with the derived thermal index values as shown in Table 5. 

 
Figure 3. RayMan Pro Graphical User Interface. Geographic data, personal data, and clothing and 

activity information are shown. 

 
Table 5. PET Thermal Index, corresponding classes, thermal sensation, and physiological stress. 

Thermal Sensation 
PET Range for Taiwan  

(°C PET) [95] 

PET Range for 

Western/Middle 

Europe  

(°C PET) [95] 

Physiological 

Stress 

Very Cold <+14 <+4 Extreme cold stress 

– – – Very strong cold stress 

Cold +14–+18 +4–+8 Strong cold stress 

Cool +18–+22 +8–+13 Moderate cold stress 

Slightly Cool +22–+26 +13–+18 Light cold stress 

Neutral +26–+30 +18–+23 
No thermal stress  

(Thermal Comfort Zone) 

Slightly Warm +30–+34 +23–+29 Light heat stress 

Warm +34–+38 +29–+35 Moderate heat stress 

Hot +38–+42 +35–+41 Strong heat stress 

– – – Very strong heat stress 

Very Warm >+42 >+41 Extreme heat stress 
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It should be emphasized that the data being used in this analysis are solely 

temporal point data from Manila City’s Port Area. It is deemed that these values do 

not represent the entire city; therefore, meteorological data-point locations should be 

explored to offer a better understanding of the thermal comfort in Manila City. 

3.3.2  LULC Indicators and LST Evaluation Methods 

This section discusses methods to evaluate satellite-derived data such as 

spectral indices (NDVI, NDWI, and NDBI, which are used as LULC indicators) and 

land surface temperature in Manila City. These methods include multivariate cluster 

analysis and correlation analysis. 

3.3.2.1 Multivariate Cluster Analysis 

Cluster analysis is a statistical method to use the values of the variables in 

devising a scheme for grouping the objects into classes so that similar objects are in 

the same class [96]. It is a multivariate method for classifying a sample of subjects (or 

objects) into several groups based on a set of measured characteristics, with related 

subjects placed in the same group. 

Given that the group of values for each parameter is not known, we used the 

satellite-derived data to group the values in each parameter (NDVI, NDWI, NDBI) 

together with land surface temperature (LST) and observed how each of these LULC 

indicators relate to LST. Specifically, since the indicator values can be used to classify 

land use and land cover, this is an initial step to see how the land use and land cover 

of different areas in Manila City relate to their thermal characteristic. 

Algorithm 1: k-means algorithm [97] 

1: Specify the number k of clusters to assign. 

2: Randomly initialize k centroids. 

3: Repeat 

4:       expectation: Assign each point to its closest centroid 

5:       maximization: Compute the new centroid (mean) of each cluster. 

6: until the centroid positions do not change. 
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For this, the k-means algorithm as shown in Algorithm 1 was used to identify 

the clusters within the dataset. It is an iterative technique that splits the unlabeled 

dataset into k clusters so that each dataset only belongs to one group with comparable 

attributes [97]. The k-means clustering method is primarily responsible for two tasks: 

(1) determining the optimal value for k-center points or centroids via an iterative 

process, and (2) assigning each data point to its nearest k-center. Clusters consist of 

data points that are near to a certain k-center. Consequently, each cluster contains data 

points that have certain similarities and is distinct from other clusters. The flow of the 

k-means clustering technique is shown below. 

In this study, we utilized the multivariate clustering tool in ArcGIS Pro [98] to 

identify these natural groups of features based on the feature attribute values alone. 

Given the number of clusters to be created, it will seek a solution in which the 

characteristics inside each cluster are as similar as feasible, but the clusters themselves 

are as unlike as possible. This tool uses unsupervised machine learning techniques to 

find the data's natural groupings. The classification approach is deemed unsupervised 

since it does not need a collection of reclassification characteristics to help or teach it 

in locating data clusters.  

Since the tool is used to run the clustering algorithm, the following workflow 

was employed: 

1. Extract the values from the raster map at different years to create a feature layer. 

The spectral indices (NDVI, NDWI, & NDBI) are in values between −1 and 1 while 

land surface temperature is in degrees Celsius (°C). All the raster data are taken 

from Landsat 8 as explained in Section 2.2.4-b. 

2. Import the data into the ArcGIS Pro software and use the generated feature layer 

as input. 

3. Execute the k-means clustering algorithm with the following: 

4. Clustering method: k-means 

5. Initialization Method: Optimized seed locations 
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6. Number of clusters: 4 

7. Generate the cluster chart and interpret the results according to each of the input 

variables. 

Notably, cluster analysis lacks a technique for distinguishing between 

important and irrelevant factors. Conceptual concerns must thus guide the selection 

of variables for inclusion in a cluster analysis. This is crucial since the clusters created 

might be very reliant on the included factors. We also utilized correlation analysis 

using the data to determine the link and scope of the clustering values.To see the 

relationship and extent of the values used in clustering, we also employed correlation 

analysis with the data. 

 

3.3.2.2 LULC Indicators and LST Correlation Analysis 

We use correlation analysis in addition to multivariate clustering analysis to 

evaluate the relationship of NDVI, NDWI, and NDBI with LST. The same method as 

explained in Section 2.3.1-a was used to analyze the extent and nature of the 

relationship between the abovementioned parameters. On the contrary, Pearson 

product correlation in GeoDa software was used. 

3.3.3  LST Spatiotemporal Pattern Analysis 

In this section, we focus on analyzing the spatial and temporal pattern of Land 

Surface Temperature in Manila City Philippines. Since data have both spatial and 

temporal contexts, several analytical tools in the Space-Time Pattern Analysis toolset 

in ArcGIS Pro software [98] were used. Before doing the analysis, a space-time cube 

was created based on the downloaded LST raster over the period (2013 to 2022) as 

shown in Figure 4. 

A time series analysis may be used to view and analyze spatial-temporal data 

using this approach. Using the prepared space-time cube as input, we perform 
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emerging hotspot analysis and local outlier analysis to better understand the thermal 

situation in Manila City. 

 

Figure 4. Creating a space-time cube based on yearly maximum LST from 2013 to 2022. 

a. Emerging Hotspot Analysis 

The Emerging Hot Spot Analysis tool in ArcGIS Pro [98] identifies statistically 

significant patterns of hot and cool spots over time. It is used to analyze land surface 

temperature (LST) data in Manila City to find new, escalating, persistent, or occasional 

hot spot patterns at different time-step intervals. The workflow for this is as follows: 

1. Taking the space-time NetCDF cube created for LST as input. 

2. Conceptualize the spatial relationships of LST values using the k-nearest 

neighbor method with k = 8, where the eight closest neighbors to the target 

feature will be included in computations for that feature. 

