Using LUPI to Improve Complex Activity
Recognition
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Abstract Sensor-based activity recognition can recognize simple activities such
as walking and running with high accuracy, but it is difficult to recognize complex
activities such as nursing care activities and cooking activities. One solution is to use
multiple sensors, which is unrealistic in real life. Recently, LUPI (Learning using
Privileged Information) has been proposed, which enables training using additional
information only in the training phase. In this paper, we used LUPI for improving
the accuracy of complex activity recognition. In short, training is performed with
multiple sensors during the training phase, and a single sensor is used during testing.
We used four published datasets for evaluating our proposed method. As a result,
our proposed method improves by up to 16% in F1-Score to 67% compared to the
baseline method when we used random-split cross-validation of each subject.

1 Introduction

Human activity recognition (HAR) is a task of recognizing different types of activ-
ities from sensors or video data. This has become popular research in ubiquitous
computing [1]. While simple activities such as walking, running, and sitting can
be easy to recognize, complex activities such as nurse care activities and cooking
activities are difficult to recognize [3, 6]. For this reason, a previous study proposed a
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method of HAR using multiple sensors [13]. While it is easy to collect training data
with multiple sensors, they are rarely used in real-life environments. In this study,
we employ LUPI(Learning using privileged information) [19] for HAR. LUPI is a
learning paradigm based on the supposition that one may access additional infor-
mation about the training samples, which is not available during testing. In classical
supervised learning, the learner model is presented with the training tuple(x;, y;) and
creates an optimization model f for predicting Y.

(X0 ¥i)s o s (xpxp), x € X,y € {=1,1}

On the other hand, LUPI is presented with the training tuple(x;, x}, y;) as shown
below, and X* can be used only during training.

(X, X7, ¥i)s o (Y x0), % € X, x7 € X¥,y; € {=1,1}

X™ is called privileged information(PI). In this study, we used sensors of different
positions as PI. That is, we used multiple sensors during training and a single sensor
during testing. The contributions of this study can be summarized as follows:

1. In sensor-based activity recognition, we show that the recognition accuracy is
improved by using multiple sensors for complex activity recognition.

2. We compared the performance between LUPI and the baseline method us-
ing several situations(random-split cross-validation, leave-one-subject-out cross-
validation).

3. LUPI is shown to be superior to the baseline method in a data set containing
complex activities.
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Fig. 1 Overview of the our proposed method. At the time of training, training is performed with
original data (single sensor) and additional data (multiple sensors), and at the time of testing, only
the original data (single sensor) is used.
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2 Related work

Different learning paradigms have been used in activity recognition to improve
performance in real-life settings. This section describes related work about Transfer
Learning, Multi Model Learning, and Machine Learning using LUPL

Transfer Learning: Sensor-based activity recognition affects recognition ac-
curacy depending on sensor orientation and subject differences in the source and
target domains. To address this issue, there are proposed HAR using transfer learn-
ing [15, 2]. In this study, we handle different sets of sensors in the source domain
and the target domain. Then, we aim to improve the recognition accuracy of activity
recognition of complex activities that are difficult to recognize with a single sensor.

Multi Modal Learning: In activity recognition using visual information, activity
comprehension may fail due to occultation and appearance variation, but IMU sen-
sors may be able to avoid them. For this reason, there are proposed HAR methods of
combined multiple modalities such as sensor and visual information [7, 14]. Kong
et al. [7] perform activity recognition using RGB Video, Key-points, acceleration,
gyroscope, orientation, Wi-Fi, and pressure signal data. They succeeded in creating
a highly robust model for different subjects, viewpoints, indoor environments, and
sessions in training data and test data. In this study, different position sensors worn
on the body are treated as multimodal data. In our problem setting, multiple sensors
are used only during training, and only a single sensor is used during the test.

