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ON THE RELATION BETWEEN THE WEAK PALAIS-SMALE
CONDITION AND COERCIVITY BY ZHONG

TOMONARI SUZUKI

Abstract. In this paper, we discuss Zhong’s result of that the weak Palais-Smale
condition implies coercivity under some assumption in [Nonlinear Anal., 29 (1997),
1421–1431]. We also give a simple proof of Zhong’s result. Further we generalize the
result in Caklovic, Li and Willem [Differential Integral Equations, 3 (1990), 799–800].

1. Introduction

Throughout this paper we denote by N the set of all positive integers and by R the
set of all real numbers.

Let f be a function from a Banach space X into (−∞, +∞]. We recall that f is
called Gâteaux differentiable at x ∈ X with f(x) ∈ R if there exists a continuous linear
functional f ′(x) such that

lim
t→0

f(x + ty)− f(x)

t
= 〈f ′(x), y〉

holds for every y ∈ X. f is said to be coercive if

lim
r→∞

inf
‖x‖≥r

f(x) = ∞

holds. Also, f is said to satisfy the weak Palais-Smale condition [17] if there exists a
nondecreasing function h from [0,∞) into itself satisfying

∫∞
0

(1/(1+h(t)))dt = ∞, and
the following condition: Every sequence {xn} in X such that {f(xn)} is bounded and

lim
n→∞

‖f ′(xn)‖ (
1 + h(‖xn‖)

)
= 0

contains a convergent subsequence. This definition seems to be weaker than the defini-
tion in [17]. However they are equivalent; see Section 5. In the case of h(t) = 0 for all
t ∈ [0,∞), we call that f satisfies the Palais-Smale condition. In the case of h(t) = t
for all t ∈ [0,∞), we call that f satisfies the Cerami-Palais-Smale condition [4].

It is well known that the Palais-Smale condition implies coercivity under some as-
sumption; see Brézis and Nirenberg [2], Caklovic, Li and Willem [3] and others. In 1997,
Zhong [17] generalized these results and proved that the weak Palais-Smale condition
implies coercivity. However the proof is slightly complicated.
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In this paper, we discuss Zhong’s result and we also give a simple proof of it. Further
we generalize the result in Caklovic, Li and Willem [3]. We also discuss the conditions
of the continuity of h,

∫∞
0

(1/(1 + h(t)))dt = ∞, and the completeness of X.

2. τ-Distance

In our discussion, the notion of τ -distance plays an important role.
Let (X, d) be a metric space. Then a function p from X ×X into [0,∞) is called a

τ -distance on X [10] if there exists a function η from X × [0,∞) into [0,∞) and the
following are satisfied:

(τ1) p(x, z) ≤ p(x, y) + p(y, z) for all x, y, z ∈ X;
(τ2) η(x, 0) = 0 and η(x, t) ≥ t for all x ∈ X and t ∈ [0,∞), and η is concave and

continuous in its second variable;
(τ3) limn xn = x and limn sup{η(zn, p(zn, xm)) : m ≥ n} = 0 imply p(w, x) ≤

lim infn p(w, xn) for all w ∈ X;
(τ4) limn sup{p(xn, ym) : m ≥ n} = 0 and limn η(xn, tn) = 0 imply limn η(yn, tn) = 0;
(τ5) limn η(zn, p(zn, xn)) = 0 and limn η(zn, p(zn, yn)) = 0 imply limn d(xn, yn) = 0.

We note that η is strictly increasing in its second variable. We also note that the metric
d is a τ -distance on X. Many useful propositions and examples are stated in [7–16].

Though the following is a corollary of Proposition 2 in [12], we give a proof.

Proposition 1. Let (X, d) be a metric space with a τ -distance p. Let q be a function
from X ×X into [0,∞). Suppose that

(i) q satisfies (τ1)q, i.e., q(x, z) ≤ q(x, y) + q(y, z) for all x, y, z ∈ X;
(ii) q is lower semicontinuous in its second variable;
(iii) q(x, y) ≥ p(x, y) for all x, y ∈ X.