3. Calculate the Getis-Ord Gi* statistic [99] for each bin (pixel), represented in Table 

6. The Getis-Ord local statistic is given as: 

𝐺𝑖
∗ =

∑ 𝑤𝑖,𝑗𝑥𝑗 − 𝑋̅ ∑ 𝑤𝑖,𝑗
𝑛
𝑗=1

𝑛
𝑗=1

𝑆√[𝑛 ∑ 𝑤𝑖,𝑗
2𝑛

𝑗=1 − (∑ 𝑤𝑖,𝑗
𝑛
𝑗=1 )

2
]

𝑛 − 1

  
(1) 

where 𝑥𝑗 is the attribute value for feature 𝑗, 𝑤𝑖,𝑗 is the subscript weight between 

feature 𝑖 and 𝑗, 𝑛 is equal to the number of features; also: 
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𝑋̅ =
∑ 𝑥𝑗

𝑛
𝑗=1

𝑛
  (2) 

𝑆 = √
∑ 𝑥𝑗

2𝑛
𝑗=1

𝑛
− (𝑋̅)2  (3) 

The 𝐺𝑖
∗ is a z-score so no further calculations are required. 

The 𝐺𝑖
∗  statistic returned for each point is a z-score. The larger the z-score 

for a statistically significant positive z-score, the more tightly clustered the high 

values (hot spots) of LST. For statistically significant negative z-scores, the 

clustering of low values (called a "cold spot") of LST is greater. 

 

Table 6. 𝐺𝑖
∗ statistic values for cold spot and hotspot classes at different significance levels. 

Statistical  

Significance Level 

𝑮𝒊
∗ Statistic Pixel Representation 

Cold Spot Hotspot 

99% confidence −3 +3 

95% confidence −2 +2 

90% confidence −1 +1 

Statistically not significant 0 

 

4. The output of the space-time hot spot analysis is a NetCDF cube where each bin 

(pixel) has a z-score, p-value, and hot spot bin categorization assigned to it. 

5. Next, using the Mann–Kendall trend test these hot and cold spot trends are 

evaluated. 

 

Each location/point with LST data undergoes the Mann-Kendall trend test 

[100] as an independent bin time-series test. The Mann-Kendall statistic is an 

example of a rank correlation analysis for point values and their temporal order. 

The point value from the first instance is compared to the point value from the 

second instance. If the first is less than the second, the result is plus one. If the 

first is larger than the second, the result is negative one. If the two numbers are 
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the same, the result is zero. For every paired time, the results are combined. A 

forecasted total of 0 indicates that the numbers do not follow any pattern over 

time. Comparison of the observed sum to the predicted sum (zero) allows one to 

assess whether the difference is statistically significant based on the variance for 

the values in the point time series, the number of ties, and the number of periods. 

Table 7. Emerging hot spot analysis trend categories, their definition, and equivalent new class. 

Category Definition New Class 

No Pattern Detected Does not fall into any of the hot or cold spot patterns defined below Monitor 

Hot 

Spot 

New  the most recent time step interval is hot for the first time Intervene 

Consecutive  
a single uninterrupted run of hot time step intervals, with less than 90% of 

all intervals 
Intervene 

Intensifying  at least 90% of the time step intervals are hot and become hotter over time Intervene 

Persistent  at least 90% of the time step intervals are hot, with no trend up or down Intervene 

Sporadic  some of the time step intervals are hot Intervene 

Diminishing  at least 90% of the time step intervals are hot and become less hot over time Monitor 

Oscillating  some of the time step intervals are hot, some are cold Monitor 

Historical  
at least 90% of the time step intervals are hot, but the most recent time step 

interval is not 
Monitor 

Cold 

Spot 

New the most recent time step interval is cold for the first time Preserve 

Consecutive  
a single uninterrupted run of cold time step intervals, with less than 90% of 

all 
Preserve 

Intensifying  at least 90% of the time step intervals are cold and become colder over time Preserve 

Persistent  at least 90% of the time step intervals are cold, with no trend up or down Preserve 

Sporadic  some of the time step intervals are cold Preserve 

Diminishing  
at least 90% of the time step intervals are cold and become less cold over 

time intervals 
Monitor 

Oscillating  some of the time step intervals are cold, some are hot Monitor 

Historical 
at least 90% of the time step intervals are cold, but the most recent time step 

interval is not 
Monitor 

 

For each point time series, the trend is represented by a z-score and a 

corresponding p-value. The p-value for the trend being significant should be 

rather minimal. If the z-score has a positive sign, the underlying trend is a rise 

in point values, whereas a negative z-score indicates a drop in bin values 

(negative z-score). 

Each study area site is classed as "watch," "intervene," or "preserve" 

using the trend z-score and p-value for each location with data and the hot spot 

z-score and p-value for each bin, as shown in Table 7. The new label, "monitor," 
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will replace the previous categories of "decreasing," "oscillating," and 

"historical" for both hot and cold regions. Those for whom no pattern is 

identified will also be assigned the label "monitor." In contrast, "preserve" will 

be the new category for cold spots and "intervene" will be the new category for 

hot spots in categories including "new," "consecutive," "increasing," and 

"sporadic." 

6. An Emerging Hotspot Analysis (EHSA) Map showing areas to preserve, monitor, 

and intervene is generated based on the reclassification shown in Table 7. 

 

b. Local Outlier Analysis 

The Local Outlier Analysis tool ArcGIS Pro [98] identifies statistically 

significant clusters of high or low land surface temperature LST values as well as 

outliers that have values that are statistically different from their neighbors in space 

and time. 

The workflow for this is as follows: 

1. Use the space-time NetCDF cube created for LST as input. 

2. Conceptualize the spatial relationships of LST values using the k-nearest 

neighbor method with k = 8, where the eight closest neighbors to the target 

feature will be included in computations for that feature. 

3. Calculate the Anselin Local Moran’s I statistic of special association for each bin 

which includes a pseudo p-value and a CO_Type code. 

The Local Moran’s I statistic of spatial association is given as 

𝐼𝑖 =
𝑥𝑖 − 𝑋̅

𝑆𝑖
2 ∑ 𝑤𝑖,𝑗(𝑥𝑖 − 𝑋̅)𝑤𝑖,𝑗

𝑛

𝑗=1,𝑗≠𝑖

 (4) 

where 𝑥𝑖 is an attribute for feature 𝑖, 𝑋̅  is the mean corresponding attribute, 𝑤𝑖,𝑗 

is the spatial weight between features  𝑖 and 𝑗, and: 
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𝑆𝑖
2 =

∑ (𝑥𝑗 − 𝑋̅)
2𝑛

𝑗=1,𝑗≠𝑖

𝑛 − 1
 (5) 

with  𝑛 equating to the total number of features. 