Machine Learning Using LUPI: There are many studies using LUPI [5, 20, 21,
18, 10]. Gauraha et al. [5] classify MNIST and discover drugs using SVM+ with
LUPI implemented, and show that it can be recognized with higher accuracy than
SVM. In addition, John et al. [10] proposed a method that makes the distribution of
Dropout in CNN and RNN a function of privileged information, and showed that it
can be recognized with higher accuracy in image recognition and machine translation
than the baseline method. Michalis et al. [20, 21] use LUPI in the activity recognition
of moving images and train the model by using voice, Pose, and attribute data in
addition to the moving image only during training. These studies use visual data
instead of sensor data as this study. Lago et al. [9] uses a similar problem setting for
sensor-based activity recognition and improved recognition accuracy by performing
feature learning using unsupervised machine learning by multiple sensors and then
mapping a single sensor to the learned space. In this study, supervised learning is
also used for additional information that can be used only during training.

3 Proposed Method

In this paper, we proposed a method for improved single activity recognition us-
ing LUPIL Fig.2 shows the overall proposed method. At the time of training, after
feature extraction is performed from multiple sensors, the original data and addi-
tional data are trained using SVM+ [11] which is a LUPI classifier. In this study, we
build the ensemble classifier that combines a LUPI classifier(SVM+) and a baseline
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model(SVM) trained using only a single sensor. Note that, at the time of testing,
the data added during training is not used. In this section, we describe the proposed
method in detail.

Original Data  Additional Data
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Fig. 2 The overall proposed method. We used SVM+ as a LUPI classifier. Then, we build an
ensemble classifier using SVM and SVM+.

3.1 LUPI classifier(SVM Plus)

We describe difference between SVM and SVM+ [11]. Both classifiers are finding
some w € X and b € R to built according to the following rules

J(x) = sgn[{w, xi) + b].

The SVM learning method(non-separable SVM) to find w and b to solving the
following optimization problem:

! S
min E(w,w) + C;&

sit. yil{w,x))] 2 1=-&, i=1,...,m.
where C is some regularization parameter that needs to tune. And, if the slacks &;
are all equal to zero then we call the set of given examples separable. On other hand,

SVM+ has modified the SVM formulation as follows in order to consider privileged
information X*.

min % [{w, w) + y{w*, w™)] + C;[(w*,x*) +b]
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Table 1 Datasets used for the evaluation

.. No. of|No. of|No. of|No. of
Dataset (Activity type) sensors |subjects [classes |windows
OPP HL [17] (complex activities) 5IMUs |4 6 1745
Cooking dataset [8] (complex activities) |5 IMUs |7 16 1780
PAMAP [16] (simple activities) 3IMUs |5 12 2569
OPP Locomotion [17] (simple activities)|5 IMUs |4 6 5461

skt yil{w,xiy +b] 2 1 - (0" x))+D"], i=1,...,m.
(w*, Xy +b*] 20, i=1,...,m.

where w* € X* and b* € R. In this problem, C and y are hyper parameters to be
tuned. The difference between SVM+ and SVM is that it uses privileged information
to estimate the slack variables. Given the training tuple (x, x*, y), SVM+ maps x to
the feature space Z and x* to a separate feature space Z*. Then, slack variables are
estimated by & = (w*, x*) + b*.

3.2 Ensemble Classifier

In this study, we combined SVM and SVM+ model to achieve better performance.
We apply ensemble averaging [4] for the combination. For this, we first train the
SVM using (x, y). Then we train the SVM+ using (x, x*, y). Finally, we combined
their model using ensemble averaging.

4 Experimental Evaluation

In this section, we describe datasets and evaluation method used for this experiment.
The goal of the experiments is to compare the performance of the baseline method
and the proposed method single sensor activity recognition in several situations.

4.1 Dataset

We used four datasets for evaluating our proposed method. Some important aspects
of the data are summarized in Table 1. These datasets contain multiple sensor data
from different placement.
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4.1.1 Cooking Dataset

The Cooking Dataset [8] consists of the following main dietary activities:(i) Prepare
a soup (ii) Set table. (iii) Eat meal. (iv) Clean up and put away utensils. More
detailed behaviors are labeled for each dietary activity. In this study, we used the
accelerometer of the IMU sensor for evaluation and we use windows of 1 second
with no overlapping.