Then q is also a τ -distance on X.

Proof. Let η be a function satisfying (τ2)–(τ5). From the assumption (ii), (τ3)q clearly
holds. We assume that limn sup {q(xn, ym) : m ≥ n} = 0 and limn η(xn, tn) = 0. Then
from the assumption (iii), we have limn sup{p(xn, ym) : m ≥ n} = 0. So by (τ4),
we obtain limn η(yn, tn) = 0. This is (τ4)q. Let us prove (τ5)q. We assume that
limn η

(
zn, q(zn, xn)

)
= 0 and limn η

(
zn, q(zn, yn)

)
= 0. Then from the assumption (iii)

again, we have limn η
(
zn, p(zn, xn)

)
= 0 and limn η

(
zn, p(zn, yn)

)
= 0. So by (τ5), we

obtain limn d(xn, yn) = 0. This completes the proof. ¤

Now, we give the following example.

Example 1. Let (X, d) be a metric space, and h a nondecreasing function from [0,∞)
into itself such that

∫∞
0

(1/(1+h(t)))dt = ∞. Fix z0 ∈ X. Then functions p and q from
X ×X into [0,∞) defined by

p(x, y) =

∫ d(z0,x)+d(x,y)

d(z0,x)

dt

1 + h(t)
and q(x, y) = p(x, y) + p(y, x)

for all x, y ∈ X are τ -distances on X.
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Proof. We know that p is a τ -distance on X; see Proposition 4 in [10]. So, since p
satisfies (τ1), we have

q(x, z) = p(x, z) + p(z, x)

≤ p(x, y) + p(y, z) + p(z, y) + p(y, x)

= q(x, y) + q(y, z)

for x, y, z ∈ X. This is (τ1)q. It is obvious that q is continuous and q(x, y) ≥ p(x, y) for
all x, y ∈ X. So by Proposition 1, we have q is a τ -distance on X. ¤

In [10], using the above p, the author gave the slight generalization and another proof
of Zhong’s variational principle [17, 18]. In this paper, we use the above q.

The following is Theorem 4 in [10], which is the τ -distance version of Ekeland’s
variational principle [5, 6]. Of course, this is one of the generalizations of the Banach
contraction principle [1].

Theorem 1. Let X be a complete metric space with a τ -distance p. Let f be a function
from X into (−∞, +∞] which is proper lower semicontinuous and bounded from below.
Then for ε > 0 and u ∈ X with p(u, u) = 0, there exists v ∈ X such that f(v) ≤
f(u)− εp(u, v) and f(w) > f(v)− εp(v, w) for all w ∈ X with w 6= v.

From Example 1 and Theorem 1, we obtain the following.

Theorem 2. Let X, d, h, z0 be as in Example 1. Suppose that X is complete. Let f be
a function from X into (−∞, +∞] which is proper lower semicontinuous and bounded
from below. Then for ε > 0 and u ∈ X, there exists v ∈ X such that

f(v) ≤ f(u)− ε

∫ d(z0,u)+d(u,v)

d(z0,u)

dt

1 + h(t)
− ε

∫ d(z0,v)+d(u,v)

d(z0,v)

dt

1 + h(t)

and

f(w) > f(v)− ε

∫ d(z0,v)+d(v,w)

d(z0,v)

dt

1 + h(t)
− ε

∫ d(z0,w)+d(v,w)

d(z0,w)

dt

1 + h(t)

for all w ∈ X with w 6= v.

3. Zhong’s Result

In this section, using Theorem 2, we can easily prove the following Zhong’s result in
[17]. Compare the proof with Zhong’s. We use Theorem 2 only one time.