The 𝑧𝐼𝑖
 score for the statistics is computed as 

𝑧𝐼𝑖
=

𝐼𝑖 − 𝐸[𝐼𝑖]

√𝑉[𝐼𝑖]
 (6) 

𝑉[𝐼𝑖] = 𝐸[𝐼𝑖
2] − 𝐸[𝐼𝑖]2 (7) 

 

If I is more than zero, it means that the feature is part of a cluster 

composed of other features with either the same or comparable attribute 

values. An outlier is a feature with a negative value for I because its neighbors 

have very different values. To be deemed significant, a cluster or outlier must 

have a p-value for the characteristic that is less than 0.05. 

Table 8. Pixel representation of cluster and outliers based on the Anselin Local Moran’s I statistic. 

Cluster/Outlier Type Definition 

Never Significant A location that is not statistically significant. 

High-High Cluster (HH) Locations that are part of a cluster of high LST_TOA values. 

High-Low Outlier (HL) 
Locations that represent high outliers within a cluster of low LST_TOA 

values. 

Low-High Outlier (LH) 
Locations that represent low outliers within a cluster of high LST_TOA 

values. 

Low-Low Cluster (LL) Locations that are part of a cluster of low LST_TOA values. 

 

 

The cluster/outlier type (CO Type) field in Table 8 differentiates between 

a statistically significant cluster of high values (HH), a cluster of low values (LL), 

an outlier in which a high value is surrounded primarily by low values (HL), and 

an outlier in which a low value is surrounded primarily by high values (LL) (LH). 

The degree of confidence equal to 95% is used to determine whether something 

is statistically significant. This significance indicates an FDR adjustment, which 
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modifies the p-value threshold from 0.05 to a number that better matches the 

confidence level of 95 percent when multiple tests are considered. 

 

4. A two-dimensional map summarizing each location over time is created with the 

following categories shown in Table 9. Then, a new class is created based on these 

categories wherein pixels categorized as never significant, multiple types and 

outliers will be reclassified as “monitor” while only the high-high cluster and the 

low-low cluster will be reclassified as intervene and preserve, respectively. 

5. Finally, a Local Outlier Analysis (LOA) Map showing areas to “preserve”, 

“monitor”, and “intervene” will be generated. 

Table 9. Local outlier analysis trend categories, their definition, and equivalent new class. 

Category Definition New Class 

Never Significant 
A location where there has never been a 

statistically significant CO_TYPE. 
Monitor 

Only High-High Cluster 

A location where the only statistically 

significant type throughout time has been 

High-High Clusters. 

Intervene 

Only High-Low Outlier 

A location where the only statistically 

significant type throughout time has been 

High-Low Outliers. 

Monitor 

Only Low-High Outlier 

A location where the only statistically 

significant type throughout time has been Low-

High Outliers. 

Monitor 

Only Low-Low Cluster 

A location where the only statistically 

significant type throughout time has been Low-

Low Clusters. 

Preserve 

Multiple Types 

A location where there have been multiple 

types of statistically significant clusters and 

outlier types throughout time. 

Monitor 
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3.3.4  Intra-Urban Heat Island Map Generation 

This section discusses the method of generating the intra-urban island map for 

Manila City, Philippines, using results from EHSA and LOA through a Suitability 

Analysis Model. 

 

Figure 5. Overview of the Intra-Urban Heat Island (IUHI) Class of Action map generation based on 

EHSA and LOA maps using the suitability analysis model. 

 

Figure 5 shows the overall process to produce the needed map for further 

assessment. The Emerging Hot Spot Analysis identifies trends in the data, such as 

new, intensifying, diminishing, and sporadic hot and cold spots, while the Local 

Outlier Analysis identifies significant clusters and outliers in the data. Through the 

suitability analysis, the combination of both methods ensures that locations of hot and 

cold spots in the city are precisely identified by eliminating outlier clusters in the final 

map produced. The suitability analysis model was used to combine the resulting 

raster map from the emerging hotspot analysis and local outlier analysis. 
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Table 10. Common suitability scale used to transform EHSA and LOA Classification maps. 

Emerging Hotspot 

Analysis 

(EHSA) Classification 

Local Outlier Analysis 

(LOA) Classification 
Suitability Scale 

Preserve Preserve 1 

Monitor Monitor 2 

Intervene Intervene 3 

 

To carry out the suitability analysis, the classification classes of emerging 

hotspot analysis and local outlier analysis were given numerical equivalents to 

provide a common suitability scale. 

Specifically, the following workflow was followed: 

1. Preparation of criteria data. The resulting maps from the emerging hotspot 

analysis and local outlier analysis were prepared with their corresponding 

classes. 

2. Transforming the classes of each criterion to a common suitability scale is shown 

in Table 10. 

3. Assigning weight relative to each of the criteria and combining them to create a 

suitability map. In this application, we treat each criterion as equally important, 

so weight is assigned as a percentage: 50% for EHSA Classification and 50% for 

LOA Classification. 

4. Finally, the pixel values were reclassified according to Table 11, shown to give 

an Intra-Urban Heat Island (IUHI) Class of Action Map. 

Table 11. Suitability values and their equivalent IUHI Class of Action. 

Emerging Hotspot 

Analysis (EHSA) 

Classification 

Local Outlier 

Analysis (LOA) 

Classification 

Suitability Model 

Suitability Value 
IUHI Class of Action 

1 1 1.0 Preserve 

1 2 1.5 Preserve 

2 1 1.5 Preserve 

1 3 2.0 Monitor 

2 2 2.0 Monitor 

3 1 2.0 Monitor 

2 3 2.5 Monitor 

3 2 2.5 Monitor 

3 3 3.0 Intervene 
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3.3.5  Intra-Urban Heat Island Map Assessment and Mitigation Strategies 

The results in Sections 3.3.2.1–3.3.2.4 are then used to evaluate the Intra-Urban 

Heat Island map with the population data and urban settlement raster from the high-

resolution settlement layer. Moreover, area-specific mitigation strategies will be 

suggested based on the visual inspection of the areas that need intervention. Possible 

strategies may also be taken from the identified areas to be preserved in the city. 

Assessment and mitigation strategies are simplified so that they serve as a basis for 

urban planners and policymakers for mitigation and improvement. 
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CHAPTER 4: RESULTS 

This section shows the description of the results and output of the various 

analysis methods. This confirms the outcomes of the meteorological data and land 

surface temperature evaluation, land surface temperature spatiotemporal pattern 

analysis, localized map generation, and the intra-urban heat island map assessment 

and mitigation strategies. 