4.1.2 Opportunity Dataset

The opportunity Dataset [17] contains morning routine behaviors collected by four
subjects. Activities are labeled with different types of locomotion, gestures, and high-
level activities. In this study, we used high-level activities (OPP HL), which include
complex activities such as Relaxing, Coffee (prepare and drink), Sandwich (prepare
and eat), Early-morning (check objects in the room), and cleanup, and locomotion
activities (OPP Loc) which include Stand, Walk, Sit, and Lie. As with the Cooking
Dataset, the accelerometer of the IMU sensor was used for this data set as well. we
used a 1-second time window for simple activities and a 10-second time window for
complex activities.

4.1.3 PAMAP Dataset

The Physical Activity Monitoring Dataset [16] is a benchmark data set for monitoring
physical activities. This dataset contains the activities of lie, sit, stand, walk, run,
cycle, Nordic walk, iron, vacuum clean, rope jump, ascend, and descend stairs. Also,
not all subjects performed all activities, so some subjects were not included in the
evaluation data in this study. We also used a 5 second time window for this dataset.

4.2 Implementation and Evaluation Metrics

For the implementation, we used Python and Scikit-Learn. And we extracted max,
min, average, and standard deviation of each segment for each axis. For evalua-
tion protocol, we used a random-split cross-validation(each subject and entire data)
and leave-one-subject-out cross-validation (user-independent models). As evalua-
tion metrics, we used F1-Score to compare the performance between our proposed
method and the baseline method.
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4.3 Result

We present the results of the evaluation. We first show the results of comparing activ-
ity recognition performance between a single sensor and multiple sensors (Section
4.3.1). Then, we show results of our proposed method using three cross-validations
namely random-split cross-validation using each subject (Section 4.3.2), random-
split cross-validation using entire dataset (Section 4.3.3), and leave-one-subject-out
cross-validation (Section 4.3.4).

4.3.1 Measuring The Gap between Single-Sensor and Multi-Sensor Activity
Recognition Performance

Fig.3 and 4 show the results of comparing the recognition accuracy of activity
recognition using a single sensor and the accuracy using multiple sensors for the
four datasets. We used SVM after the feature extraction, use Leave-one-subject-
out cross-validation for evaluation. As we can see, recognition accuracy is higher
when multiple sensors are used in most cases. Especially in the case of complex
activities of the Cooking dataset and Opportunity dataset (Fig.4(a) and 4(b)), it can
be seen that the recognition accuracy is relatively high when using multiple sensors.
This experiment validates the hypothesis that using multiple sensors improves the
accuracy of activity recognition. Therefore, multiple sensors can be used as additional
information during training.

4.3.2 Validation Results Using Additional Information During Training
(Random-Split Cross-Validation of Each Subject)

Fig.5 shows the results showing the average value of Fl-score using random-split
cross-validation of each subject. Since the number of labels for one subject was
small and it was impossible to properly divide it into training data and test data, the
cooking dataset was excluded from this validation.

Fig.5(a) shows the results using the PAMAP dataset. This dataset can use 5
subjects and 3 IMU sensors. Therefore, we validated 15 cases combinations of
subjects and sensors in total. From the figure, it can be seen that the average value
of F1-Score is improved compared to the baseline method in all cases.

Fig.5(b) shows the validation results using simple activities data set in the Op-
portunity data set. This dataset can use 4 subjects and 5 IMU sensors. Therefore, we
validated 20 cases combinations of subjects and sensors in total. From the figure,
it can be seen that the average value of F1-Score is improved in 2 out of 5 cases
compared to the baseline method.

Fig.5(c) shows the validation results when using the complex activities dataset
of the Opportunity dataset. This dataset can use 4 subjects and 5 IMU sensors.
Therefore, we validated 20 cases combinations of subjects and sensors in total. From
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Fig. 3 Comparison of recognition accuracy of activity recognition with a single sensor and multiple
sensors (simple activity). "ALL" used multiple sensors, others used a single sensor.