Theorem 3 (Zhong [17]). Let X be a Banach space, and h a nondecreasing function
from [0,∞) into itself such that

∫∞
0

(1/(1 + h(t)))dt = ∞. Let f be a function from
X into (−∞, +∞] which is proper lower semicontinuous. Assume that f is Gâteaux
differentiable at every point x ∈ X with f(x) ∈ R. If

α := lim
r→∞

inf
‖x‖≥r

f(x) ∈ R,

then there exists a sequence {xn} in X such that limn ‖xn‖ = ∞, limn f(xn) = α, and

lim
n→∞

‖f ′(xn)‖ (
1 + h(‖xn‖)

)
= 0.

Remark. In [17], the continuity of h is needed. We discuss this condition in Section 5.

In the proof of Theorem 3, we use the following lemma, which is well known.
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Lemma 1. Suppose that c ≥ 0, δ > 0, v ∈ X, f(v) ∈ R and either of the following
holds:

• f(w) ≥ f(v)− c ‖v − w‖ for all w ∈ X with 0 < ‖v − w‖ < δ; or
• f(w) ≤ f(v) + c ‖v − w‖ for all w ∈ X with 0 < ‖v − w‖ < δ.

Then ‖f ′(v)‖ ≤ c.

Proof of Theorem 3. We shall only show the following: For every ε > 0, there exists
v ∈ X satisfying ‖v‖ ≥ 1/ε, |f(v) − α| ≤ ε, and ‖f ′(v)‖ (

1 + h(‖v‖)) ≤ ε. Fix ε > 0.
Define a function θ from [0,∞) into itself by

(1) θ(t) = 1 + 2 h(t + 1)

for t ∈ [0,∞). Then it is obvious that θ is nondecreasing, and we have
∫ ∞

0

dt

1 + θ(t)
=

1

2

∫ ∞

0

dt

1 + h(t + 1)
=

1

2

∫ ∞

1

dt

1 + h(t)
= ∞.

We also define a function g from X into (−∞, +∞] by

g(x) = max
{
f(x), α− 2ε

}

for x ∈ X. Then it is obvious that g is proper lower semicontinuous and bounded from
below. We next choose r, r′ ∈ R with 1/ε < r < r′, 1 < r,

inf
‖x‖≥r

f(x) > α− ε, and

∫ r′

r

dt

1 + θ(t)
= 3.

We also choose u ∈ X with ‖u‖ > r′ and f(u) < α + ε. We note that g(u) = f(u)
because of ‖u‖ > r. Then by Theorem 2, there exists v ∈ X such that

(2) g(v) ≤ g(u)− ε

∫ ‖u‖+‖u−v‖

‖u‖

dt

1 + θ(t)
− ε

∫ ‖v‖+‖u−v‖

‖v‖

dt

1 + θ(t)

and

(3) g(w) > g(v)− ε

∫ ‖v‖+‖v−w‖

‖v‖

dt

1 + θ(t)
− ε

∫ ‖w‖+‖v−w‖

‖w‖

dt

1 + θ(t)

for all w ∈ X with w 6= v. Arguing by contradiction, we assume that ‖v‖ < r. From
(2), we have

α− 2ε ≤ g(v) ≤ g(u)− ε

∫ ‖v‖+‖u−v‖

‖v‖

dt

1 + θ(t)

≤ g(u)− ε

∫ ‖u‖

‖v‖

dt

1 + θ(t)
≤ g(u)− ε

∫ r′

r

dt

1 + θ(t)

= f(u)− 3ε < α− 2ε.

This is a contradiction. Therefore we obtain ‖v‖ ≥ r > 1/ε. Thus we have g(v) = f(v)
and

α− ε < inf
‖x‖≥r

f(x) ≤ f(v) ≤ f(u) < α + ε.