4.1 Satellite Data Retrieved from Landsat 8 

Ten distribution maps from 2013 to 2022 were obtained from Landsat 8 data 

through the climate engine web application. These data were further processed in 

ArcGIS Pro by providing an equalized histogram stretch and a specific color scheme 

in its symbology. These distribution maps are shown in Appendix A. 

 

4.2 Meteorological Data and Land Surface Temperature Evaluation 

4.2.1  Air Temperature and LST Trend and Relationship Analysis 

Figure 6 shows the monthly maximum (Tmax), mean (Tmean), and minimum 

(Tmin) air temperature trends from 2014 to 2018. The values were taken from the 

diurnal data and were averaged per month to clearly show the monthly trend. This 

observation was discussed in [77] showing an upward trend in the values starting 

from March and continuing to April and May while values start to drop in October 

until around January and February. Such an observation is the same as what was 

presented by Estoque et al. [37] and Manalo et al. [101] in their framework showing 

the climate and seasons in the Philippines based on combined rainfall and 

temperature. Between March to May, the Philippines experiences a hot dry season 

which explains the high recorded air temperature. 

Additionally in our paper [77], we found a significant linear correlation 

between air temperature (maximum, mean, and minimum) and land surface 

temperature (day and night) as analyzed from available daily data shown in Table 12. 
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On the other hand, the relative humidity shows a weak correlation with the LST data 

although it is shown to be significant for LST_Night. 

 

Figure 6. Monthly maximum (Tmax), mean (Tmean), and minimum (Tmin) air temperature trends 

from 2014 to 2018. 

 

Table 12. Corresponding interpretation of the quantitative values from the correlation analysis [77]. (* 

not significant). 

Parameters LST_Day LST_Night 

Tmax moderate strong 

Tmean moderate strong 

Tmin moderate strong 

RH weak * weak 
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4.2.2  Outdoor Thermal Comfort Assessment 

Using the same meteorological data (Tmean, Relative Humidity, and Wind 

Speed) taken in Port Area, Manila City, from 2014 to 2018, the Physiological 

Equivalent Temperature (PET) thermal index was estimated through the RayMan 

model. The diurnal data were computed and then averaged per month and are shown 

in Figure 7. Additionally, the corresponding physiological stress levels for each of the 

values are indicated. 

 

Figure 7. Monthly estimated Physiological Equivalent Temperature (PET) based on the RayMan 

model from 2014 to 2018. 

As shown, moderate heat stress can be consistently felt in May and at some 

points in April and June. From July to December, light heat stress was observed, while 

the thermal comfort zone where there is no thermal stress only appeared in January 

and February. Understanding the thermal comfort in this area can also give us an idea 

on what is the expected outdoor thermal comfort in the other parts of Manila City. 

These results will be used as part of the assessment method in the latter part of the 

study. 
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4.3 LULC Indicators and Evaluation Methods 

4.1.1  Multivariate Cluster Analysis 

From the space-time cube generated for spectral indices (NDVI, NDWI, and 

NDBI) used as land use and land cover indicators and top-of-atmosphere land surface 

temperature (TOA_LST), the k-means clustering algorithm was used to identify the 

clusters within the dataset. Four groups were initialized to see a cluster for high LST 

(1 cluster), mid-LST (2 clusters), and low LST values (1 cluster). Standardized 

parameter values were plotted to clearly show the distribution of clusters, as the 

measurement units are not the same. 

Figure 8 shows the boxplot of the result of the multivariate cluster analysis. The 

clustering results indicate that for the high LST cluster, values with low NDWI, 

moderate NDVI, and high NDBI values are clustered together. This is also expected 

since low NDWI correlates to low water content and high NDBI corresponds to 

urbanized regions. In contrast, mid-range NDVI values correspond to urbanized 

areas. For the low LST cluster, values are clustered with high NDWI values, low NDVI 

values, and low NDBI values. A high NDWI refers to a high-water content, a negative 

NDVI to water bodies, and a low NDBI to undeveloped regions. Consequently, two 

mid-LST clusters were produced because of varying parameter combinations. The 

first set of clusters for mid-LST (orange line) is seen to be a combination of negative 

NDBI, high NDVI, and a higher mid-value of NDWI which translates to lowly built-

up, high vegetation with a fair amount of moisture content. On the other hand, the 

second set of mid-LST clusters (light blue line) is composed of NDBI, NDVI, and 

NDWI values close to zero which can be interpreted as areas with low to no built-up 

and low water content. 
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Figure 8. Boxplot of the multivariate cluster analysis result. 

 

4.1.2  LULC Indicators and LST Correlation Analysis 

The same dataset was used to see the correlation of these parameters (NDVI, 

NDWI, NDBI) with land surface temperature (TOA_LST). GeoDa software was used 

to calculate the Pearson correlation and plot the results. 

Figure 9 shows the relationship between LST and LULC indicators with their 

corresponding slope of linear fit and frequency distribution chart while all indicators 

are significant at 𝑝 < 0.01. The results show that there is a direct relationship between 

LST and NDBI at a 𝑟 = 0.361  which means that highly built-up areas have high 

recorded temperature values. This observation agrees with the multivariate analysis. 

An indirect relationship is, however, observed between LST and NDVI (𝑟 = −0.064) 

and LST and NDWI (𝑟 = −0.365). The low Pearson correlation value between LST and 

NDVI indicates that both water body values and vegetation are expected to have low 

temperatures while mid values correspond to being built-up. With LST and NDWI, 

areas with high water/moisture content are more likely to have lower surface 

temperatures compared to areas with low water/moisture content. Based on these 

results, it can be inferred that the correlation values suggest that NDWI is a better 

indicator than NDVI for land surface temperature, which is aligned with the findings 
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of Alexander et al. [102]. In addition, results also suggest that NDBI is a good indicator 

for LST. 

 

Figure 9. Relationship between LST and spectral indices with their corresponding 

slope of linear fit and frequency distribution chart. ** significant at 𝑝 < 0.01. 
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4.4 LST Spatiotemporal Pattern Analysis 

4.1.1  Emerging Hotspot Analysis 

Based on the generated Emerging Hotspot Analysis (ESHA) Map, a reclassified 

map was also produced to indicate areas to “preserve”, “monitor”, and “intervene”. 

As shown in Figure 10, cold spot and hot spot areas were mapped using the trend 

categories and a corresponding new class. 

 

Figure 10. Emerging Hotspot Analysis Map and the reclassified map with the corresponding new 

class. 
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4.1.2  Local Outlier Analysis 

Based on the generated Local Outlier Analysis (LOA) Map, a reclassified map 

was also produced to indicate areas to “preserve”, “monitor”, and “intervene”. In 

Figure 11, the trend categories of clusters and outliers are shown on the left while the 

corresponding new class is also provided in the map on the right. 