0.6 ) ™

o.

o.

00 ALL LUA RLA RUA

BACK LLA

F1-Score

IS

N

Sensor

(a) Opportunity dataset

F1-Score

0.2 | i
00 ALL BACK LeftForeArm LeftLowerLeg RightForeArm RightLowerlLeg
Sensor

(b) Cooking dataset

Fig.4 Comparison of recognition accuracy of activity recognition with a single sensor and multiple
sensors (complex activity) "ALL" used multiple sensors, others used a single sensor.



Using LUPI to Improve Complex Activity Recognition 9

this figure, it can be seen that the average value of the F1-score is improved compared
to the baseline method in each case.

Table 2 shows the number of improvements and the number of deteriorations
between SVM (baseline) and ensemble for each dataset in this validation. From the
table, it can be seen that the number of improvements is greater than the number
of deteriorations in all datasets. In addition, it can be seen that the F1-Score of
the complex activity type dataset is improved compared to the simple activity type
dataset.

chest
Sensor used for X(Original data)

BN Ensemble(proposed method) B SVM(baseline) s SVM Plus

(a) PAMAP Dataset

1.0
0.8 0.750.77 p:8
(9]
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Sensor used for X(Original data)
B Ensemble(proposed method) m SVM(baseline) s SVM Plus

(b) Opportunity Dataset(simple activate)

OPP complex activity LUPI result
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0.0
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Sensor used for X(Original data)

mmm Ensemble(proposed method) mmm SVM(baseline) s SVM Plus

(c) Opportunity Dataset(complex activities)

Fig. 5 The validation result of the each subject using random-split cross-validation (train:80%
test:20%)
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Table 2 The total number of improvements and degradations between SVM (baseline) and ensem-
ble was validated using random-split cross-validation of each subject using three datasets.

total number of cases|number of improvements|number of deteriorations
PAMAP 15 14 1
OPP HL 20 18 2
OPP Locomotion 20 11 9

4.3.3 Validation Results Using Additional Information During Training
(Random-Split Cross-Validation of The Entire Data)

Fig.6, 7 show that the results of validation by randomly setting 80% of the training
data and 20% of the test data for each dataset.

Fig.6(a) shows that results of using a simple activities dataset in the Opportunity
data set are shown. This dataset contains 5 sensors, we validated 5 cases in total. The
figure shows that the F1-Score was improved compared to the baseline method in 3
out of 5 cases.

Fig.6(b) shows the results of validation using the PAMAP dataset. This dataset
contains 3 sensors, we validated 3 cases in total. From the figure, the F1-Score was
improved compared to the baseline method (SVM) when hand and ankle are used
for X.

Fig.7(a) shows the results when using a dataset of complex activities in the
Opportunity dataset. This dataset contains 5 sensors, we validated 5 cases in total.
From the figure, it can be seen that the F1-Score was improved compared to the
baseline method in 4 out of 5 cases.

Fig.7(b) shows the validation results using the Cooking dataset. From this figure, it
can be seen that the F1-Score was improved compared to the baseline method(SVM)
in all cases.

Table 3 shows the number of improvements and the number of deteriorations
between SVM (baseline) and ensemble for each dataset in this validation. From the
table, the number of improvements is greater than the number of deteriorations in
all datasets

Table 3 The total number of improvements and degradations between SVM (baseline) and ensem-
ble was validated using random cross-validation using four datasets.

total number of cases|number of improvements|number of deteriorations
Cooking 5 5 0
PAMAP 3 2 1
OPP HL 5 4 1
OPP Locomotion 5 3 2
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Fig. 6 The validation result of the entire dataset(simple activities) using random cross-validation
(train:80% test:20%)
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Table 4 The total number of improvements and degradations between SVM (baseline) and ensem-
ble was validated using leave-one-subject-out cross-validation using four datasets.

total number of cases|number of improvements|number of deteriorations
Cooking 35 15 20
PAMAP 15 8 7
OPP HL 20 9 11
OPP Locomotion 20 13 7

4.3.4 Validation Results Using Additional Information During Training
(Leave-One-Subject-Out Cross-Validation)

Fig. 8 and 9 show the results of leave-one-subject-out cross-validation. These figures
show the average value of the F1-score when cross-validation was performed.