This implies |f(v)− α| ≤ ε. From (3) and nondecreasingness of θ, we have

g(w) > g(v)−
(

ε

1 + θ(‖v‖) +
ε

1 + θ(‖w‖)
)
‖v − w‖
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for w ∈ X with w 6= v. Since f is lower semicontinuous and f(v) > α− 2ε, there exists
δ ∈ (0, 1) such that f(w) > α− 2ε for w ∈ X with ‖v−w‖ < δ. Hence, for w ∈ X with
0 < ‖v − w‖ < δ, since g(w) = f(w) and

‖w‖ ≥ ‖v‖ − ‖v − w‖ > ‖v‖ − δ > ‖v‖ − 1 > 0,

we have

f(w) > f(v)−
(

ε

1 + θ(‖v‖) +
ε

1 + θ(‖v‖ − 1)

)
‖v − w‖

≥ f(v)− 2 ε

1 + θ(‖v‖ − 1)
‖v − w‖

= f(v)− ε

1 + h(‖v‖) ‖v − w‖.

So by Lemma 1, we have ‖f ′(v)‖ (
1 + h(‖v‖)) ≤ ε. This completes the proof. ¤

As a direct consequence of Theorem 3, we obtain the following.

Theorem 4 (Zhong [17]). Let X be a Banach space. Let f be a function from X into
(−∞, +∞] which is proper lower semicontinuous and bounded from below. Assume that
f is Gâteaux differentiable at every point x ∈ X with f(x) ∈ R, and f satisfies the weak
Palais-Smale condition. Then f is coercive.

Remark. We can weaken the condition that f satisfies the weak Palais-Smale condition
as follows: Every sequence {xn} in X such that {f(xn)} is bounded and limn ‖f ′(xn)‖ (

1

+ h(‖xn‖)
)

= 0 contains a bounded subsequence.

4. Coercivity of |f |
In this section, we discuss the coercivity of |f |.
The following is a generalization of the result in Caklovic, Li and Willem [3].

Theorem 5. Let X be a Banach space, and h a nondecreasing function from [0,∞)
into itself such that

∫∞
0

(1/(1 + h(t)))dt = ∞. Let f be a continuous function from X
into R. Assume that f is Gâteaux differentiable at every point x ∈ X. If there exists
γ ∈ R such that {x ∈ X : f(x) = γ} is bounded, and

α := lim
r→∞

inf
‖x‖≥r

|f(x)− γ| ∈ R,

then there exists a sequence {xn} in X such that limn ‖xn‖ = ∞, limn |f(xn)− γ| = α,
and

lim
n→∞

‖f ′(xn)‖ (
1 + h(‖xn‖)

)
= 0.

Proof. We put g(x) = |f(x) − γ| for all x ∈ X. We shall only show the following: For
every ε > 0, there exists v ∈ X satisfying ‖v‖ ≥ 1/ε, |g(v) − α| ≤ ε, and ‖f ′(v)‖ (

1 +

h(‖v‖)) ≤ ε. Fix ε > 0. Define a function θ from [0,∞) into itself by (1). We next
choose r, r′ ∈ R with 1/ε < r < r′, 1 < r, g(x) > 0 for x ∈ X with ‖x‖ ≥ r,

inf
‖x‖≥r

g(x) > α− ε, and

∫ r′

r

dt

1 + θ(t)
=

α + ε

ε
.
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We also choose u ∈ X with ‖u‖ > r′ and g(u) < α + ε. Then by Theorem 2, there
exists v ∈ X with (2) and (3) for all w ∈ X with w 6= v. Arguing by contradiction, we
assume that ‖v‖ < r. From (2), we have

0 ≤ g(v) ≤ g(u)− ε

∫ r′

r

dt

1 + θ(t)
= g(u)− (α + ε) < 0.

This is a contradiction. Therefore we obtain ‖v‖ ≥ r > 1/ε and hence g(v) > 0. We
also have

α− ε < inf
‖x‖≥r

g(x) ≤ g(v) ≤ g(u) < α + ε.

and hence |g(v) − α| ≤ ε. Since f is continuous and g(v) > 0, there exists δ ∈ (0, 1)
such that either of the following holds:

• g(w) = +f(w)− γ for w ∈ X with ‖v − w‖ < δ; or
• g(w) = −f(w) + γ for w ∈ X with ‖v − w‖ < δ.