 

Figure 11. Local Outlier Analysis Map and the reclassified map with the corresponding new class. 

 

 

 

 

 

 

 

 

 

 

 



44 

 

4.5 Intra-Urban Heat Island Map Generation 

Using the generated maps presented in Sections 3.2.1 and 3.2.2, a suitability 

analysis model was used to combine the raster maps. The suitability analysis was 

carried out by giving numerical equivalents for the new classification maps for 

emerging hotspot analysis and local outlier analysis with a common suitability scale. 

Figure 12 (left) shows the resulting suitability map with suitability values per 

pixel. Consequently, the equivalent Intra-Urban Heat Island (IUHI) Class of Action 

was produced as shown in Figure 12 (right). 

 

Figure 12. Suitability Map and the reclassified suitability (IUHI) map with the corresponding new 

class. 

 

In Figure 13, the final Intra-Urban Heat Island (IUHI) Map of Manila City 

(2013–2022) was created. To keep the map as intuitive as possible, the class of action 

as well as the administrative boundaries at the city, district, and barangay levels were 

provided. This allows an easy understanding of the map while still showing the 

locations where areas need preservation, monitoring, and intervention. 
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Figure 13. Intra-Urban Heat Island Map of Manila City (2013–2022). 

 

 

 

 

 

 

 

 

 

 



46 

 

4.6 Intra-Urban Heat Island Map Assessment and Mitigation Strategies 

4.6.1  Location Assessment 

Using the IUHI Map of Manila City, areas classified as “preserve” and 

“intervene” were examined visually using high-resolution maps from Google Earth 

Pro. 

From the IUHI map, areas that need intervention were assessed by visually 

inspecting the locations to see the morphology of the areas exhibiting consistent 

surface temperatures during the study period. Based on the inspection, most of these 

areas fall within the Sampaloc district, which is part of Manila City’s university belt 

shown in Figure 14 E–H catering to Manila’s academic population. The area’s 

abundance of hotels and boarding houses makes it ideal as a dormitory and as a 

commuting town [68]. Moreover, there are also a few areas situated in Tondo District 

(A, B, and C) which is among the biggest urban poor communities in Manila City. 

Area D, on the other hand, mainly points toward a commercial location in Paco 

District. 

Looking at the high-resolution satellite images, the areas shown in Figure 14 

represent commonality in terms of their urban structure. It is noticeable that these 

areas (A, B, C, E, F, G, and H) are mostly residential and is characterized by 

predominantly settlement and housing locations with narrow streets and sidewalks. 

Although there are attempts to introduce urban soft scape via trees and vegetation, 

these are few and sparsely distributed within the areas of concern. In general, roads 

and walkways are mainly built with asphalt and concrete which might contribute to 

higher surface temperatures. There is also commercial space identified, such as (D), 

which seemed to have establishments and buildings and parking spaces made of 

either asphalt or concrete as well. 
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Figure 14. Some areas with the “Intervene” Class of Action. (A-H) are highlighted 

areas showing their morphologies. 

 

The same approach was applied in examining the areas to be preserved shown 

in Figure 15. Aside from the stretch of Pasig River amidst Manila City, the Intramuros 

district including Rizal Park Complex (part of Ermita district) as shown in (D) shows 

large areas with relatively lower surface temperatures. It is the historic core of Manila 

and is described as the “walled city” where walls surrounding the area are present 

until today. The Intramuros area has evident low surface temperature due to its 

strategic location. Aside from being situated near a body of water (Pasig River), the 

area is surrounded by greenery (mostly grass and some shrubs and trees) which is 

part of a golf range. On the other hand, the Rizal Park complex is one of the largest 

urban parks in Asia wherein the area is a combination of vegetation and trees, gardens 

water features, and shaded areas. 
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Figure 15. Some areas with the “Preserve” Class of Action. (A-H) are highlighted areas showing their 

morphologies.  

 Predominantly, most of the areas shown in Figure 14 exhibit common 

morphological characteristics. For instance, areas shown in A, F, and H are either 

surrounded or akin to bodies of water and other water features, while areas shown in 

C, D, and G contain substantial vegetation and green areas. In addition, areas like B 

and E, although residential, also contain a decent quantity of trees spread within the 

area. 

In this visual inspection, the two areas have distinguishable features which 

relate to the surface temperature in the area. Understanding the morphological 

characteristics of the cold spots (preserve) can help in planning the mitigation 

strategies needed to improve the thermal condition of the hotspots (intervene). 

 

4.6.2  IUHI Class of Action and LULC Indicators Assessment 

Overlaying the 2022 maps with the IUHI Map, the average values per class of 

action are shown in Table 13. It can be observed that the average NDVI values do not 

provide a clear distinction among the classes of action since the expected cold spots 

(water bodies and vegetation) have values at the extremes of the index. On the 

contrary, NDWI and NDBI average values convey the results. For instance, for 

“preserve”, the average NDWI translates to higher water content while the average 
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NDBI shows non-built-up areas. A similar remark can be drawn for “intervene” 

values where the average NDWI means low water content and the average NDBI falls 

in the built-up area category. 

Table 13. Average values of LULC indicators per IUHI class of action. 

Class of Action Average NDVI Average NDWI 
Average 

NDBI 

Preserve 0.209 0.089 −0.090 

Monitor 0.190 −0.027 0.028 

Intervene 0.158 −0.079 0.081 

Table 14. Distribution of LULC per IUHI class of action based on NDVI. 

Class of Action Water Body Urban Built-Up Vegetation Total 

Preserve 1.76% 6.11% 6.24% 14.10% 

Monitor 0.21% 55.24% 27.80% 83.25% 

Intervene 0.00% 2.26% 0.39% 2.65% 

Total 1.96% 63.61% 34.43% 100.00% 

Using the same data, we also investigate how the individual index classification 

is distributed among the IUHI class of action to validate it with the literature. Table 14 

provides the distribution of NDVI-based LULC per class of action. It can be observed 

that areas considered as “preserve” have a higher proportion of water bodies and 

vegetation while areas considered as “intervene” mostly fall into the urban built-up 

category. 

Table 15 shows the distribution of water content category per IUHI class of 

action based on NDWI. Based on the proportions, most parts of the areas considered 

“preserve” have high water content while those for “intervene” have low water 

content. This shows that the water content of the area has an impact on its surface 

temperature. 

Table 15. Distribution of Water Content category per IUHI class of action based on NDWI. 

Class of Action High Water Content Low Water Content Total 

Preserve 10.07% 4.03% 14.10% 

Monitor 26.72% 56.52% 83.25% 

Intervene 0.11% 2.54% 2.65% 

Total 36.91% 63.09% 100.00% 
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Table 16 shows the distribution of built-up categories per IUHI class of action 

based on NDBI. As shown about two-thirds of the “preserve” area occupy non-built-

up locations while almost all parts of the “intervene” area are built up. This illustrates 

the effect of built-up areas such as infrastructures, roads, and buildings that contribute 

to higher surface temperatures in the city. 