Fig.8(a) shows the results when a simple activities dataset in the Opportunity
dataset is used. This dataset can use 4 subjects and 5 IMU sensors. Therefore, we
validated 20 cases combinations of subjects and sensors in total (4 cross-validation
patterns X 5 combination patterns of X and X*). The figure shows that the average
value of F1-Score is improved in 2 out of 5 cases compared to the baseline method.

Fig.8(b) shows the results of validation using the PAMAP dataset. This dataset
can use 5 subjects and 3 IMU sensors. Therefore, we validated 15 cases combinations
of subjects and sensors in total (5 cross-validation patterns X 3 combination patterns
of X and X*). The figure shows that the average value of F1-Score is improved in 2
out of 3 cases compared to the baseline method.

Fig.9(a) shows the results of using the complex activities data set in the Oppor-
tunity data set. This dataset can use 4 subjects and 5 IMU sensors. Therefore, we
validated 20 cases combinations of subjects and sensors in total (5 cross-validation
patterns X 3 combination patterns of X and X*). The figure shows that the average
value of F1-Score is improved in 2 out of 5 cases compared to the baseline method.

Fig.9(b) shows the results of validation using the Cooking dataset. This dataset
can use 7 subjects and 5 IMU sensors. Therefore, we validated 35 cases combinations
of subjects and sensors in total (7 cross-validation patterns X 5 combination patterns
of X and X™). From the figure, it can be seen that the average value of F1-Score is
improved in recognition accuracy in 1 case out of 5 cases compared to the baseline
method.

Table 4 shows the number of improvements and the number of deteriorations
between SVM(baseline) and ensemble for each data set in this validation. From the
table, it can be seen that the number of deteriorations is higher than the number of
improvements, except for the datasets of complex activities types of PAMAP and
Opportunity dataset.
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5 Discussion

In this section, we consider the following based on the results of the previous section.

* Improvement of recognition accuracy by using additional Training information
* Deterioration of recognition accuracy due to the use of additional Training infor-
mation

5.1 Improvement of Recognition Accuracy by Using Additional
Learning Information

From the results of the Table 3, it can be said that the recognition accuracy can be
improved when training with additional information that can be used only during
training. In particular, as we can see, it is effective for the datasets containing
complex activities such as the Opportunity dataset(Fig.7(a)) and the Cooking dataset
(Fig.7(b)).

5.2 Deterioration of Recognition Accuracy Due to The Use of
Additional Training Information

From the Table 4, it was found that when the subjects are different between the
training data and the test data, there are more cases of deterioration than improvement.
Therefore, in order to apply this method to such cases, it is necessary to consider the
difference in the features of each subject. In addition, it can be said that the recognition
accuracy of SVM+ is lower than that of the baseline method as a whole, which is the
cause of the low recognition accuracy even when combined as an ensemble. As a
feature of SVM+, additional information is assume trained as accurate information,
so even if it is not accurate information, it is treated as correct information, which is
thought to have led to a decrease in recognition accuracy. Furthermore, the previous
research [12] studies sensor-based activity recognition using SVM+. But, the same
IMU sensor information has been used. In short, the accelerometer sensor is used as
original data, the gyroscope sensor is used as additional data.