As in the proof of Theorem 3, we have

g(w) > g(v)− ε

1 + h(‖v‖) ‖v − w‖

for w ∈ X with 0 < ‖v − w‖ < δ. In the former case, we obtain

f(w) > f(v)− ε

1 + h(‖v‖) ‖v − w‖.

In the latter case, we obtain

f(w) < f(v) +
ε

1 + h(‖v‖) ‖v − w‖.

So, by Lemma 1, we have ‖f ′(v)‖ (
1 + h(‖v‖)) ≤ ε in both cases. This completes the

proof. ¤

As a direct consequence of Theorem 5, we obtain the following.

Theorem 6. Let X be a Banach space. Let f be a continuous function from X into R.
Assume that f is Gâteaux differentiable at every point x ∈ X, and f satisfies the weak
Palais-Smale condition. If there exists γ ∈ R such that {x ∈ X : f(x) = γ} is bounded,
then |f | is coercive.

Remark. We have the same remark of Theorem 4.

5. Continuity of h

In this section, we discuss the continuity of h.
Without the assumption of continuity of h, we can prove Theorem 3. However,

Theorem 3 is not a generalization of Zhong’s result because the following proposition
holds. That is, Theorem 3 in this paper and Theorem 3.7 in [17] are equivalent. Also the
two definitions of weak Palais-Smale condition in [17] and in this paper are equivalent.

Proposition 2. Let h be a nondecreasing function from [0,∞) into itself such that∫∞
0

(1/(1+h(t)))dt = ∞. Then there exists a continuous nondecreasing function θ from

[0,∞) into itself such that
∫∞
0

(1/(1 + θ(t)))dt = ∞ and h(t) ≤ θ(t) for all t ∈ [0,∞).
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Proof. For t ∈ R, we denote by [t] the maximum integer not exceeding t. Define a
function θ from [0,∞) into itself by

θ(t) =
(
1− t + [t]

)
h
(
[t] + 1

)
+

(
t− [t]

)
h
(
[t] + 2

)

for t ∈ [0,∞). Putting k = [t] and s = t− [t] ∈ [0, 1), we have

θ(k + s) = (1− s) h(k + 1) + s h(k + 2).

It is obvious that θ is continuous and nondecreasing. For t ∈ [0,∞), we have

θ(t) ≥ h
(
[t] + 1

) ≥ h(t)

because t < [t] + 1. We also have
∫ ∞

0

dt

1 + θ(t)
≥

∫ ∞

0

dt

1 + h
(
[t] + 2

) ≥
∫ ∞

0

dt

1 + h(t + 2)
=

∫ ∞

2

dt

1 + h(t)
= ∞.

This completes the proof. ¤
Similarly, we can prove the following.

Proposition 3. Let h be a nondecreasing function from [0,∞) into itself such that∫∞
0

(1/(1+h(t)))dt < ∞. Then there exists a continuous nondecreasing function θ from

[0,∞) into itself such that
∫∞
0

(1/(1 + θ(t)))dt < ∞ and θ(t) ≤ h(t) for all t ∈ [0,∞).

Proof. Define a function θ from [0,∞) into itself by

θ(t) =

{
h(0), if t ≤ 1,(
1− t + [t]

)
h
(
[t]− 1

)
+

(
t− [t]

)
h
(
[t]

)
, if t ≥ 1.

for t ∈ [0,∞). Then θ is continuous, nondecreasing, θ(t) ≤ h([t]) ≤ h(t) for t ∈ [0,∞),
and h(t− 2) ≤ h([t]− 1) ≤ θ(t) for t ∈ [2,∞). Hence

∫ ∞

2

dt

1 + θ(t)
≤

∫ ∞

2

dt

1 + h(t− 2)
=

∫ ∞

0

dt

1 + h(t)
< ∞.