Table 16. Distribution of Built-up category per IUHI class of action based on NDBI. 

Class of Action Built-Up Non-Built-Up Total 

Preserve 4.19% 9.91% 14.10% 

Monitor 57.19% 26.06% 83.25% 

Intervene 2.56% 0.10% 2.65% 

Total 63.94% 36.06% 100.00% 

Based on the observations above, LULC indicators allow us to assess the IUHI 

maps according to different aspects of the indices. By understanding such categories 

and how they are related to the IUHI map class of action, the areas can be 

quantitatively described and later can be used to incorporate mitigation strategies. 

 

4.6.3  IUHI Class of Action and High-Resolution Settlement Layer Assessment 

The high-resolution settlement layer which consists of population per pixel and 

settlement categories was also used to assess the IUHI map. The demographic data 

represent the year 2018 which is the latest available during the conduct of the study. 

By superimposing the generated IUHI Class of Action Raster and High-

Resolution Settlement Layer containing population per pixel and settlement class, an 

attribute table is generated. From this attribute table, statistics about the population 

data and settlement information are taken and summarized in Tables 16 and 17. An 

example of the attribute table is shown in Figure 16. The object ID represents the 

corresponding pixel where values related to the attributes are provided. In the 

Population/Settlement column, population per pixel is shown while those that 

indicate zero mean a non-settlement pixel. 
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Figure 16. Excel Sheet of the superimposed IUHI Class with Population/Settlement Data. 

In Table 17, although the percentage of “intervene” areas is small compared to 

the other IUHI categories, there are still about 61 thousand of the population affected 

by higher surface temperatures. As Manila is a densely populated city, the population 

despite its small percentage is still not negligible. 

Table 17. Distribution of affected population per IUHI class of action. 

Class of Action 
Estimated Affected  

Population 

Population 

Percentage 

Preserve 85,601 4.92% 

Monitor 1,594,166 91.55% 

Intervene 61,531 3.53% 

Estimated Total Population (2018) 1,741,298 100.00% 

 

In Table 18, the distribution of settlement categories (from the high-resolution 

settlement layer data) with IUHI class of action is presented. We can see that about 

three-fifths (1.70%/2.65%) of the “intervention” area falls on settlement areas. This 

implies that most of these areas are inhabited by people, which was backed up by the 

visual inspection in Section 3.4.1. For the “preserve” class of action, most of the areas 

are non-settlement areas which are mostly vegetated locations, parks, and those near 

the water features. 
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Table 18. Distribution of settlement category per IUHI class of action. 

Class of Action Settlement Non-Settlement Total 

Preserve 2.37% 11.73% 14.10% 

Monitor 41.88% 41.37% 83.25% 

Intervene 1.70% 0.95% 2.65% 

Total 45.96% 54.04% 100.00% 

 

4.6.4  IUHI Class of Action and Land Surface Temperature 

To compare the variation of temperature between the cold spots (preserve) and 

hotspots (intervene), the yearly land surface temperature was calculated for each class 

of action. 

A summary table of the average LST per year per class of action is shown in 

Table 19. As can be seen, the average difference between the warmest and coldest 

areas in Manila City is 6.13 °C. The difference through the years has a small deviation 

wherein the lowest is recorded in 2013 while the highest is in 2017. To better see the 

trend, a graphical representation of Table 18 is shown in Figure 18. 

 

Figure 18. Average LST per year per class of action. 
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Table 19. Average LST (°C) per year per IUHI class of action. 

 Preserve Monitor Intervene Difference 

2013 28.56 31.87 33.94 5.38 

2014 34.32 37.74 39.47 5.15 

2015 37.24 41.96 44.07 6.83 

2016 38.88 43.19 44.78 5.90 

2017 32.46 37.03 39.74 7.28 

2018 33.84 37.49 40.23 6.39 

2019 36.00 40.81 43.12 7.12 

2020 33.90 37.36 39.12 5.22 

2021 36.25 40.89 42.76 6.51 

2022 32.91 36.79 38.39 5.48 

Average LST 34.43 38.51 40.56 6.13 

 

4.6.5  Mitigation Strategies for Areas That Need Intervention 

With the assessment done in Sections 3.6.1–3.6.4, the differences in 

temperatures at different urban morphologies were tackled. SDG 11, with its aim to 

make cities and human settlements inclusive, safe, resilient, and sustainable, can only 

be realized by not only understanding the city’s current situation but also providing 

means to identify vulnerable areas and implementing solutions to solve existing 

problems. While the assessment provides information about the presence of intra-

urban heat islands in Manila City, this also offers insights into which area in the city 

policymakers can focus on in offering mitigation strategies. In the analysis, for 

example, urban settlement and residential areas with narrow streets and sidewalks, 

asphalted roads and walkways, and concrete commercial spaces can contribute to 

high surface temperatures, while areas surrounded by and near bodies of water/water 

features, substantial green spaces/vegetation/trees, and residential areas with decent 

quantities of trees are places of lower surface temperature. With this in mind, the 

following mitigation strategies are suggested to help ameliorate the effect of urban 

heat islands, some of which were adapted from the compendium of strategies by the 

U.S. Environmental Protection Agency [18]. 

As part of the local institutional mechanism to address SDG 11, the government 

can include the following in their priority development initiatives, especially in the 

identified areas for intervention: 
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1. Water mist/dry-mist sprayer on pavements and pedestrians. Since the provision 

of water features may not be possible, mist sprayers can be installed on 

pavements and pedestrians with the likelihood of people staying or passing by. 

This inhibits the heat island effect at a low cost and immediately cools the outside 

air directly [103]. 

2. Provision of shade structures. Shading can be done in multiple ways, such as 

with large, canopied trees (which is unlikely based on the assessment) or 

overhead features to reduce heat buildup in an area. Aside from heat buildup 

mitigation, it can also be used as protection for people under the heat of the sun. 

3. Using cool materials for pavements and roofs. Cool materials are characterized 

by high solar reflectance and high infrared emittance which result in affecting 

the temperature of the surface [104]. Replacement of asphalted and concrete 

roads and pavements with these materials can be done while government-related 

projects can use cool materials for their roofs and other infrastructures. 

4. Provision of cooling centers. Also known as “heat refuge”, this includes libraries, 

community centers, commercial spaces, and other public buildings with cooling 

systems available to city residents during extreme heat events [105]. Manila City 

has these spaces already, so additional facilities and designation of such areas is 

the only requirement. 