6 Conclusion

In this paper, in order to improve the accuracy of complex activity recognition,
we employ ensemble learning which combined baseline (SVM) and LUPI (SVM+)
classifier. We used four published datasets for evaluating our proposed method us-
ing random-split cross-validation and leave-one-subject-out cross-validation. As a
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result, the proposed method improved by up to 16% in F1-Score to 67% compared
to baseline method when we used random-split cross-validation of each subject.
However, when we used leave-one-subject-out cross-validation, the recognition ac-
curacy is worse than the baseline method. In addition, it is different features between
sensor positions and affects recognition accuracy. Another major reason is that SVM
+ has lower accuracy than SVM. Unfortunately, our work does not show a benefit of
LUPI, with the performance of SMV+ significantly lower than the baseline SVM.
The performance of the ensemble is slightly higher than SVM. While this might
indicate that a combination of classical SVM and SVM with LUPI could lead to
better ensembles, it does not rule out that the improvement observed comes from
using an ensemble at all. In order to elucidate this question, other ensembles should
be assessed (e.g. SVM and KNN). Based on the above, As future work, we would
like to study the following:

* Examining methods for extracting common features from different sensors.

* Examining feature extraction methods that do not depend on the subject.

» Comparing ensemble learning with other classifiers to use in combination with
SVM+.

References

1. Bulling, A., Blanke, U., Schiele, B.: A tutorial on human activity recognition using body-
worn inertial sensors. ACM Comput. Surv. 46(3) (2014). DOI 10.1145/2499621. URL
https://doi.org/10.1145/2499621

2. Chang, Y., Mathur, A., Isopoussu, A., Song, J., Kawsar, F.: A systematic study of un-
supervised domain adaptation for robust human-activity recognition. Proc. ACM Inter-
act. Mob. Wearable Ubiquitous Technol. 4(1) (2020). DOI 10.1145/3380985. URL
https://doi.org/10.1145/3380985

3. Dernbach, S., Das, B., Krishnan, N.C., Thomas, B.L., Cook, D.J.: Simple and complex activity
recognition through smart phones. In: 2012 Eighth International Conference on Intelligent
Environments, pp. 214-221 (2012). DOI 10.1109/1E.2012.39

4. Dietterich, T.G.: Ensemble methods in machine learning. In: Multiple Classifier Systems, pp.
1-15. Springer Berlin Heidelberg, Berlin, Heidelberg (2000)

5. Gauraha, N., Carlsson, L., Spjuth, O.: Conformal prediction in learning under privileged
information paradigm with applications in drug discovery. In: A. Gammerman, V. Vovk,
Z. Luo, E. Smirnov, R. Peeters (eds.) Proceedings of the Seventh Workshop on Conformal
and Probabilistic Prediction and Applications, Proceedings of Machine Learning Research,
vol. 91, pp. 147-156. PMLR (2018). URL http://proceedings.mlr.press/v91/gaurahal8a.html

6. Inoue, S., Ueda, N., Nohara, Y., Nakashima, N.: Mobile activity recognition for a whole
day: Recognizing real nursing activities with big dataset. In: Proceedings of the 2015 ACM
International Joint Conference on Pervasive and Ubiquitous Computing, UbiComp 15, pp.
1269—-1280. Association for Computing Machinery, New York, NY, USA (2015). DOI
10.1145/2750858.2807533. URL https://doi.org/10.1145/2750858.2807533

7. Kong, Q., Wu,Z., Deng, Z., Klinkigt, M., Tong, B., Murakami, T.: Mmact: A large-scale dataset
for cross modal human action understanding. In: 2019 IEEE/CVF International Conference
on Computer Vision (ICCV), pp. 8657-8666 (2019). DOI 10.1109/ICCV.2019.00875

8. Kriiger, F., Nyolt, M., Yordanova, K., Hein, A., Kirste, T.: Computational state space models
for activity and intention recognition. a feasibility study. PLOS ONE 9(11), 1-24 (2014).
DOI 10.1371/journal.pone.0109381. URL https://doi.org/10.1371/journal.pone.0109381



16

10.

11.

12.

14.

15.

16.

17.

18.

19.

20.

21.