This completes the proof. ¤

6. Counterexamples

In this section, we give examples, which say that we use conditions
∫∞
0

(1/(1 +
h(t)))dt = ∞ and the completeness of X in Theorem 3 and others.

Example 2. Put X := R and let h be a nondecreasing function from [0,∞) into itself
such that

∫∞
0

(1/(1 + h(t)))dt < ∞. Then there exists a differentiable function f from
X into R such that

lim
r→∞

inf
|x|≥r

f(x) ∈ R and |f ′(x)| (1 + h(|x|)) ≥ 1

for all x ∈ X.

Proof. By Proposition 3, there exists a continuous nondecreasing function θ from [0,∞)
into itself such that

∫∞
0

(1/(1 + θ(t)))dt < ∞ and θ(t) ≤ h(t) for all t ∈ [0,∞). Define
a function f from X into R by

f(x) =

∫ x

0

−1

1 + θ(max{t, 0}) dt
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for x ∈ X. It is obvious that lim
x→−∞

f(x) = ∞ and lim
x→+∞

f(x) ∈ R. We also have

|f ′(x)| (1 + h(|x|)) =
1

1 + θ(max{x, 0})
(
1 + h(|x|)) ≥ 1 + h(|x|)

1 + θ(|x|) ≥ 1

for all x ∈ X. This completes the proof. ¤
Example 3. Let X be the normed linear space consisting of all functions x from N into
R (i.e., x is a real sequence) such that {n ∈ N : x(n) 6= 0} is a finite subset of N. Define
a norm ‖ · ‖ on X by ‖x‖ =

∑∞
n=1 |x(n)| for all x ∈ X. Define a lower semicontinuous

(not continuous), convex, and Gâteaux differentiable function f from X into R by

f(x) =
∞∑

n=1

1

2n
exp

(
2n x(n)

)

for x ∈ X. Then

lim
r→∞

inf
‖x‖≥r

f(x) = 0 ∈ R and ‖f ′(x)‖ ≥ 1

for all x ∈ X.

Proof. It is obvious that f is convex and lim
r→∞

inf{f(x) : ‖x‖ ≥ r} = 0. By the definition

of X, f is Gâteaux differentiable and its derivative is given by

f ′(x) =
∞∑

n=1

exp
(
2n x(n)

)
en

for all x ∈ X, where {en} is the canonical basis of X. Thus, we have

‖f ′(x)‖ = sup
{

exp
(
2n x(n)

)
: n ∈ N} ≥ exp(0) = 1

for all x ∈ X. Fix x ∈ X and define a sequence {xn} in X by

xn(k) =

{
x(k), if k 6= n,

1/n, if k = n

for n ∈ N. Since ‖x− xn‖ = 1/n for large n ∈ N, {xn} converges to x. Since

2n−1

n2
≤ 1

2n

(
1 +

2n

n
+

(
2n

n

)2

/2

)
≤ 1

2n
exp

(
2n

n

)
≤ f(xn)

for n ∈ N, we have limn f(xn) = ∞. This implies f is not continuous everywhere. We
finally show that f is lower semicontinuous. Let {xn} be a sequence in X converging to
some x ∈ X. We fix ε > 0 and choose ν ∈ N such that 2−ν < ε and x(n) = 0 for every
n ∈ N with n ≥ ν. Define functions g and h from X into (0,∞) by

g(y) =
ν∑

n=1

1

2n
exp

(
2n y(n)

)
and h(y) =

∞∑
n=ν+1

1

2n
exp

(
2n y(n)

)

for y ∈ X. Then it is obvious that f = g + h, g is continuous and h(x) = 2−ν < ε. We
have

f(x) = g(x) + h(x) ≤ g(x) + ε = lim
n→∞

g(xn) + ε ≤ lim inf
n→∞

f(xn) + ε.

Since ε > 0 is arbitrary, we have f(x) ≤ lim infn f(xn). Therefore f is lower semicon-
tinuous. This completes the proof. ¤
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