 

Additionally, the current densely populated city cannot accommodate extra 

large-scale trees and vegetation anymore, so the following alternatives can be 

employed: 

5. Conversion of regular walls to green walls. Green walls are partially or 

completely covered with vegetation and seem lush. They are both beautiful and 

energizing. Consequently, they absorb warm air, reduce interior and exterior 

temperatures, and enhance air quality and visual appeal [106]. They are several 
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areas in the city with empty walls but with enough space to convert them to 

green walls. 

6. Plants in plant boxes, road isles, and indoors. One indication of urbanization is 

the shortage of green spaces [107], so planting in plant boxes, road isles, and 

indoors can help in improving the thermal landscape without planting trees. 

Although this cannot provide shading as with a tree canopy, the presence of 

plants can help in air temperature reduction and evapotranspiration [108]. 

Manila City still has those spaces for plant boxes and road isles and can 

encourage its residents to do indoor planting, which is common in the 

Philippines now. 

These are just some of the mitigation strategies applicable to Manila City in its 

current state. For the attainment of SDG 11 and to address the ill effects of UHI that 

would result in a sustainable and livable city, a holistic approach is necessary for 

implementing such strategies. It should be highlighted that the local government unit 

including its population plays an important role in this. 
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CHAPTER 5: INTERPRETATION OF RESULTS 

This chapter provides results in detail, an interpretation of findings concerning 

previous studies, and examines the context of the outcomes of the study concerning 

Manila City’s urban heat island situation. 

The result of this study shows evaluation methods using multiple sources to 

understand the presence of Intra-Urban Heat Islands in Manila City, Philippines. The 

satellite data retrieved from Landsat 8 provided distribution maps from 2013 to 2022 

which include land surface temperature and LULC indicators such as NDVI, NDWI, 

and NDBI. More satellite data from MODIS Terra were also obtained to provide point 

data for land surface temperature data for both day and night. In addition, in-situ data 

were obtained at Port Area, Manila City, with meteorological data measurements 

from 2014 to 2018. Finally, raster data containing population density and urban 

settlement category for 2018 were acquired to represent demographics data for Manila 

City. 

The LST and air temperature data show that beginning in March and continuing 

through April and May, there is an increasing tendency in the values, whereas values 

begin to decline in October and continue through January and February, which is 

similar to the observations in [37], [101]. This trend is because March to May is the hot 

dry season in the Philippines while October to January is rainy and December to 

February is the cool dry season. In addition, it was found that there is a significant 

linear relationship between air temperature and land surface temperature based on 

daily data, while relative humidity shows a weak correlation with the LST data. 

In terms of outdoor thermal comfort, a limited analysis was done due to 

limitations provided by the point measurements of meteorological data in Port Area 

Manila, City from 2014 to 2018. Despite these limitations, we used the meteorological 

parameters to estimate the Physiological Equivalent Temperature (PET) thermal index 

using the RayMan microclimate model. With the calculated PET thermal index values, 

corresponding physiological stress levels were provided to understand the outdoor 

thermal comfort. We observed that mild heat stress may be routinely experienced in 
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May, and at certain times in April and June. From July through December, moderate 

heat stress was seen; however, the thermal comfort zone, where there is no heat stress, 

did not emerge until January and February. Understanding the thermal comfort in 

this location may also help us predict the outdoor thermal comfort in other areas of 

Manila City. It should be noted that the location of Port Area, Manila City is near 

Manila Bay, which may indicate that the meteorological parameters may not be 

representative of the whole of Manila City. The calculation of thermal index is 

calculated based on the meteorological parameters while these meteorological 

parameters were correlated with land surface temperature. With this, we have 

associated thermal comfort indirectly with the land surface temperature such that 

while Port Area, Manila City is not considered as an area for intervention, it still 

experiences heat stress. Therefore, other areas which are considered areas for 

intervention are more likely to experience worse thermal stress than Port Area, 

Manila. This observation and the generated IUHI map can be the basis for selecting 

additional meteorological stations in areas that may experience worse heat stress, so 

it can be monitored and provided by mitigation strategies in the future. 

Land Use Land Cover (LULC) indicators such as NDVI, NDWI, and NDBI were 

very useful in understanding the morphological characteristics of Manila City, while 

their relationship with land surface temperature was also considered. Results of the 

multivariate analysis show that clusters can be generated based on combinations of 

these LULC indicators relative to land surface temperature. The clustering findings 

reveal that values with low NDWI, moderate NDVI, and high NDBI are grouped in 

the high LST cluster. Low NDWI corresponds to low water content, and high NDBI 

corresponds to urbanized zones; therefore, this is also predicted. Correlation between 

LULC indicators and LST shows the link between LST and LULC indicators with their 

respective slope of linear fit and frequency distribution chart. The data demonstrate a 

direct association between LST and NDBI at r = 0.361, meaning highly built-up regions 

have high reported temperatures. The multivariate analysis supports this finding. LST 

and NDVI (r = 0.064) and NDWI (r = 0.365) have indirect relationships. A Low Pearson 
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correlation between LST and NDVI implies low temperatures for water bodies and 

vegetation, whereas mid values imply built-up areas. High water/moisture locations 

exhibit lower surface temperatures using LST and NDWI. Based on these data, it can 

be argued that NDWI is a better indication than NDVI for land surface temperature, 

which agrees with Alexander et al. [102]. NDBI is a good indication for LST, according 

to the data. 

The creation of a space-time cube for LST made spatiotemporal pattern analysis 

easier. Using the space-time mining tools in ArcGIS Pro, Emerging Hotspot Analysis 

and Local Outlier Analysis were performed. The resulting reclassified maps of EHSA 

and LOA were respectively used as input to the suitability analysis model to generate 

an easy-to-understand Intra-Urban Heat Island (IUHI) class of action map between 

2013 to 2022. Such a map contains the class of action (preserve, monitor, and intervene) 

as well as the administrative boundaries at the city, district, and barangay levels. 

In the location assessment, the focus was given to areas to preserve and 

intervene. Understanding the morphology of “preserve” locations helps in the 

provision of mitigation strategies for the “intervene” locations. The results show that 

the highest temperatures are in areas with a concentration of urban settlement areas, 

buildings, and establishments while those with low temperatures are areas with 

enough vegetation and near bodies of water. Visual inspection revealed that most 

“intervene” areas are in the Sampaloc district and university belt. Such an area has a 

high concentration of universities and colleges while within it are settlement areas, 

establishments, and concrete roadways which are deemed contributory to the high 

surface temperature. Knowing this is crucial because aside from its residents, the 

population in this area swells due to students and employees coming from the nearby 

province during the daytime. Other intervention areas can be found in the Tondo 

district, which is home to urban poor communities, while there are also hotspots in 

the Paco district, which mainly points toward a commercial location. These regions 

are largely residential, with small streets and sidewalks and a concentration of 

settlements and dwelling sites. In the regions of concern, initiatives to create an urban 
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soft scape employing trees and plants are limited and scarce. Roads and sidewalks are 

often constructed with asphalt and concrete, which may contribute to greater surface 

temperatures. There is also an identifiable commercial area, which seems to have 

asphalt or concrete companies, buildings, and parking spaces. 