Kohei Adachi, Paula Lago, Yuichi Hattori and Sozo Inoue

. Lago, P.A., Matsuki, M., Inoue, S.: Achieving single-sensor complex activity recognition from

multi-sensor training data. ArXiv abs/2002.11284 (2020)

Lambert, J., Sener, O., Savarese, S.: Deep learning under privileged information using het-
eroscedastic dropout. In: The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2018)

Lapin, M., Hein, M., Schiele, B.: Learning using privileged information: Svm+ and weighted
svm. Neural Networks 53, 95-108 (2014). DOI https://doi.org/10.1016/j.neunet.2014.02.002.
URL https://www.sciencedirect.com/science/article/pii/S0893608014000306

Li, X, Du, B., Xu, C. Zhang, Y. Zhang, L. Tao, D.: Robust learn-
ing with imperfect privileged information. Artificial  Intelligence 282,
103246  (2020). DOI  https://doi.org/10.1016/j.artint.2020.103246. URL
https://www.sciencedirect.com/science/article/pii/S00043702203001 14

. Liu, L., Peng, Y., Wang, S., Liu, M., Huang, Z.: Complex activity recognition us-

ing time series pattern dictionary learned from ubiquitous sensors. Information Sci-
ences 340-341, 41-57 (2016). DOI https://doi.org/10.1016/j.in5.2016.01.020. ~ URL
https://www.sciencedirect.com/science/article/pii/S0020025516000311

Mao, D., Lin, X., Liu, Y., Xu, M., Wang, G., Chen, J., Zhang, W.: Activity Recognition
from Skeleton and Acceleration Data Using CNN and GCN, pp. 15-25. Springer Singapore,
Singapore (2021). DOI 10.1007/978-981-15-8269-1_2. URL https://doi.org/10.1007/978-
981-15-8269-1_2

Morales, F.J.O.n., Roggen, D.: Deep convolutional feature transfer across mobile activity
recognition domains, sensor modalities and locations. In: Proceedings of the 2016 ACM
International Symposium on Wearable Computers, ISWC ’ 16, p. 92-99. Association for Com-
puting Machinery, New York, NY, USA (2016). DOI 10.1145/2971763.2971764. URL
https://doi.org/10.1145/2971763.2971764

Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In:
2012 16th International Symposium on Wearable Computers, pp. 108-109 (2012). DOI

10.1109/1SWC.2012.13

Roggen, D., Calatroni, A., Rossi, M., Holleczek, T., Forster, K., Troster, G., Lukowicz, P.,
Bannach, D., Pirkl, G., Ferscha, A., Doppler, J., Holzmann, C., Kurz, M., Holl, G., Chavarriaga,
R., Sagha, H., Bayati, H., Creatura, M., Millan, J.d.R.: Collecting complex activity datasets
in highly rich networked sensor environments. In: 2010 Seventh International Conference on
Networked Sensing Systems (INSS), pp. 233-240 (2010). DOI 10.1109/INSS.2010.5573462
Tang, F., Xiao, C., Wang, F., Zhou, J., Lehman, L.w.H.: Retaining privileged information for
multi-task learning. In: Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery &amp; Data Mining, KDD °19, p. 1369-1377. Association for
Computing Machinery, New York, NY, USA (2019). DOI 10.1145/3292500.3330907. URL
https://doi.org/10.1145/3292500.3330907

Vapnik, V., Izmailov, R.: Learning using privileged information: Similarity control and knowl-
edge transfer. Journal of Machine Learning Research 16(61), 2023-2049 (2015). URL
http://jmlr.org/papers/v16/vapnik 1 5b.html

Vrigkas, M., Kazakos, E., Nikou, C., Kakadiaris, I.: Human activity recognition using robust
adaptive privileged probabilistic learning. Pattern Analysis and Applications (2021). DOI

10.1007/s10044-020-00953-x

Vrigkas, M., Kazakos, E., Nikou, C., Kakadiaris, I.A.: Inferring human activities using robust
privileged probabilistic learning. In: 2017 IEEE International Conference on Computer Vision
Workshops (ICCVW), pp. 2658-2665 (2017). DOI 10.1109/ICCVW.2017.307