On the other hand, “preserve” areas are mostly located in Intramuros, Rizal Park, 

and sites near the Pasig River banks. Most of the regions have similar physical 

characteristics. For example, these places are either next to or resembling bodies of 

water and other water features, while other areas have extensive vegetation and green 

landscapes. Additionally, residential neighborhoods feature a significant number of 

trees. Noting these characteristics, mitigation strategies appropriate to the “intervene” 

areas can be established. 

The IUHI class of action was also assessed relative to the corresponding LULC 

indicator values. While NDVI does not provide a clear distinction among the classes 

of action, NDVI and NDWI convey their results. For example, the average NDWI for 

“preserve” indicates a greater water content, but the average NDBI indicates 

undeveloped lands. Similar observations may be made for “intervene” values when 

the average NDWI indicates a low water content and the average NDBI falls under 

the category of “built-up area.” Using the same data, we also investigate how the 

individual index classification is distributed among the IUHI class of action to validate 

it with the literature. It may be noticed that regions designated as “preserve” have a 

greater percentage of water bodies and vegetation, higher water content, and occupy 

non-built-up locations while regions designated as “intervene” are in urban built-up 

areas with lower water content. 

With the high-resolution settlement layer (HRSL), the distribution of the affected 

population including the settlement category for 2018 was assessed. Upon 

superimposing the HRSL with the IUHI class of action map, about 61 thousand of the 

population are affected by higher surface temperatures as indicated in the “intervene” 

areas. Despite the small percentage of “intervene” locations compared to the entire 

Manila City; it is evident that such a small percentage is not negligible due to the city’s 
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dense population. In terms of the settlement category, the “intervene” locations are 

mostly located in settlement areas while the “preserve” locations are in non-settlement 

areas. Such observation is aligned with what was observed in the visual inspection of 

locations using high-resolution satellite images. 

Summarizing the LST values per year per class of action reveals an average LST 

for “preserve”, “monitor” and “intervene” as 34.43 °C, 38.51 °C, and 40.56 °C, 

respectively. The result of this study clearly shows differences in temperature within 

Manila City. With these data, the average difference between cold and warm areas is 

about 6 °C, just as in the discussion in [30]. As the LST statistics are based on the 

highest LST readings for each site, the highest LST recorded differentiates 6 °C 

between specific urban areas. We avoided pixel-based comparison in the overall 

analysis to evaluate clusters of warm and cold regions appropriate to a city viewpoint 

and to make the analysis more significant. 

Finally, applicable mitigation strategies based on the assessment of cold spots 

and hotspots in the city were proposed. These strategies support the attainment of 

SDG 11 in making cities and human settlements inclusive, safe resilient, and 

sustainable. Such strategies are (1) water mist/dry-mist sprayer in pavements and 

pedestrians, (2) provision of shade structures, (3) using cool materials for pavements 

and roofs, (4) provision of cooling center, (5) conversion of regular walls to green 

walls, and (6) plants in plant boxes, road isles, and indoors. 
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CHAPTER 6: CONCLUSION, RECOMMENDATIONS, AND FUTURE WORK 

This chapter summarizes the overall conduct of the research, the generalization 

in connection with the literature, the findings, and the recommendations with 

consideration for the limitations of the results and the applicable literature and future 

work. 

6.1 Conclusion 

This study presents the use of satellite-derived data and meteorological data to 

assess the presence of an intra-urban heat island in Manila City, Philippines. To 

address SDG 11 and provide better insights to make cities and human settlements 

inclusive, safe resilient, and sustainable in terms of UHI, different assessment methods 

were used and established. The assessment includes (a) understanding the temporal 

variability of air temperature measurements and outdoor thermal comfort based on 

meteorological data, (b) comparative and correlative analysis between common LULC 

indicators (NDVI, NDBI, and NDWI) to LST, (c) spatial and temporal analysis of LST 

using spatial statistics techniques, and (d) generation of an intra-urban heat island 

(IUHI) map with a recommended class of action using a suitability analysis model. 

Finally, the areas that need intervention are compared to the affected population, and 

suggestions to enhance the thermal characteristics of the city and mitigate the effects 

of UHI were established. Results show that there exists a clear difference between cold 

and warm areas within Manila City. Overall, residential areas, asphalted and concrete 

roads and walkways, and some commercial establishments and buildings exhibit 

higher surface temperatures compared to areas with vegetation and near bodies of 

water. Based on the results, mitigation strategies applicable to Manila City were 

proposed to improve the areas which need intervention. 
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6.2 Recommendations and Future Work 

In the future, we plan to realize these strategies by partnering with the local 

government unit to implement these proposed measures. We also advise providing 

additional meteorological stations to some of the hotspots, to understand outdoor 

thermal comfort in Manila City better. In addition, the methods used in this study can 

also be used in other cities as well as municipalities that require assessment due to the 

presence of intra-urban heat islands. 
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APPENDIX A: GENERATED DISTRIBUTION MAPS 

 In this section, the distribution maps from 2013 to 2022 for Land Surface Temperature 

(LST), Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index 

(NDWI), and Normalized Difference Built-up Index (NDBI) are provided. These data were 

further processed in ArcGIS Pro by providing an equalized histogram stretch and specific color 

scheme in its symbology. 

 

 
Figure A-1. Distribution map for Land Surface Temperature (LST) from 2013 to 2022 

 

 
Figure A-2. Distribution map for Normalized Difference Vegetation Index (NDVI) from 2013 to 2022 
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Figure A-3. Distribution map for Normalized Difference Water Index (NDVI) from 2013 to 2022 

 

 
 

 
Figure A-4. Distribution map for Normalized Difference Built-up Index (NDBI) from 2013 to 2022 
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APPENDIX B: SPATIOTEMPORAL ANALYSIS DISTRIBUTION MAPS  

 In this section, the distribution maps from 2013 to 2022 for the spatiotemporal 

analysis methods: Optimized Hotspot Analysis, and Optimized Outlier Analysis are provided. 

These data were generated using their toolbox in ArcGIS Pro. 

 

 
Figure B-2. Distribution map for Optimized Hotspot Analysis from 2013 to 2022 

 

 
Figure B-2. Distribution map for Optimized Outlier Analysis from 2013 to 2022 


